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[1] Understanding the variability and coherence of surface ocean pCO2 on a global scale
can provide insights into its physical and biogeochemical drivers and inform future
samplings strategies and data assimilation methods. We present temporal and spatial
autocorrelation analyses of surface ocean pCO2 on a 5� � 5� grid using the Lamont-Doherty
Earth Observatory database. The seasonal cycle is robust with an interannual autocorrelation
of �0.4 across multiple years. The global median spatial autocorrelation (e-folding) length
is 400 � 250 km, with large variability across different regions. Autocorrelation lengths
of up to 3,000 km are found along major currents and basin gyres while autocorrelation
lengths as low as 50 km are found in coastal regions and other areas of physical turbulence.
Zonal (east–west) autocorrelation lengths are typically longer than their meridional
counterparts, reflecting the zonal nature of many major ocean features. Uncertainties in
spatial autocorrelation in different ocean basins are between 42% and 73% of the calculated
decorrelation length. The spatial autocorrelation length in air-sea fluxes is much shorter than
for pCO2 (200 � 150 km) due to the high variability of the gas transfer velocity.
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1. Introduction

[2] The ocean is estimated to absorb approximately 25%
of the total anthropogenic emissions of carbon dioxide (CO2)
released into the atmosphere every year [Mikaloff Fletcher
et al., 2006; Le Quéré et al., 2009]. The partial pressure of
CO2 at the ocean surface (pCO2) is a fundamental determi-
nant of the rate at which CO2 is absorbed by the ocean
[Fangohr and Woolf, 2007]. Thus, understanding the spatial
and temporal variability of surface ocean pCO2 is critical to
understanding the interaction between the atmospheric and
oceanic carbon cycles.
[3] There are several methods of assessing the variability

of a physical variable such as pCO2 on different scales, such
as direct comparison of adjacent measurements [e.g., Bates
et al., 1996; Jiang et al., 2008] and frequency domain anal-
ysis [Lenton et al., 2006]. While there have been many recent
studies of pCO2 variability, the paucity of available mea-
surements has limited their extent. The majority of spatial
studies have focused on relatively small regions [Jiang et al.,
2008; Ishii et al., 2009;Krasakopoulou et al., 2009; Santana-
Casiano et al., 2009; Zhang et al., 2010] or individual/
repeated cruise tracks [Fransson et al., 2009; Padin et al.,

2010]. Temporal studies are also restricted to specific regions,
and are additionally limited in scope, focussing on either
subdaily [Bates et al., 1998; Dai et al., 2009; Leinweber
et al., 2009] or seasonal time scales [Sarma, 2003; Shim
et al., 2007; Olsen et al., 2008; Litt et al., 2010]. A small
number of previous studies have attempted to produce a
global perspective on pCO2 variability. The lack of long-term
measurement projects has prevented interannual analysis in
most cases, although there are exceptions where fixed stations
have been deployed [Bates et al., 1996; Gruber et al., 2002;
Cosca et al., 2003; Wong et al., 2010].
[4] Some attempts at global assessments of pCO2 vari-

ability have been undertaken despite these limitations.
Li et al. [2005] produced global maps of spatial autocorre-
lation lengths from surface ocean pCO2 based on previous
data sets of pCO2 measurements, but their analysis was made
on a coarse 10� � 10� grid and their results were restricted to
variability on scales of <�1,000 km only. These limitations
both reduced the ability to discern long-scale autocorrela-
tions and restricted detection of finer detail. Sweeney et al.
[2002] examined the decorrelation lengths for a selection of
cruise tracks with a view to estimating desired spatial sam-
pling rates for future observation projects, but a full global
analysis was not attempted.
[5] This paper presents a global assessment of the spatial

and temporal variability of surface ocean pCO2, based on
the measurements from the Lamont-Doherty Earth Obser-
vatory database (LDEO database) [Takahashi et al., 2009].
This work expands on previous analysis by using a more
extensive data set, by looking at much larger spatial scales
limited only by the length of individual cruise tracks, and
by examining the directional features of the autocorrelation
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characteristics. The factors controlling the spatial variability
of pCO2 are identified by decomposing the pCO2 signal into
its temperature and residual components [Takahashi et al.,
2002]. The study is extended to cover the spatial variability
of air-sea CO2 fluxes. The differences in spatial variability
between pCO2 and CO2 fluxes are identified and discussed.
Finally the influence of other external drivers (winds, ocean
circulation, biology) on CO2 variability is also examined
directly or through the analysis of proxy variables (sea sur-
face height, surface chlorophyll). This study thus provides a
global view of the spatial and temporal coherence of surface
ocean CO2 data, their underlying controls, and their corre-
spondence with the signatures of known physical and bio-
logical drivers.
[6] The global view of oceanic pCO2 variability presented

