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Abstract  

Climate warming threatens the survival of species at their warm, trailing-edge range 

boundaries, but also provides opportunities for the ecological release of populations at the 

cool, leading edges of their distributions. Thus, as the climate warms, leading-edge 

populations are expected to utilise an increased range of habitat types, leading to larger 

population sizes and range expansion. Here, we test the hypothesis that the habitat 

associations of British butterflies have expanded over three decades of climate warming. We 

characterise the habitat breadth of 27 southerly-distributed species from 77 monitoring 

transects between 1977 and 2007 by considering changes in densities of butterflies across 11 

habitat types. Contrary to expectation, we find that 20 out of 27 (74%) butterfly species 

showed long term contractions in their habitat associations, despite some short-term 

expansions in habitat breadth in warmer-than-usual years. Thus, we conclude that climatic 

warming has ameliorated habitat contractions caused by other environmental drivers to some 

extent, but that habitat degradation continues to be a major driver of reductions in habitat 

breadth and population density of butterflies.  
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Introduction 

The effects of climate change on the distributions of species at large spatial scales are 

increasingly well documented, showing shifts of species to higher latitudes and elevations 

(Chen et al., 2011). In contrast, impacts of climate change on small-scale distribution patterns 

and habitat associations of species are less well understood. The latter is extremely important, 

however, because habitat availability is important to the persistence of populations, and 

insufficient habitat may prevent colonisations and large-scale climate-driven range 

expansions (Hill et al., 1999, Hill et al., 2001, Hodgson et al., 2011). Furthermore, current 

species-specific conservation management practices may no longer be appropriate if species 

are shifting their distributions into different types of habitats (Oliver et al., 2009).  

Documenting and understanding these smaller-scale changes are essential to the development 

of conservation adaptation strategies that aim to facilitate the persistence and expansion of 

species under climate change. 

      The greatest changes to species’ local distributions and habitat associations as a result of 

climate warming are expected to occur close to their geographic range limits. Populations of 

species at high-latitude ‘leading-edge’ range margins, living close to their cold thermal limits, 

generally occupy only a subset of the habitat types used elsewhere in their range (Thomas et 

al., 1999, Lennon et al., 2002, Oliver et al., 2009). As the climate warms at these cold limits, 

a wider variety of habitats and sites would be expected to be warm enough for positive 

population growth. This would increase the range of habitats that could be exploited 

(Thomas, 1993, Thomas et al., 2001, Davies et al., 2006), especially for species for which 

physiological tolerances are important constraints on their distributions (Hutchinson, 1957, 

Frazier et al., 2006, Deutsch et al., 2008, Calosi et al., 2010).  

     It is unclear how often climatic constraints are the primary determinant of habitat breadth 

for species, i.e. the degree to which certain broad land cover types or vegetation classes are 
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uninhabitable due to unsuitable microclimatic conditions. For thermophilous species that 

reach the northern edges of their geographic distributions within Britain, it is a reasonable 

assumption that temperature will be an important determinant. For example, the Adonis Blue 

butterfly Polyommatus bellargus shows variation in its associations with different grassland 

habitats according to seasonal variation in weather (Roy &  Thomas, 2003). Another species, 

the Silver Spotted Skipper Hesperia comma, expands the range of locations where it lays its 

eggs in response to increased ambient temperatures, and colonises cooler north-facing slopes 

after a period of warm years (Thomas et al., 2001, Davies et al., 2005, Davies et al., 2006). 

Climate is not the only constraint on distributions, however.  For example, the northern 

distributional limits of the Brimstone butterfly Gonepteryx rhamni are largely delineated by 

its those of its larval host plants (Gutiérrez &  Thomas, 2000) , suggesting that for some 

species biotic interactions can be more important that the direct effects of climate (Settele et 

al., 2008). Nonetheless, climate may exert an indirect effect if it determines host plant 

distributions, and habitat expansion by host plants may eventually result in parallel 

expansions in host-specific insects (Coope, 2004). 

     Climatic constraints are also thought to contribute to large-scale gradients of habitat use.  

For example, some butterflies that are restricted to grassland at the northern edges of their 

ranges in Britain occur at increased frequencies in scrub and deciduous woodland habitats 

towards the core of their ranges in mainland Europe (Settele et al., 2009, Dennis, 2010). 

Within Britain, butterfly species exhibit increasingly constrained habitat associations at their 

cooler, high-latitude climatic range boundaries (Oliver et al., 2009). Other taxonomic groups, 

such as coniferous trees, show similar trends (Lennon et al., 2002). Because of these 

geographic gradients in habitat breadth and the observed behavioural responses of individuals 

to warmer conditions, increased temperatures at cool range boundaries are expected to result 

in increasingly broad habitat associations under recent climatic warming. Yet, to date, 
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temporal trends in species’ habitat associations have not been explored, probably due to the 

scarcity of population data with sufficient spatial and temporal replication. However, 

understanding temporal dynamics in habitat use will be essential for managing species’ 

populations under rapidly changing climates. 

