

SESSION: SOCIO-ECONOMIC 1, 28th June

Maximising the benefit of past investment: the subsurface agenda – a case study from Glasgow

Hugh Barron

British Geological Survey, Edinburgh

co-authors:

Ken Lawrie	British Geological Survey
Helen Bonsor	British Geological Survey
Simon Watson	Glasgow City Council
Diarmad Campbell	British Geological Survey
Dave Lawrence	British Geological Survey
Sandy Gillon	Glasgow City Council
Jane Ferguson	Grontmij Ltd
Martin Smith	British Geological Survey

Which INSPIRE theme?

Annex I	Annex II	Annex III
 Coordinate reference systems Geographical grid systems Geographical names Administrative units Addresses Cadastral parcels Transport networks Hydrography Protected sites 	 Elevation Land cover Orthoimagery Geology 	 Statistical units Buildings Soil Land use Human health and safety Utility and Government services Environmental monitoring facilities Production and industrial facilities Agricultural and aquaculture facilities Agricultural and aquaculture facilities Population distribution – demography Area management / restriction / regulation zones & reporting units Natural risk zones Atmospheric conditions Meteorological geographical features Soceanographic geographical features Sea regions Bio-geographical regions Habitats and biotopes Species distribution Energy resources Mineral resources

Which INSPIRE theme?

1. Coordinate reference systems1.2.	. Elevation	1 Statistical units
 2. Geographical grid systems 3. Geographical names 4. Administrative units 5. Addresses 6. Cadastral parcels 7. Transport networks 8. Hydrography 9. Protected sites 	. Land cover . Orthoimagery . Geology	 2. Buildings 3. Soil 4. Land use 5. Human health and safety 6. Utility and Government services 7. Environmental monitoring facilities 8. Production and industrial facilities 9. Agricultural and aquaculture facilities 10. Population distribution – demography
9. Protected sites		 Population distribution – demography Area management / restriction / regulation zones & reporting units Natural risk zones Atmospheric conditions Meteorological geographical features Oceanographic geographical features Sea regions Sea regions Habitats and biotopes Species distribution Energy resources

BGS: TWG Editor Geology, Mineral Resources & Coord for Natural Risk Zones

© NERC All rights reserved

Geology – the 3rd dimension

Zone of Human Interaction

the subsurface – unseen side of construction

Brownfield sites

Urban regeneration

You must know what you are building on

you need subsurface information..

Much of it is already available -- the past investment

But more is required

© NERC All rights reserved

Slide 7 of 17

Ground Investigation

Ground Investigation costs*:

c. 2% of substructure costsc. 0.1% overall building costs

BUT industry reports ground problems cause:

- 30 50 % of delays to projects
- 50% over-run > 1 month
- Most common source of project risk & overspend
- Costly resolution, claims and litigation
- Focus on unforeseen ground conditions

" unforeseen ground conditions"

"DEFRA estimate that £210m per year is spent unnecessarily on remediation due to poor site investigation"

Brownfield Briefing: Cost-Effective Site Investigation, London 15-16 June 2011

© NERC All rights reserved Slide 9 of 17

Addressing the problem - INSPIRE approach

Could increase spend on more boreholes etc.

But, much better to maximise use of existing, and future, data & knowledge, e.g. In 3D models

BUT problems in accessing all publicly-held data:

- numerous forms/standards
- very variable quality
- re-use prevented by conflicting acts/regulations/IPR
- confidentiality issues
- Poor accessibility (analogue v digital, multiple locations)

following some INSPIRE principles..

- Data should be collected only once and kept where it can be maintained most effectively
- Easy to find what geographic information is available, how it can be used to meet a particular need, and under which conditions it can be acquired and used

For Glasgow 3D models:

- Over 35,000 boreholes in BGS archive
- But many more held by GCC
- Access and constraints impede their reuse (by BGS)
- So improved data flow & partnership key to efficiency gains

The Glasgow partnership solution....

GCCs consultants and contractors (e.g. Grontmij)

- use simple data acquisition templates (INSPIREcompliant) for ground investigation data
- provide georeferenced site plans

Glasgow City Council (Client):

- Receive and use data
- Transfer key data to BGS

BGS (National Custodian):

- Archive & reinterpret data to update 3D models/GIS
- GCC upload BGS updates to support decision making

All using web services to reduce costs for all parties

SHE BURE	SITE BOREHOLE ID 40+ GCC BOREHOLE ID 4				<1De	BGS BOREHOL			HOLE ID	<d< th=""><th>14 (</th><th></th><th></th></d<>	14 (
Date of Drilling: vision Purpose of Drilling:		«trabose»			Driller:	e editler»]			
BOREHOLI	E INSTALLA	TION INFO	ORMATION]	
Easting:	-asstro-	Northing:	-inothing-	-monthing- Total borehol		via depth:		in.	Units <rop< th=""><th>Ac+</th><th></th><th></th></rop<>		Ac+		
Ground eleva	revation (maod): <=/				E -	-citrali	cro d	Casing diameter (mm): dameters			neteo]	
Top of screer	n (maod): selevatoro Screened store		erval>	sinta	as returnings-		Screen diamater ()		«dameter»	Monitored writ:	-geological unit		
Top of screen 2 (meod): <=re=zicc>		Screened interval 2:			-units I	units informage		Screen diameter (mm)		<daneter></daneter>	Monitored unit:	-geologicel unit	
LITHOLOG	CAL INFOR	MATION								_			
Material de	scriptions									Actad	iata availab	ile)	
Lifestogy	hology Lähslogicel mehrfal description (Text)					Top of Market Hegindar Insuidi	Base Marin Printer Table	6442	AGEN	nywahto. If ywa, to lied type data available:*			
nhology Lithological material description (Text)						Top of Internal Integended Integended	Room Marin Incipil Incipil	ide Hel Hellor Hel	AGS BE	syesitio. If yes, to list type data available>			
Balagy Literapol sales developed (Col)						Tup of Marval Hoginitur moot	Assa Mari Vicipi Mari	1000	AGS NI pattern	syssimo. If yes, to list type case available>			
Lithelay	ngy (Littering) of material developing (Test)				-16	716.07	Boas	10		syesitio. If yes, to list type data available>			

ert Consultancy Company LOGO and Details> (Report Number, etc

The wider perspective

Partnership approach towards culture of improved data accessibility and exchange:

- between LAs & BGS
- and between public & private sectors

Hence

- national subsurface 3D models for decision makers
- reduction in costly unforeseen ground conditions
- improved/ timely delivery of public construction
- potential culture change in private sector
- direct savings to government and Industry

And the scale of the impact?

the construction industry....

10% of GDP 26 million jobs

10% of GDP €10.8 bn (2009)

Any questions?

hfb@bgs.ac.uk

www.bgs.ac.uk

© NERC All rights reserved Slide 17 of 17