here can inform strategies for determining sampling rates in
both space and time [Sweeney et al., 2002; Lenton et al.,
2009]. It will also prove useful in a number of modeling
projects: sea-air CO2 fluxes can be calculated using these
data, which in turn can be used as prior estimates of ocean
variability for inverse modeling techniques based on data
assimilation [Rödenbeck et al., 2003]. Furthermore, knowl-
edge of the autocorrelation characteristics of pCO2 can
inform advanced methods of interpolating the sparse mea-
surements available, such as those used for other physical
and geochemical variables [Levitus, 1982]. This will provide
an important improvement over the necessarily less com-
prehensive interpolations performed to date [Lefèvre et al.,
2002; Takahashi et al., 2002; Schuster et al., 2009].

2. Data Preparation

[7] The LDEO database consists of �4.1 million individ-
ual surface ocean pCO2 measurements spanning the period
1968–2008. Outliers were detected and removed from the
data to reduce the influence of erroneous entries caused by
transcription errors or faulty instrumentation. The remaining
measurements were converted into two separate formats for
temporal and spatial autocorrelation.
[8] The autocorrelation calculations performed in this

analysis are based on two surface ocean pCO2 data products:
time series for each 5� � 5� grid cell and ship track data.
Section 2 describes the treatment of the data necessary to
construct the data products and their rationale. The method
will be described in detail in section 3.

2.1. Data for Temporal Autocorrelation

[9] To compute the temporal autocorrelation, the ocean
was divided into 5� � 5� grid cells and time series con-
structed for each. This grid size represents a compromise
between a high-resolution analysis and the limitations of the
available data. Daily mean values were calculated for each
cell to produce a time series spanning the complete time
period of the data set. For leap years, a ‘day’ was calculated
as 1 1

365 calendar days, to produce a constant year length of
365 days throughout. While calculating the daily mean value
for each grid cell, any measurements falling outside 3 stan-
dard deviations of the mean were flagged as outliers in an
iterative process, repeated until no outliers were detected.
17,952 measurements (0.004%) were flagged as outliers in
this manner. Further outliers were removed by examining
the complete daily time series for each grid cell as follows.

A linear trend for the time series was calculated and tem-
porarily removed. Any day whose mean pCO2 level fell
outside 3 standard deviations of the mean was flagged in
an iterative process, again repeated until no outliers were
detected. A total of 268 days’ measurements (0.007%) were
flagged across all grid cells.
[10] The measurements flagged as outliers were removed

from both the binned and original data sets, which were then
used as the basis for the temporal and spatial autocorrelation
analysis respectively.

2.2. Data for Spatial Autocorrelation

[11] Calculating the spatial variability of the pCO2 mea-
surements requires a set of data with sufficient spatial cov-
erage over the ocean. Using the gridded data set created for
the temporal autocorrelation above was not suitable: in any
given day or month there was insufficient coverage to cal-
culate the variability, and combining multiple maps from the
gridded data set to produce sufficient spatial coverage would
artificially increase the variability of the data as pCO2 levels
changed over time. Using gridded data also restricts the
spatial resolution of the final autocorrelation calculation, and
prevents the detection of small-scale variability.
[12] The LDEO database is constructed from measure-

ments taken along individual cruise tracks. Each cruise
represents a suitable data set for assessing the spatial vari-
ability of pCO2 in the region through which it passes, with
most cruises made up of several hundred measurements
logged to subkilometer precision. Each cruise’s measure-
ments are also taken closely together in time, thus minimiz-
ing the effect of temporal variations in pCO2. Calculating the
spatial autocorrelation for each cruise’s data, then projecting
the results onto a gridded map, allows a global assessment of
the spatial variability of pCO2 levels to be created.
[13] Unfortunately, the LDEO database does not identify

individual cruises: it lists only the institutes or scientists who
collected the data. Extraction of specific cruise information
was therefore performed by analyzing the characteristics
of the data as follows. The measurements provided from
a single source were grouped together and sorted by date
and time. Where two consecutive measurements were taken
within 10 days, both were assumed to be from the same
cruise period; greater time periods between measurements
were treated as boundaries between separate cruises. The
10 day period was chosen to provide a balance between
maintaining coherent cruises, and accounting for reduced
correlations due to large time differences between measure-
ments. The measurements from each of these periods were
split into cruises by assessing their geographical proximity.
For any pair of measurements to be considered as part of the
same cruise, they could not be separated by more than the
distance a ship is likely to travel in the time between the two
measurements. The threshold was set at a rate of 1,500 km
d�1, equating to an average speed of 33 knots. While this is
faster than most ships can travel, it provides some flexibility
to account for errors in the recorded measurement positions
and/or times. Even this threshold was not sufficient to capture
accurately all cruises: in some cases, all the measurements
for a cruise are recorded on a single date or at short fixed
intervals, presumably where accurate time records were
not available. These cruises would be split erroneously using
the above threshold, and so were identified and processed
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manually. Finally, any cruise containing fewer than five
measurements was discarded, as this was a strong indica-
tion of errors in the original data such as misrecorded ship
positions. This yielded a total of 1,535 individual cruises
from the LDEO database.