     Here, we tested the hypothesis that populations of 27 British butterfly species have 

expanded their habitat associations between 1977 and 2007, a period in which the length of 

the growing season (accumulated growing day degrees above 5ºC; GDD5) in Britain 

increased by 23%. We studied British butterflies because they comprise one of the longest-

running and spatially-replicated datasets of population trends in the world, and one of very 

few suitable for a long-term analysis such as the one we present here. All of the species we 

analysed are at, or near, the northern edges of their European distributions within Britain (i.e. 

they are ‘leading-edge’ populations); hence, we predict that: a) species’ populations will 

expand into more marginal (less frequently used) habitats in warmer years, and b) show an 

overall broadening of their habitat associations over three decades of regional warming 

(Thomas, 1993, Davies et al., 2006, Oliver et al., 2009). To test these predictions, we 

quantified the tendency for individuals to spread from primary into more marginal habitat 

types by relating changes in relative population density in different habitat types to total 

annual population sizes, annual weather (GDD5) and year. Total population size is often 

related to habitat breadth, so it was included in our statistical models as a control variable 

(Oliver et al., 2009).  

      To demonstrate the importance of climate change versus trends in population density in 

affecting habitat associations of species, we modelled habitat associations of the ‘average 

butterfly species’ under three climate and population change scenarios: a) climatic warming 

but no long-term population decline, b) stable climate and population decline, and c) climate 

warming and long-term population decline (the actualised ‘scenario’ for British butterflies). 
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Relationships between climate, density and habitat were averaged across species to produce 

estimates for the ‘average species’ under the different scenarios. Necessarily, this 

simplification does not represent species with relationships that are exceptions to the rule, and 

these are addressed in a comparative analysis of trends between species. Our motivation in 

this particular analysis was to summarise the general trends across all species. 

      Our results suggested that British butterfly species have not exploited opportunities for 

habitat expansion under warmer climates; rather, total population sizes and habitat 

associations have declined. Considering relative trends across butterfly species, we observed 

that even those species traditionally associated with the warmest microclimates in Britain, 

and thus might be expected to benefit most from climatic warming (Thomas, 1993), have 

failed to expand their habitat associations. We conclude that climatic warming has 

ameliorated habitat contractions caused by other environmental drivers to some extent, but 

that, at least in Britain, habitat degradation continues to be a major driver of reductions in 

habitat breadth and population density of butterflies.  

 

Methods 

Sources of Climate and butterfly abundance data 

We extracted climate data obtained from the Central England Temperature Series (Parker et 

al., 1992) between 1977 and 2007. We used these data to calculate the annual growing day 

degrees above 5ºC (GDD5) by summing mean daily temperatures above a 5ºC threshold. 

This measure of annual temperature is related to butterfly development (Warren et al., 2001, 

Hill et al., 2002). For the purposes of this study, the biological year was from October (year t-

1) to September of the following year (year t).  This period spanned the over-winter period 

between consecutive butterfly monitoring years, as well as the spring and summer weather 

during the flight (monitoring) period of year t. Accumulated day degrees, measured in this 
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way, increased by 23% over the study period, based on a linear regression (regression with 

1977 starting as year zero: GDD5 = 1776.1 + 13.6 x Year, R2 = 0.54, F1,29 = 36.8, n = 31, p < 

0.001). 

      Annual butterfly counts for all southerly distributed butterfly species across 77 

monitoring transects were extracted from the United Kingdom Butterfly Monitoring Scheme 

(UKBMS) dataset. The UKBMS is a butterfly recording scheme comprising fixed transect 

routes walked by trained volunteers. Transects are 5m wide belts and typically between 

1.5km and 3km in length. They are walked for up to 26 weeks of the year, encompassing the 

main flight periods of UK butterflies. Further details of the monitoring methodology can be 

found in Pollard and Yates (1993). For each year, an index of the annual abundance of each 

butterfly species at each transect is calculated allowing for missing counts (Rothery &  Roy, 

2001). In this study, transect routes were subdivided according to 11 broad land cover types 

(hereon referred to as ‘habitats’; Table S1). We assume that broad land cover types on 

transects remain unchanged during the sampling period. This assumption is based on 

anecdotal knowledge from UKBMS transect co-ordinators, and the fact that most transects 

occur on land under statutory protection (e.g. National Nature Reserves, Sites of Special 

Scientific Interest). In addition, if land cover type has changed within a small number of 

transects, there is little reason to expect the direction of changes to be consistent between 

transects; so any error should be random reducing the statistical power to detect trends, rather 

than introducing systematic bias. 

      Annual densities in each habitat were calculated as the total number of butterflies per year 

per km of 5m-wide transect route. Densities were natural log-transformed to improve 

normality of the data. To ensure data quality, for each species we only used data from 

transects that had been recorded for at least 10 consecutive years and that had a mean annual 

total abundance of more than 10 individuals. Following this filtering, only species occurring 
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at more than five transect sites were included in further analysis, because regressions with 

lower spatial replication would lead to less robust results.  

 

Quantifying habitat breadth  

Using UKBMS data from all transects and years combined, we identified the primary habitat 

of each species as the land cover type which most frequently had the highest density of 

butterflies (Table S2); ‘marginal’ habitat was classed as all other land cover types used by a 

species. For each year between 1977 and 2007, and for each transect, we calculated the 

proportional relative density of each species in marginal habitat, our index of ‘habitat 

breadth', following the formula below: 
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Pobs =  proportional relative density of butterflies in marginal habitat 

a = area of transect route containing the marginal habitat  

b = area of transect route containing primary habitat 

m = total number of butterflies in the marginal habitat  

n= total number of butterflies in the primary habitat 

 

Observed values for Pobs range from 0-1, with zero implying all individuals are found only in 

the species’ primary habitat. Note that this formula is similar to one used to calculate ‘habitat 

specificity’ in a previous study (Oliver et al., 2009), but by focusing here upon proportional 

densities in marginal habitat we calculate ‘habitat breadth’, which is the inverse to ‘primary 

habitat specificity’ used previously. We present the index in this way because the hypotheses 
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we test concern increased habitat breadth of butterflies under climate warning and so 

presenting the index in this way made our results more easily interpretable.  

