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Abstract 

We present an objective and quantitative technique to reconstruct former sea level from 

assemblages of salt-marsh foraminifera using partitioning around medoids (PAM) cluster 

analysis and linear discriminant functions.  Three salt marshes, representing different 

physiographic environments in southern New Jersey, were selected for describing the modern 

distribution of foraminifera from 56 surface samples.  PAM estimated the number and 

composition of assemblages present at each site and showed that foraminifera adhered to the 

concept of elevation-dependent ecological zones, making them appropriate sea-level indicators.  

This approach has several advantages in comparison to hierarchical clustering.  Application of 

PAM to a regional dataset generated by combining all samples identified the presence of five 

distinctive biozones occupying defined elevation ranges.  The characteristics of these biozones 

were similar to those identified elsewhere on the mid-Atlantic coast of the USA.   Classification 

of each of the 56 samples as belonging to one of the five biozones enabled us to develop linear 

discriminant functions, which confirmed their distinctiveness.  These functions can estimate the 

probability that assemblages of foraminifera preserved in samples of salt-marsh sediment 

represent one of the five modern biozones.  Recognition of these biozones in sequences of 

salt-marsh sediment provides a means to reconstruct sea level. We collected a 4.0 m core from 

Leeds Point, New Jersey to investigate the practical application of this approach to 

reconstructing former sea level.  The linear discriminant functions were used to indicate the 

faunal origin of 32 core samples and in cross validation tests were accurate in 54 of 56 cases.  

The approach described can be used as an independent means to reconstruct sea level or to check 

the ecological plausibility of results from other techniques including transfer functions. 
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 1 Introduction 

Low energy, coastal sedimentary archives in temperate regions have provided detailed records of 

Holocene sea-level changes (Stuiver and Daddario, 1963; Kraft, 1971; Peteet Carmichael, 1980; 

Gehrels et al., 1996; Nikitina et al., 2000).  Such reconstructions are contingent upon the 

appropriate selection and application of sea-level indicators to accurately estimate former sea 

level.  A sea-level indicator is a physical, biological or chemical feature possessing a systematic 

and quantifiable relationship to elevation in the tidal frame (Shennan, 1986; van de Plassche, 

1986). This relationship, known as the indicative meaning, incorporates the elevational range 

occupied by a sea-level indicator (indicative range) in relation to a contemporaneous tide level 

(reference water level).  This approach is dependent upon a detailed understanding of the modern 

characteristics of the chosen sea-level indicator.  Further, a quantitative technique is necessary to 

provide objective estimates of Holocene relative sea level (RSL) on the basis of the similarity 

between sea-level indicators preserved in sub-fossil sedimentary material and those documented 

from modern settings (Jackson and Williams, 2004).  

 

Assemblages of foraminifera can be used as sea-level indicators because their distribution on 

modern salt marshes reflects changes in the frequency and duration of tidal inundation and 

permits recognition of elevation-dependent ecological zones (Scott and Medioli, 1978; Gehrels, 

1994; Horton and Edwards, 2006).  Some studies have documented a potential precision of 

<±0.1m in high-marsh settings (Scott and Medioli, 1978; Gehrels et al., 2001; Leorri et al., 2008; 

Kemp et al., 2009a).  Foraminifera are commonly well preserved in salt-marsh sediment and are 

well suited to quantitative analysis because they form low diversity, high abundance assemblages 

(Gehrels, 2007).   
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A number of techniques have been used to reconstruct RSL using foraminifera.  The vertical 

zonation concept proposed by Scott and Medioli (1978) uses the elevational range of discrete 

groups of modern salt-marsh foraminifera as the basis for assigning an indicative meaning to 

assemblages enumerated from core material (Gehrels, 1994).  This approach has frequently been 

used in a qualitative fashion where modern zones are determined subjectively and assignment of 

core samples to one of these groups is reliant upon the judgment of the researcher.  Alternatively, 

discriminant functions have been used to assign samples to zones that were also defined in a 

qualitative fashion (Jennings and Nelson, 1992).  More recently, these approaches have been 

widely superseded by the use of transfer functions (Guilbault et al., 1995; Horton et al., 2000; 

Edwards and Horton, 2006; Massey et al., 2006; Gehrels et al., 2008; Leorri et al., 2008; 

Woodroffe, 2009).  Transfer functions are empirically derived equations for producing 

quantitative estimates of past environmental conditions from paleontological data (Sachs et al., 

1977).  They have been used to produce accurate and precise estimates of former RSL in an 

objective and reproducible fashion (Gehrels et al., 2005; Horton and Edwards, 2006).  The 

validity of these reconstructions has been confirmed by comparison with tide-gauge records 

(Gehrels et al., 2005; Kemp et al., 2009a).  However, each of the numerical techniques used in 

developing transfer functions have underlying assumptions about the nature of species responses 

to environmental changes (Birks, 1995).  The ecological plausibility of all reconstructions should 

be reviewed out of concern for inaccurate estimates despite seemingly high precision (Birks, 

1995; Woodroffe, 2009).  Additionally, recent literature has highlighted the potential for transfer 

function-derived reconstructions of RSL to be influenced by spatial autocorrelation, resulting in 

overly optimistic estimates of uncertainty (Telford and Birks, 2005, 2009; Zong et al., 2010). 
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In this paper, we present an alternative means to reconstruct former RSL based upon modern and 

fossil assemblages of salt-marsh foraminifera using partitioning around medoids (PAM) cluster 

analysis in combination with linear discriminant functions.  This approach is not underpinned by 

assumptions about the distribution and response of foraminifera and provides a probabilistic 

estimate of the strength of analogy between modern and fossil assemblages of foraminifera.  We 

develop a new modern training set of foraminifera from three salt marshes in southern New 

Jersey, USA (Figure 1).  To illustrate the practical application of this approach, estimates of 

former salt-marsh elevation are provided for samples in a core of salt-marsh sediment collected 

from one of the study sites using linear discriminat functions and compared to transfer function 

results. 