3. Method

3.1. Temporal Autocorrelation

[14] A temporal autocorrelation function (ACF) for each
5� � 5� grid cell was calculated at monthly resolution. Since
no grid cells contained a complete time series, the auto-
correlations could be computed only where the original and
lagged time series contained pairs of values at the same time
steps. In some cases the number of paired time steps was very
small, so a measure of the statistical significance of the result
was required to ensure that the results were robust. The sta-
tistical significance of each ACF value was calculated as a
function of the number of time steps used in the calculation
using the formula

T ¼ Q 1
2 1þ 0:95ð Þ� �

ffiffiffi
n

p ; ð1Þ

where T is the threshold of statistical significance; Q is the
quantile of the cumulative distribution function of the normal

distribution at 95% [Wichura, 1988]; and n is the number of
values used to construct the ACF. This function gives a
threshold between 0 and 1. Individual ACF values between T
and 0 (either positive or negative) are not statistically sig-
nificant; any such values in the calculated ACFs were dis-
carded. A value of T ≤ 0.5 was used for this study, since the
number of monthly values available for a given grid cell is
relatively low. A total of 348 grid cells had ACFs containing
statistically significant values at the 95% level (Figure 1a).
The majority of these were in the North Pacific and North
Atlantic, where most pCO2 measurements are available
[Takahashi et al., 2009].
[15] Temporal ACFs at daily resolution were also calcu-

lated for each grid cell, but too few cells produced statis-
tically significant ACFs to allow a robust analysis of the
results.

3.2. Spatial Autocorrelation

[16] Spatial autocorrelation functions were calculated for
each cruise in the LDEO database using the Moran’s I tech-
nique [Moran, 1950], comparing the similarity of pairs of
measurements within the cruise. Autocorrelation values for
the cruise were calculated in distance groups of 50 km. For
the 0–50 km bin, pairs of measurements separated by 50 km
or less were assessed to give an autocorrelation value for the
cruise at a distance lag of 50 km. Next, pairs of measurements

Figure 1. (a) Map of the grid cells that pass the statistical significance test on the monthly temporal ACF.
(b) The mean monthly temporal ACF calculated from all grid cells. The gray shaded area indicates one stan-
dard deviation on either side of the mean. The symbols show the progression of the ACF between 6 and
12 months in different regions, to indicate the relative influence of the seasonal cycle.
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separated by 50–100 km were examined and so on, to build
a complete ACF covering the full distance of the cruise.
This approach limited the smallest detectable autocorrela-
tion length to 50 km, which meant that some detail was lost
around coastlines where autocorrelations are likely to be very
short. However, this was necessary to reduce the amount of
computation required for the analysis to a feasible level.
[17] Any cruise from the LDEO database that covered a

distance of 50 km or less was discarded from the analysis.
Similarly, any cruise with a correlation length of within
100 km of the overall cruise distance was also discarded as it
is likely that the correlation length was limited by the length
of the cruise. A total of 1,454 cruises remained for the spatial
autocorrelation analysis. The Moran’s I technique includes
an assessment of the statistical significance of its results. Any
value that fell below the threshold of 95% significance was
discarded. The decorrelation length of the measurements
from each cruise was determined by the e-folding length of
the ACF.
[18] Many of the cruises in the data set pass through dif-

ferent water masses, meaning that the ACF for each cruise
represents the combined autocorrelation characteristics of all
the water masses encountered and any variability between
them is hidden. The autocorrelation analysis for each cruise
was extended to reveal this variability. For each grid cell
through which the cruise passed, an ACF was calculated for
the measurements taken within a reference distance of the
center of the cell. The reference distance was set at five times
the e-folding length of the original ACF calculated for the
entire cruise.
[19] Global maps of spatial autocorrelation lengths were

produced using the e-folding lengths of the ACFs calculated
for the individual grid cells. Where more than one cruise had
an ACF for a given grid cell, the mean e-folding length of all
those ACFs cruises was calculated to determine the spatial
autocorrelation length for that particular cell. This produced a
map of decorrelation lengths for each 5� � 5� grid cell. An
accompanying map showing the number of cruises contrib-
uting to each cell’s value was constructed to provide a mea-
sure of the confidence level for each cell. Additional maps
were produced to show directional autocorrelations. A zonal