 

Modelling the effects of weather and population density on habitat breadth of species  

We used a generalized linear mixed model GLMM (Bolker et al., 2008) to model the effects 

of year, weather and local annual density upon habitat breadth of species. A mixed modelling 

approach was used to account for the repeated measures of population density at each 

transect. Separate models were fitted for each species because we were interested in 

differences in responses among species. Our response variable was proportion data (habitat 

breadth of the species at a given transect in a given year), and so we multiplied this value by 

the total number of butterflies recorded at any given transect in any given year, to give the 

expected number of butterflies in the marginal habitat had the marginal and primary habitats 

been of equal area. In order to model changes in habitat breadth, this value was then rounded 

to the nearest integer value and used to fit a logistic regression model with binomial error 

structure, with the total number of butterflies on the transect that year as the denominator. We 

used the package lme4 (Bates et al., 2008) in the program R (R Development Core Team, 

2009).  

       For this analysis, we were interested in the effect of annual weather on habitat breadth of 

species, independent of species’ local annual population density. For each species, we 

analysed habitat breadth as the response variable, and included GDD5, local annual density 

and year as fixed effects (“Habitat breadth- Weather and Density” model). All our fixed 

effect explanatory variables were continuous and therefore to improve model convergence we 

standardised them to zero mean and unit variance. Transect was included as a random effect 

to account for differences in the mean habitat breadth between transects. We also included a 

random slope within Transect for each of the fixed effects. This allowed the slope of each 
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fixed effect to vary at each transect (e.g. the trend in species’ habitat breadth with year might 

differ between transects). We chose this model structure because comparisons of different 

model structures using AIC suggested such that model complexity was appropriate (i.e. the 

more complex models had consistently lower AIC scores). We tested for spatial 

autocorrelation in model residuals using the ncf package in R (Bjørnstad, 2009). There was 

no significant spatial autocorrelation in model residuals apparent for any species (Figure S2). 

Across all species, the significance of each fixed effect (i.e. GDD5, population density, year) 

was tested by comparing the pooled species’ coefficients for a fixed effect to zero using a 

Wilcoxon Signed Ranks test. This test was used because the distribution of coefficients was 

not normal, precluding a Student’s t-test. A full table of species’ coefficients can be found in 

Table 1. 

 

Assessing long-term changes in habitat breadth and population density  

For each species, we quantified the long-term trend in habitat breadth over time, by including 

habitat breadth as the response and year as a fixed effect (“Habitat breadth - Year model”). 

We did not include local density or weather as fixed effects in these models because 

including these variables as covariates would mean that the coefficient for ‘year’ represented 

the expected change in habitat breadth after accounting for local density and weather for each 

year of the time series. Instead, for this analysis, we were interested solely in the observed 

long-term trend in habitat breadth over time (which might be driven by long-term changes in 

density, climate and other factors).  

      For each species, we also assessed changes in population density over the 31 year study 

period. For each species, we included log local annual density as the response variable, and 

year as a fixed effect (“Density -Year model”). In both these analyses, Transect was included 

as a random effect, along with a random slope for Year within Transect, which allowed for 
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temporal trends in habitat breadth and population density to differ between transects. In the 

case of population density, we specified a Gaussian error structure; for habitat breadth, we 

specified a binomial error structure. The species coefficients for these analyses can be found 

in Table 1. We tested for spatial autocorrelation in the residuals of both models and none was 

evident (Figure S2). 

     To examine whether population declines of species were associated with reductions in 

habitat breadth, we then regressed species’ slope coefficients from the Density-Year model 

against coefficients from the Habitat breadth-Year model. We tested for phylogenetic 

autocorrelation in the species’ slope coefficients and model residuals using a Moran's I test 

with Geary randomizations (1000 iterations; Paradis, 2006). We used a butterfly phylogeny 

from Cowley et al. (2001) with branch lengths assigned using Grafen’s (1989) method. In the 

absence of phylogenetic autocorrelation (see below), we proceeded with a standard ordinary 

least squares regression (Kunin, 2008).  

      We found a positive association between population density and habitat breadth across 

species (see Results). To demonstrate this relationship, we used coefficients from the Habitat 

breadth - Year model to predict changes in habitat breadth between 1977 and 2007 for two 

example species: the Common Blue butterfly Polyommatus icarus and the Comma butterfly 

Polygonia c-album. These species were chosen because they have shown strong opposite 

trends in population density over time (see Results; Table 1). 

 

Visualising the effects of climate and density on butterfly habitat associations  

In order to examine how changes in climate (GDD5) and population density have affected 

butterfly habitat associations, and to explore the relative strength of these effects, we 

estimated changes in habitat breadth for the ‘average’ butterfly species under various 

scenarios of climate and population density change. To obtain relationships between weather, 
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density and year on habitat breadth for the ‘average species’ we took the geometric mean 

species’ coefficients for each of the explanatory variables: year, weather and density from the 

“Habitat breadth - Weather and Density” models. This approach summarises the relationships 

between habitat breadth and these explanatory variables across species, using the geometric 

mean to reduce the influence of outliers. It produces a hypothetical model for the ‘average’ 

species, which we then used to project the change in habitat breadth over time using 

empirical climate data between 1977 and 2007. The density of the ‘average’ species each 

year was calculated by setting its mean density between 1977 and 2007 to the geometric 

mean density across all species. This density then changed each year according to the 

geometric mean of density change across all species (i.e. there was an average decline in 

density of roughly 1% each year).  