 

2 Modern Setting 

The central and southern Atlantic coast of New Jersey is characterized by a chain of barrier 

islands, which protect a lagoon system from the open ocean.  Inlets separate the islands and 

allow exchange of water between the Atlantic Ocean and the lagoons.  The coast between Great 

Bay to the north and Cape May to the south (Figure 1) includes nine open inlets and is 

characterized by islands which typically decrease in size from north to south (Ferland, 1990).  

Large areas of formerly open-water lagoon have been infilled by washover material and 

accretion of salt-marsh sediment (Daddario, 1961; Meyerson, 1972; Thorbjarnarson et al., 1985; 

Psuty, 1986; Ferland, 1990). 
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Modern salt marshes in this region form extensive platforms dissected by tidal channels of 

varying size (Ferland, 1990), tidal flat environments are rare as the coast is experiencing ongoing 

erosion (Dolan et al., 1979; Fitzgerald et al., 2008).  Low-marsh settings are typically vegetated 

by Spartina alterniflora, while a high-marsh floral zone is recognized by Spartina patens with 

Spartina alterniflora (stunted form) and Distichlis spicata (Daddario, 1961).  The border 

between salt marsh and freshwater upland is vegetated by Phragmites australis, Typha spp. and 

Scirpus spp., it is typically narrow and representative of brackish conditions (Daddario, 1961; 

Stuckey and Gould, 2000). 

 

The region has a semidiurnal, microtidal (range <2m) regime.  Tidal ranges (MLLW to MHHW) 

are slightly larger on the ocean side of the barrier islands (1.4m at Atlantic City; Figure 1) than in 

the lagoons.  At the study sites around Great Bay (Figure 1), tidal ranges were estimated to be 

1.1m at Leeds point and Bass River and 1.3m at Brigantine Barrier by VDatum (Hess et al., 

2003; Parker et al., 2003).  

 

3 Methods 

3.1 Sampling Regime 

At the three sites (Leeds Point, Bass River and Brigantine Barrier) we established transects 

across the modern salt marsh which were positioned to include the full range of physiographic 

environments at each site (Figure 1).  Two transects were sampled at Leeds Point (A-A’ and B-

B’) and one at both Bass River and Brigantine Barrier.  Sampling stations reflected changes in 

elevation and vascular vegetation and were used to document the modern distribution of 
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foraminifera.  Sample altitudes were established using Real Time Kinematic (RTK) satellite 

navigation, where the base station (Leica GPS1200+) made a minimum of 2000 observations. 

 

A core (EF10) was selected for analysis from the Leeds Point site following stratigraphic 

investigation of the site.  The core was recovered in 0.5m sections using a Russian-type hand 

core.  It was sampled at a resolution of 10cm in the laboratory to ensure that all stratigraphic 

units were adequately represented.  Each sample consisted of a 1cm thick section of sediment. 

 

3.2 Sample preparation – foraminifera 

At each sampling station we collected a 10cm2 surface (0-1cm) sediment sample.  All samples 

were stained in the field using rose Bengal to allow recognition of individuals living at the time 

of collection (Walton, 1952) and stored in buffered ethanol.  In the laboratory, samples were 

sieved to separate and retain the 63-500μm size fraction of the sediment.  Samples were 

subsequently divided into eight aliquots using a wet splitter (Scott and Hermelin, 1993) and 

foraminifera were counted wet under a binocular microscope.  In instances where the sample 

included a large volume of sand and little organic material, foraminifera were isolated from the 

sediment using sodium polytungstate (density=2.89) as a medium for density separation 

(Munsterman and Kerstholt, 1996).  A minimum of 200 dead individuals were enumerated from 

a known fraction of the original sediment; where necessary the entire sample was counted. 

Identifications of foraminifera were confirmed by comparison with type and figured specimens 

lodged at the Smithsonian Institution, Washington, D.C. and The Natural History Museum, 

London.  Plate 1 shows scanning electron microscope images of select foraminifera sampled in 

this study.  Species of Ammonia and Elphidium were combined into generic groups (Hayward et 
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al., 2004; Horton and Edwards, 2006).  Due to difficulties in identifying broken individuals, we 

have also combined species of Ammobaculites into a single generic group.  All foraminiferal data 

presented are from dead assemblages.  Preparation of foraminiferal samples from core material 

followed closely that used for modern samples.  Complete foraminiferal data (modern and core) 

are provided in Appendix A.   

 

3.3 Statistical methods 

At each of the three sites we employed partitioning around medoids (PAM) cluster analysis 

(Kaufman and Rousseeuw, 1990) to define the number and composition of modern foraminiferal 

assemblages..  This analysis was also performed on a complete, regional dataset of modern 

foraminifera generated by combining data from all sites.   Analysis was based upon complete (all 

species) counts in percentage form and executed using the ‘cluster’ package in R (Maechler et 

al., 2005).  This technique has several advantages over other methods of cluster analysis.  It is 

particularly robust because it minimizes a sum of dissimilarity as opposed to a sum of squared 

Euclidean distances (Kaufman and Rousseeuw, 1990).  Further, it generates a novel graphical 

representation of the data called a silhouette plot.  A silhouette width of between -1 and 1 is 

possible for each sample and provides an estimate of the sample’s classification.  Values close to 

-1 indicate that a sample was incorrectly classified.  In contrast, values close to 1 indicate that the 

object was assigned to an appropriate cluster as the within group dissimilarity was much smaller 

than the between groups dissimilarity.  Values close to 0 are an intermediate case and also 

represent groups consisting of a single sample.  Silhouette widths enable the user to objectively 

select the optimal number of classifications within the dataset (Kaufman and Rousseeuw, 1990).  

We used maximum average silhouette width as the criteria for determining the number of 
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groups.  An additional feature of PAM is its description of the medoid for each group (Kaufman 

and Rousseeuw, 1990).  The medoid is the object for which average dissimilarity to all samples 

in a given group is minimal; in this study it is expressed as an assemblage of foraminifera.  