map was computed using the 571 cruises traveling within
30� of the east–west direction, and a meridional map from the
521 cruises traveling within 30� of the north–south direction.
[20] Assessing the uncertainty of the spatial autocorrela-

tion lengths was difficult because very few cruises contribute
to each grid cell over much of the ocean. An estimate of the
uncertainty for each grid cell was calculated as follows. The
standard deviation of the autocorrelation lengths that were
used in each grid cell was plotted against the mean autocor-
relation length calculated for that cell, and a linear fit applied
to the scatterplot. The slope of the fitted line was converted
to an uncertainty expressed as a percentage of the grid cells’
mean autocorrelation length. The uncertainty estimates were
calculated for the global ocean as well as smaller ocean
regions. Examples of the scatterplots and fitted slopes are
shown in Figure 2. The linear fit used to estimate the uncer-
tainty was robust, as illustrated by the r2 values of the linear
fits (Table 1).
[21] We examined the pCO2 autocorrelation lengths in

greater detail by extracting the temperature-driven compo-
nent of the pCO2 measurements, calculated as pCO2 at a
constant temperature, and a residual component representing

Figure 2. Examples of scatterplots used to estimate uncertainties of spatial autocorrelation lengths for
(left) all cruises in the global ocean, (middle) zonal cruises in the eastern North Pacific, and (right) merid-
ional cruises in the eastern North Pacific. The mean autocorrelation length is plotted against the standard
deviation of contributing cruises for each grid cell, and a linear fit is made to estimate the relationship
between the two. The steepness of the slope is converted to a percentage, which is used for the uncertainty.

Table 1. Uncertainty Levels for the Autocorrelation Lengths of
pCO2 Measurements in Different Ocean Regionsa

Basin All Directions Zonal Meridional

Western North Pacific 47% (0.64) 79% (0.83) 37% (0.52)
Eastern North Pacific 64% (0.81) 58% (0.76) 49% (0.40)
Equatorial Pacific 44% (0.60) 34% (0.48) 38% (0.34)
South Pacific 65% (0.65) 49% (0.52) 40% (0.35)
North Atlantic 73% (0.67) 71% (0.61) 72% (0.58)
South Atlantic 42% (0.34) 19% (0.09) 20% (0.13)
Indian Ocean 57% (0.39) 35% (0.24) 23% (0.19)
Global 59% (0.75) 46% (0.68) 37% (0.55)

aUncertainties are calculated as the linear relationship between the auto-
correlation length for each grid cell and the standard deviation of cruise
autocorrelation lengths contributing to that cell. This gives the uncertainty
as a percentage of the calculated autocorrelation length. Numbers in paren-
theses show the r2 coefficient of the linear fit to illustrate the robustness
of the uncertainty estimate. The boundary between the eastern and western
North Pacific is at 170�E, and the equatorial Pacific is between 15�S and
15�N.
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the effect of all other processes. Following the method of
Takahashi et al. [1993], pCO2 has been observed to vary
with temperature at the rate

d ln pCO2

dt
¼ 0:0423 �C�1: ð2Þ

[22] This allows each pCO2 measurement to be decom-
posed into temperature and residual components:

pCO2 ¼ pCOT
2 þ pCOresidual

2 ; ð3Þ

where

pCOresidual
2 ¼ pCO2 * exp 0:0423 �T � Tð Þ½ �; ð4Þ

where pCO2 and T are the in situ pCO2 and SST mea-
surements, respectively, and �T the global mean sea surface
temperature (20.29�C) cell calculated from Level 3 Standard
measurements from the Aqua-MODIS satellite provided
by NASA/GFSC/DAAC (http://oceancolor.gsfc.nasa.gov).
Spatial autocorrelation maps of each component were pro-
duced for direct comparison.

3.3. Autocorrelation of Drivers

[23] Spatial autocorrelation analysis was also performed on
other ocean properties to determine possible drivers for the
autocorrelation of pCO2 values. We used Chlorophyll data
from the SeaWiFS satellite, sea surface temperature (SST)
data from the MODIS satellite, and sea surface height (SSH)
data from AVISO. The latter was used as a proxy for ocean
currents, since spatial gradients in SSH are a strong indicator
of current strength and direction [Imawaki et al., 2001; van
Sebille et al., 2010]. These are gridded data sets covering

multiple years. To eliminate the influence of seasonal cycles
and trends, a single grid was produced for each data set
containing the temporally averaged data from the whole
data set.
[24] The nature of gridded data sets means that they cannot

be used to detect very short decorrelation lengths unless they
are of very high resolution, at which point the computation
requirements of the Moran’s I technique become unman-
ageable. However, using a coarse grid allows an approxi-
mation of the spatial ACF for each grid cell to be obtained
while maintaining realistic computation times. We used 1� �
1� grids for each of the data sets, and the decorrelation limit
was set to 0.1 instead of the e-folding length to compensate
for the larger distances between data points. Even so, the
minimum detectable decorrelation length was 200 km with
spatial autocorrelation lag steps of 100 km instead of the
50 km obtained for the pCO2 autocorrelation.