      We then explored changes in habitat breadth under two alternative scenarios. Under a 

hypothetical scenario of no population decline between 1977 and 2007, we simply held the 

focal species’ density constant at the geometric mean density across all species. Under the 

hypothetical scenario of no climate warming, we detrended the climate time series using 

linear regression to produce a time series with the same inter-annual variation, but no average 

warming over time. Projections of changes in habitat breadth between1977 and 2007 for our 

‘average’ focal species were then repeated on these altered climate and density explanatory 

variables.  

 

Interspecific patterns in habitat association and population trends  

From the previous analyses, we noticed that species that traditionally occupy warmer 

microclimates in Britain have failed to expand their habitat associations, contrary to previous 

expectations. We tested this formally by relating the vegetation height association of species’ 

host plant(s) to trends in butterfly habitat breadth and population density between 1997 and 
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2007. Species’ host plants were categorised by their primary occurrence in one of four 

vegetation classes of increasing height, ranging from short grassland to shrubs and trees. For 

example, Speckled Wood Pararge aegeria larvae primarily feed on grasses growing in 

woodlands and therefore this species has the tallest, most closed host vegetation association 

of shrubs and trees (Table 1). ANOVAs were used to test whether host plant vegetation 

associations were associated with differences in butterfly slope coefficients for habitat 

breadth on year (Habitat breadth-Year model) or density on year (Density-Year model). To 

find the minimum adequate model for each ANOVA, factor levels were grouped and 

significance of different models was tested using an F-test (Crawley, 2007). Phylogenetic 

autocorrelation in the response and explanatory variables and model residuals was tested for 

as above and found to be absent. 

 

Results 

Effects of annual weather and density on habitat breadth 

We analysed a total of 27 butterfly species from 77 transects distributed throughout Britain 

(Figure S1). Information on each species’ primary habitat type can be found in Oliver et al. 

(2009). As expected, we found that 19 out of the 27 species showed habitat expansion in 

warmer-than-usual years, spreading out from their primary habitat to occupy marginal habitat 

(Fig. 1a; species with a positive temperature coefficient, Table 1). However, only three 

species showed significant relationships between GDD5 and habitat breadth, although the 

overall trend across all 27 species suggested a slight effect of habitat expansion in warmer 

years (Wilcoxon test of species’ slope coefficients: V = 104, n = 27 species, p = 0.041; 

Fig.1a; Table 1). There was no evidence for consistent effects of annual local density on 

habitat breadth across species (Wilcoxon test of species’ slope coefficients: V = 139, n = 27 

species, p = 0.23; Fig.1b; Table 1) 



14 
 

Long-term changes in habitat breadth  

Contrary to expectation, we found that habitat breadth declined over the study period for 20 

out of the 27 species, despite overall climate warming between 1977 and 2007 (Fig. 1c; 

species with a negative year coefficient, Table 1). Seven species had individually significant 

slopes for the effect of year on habitat breadth, all of which showed significant reduction in 

habitat breadth over the 31 year period. In addition, the overall trend across species suggested 

that habitat contraction has been a significant common trend (Wilcoxon test of species’ slope 

coefficients for the effect of year on habitat breadth: V = 14, n = 27, p = 0.0019; Fig. 1c; 

Table 1). Therefore, the habitat associations of British butterflies have generally become 

more constrained over time, but in warmer years populations show brief, temporary habitat 

expansions.  

 

Factors associated with contraction in habitat breadth 

We tested for a relationship across species between population trends and changes in habitat 

associations between 1977 and 2007 and found that species that had the greatest rate of 

population decline also tended to show the greatest reduction in habitat breadth (F1,25 = 8.92, 

p = 0.006; Fig. 2). For example, populations of the Common Blue butterfly P. icarus were 

estimated to have declined by 42% between 1977 and 2007 and also showed a substantial 

reduction of habitat breadth; only 43% of P. icarus individuals were recorded in their primary 

(grassland) habitat in 1977, whereas 90% were confined to this primary habitat in 2007. In 

contrast, population density of the Comma butterfly Polygonia c-album, a common species 

which has expanded its distribution in the UK (Fox et al., 2006), increased by 121%, and its 

habitat breadth also increased; the percentage of individuals in marginal habitat increased 

from 50 to 85% between 1977 and 2007.  
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We found that butterfy habitat breadth has declined most strongly for species that feed 

on host plants growing in open, short turf conditions (Fig. 3a), i.e. these species have 

withdrawn from using a wider variety of habitat types such as hedgerow, scrub and tall herb 

patches, and are now more concentrated in short turf grasslands. The same group of butterfly 

species have also declined most in population density (Fig 3b).  In contrast, butterfly species 

that use host plants which grow in taller vegetation showed little overall change in habitat 

breadth or population density.  

 

Visualising the effects of climate and density on butterfly habitat associations 

We modelled the projected change in habitat breadth between 1977 and 2007 for an ‘average’ 

species, in order to demonstrate the relative importance of climate change versus trends in 

total population density for habitat associations. Under a scenario of stable butterfly 

populations and climate warming, we found that habitat breadth would be expected to 

increase over time because of increased GDD5. Under a scenario of a stable climate but with 

butterfly population decline, habitat breadth would be severely reduced (by 2007, the 

reduction in habitat breadth is 4.9 times larger than the increase expected from climate 

warming alone). Our model for the actual British situation over the past three decades 

(climate warming and butterfly population decline) shows an intermediate result - habitat 

breadth has declined overall, but climate warming appears to have acted to ameliorate the 

reduction in habitat breadth caused by other (non-temperature) drivers (Fig 4).  