Statistical measures of each group’s characteristics (maximum and average within group 

dissimilarity, diameter and separation) are also provided. 

 

Linear discriminant functions were used to estimate paleo-marsh elevation (PME), which is the 

elevation at which a sample formed in relation to contemporary sea level and is considered as an 

estimate of reference water level, which is necessary to reconstruct former RSL (Edwards, 2007).  

The analysis was completed using the ‘MASS’ package executed in R (Venables and Ripley, 

2002).  All modern samples of foraminifera were first classified as being from one of the n 

biozones recognized by PAM cluster analysis.  These samples were combined to generate a 

modern training set.  A 2 arcsine transformation of square rooted proportional foraminiferal data 

was necessary to satisfy assumptions about the distribution of data (Owen, 1962).  Cross 

validation (leave one out) of the training set was used to estimate the frequency of sample 

misclassification (i.e. how often the linear discriminant functions assigned a sample to the wrong 

biozone).  This provides a measure of how well the linear discriminant functions are able to 

correctly assign samples and is thus a measure of performance (Venables and Ripley, 2002).   

 

A test set is composed of samples which are to be classified using the linear discriminant 

functions.  We used assemblages of foraminifera (all species) from samples in core EF10 as a 

test set following a 2 arcsine transformation of square rooted proportional data (Owen, 1962).  

Application of the linear discriminant functions estimated the probability that samples from the 
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core should be allocated to each of the modern biozones.  The modern elevational range of these 

biozones was used to estimate PME for samples in the test set (average elevation ± 1σ and 

midpoint ± half of the range).  Descriptions of the commands used for PAM clustering and 

development and application of linear discriminant functions are provided in Appendix B. 

 

4 Results 

4.1 Distribution of modern foraminifera 

We enumerated dead foraminifera from 56 modern samples of modern salt-marsh sediment 

collected at three sites.  A total of 16 species were recognized, of which 11 exceeded 10% of the 

assemblage in at least one sample. 

 

At Leeds Point, we collected 32 samples from two transects (Figure 1A) and identified 11 

species of foraminifera.  The first transect (A-A’) was 107m long and included 14 sampling 

stations (Figure 2A).  From 0-5m, two samples collected in an upland environment did not 

contain any foraminifera and were assumed to represent freshwater conditions.  At stations 3 to 

6, situated in a stand of Phragmites australis and Typha sp. (10-30m along transect), the 

dominant species of foraminifera were Haplophragmoides manilaensis (14-56%; average 31%), 

Tiphotrocha comprimata (2-65%; average 21%) and Arenoparrella mexicana (up to 36%).  

Spartina patens was the dominant form of vascular vegetation between 30 and 104m along the 

transect (stations 7-12).  The characteristic foraminifera in this part of the marsh were 

Arenoparrella mexicana (40-63%; average 49%) and Trochammina inflata (up to 21%).  Two 

samples (stations 13 and 14) positioned in a muddy Spartina alterniflora low marsh, revealed 

high abundances of Miliammina fusca (up to 71%). 



  12 

 

The second transect at Leeds Point (Figure 1A; B-B’) was parallel to the first and consisted of 18 

sampling stations (Figure 2).  From 0-8m along the transect, four samples (stations 1 to 4) 

collected in a forest fringing the salt marsh contained no foraminifera and are considered to 

represent a freshwater-upland environment.  In a Phragmites australis stand (13-17m), two 

samples (stations 5 and 6) were dominated by Haplophragmoides manilaensis (62-88%).  From 

20 to 41m along the transect (stations 7-10) the characteristic species of foraminifera were 

Haplophragmoides manilaensis (up to 28%; average 17%) and Tiphotrocha comprimata (10-

67%; average 27%).  These samples spanned the transition between Phragmites australis and 

Spartina patens.  A mono-specific stand of Spartina patens between 65 and 75m (stations 11-15) 

along the transect was populated by Arenoparrella mexicana (42-66%; average 51%) in 

association with Trochammina inflata (16-27%; average 23%) and Tiphotrocha comprimata (up 

to 21%; average 12%).  Three samples (stations 16-18) in a muddy, Spartina alterniflora 

environment (76-81m), were dominated by Miliammina fusca (37-45%) with occurrences of 

Arenoparrella mexicana (7-31%; average 19%). 

 

Foraminifera from the two transects were combined into a single dataset for cluster analysis.  

PAM showed that it was appropriate to recognize four groups of foraminifera (Figure 2B) at 

Leeds Point.  All samples were well classified as evidenced by silhouette widths between 0 and 1 

for group averages (Figure 2C, Table 1).   Group LP-1 had an average silhouette width of 0.33 

(Figure 2C) and included samples from the Phragmites australis high marsh which were 

dominated by Haplophragmoides manilaensis (28% to 88%; average 50%).  The elevational 

range of this group was 0.65-0.91m above mean tide level (MTL).  Group LP-2 consisted of 



  13 

three samples with an average silhouette width of 0.32, which were dominated by Tiphotrocha 

comprimata (23% to 68%; average 51%) and were positioned in the Spartina patens middle 

marsh.  This group had an elevational range of 0.54-0.59m MTL.  Group LP-3 had the highest 

average silhouette width (0.48), making it the best defined group at the Leeds Point site (Figure 

2C).  It was also the most homogenous, having the lowest average (21.63) and maximum (31.82) 

dissimilarity between member samples (Table 1).  The group was distinguished by high 

abundances of Arenoparrella mexicana (25% to 66%; average 48%), with Trochammina inflata 

(up to 30%; average 20%) and Miliammina fusca (up to 39%).  The elevational range of this 

group was 0.28-0.55m MTL.  Group LP-4 included four samples with an average silhouette 

width of 0.35 (Figure 2C).  It was characterized by high abundances of Miliammina fusca (37% 

to 71%; average 49%), with Arenoparrella mexicana (up to 31%) and was associated with low-

marsh Spartina alterniflora.  These samples encompassed elevations from -0.13-0.27m MTL.  