3.4. Spatial Flux Autocorrelation

[25] Spatial autocorrelation analyses were also performed
on air-sea CO2 fluxes. Instantaneous CO2 flux values were
calculated for each of the individual measurements using the
standard formulation

F ¼ k sDpCO2; ð5Þ

where k is the gas transfer velocity; s the solubility; and
DpCO2 the difference between the atmospheric and oceanic
pCO2. The gas transfer velocity k was calculated using the
wind formulation by Wanninkhof [1992] with bomb 14C
corrections by Sweeney et al. [2007]. Six hourly wind data
were taken from the ERA-Interim Reanalysis [Simmons
et al., 2007] for measurements from 1989 onward, and
from the ERA-40 Reanalysis [Uppala et al., 2005] for mea-
surements prior to that date. The solubility s was calculated

Figure 3. Histogram showing the frequency of zonal (diagonal stripe) and meridional (gray) decorrelation
lengths as a percentage of the total number of cells for which spatial ACFs could be calculated. The arrows
on the x axis indicate the median decorrelation lengths for meridional direction (gray), zonal direction
(diagonal stripe), and all directions combined (black).
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according to the method presented by Weiss [1974], using
the in situ temperature and salinity value from the LDEO
database. The Hadley Centre’s EN3 data set [Ingleby and
Huddleston, 2007] was used where salinity data were miss-
ing from the LDEO database. The atmospheric pCO2 levels
used to calculate DpCO2 were taken from the corresponding
latitude in the GLOBALVIEW atmospheric CO2 database
[GLOBALVIEW-CO2, 2011] for measurements from 1979
onward, and from the Mauna Loa record [Keeling et al., 1976]
for measurements prior to 1979. Barometric pressure values
were taken from the in situ measurements recorded in the
LDEO database.
[26] The spatial autocorrelation of air-sea flux values was

calculated in exactly the same manner as for the pCO2 values,
using the same set of 1,454 cruises. Autocorrelation maps
were also produced for each of the flux components k, s and

DpCO2 to see which had the greatest influence in determin-
ing the flux decorrelation scales.

4. Results and Discussion

4.1. Temporal Autocorrelation

[27] The monthly temporal ACF shows almost no subsea-
sonal variability, with a dominant seasonal cycle (Figure 1b).
The e-folding length of this ACF falls between the first
and second months. The 12 month autocorrelation is �0.46.
The interannual correlation decays only very slowly (�0.33
after 4 years), indicating that the seasonal cycle is consistent
and robust. The ACF from the original data is indistin-
guishable from the ACF computed from the observations
with the long-term trend removed. This means that the
slow decay of the temporal ACF is not due to the trend in

Figure 4. (a) The mean spatial autocorrelation length of cruises passing through each 5� grid cell. White
values indicate the median autocorrelation length of 400 km, while blue and red cells show longer and
shorter correlations, respectively. Dark gray cells indicate regions where there is insufficient data to calcu-
late the autocorrelation length or the autocorrelation length is shorter than the minimum detectable distance.
(b) The number of cruises passing through each cell.
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pCO2 levels, but is caused by other sources of interannual
variability.
[28] The prominence of the seasonal cycle is not consistent

across all regions. Examining the 6 and 12 month lags in the
ACF for five major ocean regions (Figure 1b) shows that
the seasonal cycle is strong in the North Pacific and North
Atlantic, and slightly less influential in the Indian and
Southern Oceans (although there is much less data available
in these regions). In the equatorial Pacific, a seasonal cycle is
not evident at all. This is consistent with previous analyses of
the seasonal cycle of pCO2 levels [Takahashi et al., 2009].

4.2. Spatial Autocorrelation

[29] The decorrelation lengths calculated for each grid cell
range between 50 km and 3,150 km (Figure 4a), with a
median of 400 km and 25%/75% quantiles of 200 km and
650 km respectively. This reflects the large variability of
the world’s oceans. The zonal and meridional mean decor-
relation lengths (Figure 4b) are 450 (250–850) km and
350 (200–550) km respectively. Zonal decorrelation lengths
are frequently longer than their meridional counterparts
(Figure 3) because many ocean currents run east–west,
resulting in a zonal transport of water with similar charac-
teristics in most regions.
[30] The uncertainties for the autocorrelation lengths

were calculated in seven ocean regions as well as globally
(Table 1). The global mean uncertainty for the map of all