 

Discussion 

Our results show that the majority of UK butterfly species that we studied have exhibited 

long term reduction in habitat breadth over three decades, despite modest expansions in 

habitat associations in warmer-than-usual years. The positive effect of accumulated annual 
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temperature on habitat breadth fits expectations that warmer weather increases the number of 

land cover types that can provide suitable microclimates for insect survival and development 

(Thomas, 1993, Davies et al., 2006). An additional explanation is that warmer temperatures 

promote flight initiation in these heliothermic insects (Shreeve et al., 2009). Although 

increased flight movement per se might not be expected to alter the observed relative density 

of individuals in different habitat types (because detectability would be similarly increased in 

both marginal and primary habitat types), it may do if such movement is targeted (i.e. an 

increased propensity to travel across unfavourable habitat types; Dyck &  Baguette, 2005). 

For example, certain longer distance dispersal modes may have minimum temperature 

thresholds, thereby increasing the number of ‘vagrant’ individuals observed across a wide 

range of habitat types and the perceived habitat breadth under warmer temperatures. Such 

temperature-limitation to movements could be due to physiological constraints, but  might 

also be adaptive, allowing dispersing individuals to access the increased range of resources 

and microclimates available under warmer temperatures (Thomas, 1993, Davies et al., 2006).  

      For all the reasons above, under three decades of warming in Britain, we had expected an 

overall expansion of habitat associations; yet, in fact, habitat breadth declined for most 

species. On average across British butterfly species we demonstrated that climatic warming 

over the last three decades has probably ameliorated the declines caused by other factors, 

which have driven declines in both population size and habitat breadth (Fig. 4). For example, 

declines in habitat breadth over time were strongly correlated with population declines across 

species (Fig. 2) and were more marked for butterfly species feeding on host plants in open 

short turf vegetation (Fig 3). 

      There are a number of reasons why, despite climatic warming, the habitat breadth of these 

thermophilous insects has declined in the last three decades. Firstly, a non-climatic 

anthropogenic driver of change such as habitat loss and degradation might be driving 
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population declines with consequent (indirect) effects on habitat use. In recent decades, 

habitat loss and degradation are thought to have the greatest negative impacts on British 

biodiversity, compared with climate change and other drivers (UK NEA, 2011), and 

butterflies are no exception (Warren et al., 2001). Habitat breadth might be linked to 

population density through density-dependent mechanisms. In higher density populations, 

survivorship and fecundity are often reduced (e.g. through host plant limitation or natural 

enemy aggregation; Yamamura &  Yano, 1999, Gibbs et al., 2004, Baguette &  Schtickzelle, 

2006), and when population density is higher individuals may spread into marginal habitats 

as they become more favourable relative to fitness in the ‘primary’ habitat. Hence, overall 

declines in butterfly population density in Britain between 1977 and 2007 (Botham et al., 

2009), may have resulted in reduced density-dependent costs, thereby concentrating 

individuals in the best possible habitats.  

      An additional density-related explanation for declines in habitat breadth over time is that 

populations exhibit density-dependent emigration and immigration, with individuals being 

more likely to emigrate from marginal habitat patches which have low population density 

(Roland et al., 2000). Hence, as population density declines, this process could provide a 

positive feedback, further depleting numbers in marginal habitats. 

      Changes in butterfly habitat associations over time, however, are unlikely to be mediated 

solely through indirect effects on population density. Non-climatic anthropogenic drivers of 

change, such as habitat loss and degradation, may have direct effects on butterfly habitat use. 

Indeed, the lack of a consistent relationship between annual density and habitat breadth 

across species (Fig 1b), suggests that other factors are important in driving species’ habitat 

associations. Underlying factors appear to drive simultaneous declines in population density 

and habitat breadth, leading these trends to covary across species (Fig 2). One possible such 

underlying driver is habitat degradation. Reductions in habitat quality as a consequence of 



18 
 

habitat degradation, are known to have a strong effects on population change in butterflies 

(Dennis, 2010, Thomas et al., 2011), and, although the broad habitat types on the UKBMS 

transects are unlikely to have changed substantially over the monitoring period, habitat 

quality may well have done so. Comparing temporal trends in habitat breadth across species, 

we found that butterfly species feeding on host plants in open short turf vegetation (i.e. hotter 

microclimates) have suffered the greatest habitat contractions, mirrored also by declines in 

population density. Note that this is the opposite pattern predicted under an assumption that 

climate is the primary factor limiting habitat associations, i.e. where species occupying the 

warmest microclimates in Britain would show the greatest expansions in habitat breadth and 

population density (Thomas, 1993). Hence, the observed pattern suggests that some other 

non-climatic driver appears to be responsible for most of the changes in habitat associations 

of British butterflies over the last three decades.  

      There is reason to believe that the driver responsible might be changes in habitat quality. 