None of the four groups recognized at Leeds Point was isolated as in all cases the diameter of the 

group exceeded its separation from others implying overlap (Table 1). 

 

At Bass River, a transect of 15 samples identified 14 species of foraminifera (Figure 3).  The 

inland part of the transect (0 to 14m; stations 1 to 4) was characterized by high abundances of 

Tiphotrocha comprimata (12-61%; average 37%) in association with Trochammina inflata (up to 

36%), Arenoparrella mexicana (average 20%) and Jadammina macrescens (up to 15%).   This 

part of the marsh was vegetated by Spartina patens with the presence of Phragmites australis 

(station 1) and Iva fructescens.  From 19 to 44m along the transect (stations 5 to 15), in an area 

dominated by Spartina alterniflora and Salicornia sp., the characteristic species of foraminifera 

were Miliammina fusca (8-69%; average 44%) with Tiphotrocha comprimata (up to 38%; 
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average 15%) and Ammobaculites spp. (up to 50%).  A small number (<4%) of Balticammina 

pseudomacrescens were identified at the Bass River site. 

 

PAM cluster analysis was used to identify two groups of foraminifera at the Bass River site 

(Figure 3).  All samples were well classified as evidenced by silhouette widths between 0 and 1 

for group averages.  Group BR-1 had an average silhouette width of 0.33 (Figure 3C) and 

included samples characterized by Tiphotrocha comprimata (12% to 61%; average 37%), 

Arenoparrella mexicana (up to 46%; average 18%) and Jadammina macrescens (up to 15%; 

average 7%).  The elevational range of this group was 0.18-0.59m MTL.  The second group (BR-

2) had an average silhouette width of 0.45 and was dominated by Miliammina fusca (30% to 

69%; average 53%) and Ammobaculites spp. (up to 50%; average 21%).  Of the two groups, BR-

2 was the most homogenous (maximum dissimilarity = 44.3, average dissimilarity = 23.41; 

Table 1).  The elevational range of this group was -0.40-0.31m MTL.  The two groups at Bass 

River were not isolated from one another (Table 1). 

 

A transect of 15 samples at the Brigantine Barrier salt marsh recorded 12 species of foraminifera 

(Figure 4).  At sampling station one, a foraminiferal assemblage consisting of 16% 

Haplophragmoides manilaensis with 48% Trochammina inflata and 21% Jadammina 

macrescens was documented.  The station was located in a mixed stand of Phragmites australis 

and Iva fructescens.  From 6 to 100m along the transect (stations 2 to 10) the dominant species of 

foraminifera were Trochammina inflata (28-47%; average 41%) and Jadammina macrescens 

(25-47%; average 34%).  Small numbers of Balticammina pseudomacrescens (<2%) were 

identified.  This part of the salt marsh was vegetated by a mix of Spartina patens, Spartina 
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alterniflora (stunted form) and Salicornia sp.  The end of the transect (106-117m, stations 10 to 

15) was characterized by high abundances of Miliammina fusca (27-71%; average 51%) and 

Ammobaculites spp. (11-40%; average 19%).  The calcareous species Haynesina germanica was 

identified on unvegetated muddy sediments at stations 14 and 15. 

 

PAM cluster analysis recognized two groups of foraminifera at Brigantine Barrier (Figure 4).  

Group BB-1 had an average silhouette width of 0.42 (Figure 4C) and was dominated by 

Trochammina inflata (28% to 48%; average 41.4%), Jadammina macrescens (21% to 43%; 

average 32.5%) and Trochammina comprimata (up to 23%; average 14.1%).  Of the eight groups 

recognized among individual sites, BB-1 had the lowest dissimilarity between group members 

(maximum and average) and is therefore considered to be the most homogenous (Table 1).  The 

elevational range of samples in this group was 0.35-0.79m MTL.  Group BB-2 had an average 

silhouette width of 0.74 and was dominated by Miliammina fusca (27% to 71%; average 50.9%) 

and Ammobaculites spp. (11% to 40%; average 18.7%).  The elevational range of this group was 

-0.48-0.25m MTL. 

 

4.2 Recognition of foraminiferal biozones in southern New Jersey 

We generated a single dataset by combining the foraminifera counts from the four transects to 

identify modern biozones in the study region.  PAM cluster analysis of this new dataset showed 

that it was appropriate to recognize five biozones as evidence by a peak average silhouette width 

of 0.45 (Figure 5A).  The medoids of these five biozones provide a convenient and meaningful 

way to describe the groups (Table 2).  Biozone A was described by a medoid of 40.5% 

Trochammina inflata with 34.9% Jadammina macrescens (Figure 5a; Table 2).  This group of 
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samples is predominantly from the high-marsh environment at Brigantine Barrier (Figure 4) and 

had the lowest average dissimilarity among member samples (16.99; Table 1).  Biozone B is 

represented by a medoid assemblage of 63.1% Miliammina fusca and 19.1% Ammobaculites spp. 

and consisted predominantly of samples from Spartina alterniflora low-marsh settings at all 

three sites.  Biozone C was characterized as 45.3% Arenoparrella mexicana with 21.1% 

Trochammina inflata and described a middle-marsh assemblage vegetated by Spartina patens at 

Leeds Point.  It was the biozone with least separation from others (17.06; Table 1).  Biozone D 

had a medoid assemblage of 44.4% Tiphotrocha comprimata with 18.4% Arenoparrella 

mexicana and is largely composed of samples from Bass River (Figure 3).  Biozone E was 

represented by a medoid assemblage of 61.7% Haplophragmoides manilaensis and represented 

the high-marsh Phragmites australis and Typha sp. environment at Leeds Point (Figure 2).  It 

had the greatest average dissimilarity among samples (28.75; Table 1).  The elevational range of 

each of these biozones was conservatively estimated by using the maximum and minimum 

values from samples within each group (Table 3) and also using an average elevation ± 1σ.  Due 

to the differences in tidal ranges among the three sites, it was necessary to express elevations in 

the combined data set as a standardized water level index (SWLI) following the approach 

described by Horton and Edwards (2006). 