cruises (Figure 4a) is 59% of the calculated autocorrelation
length, varying between 42% and 73% in different regions.
The zonal and meridional uncertainties are 46% (19%–79%)
and 37% (20%–72%) respectively. Errors in the zonal and
meridional autocorrelation lengths are smaller than those
found in the directionless autocorrelations because they
eliminate much of the variability caused by different cruises
crossing or following currents. Using the same technique, the
zonal and meridional errors are calculated as 46% and 37%
of the autocorrelation lengths respectively. The region with
greatest uncertainty is the North Atlantic, where the uncer-
tainty is greater than 70% in all directions. This is because
there are several gyres, currents and upwelling/downwelling
areas [Schmitz, 1996] in this relatively small region, includ-
ing the Gulf Stream whose position varies over time [Kelly,
1991]. This means that cruises passing through this region
will encounter several different water masses with different
spatial variability, which may be in different locations for
different cruises in the LDEO database. This accounts for
the large uncertainties in spatial autocorrelation length in the
North Atlantic. The varying position of the Kuroshio current
and its extension [Kawabe, 1995] has a similar effect in the
western North Pacific, which shows much higher zonal var-
iability than the eastern North Pacific.
[31] The map of mean autocorrelation lengths high-

lights many of the major ocean currents and gyres as regions
where autocorrelation lengths are long (1,000 km and above),

Figure 5. Spatial autocorrelation maps for (a) zonal and (b) meridional cruises only, with (c and d) accom-
panying cruise counts as for Figure 4.
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especially away from the coasts (Figure 4a). The North
Pacific and South Atlantic gyres are clearly discernible, as
are the currents of the Indian Ocean. Short autocorrela-
tion lengths (400 km and below) are evident where waters
are heterogeneous or where different water masses are in
close proximity. This is most evident in the Southern Ocean,
where the water characteristics are heterogeneous [Watson
and Naverira Garabato, 2006], especially around Drake
Passage and the Scotia Sea [Heywood et al., 2002]. Other

prominent regions of short autocorrelation lengths include
the Humboldt current system off Chile, Peru and into the
equatorial Pacific, where biological activity is particularly
pronounced [Morales and Lange, 2004]; the North Atlantic
around Iceland and Greenland, where the Gulf Stream is
most prominent [Dickson and Brown, 1994]; the Kuroshio
current in the western Pacific south of Japan [Taft et al.,
1973]; the highly variable currents of the Caribbean Sea
and Gulf of Mexico [Richardson, 2005]; and the continental
shelf of the South Atlantic Bight of the United States [Jiang
et al., 2008]. The North Atlantic is the only ocean basin
with no obvious coherence in spatial autocorrelation lengths.
This is due to the high variability of the currents in this region
combined with the effects of biological activity. The dis-
tribution of autocorrelation lengths in the North Atlantic
becomes much clearer when the zonal and meridional cruises
are assessed separately (Figure 5).
[32] The accompanying map of cruise counts for each

cell shows areas of most prolific coverage (and therefore
greatest confidence) in the western North Pacific off the
Japanese coast, the Caribbean islands and Drake Passage in
the Southern Ocean, with over 50 cruises recorded in the
database (Figure 4b). The North Atlantic and North Pacific
have 10 or more cruises recorded over the majority of their
areas. The remainder of the world’s oceans are only mini-
mally sampled outside repeat cruise tracks such as those
between New Zealand and the Antarctic, and a repeated cir-
cular cruise track in the Indian Ocean.
[33] Further detail of spatial autocorrelation patterns can

be seen by examining the zonal and meridional cruises inde-
pendently (Figure 5). The extended autocorrelation lengths
in the North Pacific basin (1,200 � 700 km), the South
Equatorial current (1,500 � 500 km) and the Antarctic
Circumpolar current (1,300 � 500 km) are more clearly
discernible in the zonal map along the main direction of water
flow, with much shorter meridional autocorrelations of
550 � 200 km, 450 � 150 km and 450 � 150 km respec-
tively. Meridional correlations dominate in the Atlantic
Ocean only, particularly in the middle to high latitudes of the
North Atlantic (1,400 � 1,000 km) and the western South
Atlantic (1100 � 200 km). In the western tropical Atlantic
the autocorrelations follow the bifurcation of the South
Equatorial current on the coast of South America, forming
the Brazil and North Brazil currents [da Silveira et al., 1994].
In the eastern North Atlantic, the autocorrelations are asso-
ciated with the Canary Current [Schmitz, 1996]. The long
meridional autocorrelations in the western North Atlantic
follow the Gulf Stream and the North Atlantic Current
[Flatau et al., 2003], showing the greatest dominance of
meridional over zonal correlations. Cruises traveling east–
west here will cross many currents carrying waters of dif-
ferent characteristics, thereby producing short autocorrela-
tion lengths; north–south cruises, meanwhile, will not see
this effect. These long autocorrelations extend as far north as
Greenland and Iceland, where the North Atlantic Current
loses its identity around Greenland and there is a large area of
dense, sinking water at the limits of the thermohaline circu-
lation [Dickson and Brown, 1994].
[34] A full analysis of zonal and meridional autocorrela-

tions cannot be performed for the eastern South Pacific, the
region of the Southern Ocean south of South Africa, or for