However, we present this as a hypothesis and stress that more detailed experimental studies 

would be needed to confirm mechanistic relationships. Nevertheless, a number of other 

studies support the contention that changes in habitat quality may be driving habitat changes 

in British butterflies. Firstly, butterfly population declines in the past century have been 

primarily driven by habitat destruction and degradation, particularly in relation to agricultural 

intensification and abandonment (Asher et al., 2001, Warren et al., 2001). In Britain, 

evidence from a countrywide survey, spanning the same three decades as this study, shows 

that many natural habitats have become more shady over time through changes in 

management practices (Countryside Survey, 2008). Secondly, countries with high levels of 

nitrogen deposition and experiencing climate warming may experience increased plant 

growth in spring, which can actually lead to microclimatic cooling. Hence, warmth-loving 

insect species associated with open and short vegetation may find many fewer habitat types 
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suitable (Wallisdevries &  Van Swaay, 2006). Therefore, one possibility is that, although the 

macroclimate in Britain over the last three decades has warmed, the availability of warmer 

microclimates (and their associated plants) in British landscapes may have declined due 

changes in land management and vegetation architecture. Further work is needed exploring 

the relationship between changes in macroclimate (i.e. climatic warming) and land 

management to changes in microclimate (i.e. the availability of warmer and cooler 

microsites). 

 

       To conclude, from previous research on climate and species’ habitat associations 

(Thomas, 1993, Thomas et al., 2001, Lennon et al., 2002, Davies et al., 2006, Oliver et al., 

2009), we expected climatic warming over the past three decades to lead to the expansion of 

habitat breadth for high-latitude leading-edge populations of species. We did find a signal of 

such ‘ecological release’ in warmer years, but the long-term trend was one of reduced habitat 

associations. Other constraints appear to be outweighing the positive effects of a warming 

climate on habitat breadth. Across species, the gradual shrinking in butterfly habitat breadth 

over the past three decades was correlated with population declines. Population density may 

influence habitat associations through density-dependent mechanisms. A non-mutually 

exclusive explanation is that the ultimate drivers of butterfly population declines, such as 

reductions in habitat quality, may also directly influence habitat associations. Whatever, the 

exact driver(s), many species appear to have been unable to exploit opportunities for 

ecological release provided by climate change. This prompts the concern that, in addition to 

limited dispersal abilities, a reduced habitat breadth may additionally hinder the ability of 

high-latitude leading-edge populations to expand their ranges northwards even though macro-

climatic conditions have become more favourable (Hill et al., 1999, Warren et al., 2001). The 

ecological release and range expansion of leading edge populations has probably been key in 
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allowing species to survive past periods of climatic warming (Coope, 2004). In contrast, the 

persistence of species may now be threatened by their failure to expand in situations where 

present-day climatic amelioration should allow it. Instead, smaller more ecologically 

constrained populations will be more susceptible to environmental stochasticity (Oliver et al., 

2010) and are likely to have a limited ability for expansion (Hill et al., 1999, Warren et al., 

2001). Our results suggest that only if other non-climatic drivers can be reduced or reversed 

will species be able to fully exploit any emerging opportunities provided by climate warming.      
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Tables 

Table 1. Species’ coefficients for models of habitat breadth and population density 
Species’ coefficients from: model 1- relationship between habitat breadth (HB) and annual accumulated temperature, annual density and year; 
model 2- relationship between habitat breadth and year; model 3- relationship between density and year. Individually significant species slopes 
(p<0.05) are indicated by an asterisk. Also listed are the number of transects analysed for each species, and the species’ host plant vegetation 
association: 1- short grassland, 2- medium grassland, 3- tall grassland, 4- shrubs/trees. 
 
 

      Model 1  Model 1  Model 1  Model 2  Model 3    

Species 

Number of 
transects 
analysed 

Temperature 
on HB 
coefficient 

Density 
on HB 
coefficient

Year on HB 
coefficient 

Year on HB 
coefficient 

Year on 
density 
coefficient

Host 
vegetation 
association 

Aglais urticae  50  0.061  ‐0.031  ‐0.358*  ‐0.364*  ‐0.339*  3 
Anthocaris cardamines  18  0.051  0.022  ‐0.12  0.006  0.015  2 
Aphantopus hyperantus  43  0.083  ‐0.19  ‐0.283*  ‐0.171  0.058  3 
Argynnis paphia  8  0.194*  ‐0.064  ‐0.013  0.31  0.261*  4 
Aricia agestis  14  0.275  0.792  0.069  0.059  ‐0.019  2 
Callophrys rubi  6  ‐0.17  0.333  0.113  ‐0.09  ‐0.133  4 
Celastrina argiolus  7  0.122  ‐0.13  ‐0.198  ‐0.133  ‐0.113  4 
Coenonympha pamphilus  31  ‐0.230*  ‐0.121  0.072  ‐0.148  ‐0.224*  1 
Erynnnis tages  9  ‐0.025  0.474  ‐0.372  ‐0.452  ‐0.207  1 
Gonepteryx rhamni  27  0.007  0.025  ‐0.126  ‐0.121  0.002  4 
Inachis io  54  0.026  0.032  ‐0.222*  ‐0.153*  ‐0.076  3 
Lasiommata megara  13  ‐0.007  ‐0.048  ‐0.128  ‐0.091  ‐0.262*  1 
Lycaena phlaeas  24  0.023  ‐0.048  ‐0.149  ‐0.176  ‐0.254*  2 
Maniola jurtina  62  0.039  ‐0.210*  ‐0.095  ‐0.089  0.076  3 
Melanargia galathea  29  0.09  0.191  ‐0.429*  ‐0.430*  0.110*  3 
Ochlodes venata  48  0.079  0.143  ‐0.261*  ‐0.185  ‐0.264  3 
Pararge aegeria  44  ‐0.135*  0.183  0.215*  0.082  0.026  4 
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Pieris brassicae  46  ‐0.001  0.015  0.081  0.058  ‐0.124*  2 
Pieris napi  45  ‐0.009  0.023  0.018  0.019  ‐0.040*  2 
Pieris rapae  57  0.051  ‐0.053  ‐0.176*  ‐0.161*  ‐0.182  2 
Polygonum c‐album  13  0.076  0.354  0.291  0.421  0.194*  3 
Polyommatus icarus  47  0.043  ‐0.008  ‐0.422*  ‐0.600*  ‐0.132*  1 
Pyrgus malvae  7  0.14  0.178  ‐0.24  ‐0.167  ‐0.137  1 
Pyronia tithonus  53  0.005  ‐0.042  ‐0.175*  ‐0.183*  0.062  3 
Thymelicus sylvestris  37  0.05  0.285*  ‐0.188  ‐0.234*  ‐0.353*  3 
Vanessa atalanta  23  0.037  ‐0.021  ‐0.161  ‐0.123  0.191*  3 
Vanessa cardui  14  ‐0.065  0.077  0.021  ‐0.024  0.035  3 
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Figures 