 

4.4 Development of linear discriminant functions  

Linear discriminant functions are able to rigorously allocate new observations to one of n 

prespecified classes (Venables and Ripley, 2002).  We used PAM cluster analysis to recognize 

five biozones which constituted the prespecified classes (Figure 5A). Separation of the biozones 

was confirmed by the positioning of modern samples along axes representing the first two linear 
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discriminants (Figure 5C).  These two axes explained 68% of the among class variance (86% for 

axes one to three) and are conventionally centered on zero (Venables and Ripley, 2002).  In 54 of 

56 tests of cross validation, samples were correctly allocated by the discriminant functions with 

an error rate of <0.05, that is, the sample was correctly assigned at least 95 out of 100 times. 

 

4.5 Foraminifera in core EF10 

Core EF10 was retrieved from the Leeds Point salt marsh to provide a test set (Figure 1A).  The 

core consisted of 4.2m of organic-rich sediment overlying a basal sand unit.  Foraminifera were 

absent in samples from 4.2m to 3.3m.  The lowest occurrence of foraminifera in the core was at 

3.3m (Figure 6), although this sample yielded a small count (<30 individuals).  The interval 

between 3.3m and 2.9m was characterized by high abundances of Jadammina macrescens (16% 

to 93%; average 48%).  From 2.9m to 1.9m, the dominant species of foraminifera was 

Trochammina inflata (up to 70%; average 40.5%) in association with Jadammina macrescens 

(up to 86%; average 27.9%) and Tiphotrocha comprimata (up to 38%; average 17.4%).  

Foraminifera were absent from a sample analyzed at 1.8m (Figure 6).  Between 1.7m and 1.1m, 

four of the seven samples had low counts of foraminifera; the dominant species was Jadammina 

macrescens (up to 100%; average 93.3%).  The uppermost section of the core (1.1m to 0.1m) 

was characterized by Trochammina inflata (up to 77%; average 52.4%) and Jadammina 

macrescens (up to 96%; average 27.6%); one sample in this interval (0.3m) yielded a low count 

(100% Trochammina inflata; 9 individuals). 

 

5 Discussion 

5.1 Distribution of modern salt-marsh foraminifera 
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Despite forming low diversity assemblages that are often recognized throughout temperate 

regions, it remains necessary to have modern training sets of salt-marsh foraminifera from the 

area close to where core material will be recovered because of the influence of site-specific 

assemblages (de Rijk, 1995; Edwards et al., 2004; Gehrels, 2007).  This study provides a new 

dataset describing the modern distribution of salt-marsh foraminifera in southern New Jersey for 

use in reconstructing sea level.  The distributions are similar to those from other sites on the 

mid-Atlantic coast of the USA (here we include North Carolina in this region). 

 

High-marsh assemblages at the salt-marsh to freshwater upland transition in southern New Jersey 

were represented by biozones A and E and associated with high abundances of Trochammina 

inflata with Jadammina macrescens and Haplophragmoides manilaensis respectively (Figure 

5B).  High-marsh assemblages dominated by Jadammina macrescens were present in North 

Carolina at sites with lower salinities (Robinson and McBride, 2006; Horton and Culver, 2008; 

Kemp et al., 2009b).  A peak in the abundance of Jadammina macrescens was recorded at the 

highest elevations on a Virginia salt marsh by Spencer (2000) and was also associated with high 

abundances of Trochammina inflata.  A study of depositional environments in Virginia 

recognized both Jadammina macrescens and Trochammina inflata as important constituents of 

salt-marsh assemblages (Culver et al., 1996).  In Delaware, Jadammina macrescens and 

Trochammina inflata were abundant in high-marsh floral zones (Hippensteel et al., 2000).  We 

recognized the presence of Balticammina pseudomacrescens at the Bass River and Brigantine 

Barrier sites with abundances of up to 4%.  It was not recorded by investigations of mid-Atlantic 

modern salt-marsh foraminifera in either North Carolina or Virginia (Spencer, 2000; Kemp et al., 

2009b), but has been shown to be present with greater abundances at sites in New England (de 
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Rijk, 1995; de Rijk and Troelstra, 1997; Gehrels and van de Plassche, 1999; Edwards et al., 

2004).  Haplophragmoides manilaensis was present at a small number of high-marsh sites in 

North Carolina with an abundance of up to 31% (Kemp et al., 2009b).  It was not shown to be a 

significant part of assemblages in Virginia (Ellison et al., 1965; Culver et al., 1996; Spencer, 

2000) or Delaware (Hippensteel et al., 2000, 2002; Leorri and Martin, 2009).  Its distribution as a 

major assemblage constituent in this study was limited to the Leeds Point site. 

 

Middle-marsh assemblages associated with Spartina patens, Distichlis spicata and stunted 

Spartina alterniflora vegetation were represented by biozones C and D, which were dominated 

by Arenoparrella mexicana and Tiphotrocha comprimata respectively (Figure 5).  In North 

Carolina, Arenoparrella mexicana was the characteristic middle-marsh species at sites along the 

Outer Banks barrier islands (Horton and Culver, 2008; Kemp et al., 2009b), whilst Tiphotrocha 

comprimata was only dominant at a small number of sites in middle-marsh settings.  In Virginia, 

Spencer (2000) identified a middle to high marsh transitional assemblage dominated by 

Tiphotrocha comprimata.  Arenoparrella mexicana was not a significant species on the Virginia 

salt marshes in studied by Spencer (2000) or Culver et al. (1996).  Middle-marsh foraminiferal 

assemblages in Delaware included high abundances of Arenoparrella mexicana, whilst 

Tiphotrocha comprimata was not shown to be one of the most abundant species (Hippensteel et 

al., 2000, 2002). 