Figure 6. The difference between spatial autocorrelation
lengths of the temperature and residual components of the
pCO2 measurements for (a) all seasons, (b) summer, and
(c) winter. Red (blue) regions indicate that the temperature
(residual) component is more spatially stable.
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much of the South Atlantic due to the unidirectional nature of
the cruises in this region (Figures 5c and 5d). Comparing the
autocorrelation lengths of the temperature-driven and resid-
ual components (Figure 6a) shows that the temperature-
driven component is more spatially stable in much of the
ocean, with 61% (17%) of grid cells reporting longer
correlations for the temperature (residual) component. The
residual component tends to have the longest relative auto-
correlation length in the midlatitudes of the Atlantic, with
similar but weaker patterns in the Pacific midlatitudes. This
pattern compares well with analyses of the biological influ-
ence on surface pCO2 levels [Takahashi et al., 2002], indi-
cating that this is a significant constituent of the residual
component. The relative spatial stability of these two com-
ponents varies with the seasonal cycle. In the summer months
(June–August/December–February in the Northern/Southern
Hemisphere), the pattern of relative spatial stability
(Figure 6b) is much the same as that for the complete year,
while pattern in the winter months changes significantly
(Figure 6c). Analysis of the seasonal differences in the two
components (not shown) shows that this is due to a combi-
nation of the temperature component becoming less spatially
stable in the winter months, and biological activity becoming
more spatially stable as it decreases to a minimum in most
regions.

4.3. Comparison With Drivers

[35] Comparing the maps of pCO2 autocorrelation lengths
with those of chlorophyll, SST and SSH (Figure 7) shows
the extent to which the latter variables may act as drivers for
the pCO2 autocorrelations. The chlorophyll and SST maps
show the same basic large-scale patterns of spatial auto-
correlation, with larger autocorrelations in the central basins
of the Atlantic and Pacific. Values in the eastern Indian
Ocean are not well defined, since they are consistently
shorter than the 200 km lower limit on detectable autocor-
relation lengths for the gridded data sets and therefore show
no variability. SSH autocorrelation lengths are also below
the 200 km threshold across much of the global ocean, with
only the equatorial and North Pacific, tropical Atlantic and
portions of the Southern Ocean exhibiting longer autocorre-
lation lengths.
[36] The pattern of the chlorophyll and SST maps is visible

to some extent in the map of pCO2 autocorrelation lengths,
although it is obvious that these are not leading drivers of
the autocorrelation length since the pCO2 map shows greater
spatial variability. This is confirmed with a quantitative com-
parison of the maps, with pattern correlations of r2 = 0.24 and
r2 = 0.21 for chlorophyll and SST respectively. The SSHmap
cannot be reliably compared to the pCO2 map because of the

Figure 7. Maps of spatial autocorrelation lengths of (clockwise from top left) pCO2 (from Figure 4),
chlorophyll, sea surface height, and sea surface temperature. Dark gray cells indicate regions where there is
insufficient data to calculate the autocorrelation length or the autocorrelation length is shorter than the
minimum detectable distance.
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limited number of regions in which the autocorrelation length
can be estimated. However, the relatively low similarity of
pCO2 autocorrelation lengths, and the fact that ocean currents
and gyres are clearly visible in the zonal and meridional maps
of autocorrelation (Figure 5), leads to the conclusion that it is
the physical circulation of the oceans is likely to be the largest
influence on the patterns of pCO2 autocorrelation.

4.4. Flux Autocorrelation

[37] Spatial autocorrelation lengths for CO2 fluxes are
approximately half those calculated from the pCO2 mea-
surements (200 (150–350) km). Estimated uncertainties for
the flux autocorrelation lengths are very similar to those
for the pCO2 measurements (Table 1). Mapping the indi-
vidual components of the flux calculation (Figure 8) reveals
the primary cause of this difference. The ocean pCO2 and
DpCO2 autocorrelation lengths are essentially identical, with
a mean difference that is smaller than the 50 km resolution of
this analysis; atmospheric CO2 therefore has no influence on
the flux autocorrelation. Solubility autocorrelation lengths
are typically longer than those of the pCO2 measurements
(600 (350–950) km), but this has the parameter with by far
the smallest influence over the calculated flux value, con-
sistent with current understanding of the carbonate system
[Takahashi et al., 2009]. The difference between the pCO2

measurements and the gas transfer velocity is 150 (50–350) km,
which is very close to the overall difference between pCO2

and the total flux (150 (50–300) km). Pattern correlation tests
show that the fluxes have a very similar distribution to both
pCO2 and the gas transfer velocity, with r2 = 0.71 and r2 =
0.76 respectively. Thus we conclude that the gas transfer
velocity is most influential in causing the decreased auto-
correlation length in CO2 fluxes.