 

 

 

Fig. 1, Effects of weather, density and year on habitat breadth  

Histograms of species’ slope coefficients for the relationships between habitat breadth and a) 

annual weather (measured by growing day degrees above 5ºC), and b) local annual butterfly 

density. Panel c shows the overall trend in habitat breadth between 1977 and 2007. For all 

panels, positive coefficients indicate expansion of habitat associations and negative 

coefficients contraction of habitat associations. Asterisks indicate significance level of 

multispecies trends (* p < 0.05, ** 0.001< p < 0.01).   

 



29 
 

 

 

 

Fig. 2, Long-term changes in habitat breadth and population density 

Butterfly species that have shown the greatest population declines have also shown the 

greatest decline in habitat breadth. Population change is measured as the average change in 

the density of a species across all transects. Habitat breadth is measured as the average 

change in proportional relative density in marginal habitats across all transects. 
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Fig. 3, Host plant vegetation association and changes in habitat breadth and population 

density 

Relationships between the host plants used by butterfly species and changes in butterfly a) 

habitat breadth, and b) population density, between 1977 and 2007. Positive coefficients 

indicate expansion of habitat associations or population increase, and negative coefficients 

declines in habitat breadth or population density. Host plant vegetation associations are: 1- 

short grassland, 2- medium grassland, 3- tall grassland, 4- shrubs/trees. Species feeding on 

host plants associated with open, short grassland suffered significantly greater contraction of 

habitat associations (F1,25 = 4.86, p = 0.037) and marginally greater population decline (F1,25 

= 3.91, p = 0.059) between 1977 and 2007. 
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Fig. 4, Changes in habitat breadth between 1977 and 2007 

The estimated average trend in habitat breadth for butterflies under three different scenarios 

of climate and population change. Increasing values on the y-axis indicate expansion of 

habitat associations. The solid line with circles depicts the actual scenario where the climate 

in Britain has warmed over time, but any effects habitat breadth have been offset by other 

environmental drivers associated with butterfly population decline. The other lines depict 

hypothetical scenarios. The dashed line with triangles shows that observed decline in habitat 

breadth would be more severe were it not for climate warming. The dashed line with circles 

shows that expansion of habitat associations might have occurred in Britain were populations 

not declining so rapidly. 
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Supporting Information 

Additional supporting Information is available for this article:  

Table S1- Broad habitat classes used in the analysis 

Table S2- Average density and habitat breadth of butterfly species  
 
Figure S1- Locations of the UKBMS transects used in the analysis 

Figure S2- Spline correlograms to test for spatial autocorrelation in model residuals 
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Supporting Information 
 
This supporting information contains the following: 
 
Table S1- Broad habitat classes used in the analysis 
Table S2- Average density and habitat breadth of butterfly species  
Figure S1- Locations of the UKBMS transects used in the analysis 
Figure S2- Spline correlograms to test for spatial autocorrelation in model residuals 
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Table S1- Broad habitat classes used in the analysis 
 
Broad Habitat  Description EUNIS codes 
Arable Intensive arable crops; bare ground/weeds of arable field margins or fallow/recently 

abandoned arable crops (e.g. set-aside) 
I1.1/1.5 

Bracken Bracken dominated glades or hillsides E5.3 
Coniferous woodland Mature coniferous woodland G3 
Coastal Marine saltmarshes/estuaries/saline reedbeds; coastal dune grassland; coastal dune and sand 

heath; coastal dune and sand scrub; coastal dune slacks; coastal shingle 
A2, B1.4/1.5/1.6/1.8/2. 

Deciduous woodland Mature broadleaved woodland; mature mixed broadleaved and coniferous woodland; lines of 
trees or scattered trees of parkland; small man-made woodlands; recently felled areas/early-
stage woodland and coppice; orchards, hop gardens and vineyards 

G1/4/5.1/5.2/5.6/5.7/5.8, 
G1.D 

Fen/ Bog Fen/swamp/marsh vegetation of inland freshwater edges; bare ground/sparse vegetation of 
inland freshwater edges; acid bog/mire habitats; flushes; inland swamp/fen stands without 
open water (e.g. reed and sedgebeds) 

C3.1/3.2/3.3/3.4/3.5/ 
3.6/3.7/3.8, D1/2/4/5 

Grassland Dry semi/unimproved (flower-rich) chalk/limestone grassland; dry semi/unimproved acid 
grassland; dry semi/unimproved (flower-rich) neutral grassland; agriculturally improved/re-
seeded/ heavily fertilised grassland; seasonally wet and wet marshy grasslands 