 

Low-marsh assemblages at each of the three study sites were characterized by biozone B, 

dominated by Miliammina fusca (Figure 5).  This assemblage is typical of areas inundated by 

tides on a  daily basis (de Rijk, 1995) and has been described from settings with a wide range of 
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salinities (Murray, 1991).  On the mid-Atlantic coast of the USA, it has also been described 

throughout North Carolina (Culver and Horton, 2005; Horton and Culver, 2008; Kemp et al., 

2009b).  It was also recognized by several studies from Virginia (Ellison et al., 1965; Ellison and 

Nichols, 1976; Culver et al., 1996; Spencer, 2000).  Low-marsh assemblages of Miliammina 

fusca have been shown to be widespread in Delaware (Fletcher et al., 1993; Hippensteel et al., 

2000, 2002; Leorri and Martin, 2009). 

 

5.2 Sea-Level Reconstruction Techniques 

The use of salt-marsh foraminifera in sea-level reconstructions is dependent on the selection and 

application of a suitable technique to exploit the modern relationship between foraminifera and 

tidal elevation to interpret downcore assemblages.  Scott and Medioli (1978) proposed a vertical 

zonation of foraminifera described by faunal zones termed IA, IB, IIA and IIB, which were 

described qualitatively (species composition and elevational range) at Chezzetcook in Nova 

Scotia (Canada).  The elevational distribution of the five biozones suggests that salt-marsh 

foraminifera are appropriate for use as a sea-level indicator in southern New Jersey.  Other 

investigations subsequently sought to recognize this zonation at new sites (Gehrels, 1994) or 

applied it to reconstruct sea level in other regions (Peteet Carmichael, 1980).  Later studies used 

unconstrained cluster analysis to quantitatively define assemblages of foraminifera on modern 

salt marshes (de Rijk, 1995; Horton, 1999; Patterson et al., 2000; Edwards et al., 2004).  This 

approach required the subjective judgment of a researcher to decide on how many groups are 

present and is influenced by the limitations of agglomerative hierarchical clustering methods 

such as the legacy effect of previous cluster decisions (Kaufman and Rousseeuw, 1990).  The 

PAM clustering technique employed in this study allows the user to objectively and 
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quantitatively estimate the number of groups present in the data by using reported silhouette 

lengths as a measure of fit (Kaufman and Rousseeuw, 1990).  Further, the technique is robust to 

outliers and does not favor spherical clusters unlike other partitioning (k-means) methods 

(Kaufman and Rousseeuw, 1990).  This approach improves upon the vertical zonation concept 

by providing a quantitative and objective definition of both the number and composition of 

foraminiferal assemblages. 

 

5.3 Application of linear discriminant functions for estimating paleomarsh elevation 

We used 32 samples from core EF10 as a test set (Figure 6).  All samples from which 

foraminifera were enumerated were included.  Application of the linear discriminant functions 

(Figure 6) to this test set estimated the probability that a sample should be allocated to each of 

the five prespecified classes (biozones A-E).  We accepted assignment to a single biozone when 

the probability >0.95.  In instances where the probability was <0.95, it was recognized that the 

sample could be from one or more biozone.  The choice of 0.95 as a threshold value reflects its 

widespread usage for statistical significance (Scheffe, 1959).   

 

There were 27 samples allocated to biozone A with a probability exceeding 0.95, two samples to 

biozone C and two samples to biozone D (Figure 6).  No samples were associated solely with 

either biozones B or E.  Three samples (at 0.6m, 2.5m and 3.1m) could have been from one of 

two biozones.  The sample at 0.6m was assigned to either biozone A (probability of 0.73) or 

biozone B (probability of 0.27), which reflects unusually high abundances of Miliammina fusca 

(53%) in association with Trochammina inflata (23%) and Jadammina macrescens (18%; Figure 

6).  The sample at 2.5m was assigned to either biozone A (probability of 0.68) or biozone C 
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(probability of 0.32) due to having a mixed assemblage (Figure 6) of Jadammina macrescens 

(16%) and Trochammina inflata (43%; biozone A) with Arenoparrella mexicana (18%; biozone 

C).  The sample at 3.1m was assigned to either biozone A (probability of 0.49) or biozone B 

(probability of 0.51) as it included Jadammina macrescens (43%) with Miliammina petila (46%).  

This abundance of Miliammina petila is much higher than its occurrence in the training set, 

which had a maximum 19% in a sample from Leeds Point (transect two sample seven) and was 

pre-specified as part of biozone B (Figure 5).  A single sample (2.8m) had some probability of 

being from one of three biozones (D = 0.70, A = 0.16, or C = 0.14), reflecting a diverse 

assemblage (Figure 6) including Tiphotrocha comprimata (29%; biozone D), Trochammina 

inflata (44%; biozone A) and Arenoparrella mexicana (11%; biozone C). 

 

The allocation of core samples to biozones distinguished in the modern environment was used to 

provide downcore estimates of PME for use in sea-level reconstruction (Figure 7A).  PMEs were 

converted from SWLIs to tidal elevations at the Leeds Point (Figure 6) site following the 

approach of Horton and Edwards (2006).  In order to compare PME estimated using regional 

biozones and linear discriminant functions, we also estimated PME using two types of transfer 

function (Figure 7B) using the C2 computer program.  Weighted-averaging partial least squares 

(WA-PLS) was used because it has been the most frequently applied method in reconstructions 

of Holocene sea level.  No samples were removed from the modern training set and the results 

presented are from component two with cross validation.  PME estimated using WA-PLS varied 

between 0.20 and 0.52m MTL with an average error of 0.14m (Figure 7B).  The mid point of 

these estimates was within the boundaries established using linear discriminant functions, 

although the error bars leave this envelope at depths of 100cm, 260cm, 290cm and 310cm.  In 
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addition, we used the modern analogue technique because it provides a means to judge the 

reliability of PME estimates.  No modern samples were removed and cross validated results are 

presented.  Estimated PME ranged from 0.14 to 0.52m MTL with an average error of 0.14m 

(Figure 7B). The mid point of these estimates was within the boundaries established using linear 

discriminant functions, although the error bars leave this envelope at depths of 100cm, 260cm 

and 290cm. Within the error bounds of both techniques, PME estimates from WA-PLS and MAT 

are in agreement.  Indeed, the average difference between mid point estimates was 0.04m, with a 

maximum of 0.09m.  The validity of the transfer function-derived estimates of PME are 

supported by comparison with results from linear discriminant functions.  By recognition of 

discreet biozones in sedimentary sequences, linear discriminant functions are inherently less able 

to document subtle (within the elevational range of a particular biozone) changes in PME than 

transfer functions.  The elevational range of each biozone is also likely to increase with the 

inclusion of additional modern samples from more sites in the region, although the recognition of 

new biozones may increase the precision of this technique.  Linear discriminant functions 

provide a means to independently support inferences made using transfer functions. 

 

Linear discriminant functions do not estimate the probability that a sample belongs to none of the 

biozones in the modern training set (Venables and Ripley, 2002).  As such, the use of linear 

discriminant functions requires that the modern training set include samples from a sufficient 

variety of environments (both within and between sites) to provide an appropriate analogue for 

all core samples.  This difficulty mirrors the discussion about the relative merits of local and 

regional datasets used in transfer functions (Gehrels, 1994; Gehrels et al., 2001; Horton and 

Edwards, 2005).  The number and variety of samples needed to produce a suitable modern 
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training set should reflect the aims of the study and the likelihood that paleoenvironmental 

conditions at a site were similar to or significantly different from those encountered today 

(Woodroffe, 2009).  The modern analogue technique provides an estimate of the dissimilarity 

between core samples and their closest modern analogue in the training set.  It has been proposed 

that where this dissimilarity (which can be measured by numerous metrics) exceeds the 20th 

percentile of dissimilarity within the training set the core sample should be considered as having 

a poor modern analogue (Overpeck et al., 1985; Jackson and Williams, 2004; Kemp et al., 

2009c; Woodroffe, 2009).  In core EF10, use of this threshold would cause six samples to be 

classified as having no modern analogue (Figure 7C).  For example, the sample at 310cm with an 

unusually high abundance of Miliammina petila (in comparison to the training set) clearly lacks a 

good modern analogue, which is also reflected in the uncertainty of its assignment using linear 

discriminat functions (Figures 6 and 7). 

 

6 Conclusions 

We described the modern distribution of salt-marsh foraminifera in southern New Jersey, USA 

using 56 surface samples collected along transects at three sites.  Partitioning around medoids 

(PAM) cluster analysis was used to quantitatively and objectively define the number and 

composition of foraminiferal assemblages at each of the sites and demonstrated that foraminifera 

form elevation-dependent ecological zones making them appropriate sea-level indicators.  All 

samples were amalgamated to create a regional dataset from which five biozones were identified 

and described using PAM.  The elevational range of each biozone was conservatively estimated 

using the maximum and minimum of member samples.  Classification of each modern sample as 

belonging to one of these five biozones enabled us to develop linear discriminant functions.  We 
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applied these functions to quantitatively estimate the probability that 32 core samples of 

salt-marsh sediment shared an environmental origin with each biozone using preserved 

assemblages of foraminifera.  The techniques described provide an objective and quantitative 

means to use salt-marsh foraminifera to reconstruct former sea level without underlying 

assumptions about species response and can test the ecological plausibility of other approaches 

including transfer functions.
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Figure Legends 

 

Figure 1:  Location of studies sites in southern New Jersey (USA).  Modern transects across salt 

marshes at Leeds Point (A), Bass River (B) and Brigantine Barrier (C) were sampled for 

foraminifera.  A core (EF10) was recovered from Leeds Point for analysis (A). 

 

Figure 2:  Distribution of foraminifera along salt-marsh transects from Leeds Point, New Jersey.  

Samples from transect one (A-A’) are labeled as A while samples from transect two (B-B’) are 

labeled B.  (A) Elevational profile of the transects including zonation of vascular vegetation.  (B) 

Average silhouette width estimated by partitioning around medoids (PAM) cluster analysis of 

foraminiferal data combined from both transects indicating that four groups (dashed vertical line) 

was appropriate.  (C)  Silhouette plot for PAM clustering of foraminiferal samples divided into 

four groups.  Black and white bars are used to differentiate groups.  Vertical dashed line is the 

average silhouette width.  (D) Composition of the four groups of foraminifera identified by PAM 

clustering.  Black and white bars alternate between groups to emphasize membership, each group 

is labeled (e.g. LP-1). 

 

Figure 3:  Distribution of foraminifera along a salt-marsh transect at Bass River, New Jersey.  

(A) Elevational profile of the transect including zonation of vascular vegetation.  (B) Average 

silhouette width estimated by partitioning around medoids (PAM) cluster analysis of 

foraminiferal data indicating two groups can be differentiated (dashed vertical line).  (C)  

Silhouette plot for PAM clustering of foraminiferal samples divided into two groups.  Black and 

white bars are used to differentiate between group membership.  Vertical dashed line is the 
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average silhouette width.  (D) Composition of the two groups of foraminifera identified by PAM 

clustering.  Black and white bars emphasize group membership. 

 

Figure 4:  Distribution of foraminifera along a salt-marsh transect at Brigantine Barrier, New 

Jersey.  (A) Elevational profile of the transect including zonation of vascular vegetation.  (B) 

Average silhouette width estimated by partitioning around medoids (PAM) cluster analysis of 

foraminiferal data indicating the presence of two groups (dashed vertical line).  (C)  Silhouette 

plot for PAM clustering of foraminiferal samples divided into two groups.  Black and white bars 

are used to differentiate between group membership.  Vertical dashed line is the average 

silhouette width.  (D) Composition of the two groups of foraminifera identified by PAM 

clustering.  Black and white bars emphasize group membership, Tc = Tiphotrocha comprimata, 

Ab = Ammobaculites spp. 