E1.2/1.7/2.1/2.2/2.6/3 

Heathland Wet and dry heathland/ dry heather moorland F4 
Hedgerow/ Mosaic habitats Stands of tall herbs (e.g. nettle and willow-herb beds); dry scrub/shrub thickets; Hedgerows; 

bare ground/woodland herb/grass mosaics of woodland rides, hedgebanks 
and green lanes 

F3.1, FA, E5.2 

Urban/ suburban Ornamental shrubs/trees/lawns of churches/parks/domestic gardens etc; bare ground/weed 
communities of post-industrial sites e.g. 
quarries/pits/road/rail/landfill sites 

I2, J3/4/6 

Waterside scrub Wet willow scrub of fen, river and lake-side F9 
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Table S2- Average density and habitat breadth of butterfly species  
Median density and habitat breadth of butterfly species across all transects and years. Habitat 
breadth is calculated as the proportional relative density of butterflies outside of the primary 
habitat type. The top two marginal habitat types for each species are also listed. Habitat 
category codes are as follows: DW- deciduous woodland, G-grassland, H- heathland, HeMo- 
hedgerow and mosaic habitats. 
 

Species 

Number of 
transects 
analysed 

Primary 
habitat 
type 

Marginal 
habitat 
types 

Median 
habitat 
breadth 

Median 
Density 

Aglais urticae  50  G  HeMo, DW  0.56  0.53 
Anthocaris cardamines  18  HeMo  G, DW  0.75  0.29 
Aphantopus hyperantus  43  G  HeMo, DW  0.61  1.95 
Argynnis paphia  8  G  DW, HeMo  0.71  1.17 
Aricia agestis  14  G  DW, HeMo  0.33  0.45 
Callophrys rubi  6  G  HeMo, DW  0.39  0.26 
Celastrina argiolus  7  HeMo  G, DW  0.87  0.26 
Coenonympha pamphilus  31  G  HeMo, H  0.30  1.42 
Erynnnis tages  9  G  HeMo, DW  0.17  0.50 
Gonepteryx rhamni  27  HeMo  G, DW  0.62  0.62 
Inachis io  54  G  HeMo, DW  0.68  0.66 
Lasiommata megara  13  G  HeMo, DW  0.49  0.24 
Lycaena phlaeas  24  G  HeMo, DW  0.41  0.36 
Maniola jurtina  62  G  HeMo, DW  0.47  7.01 
Melanargia galathea  29  G  HeMo, DW  0.35  2.08 
Ochlodes venata  48  G  HeMo, DW  0.52  0.55 
Pararge aegeria  44  DW  HeMo, G  0.55  1.46 
Pieris brassicae  46  HeMo  G, DW  0.63  0.48 
Pieris napi  45  HeMo  G, DW  0.65  0.73 
Pieris rapae  57  G  HeMo, DW  0.65  0.76 
Polygonum c‐album  13  HeMo  DW, G  0.68  0.29 
Polyommatus icarus  47  G  HeMo, DW  0.28  1.09 
Pyrgus malvae  7  G  HeMo, DW  0.56  0.49 
Pyronia tithonus  53  G  HeMo, DW  0.59  2.18 
Thymelicus sylvestris  37  G  HeMo, DW  0.43  0.98 
Vanessa atalanta  23  HeMo  G, DW  0.74  0.24 
Vanessa cardui  14  G  HeMo, UG  0.50  0.14 
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Figure S1- Locations of the UKBMS transects used in the analysis 
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Species code Common name Latin name 
2 Small tortoiseshell Aglais urticae 
4 Orange tip Anthocaris cardamines 
8 Ringlet Aphantopus hyperantus 
17 Silver-washed fritillary Argynnis paphia 
20 Brown argus Aricia agestis 
27 Holly blue Celastrina argiolus 
29 Small heath Coenonympha pamphilus 
46 Dingy skipper Erynnnis tages 
54 Brimstone Gonepteryx rhamni 
68 Small copper Lycaena phlaeas 
75 Meadow brown Maniola jurtina 
76 Gatekeeper Pyronia tithonus 
78 Marbled white Melanargia galathea 
84 Peacock Inachis io 
88 Large skipper Ochlodes venata 
93 Speckled wood Pararge aegeria 
94 Wall brown Lasiommata megara 
98 Large white Pieris brassicae 
99 Green-veined white Pieris napi 

100 Small white Pieris rapae 
104 Comma  Polygonum c-album 
106 Common blue Polyommatus icarus 
110 Grizzled skipper Pyrgus malvae 
120 Small skipper Thymelicus sylvestris 
122 Red admiral Vanessa atalanta 
123 Painted lady Vanessa cardui 



46 
 

 
 
Figure S2- Spline correlograms to test for spatial autocorrelation in model residuals 
We tested for spatial autocorrelation in the three statistical models fitted to data for each 
species using the ncf package in the program R (Bjornstad, 2009, R Development Core Team, 
2009). See main text for statistical model explanations. Species’ codes are given in the table 
beneath the panels. For one species, the Green Hairstreak Callophyrs rubi, only six sites were 
included in the analysis and so a test for spatial autocorrelation for this species was not 
possible. 
 
 

REFERENCES 
 

Bjornstad ON (2009) ncf: spatial nonparametric covariance functions, R package version 
1.1-3.  http://CRAN.R-project.org/package=ncf. 

R Development Core Team (2009) R: A language and environment for statistical computing.  
(ed Computing RFfS) pp Page, Vienna, Austria. ISBN 3-900051-07-0, URL 
http://www.R-project.org. 

 
 
 
 
 


	postprint cover - Wiley
	Oliver_Ecological_release_second_revision_plus figures_plus Supp Info