 

Figure 5: (A) The combined dataset of modern salt-marsh foraminifera from three sites in 

southern New Jersey.  Samples are grouped into the five biozones (A-E) identified using PAM 

cluster analysis.  Ab = Ammobaculites spp.  The silhouette width for each sample is presented at 

right, the average for the complete dataset is 0.45 (dashed vertical line).  (B) Plot of average 

silhouette width determined by PAM clustering when all samples of modern foraminifera were 

combined into a single dataset.  The peak in silhouette width suggests that five assemblages can 

be recognized.  (C) Modern samples of salt-marsh foraminifera positioned on the first two 

discriminant axes.  Samples are divided into the five biozones recognized by PAM cluster 

analysis. 
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Figure 6:  Foraminifera from core EF10.  Low counts (indicated by hollow bars) are those from 

which less than 30 individuals were identified.  Grey areas represent parts of the core where no 

foraminifera were found in samples.  Samples were allocated to one of the five biozones (A-E) 

using debiased linear discriminant functions.  The probability of being most similar to each 

biozone is shown for all samples in the right panel.  Where the probability >0.95, samples were 

allocated to a single biozone.  Other samples were assigned to more than one biozone. Tc = 

Tiphotrocha comprimata. 

 

Figure 7:  Downcore estimates of paleomarsh elevation (PME) in core EF10 based on the tidal 

characteristics at Leeds Point. (A) Estimates from linear discriminant functions, the grey area 

represents the range from minimum to maximum values, symbols and error bars are biozone(s) 

average elevation ± 1σ range, vertical dashed line shows position of mean higher high water 

(MHHW). (B) Estimates from transfer functions developed using weighted average-partial least 

squares (WA-PLS; open circles, dashed error bars) and modern analogue technique (MAT; filled 

circles, solid error bars).  Grey area is the same as that in panel A, vertical dashed line shows 

position of mean higher high water (MHHW). (C) Estimates of dissimilarity between core 

samples and modern salt marsh samples generated by the MAT transfer function.  Vertical lines 

mark values for the 5th, 10th and 20th percentiles of dissimilarity in the modern training set, which 

have been used as thresholds in determining the strength of analogy between core and modern 

samples.  Grey area represents core samples with “poor” modern analogues. 
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Table 1 

Characteristics of groups and biozones identified by partitioning around medoids 

    Maximum Average     Average 
Group No. of Samples Dissimilarity Dissimilarity Diameter Separation Sil. Width 
LP-1 6 44.67 29.77 65.66 27.89 0.33 
LP-2 3 51.67 28.27 52.28 27.89 0.32 
LP-3 13 31.82 21.63 54.60 21.06 0.48 
LP-4 4 45.43 22.75 51.40 21.06 0.35 
    

 
  

 
    

BR-1 7 57.64 29.00 66.76 35.05 0.33 
BR-2 8 44.30 23.41 58.56 35.05 0.45 
    

 
  

 
    

BB-1 10 28.65 12.72 37.23 40.02 0.42 
BB-2 5 59.09 29.73 59.09 40.02 0.74 
    

 
  

 
    

Biozone A 13 40.09 16.99 59.04 21.73 0.57 
Biozone B 16 47.21 26.97 66.15 17.06 0.30 
Biozone C 15 35.28 21.95 58.38 17.06 0.44 
Biozone D 6 38.32 22.03 51.67 30.89 0.42 
Biozone E 6 42.74 28.75 65.58 25.74 0.42 
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Table 2 

Biozone Hm Jm Tc Ti Am Mf Ab 
A 0.0 34.9 19.0 40.5 1.5 0.5 0.0 
B 0.4 4.6 6.2 1.2 3.3 63.1 19.1
C 0.0 2.3 7.8 21.1 45.3 18.8 0.0 
D 5.3 2.9 44.4 12.6 18.4 12.6 1.9 
E 61.7 8.4 1.9 7.0 0.9 0.0 0.0 

 
Medoids of the five foraminiferal assemblages identified by PAM clustering of the dataset of all 
modern foraminifera.  These assemblages (in percentages) represent the population for which 
average dissimilarity to all samples in a given cluster is minimal.  Only species important for 
distinguishing biozones are shown, bold values highlight dominant species in each biozone. Hm 
= Haplophragmoides manilaensis, Jm = Jadammina macrescens, Tc = Tiphotrocha comprimata, 
Ti = Trochammina inflata, Am = Arenoparrella mexicana, Mf = Miliammina fusca, Ab = 
Ammobaculites spp. 
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Table 3 

Elevational range of biozones used for estimating paleomarsh elevation 

 Max Min Average 1σ Range 
 m MTL m MTL m MTL m 
Biozone SWLI SWLI SWLI SWLI 
     

A 0.79 0.18 0.48 0.16 
 107.63 63.26 85.23 13.19 
     

B 0.31 -0.48 0.00 0.24 
 74.58 11.02 48.10 20.72 
     

C 0.59 0.27 0.46 0.09 
 100.02 71.52 88.58 8.59 
     

D 0.59 0.26 0.39 0.14 
 99.88 70.26 82.11 12.76 
     

E 0.91 0.65 0.74 0.09 
 129.29 105.87 113.69 8.50 
     

 
The elevational range of the five biozones identified by PAM cluster analysis was conservatively 
estimated by using the maximum and minimum values of samples within each group.  Also 
presented are the average elevation and 1σ range of each biozone.   Due to differences in tidal 
range among sites, elevations are expressed using a standardized water level index (SWLI), 
where a value of 100 represents MHHW and 0 is MLLW.  MTL = mean tide level.
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