4.5. Validation

4.5.1. Bias Detection
[38] Tests for the existence of systematic biases in the data

show that there are no inherent characteristics of the LDEO
data set that influence the results of this study. Checks were
performed to ensure that the spatial autocorrelation length for
a given grid cell is not influenced by the number of cruises
contributing to that value, despite observations that the
regions with most cruises tend to be regions of short spatial
autocorrelation length. A linear regression fit on the rela-
tionship between autocorrelation length and the number of
cruises in each cell gives an r2 of 0.056, confirming that there
is no such relationship. Furthermore, examination of the
sea surface height (SSH) (calculated using the AVISO SSH
anomaly data) also shows that the regions of high cruise
counts and short autocorrelation lengths are regions of high

Figure 8. Autocorrelation lengths of components of the air-sea flux of CO2. (top left) The difference
between atmospheric and surface ocean pCO2, (top right) solubility, (bottom left) gas transfer velocity,
and (bottom right) the calculated air-sea flux.
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SSH variability. This indicates the high mesoscale variability
caused by unstable currents where short autocorrelation lengths
are expected.
4.5.2. Comparison With Previous Studies
[39] The results of our autocorrelation analysis compare

well with previous studies of pCO2 variability, but provides
near-global coverage and a level of detail that better high-
lights oceanographic features and allows the identification of
underlying drivers. The strong seasonal cycle in the temporal
ACF is in agreement with similar regional studies, both in
terms of interannual variability [Bates et al., 1996; Gruber
et al., 2002; Wong et al., 2010] and the ability to fit har-
monic curves to time series of pCO2 measurements [Schuster
et al., 2009]. The spatial autocorrelation analysis also com-
pares well with other studies examining both surface ocean
pCO2 and related air-sea fluxes. The gyre and current fea-
tures visible in Figures 4 and 5 are similar those described
by Li et al. [2005], but they provide a more coherent pic-
ture and details that were not captured therein because of the
scale limitation and the coarse grid selected. The additional
resolution and less restrictive limits used here enhance sig-
nificantly the ability to detect and understand these char-
acteristics. The short autocorrelation lengths in the Humboldt
current region agree well with high spatial pCO2 variability
associated with strong CO2 drawdowns [Lefèvre et al., 2002].
Relatively short autocorrelation lengths also agree with high
spatial variability of carbon fluxes found in the south–east
Atlantic [Santana-Casiano et al., 2009] and the South
Atlantic Bight [Jiang et al., 2008], while the “moderate”
variability in the western equatorial Pacific [Ishii et al., 2009]
is reflected in autocorrelation lengths close to the global
mean average. The autocorrelation lengths found in this study
also match closely estimates of the required spatial sampling
rate for pCO2 along specific cruise tracks from previous
versions of the Takahashi database [Sweeney et al., 2002].
The directional autocorrelation lengths we find in the regions
matching the same cruises are very close to the results from
that study, which is to be expected since both studies are
based upon the analysis of individual cruises. However, our
analysis shows that all available data should be examined
to provide a true picture of spatial variability of pCO2 across
the oceans.

5. Summary and Conclusion

[40] The temporal and spatial autocorrelation analysis of
the LDEO database of surface ocean pCO2 measurements
and their corresponding air-sea fluxes provides a compre-
hensive insight into the global variability of these critical
ocean characteristics. For pCO2 in the temporal dimension,
the monthly mean ACF exhibits a robust and consistent
seasonal cycle. For pCO2 in the spatial dimension, the global
median and quantile autocorrelation lengths of pCO2 are
400 (200–650) km. For the air-sea CO2 flux, the global
median autocorrelation length decreases to 200 (150–350) km
because of the spatial variability of the gas transfer velocity.
In both cases zonal correlations are longer than their merid-
ional counterparts, indicating that ocean currents play a sig-
nificant role in determining these lengths. The major ocean
currents and gyres have longer correlations in both pCO2

and CO2 fluxes than those regions with lessheterogeneous

characteristics, consistent with the autocorrelation lengths
in sea surface height.
[41] The results of this study will be useful to both the

measurement and modeling communities. They will inform a
future research into the interaction between the atmospheric
and oceanic carbon cycles, and help to develop future oce-
anic measurement strategies. The results are particularly rel-
evant for atmospheric CO2 inversions, which require a priori
correlations in Bayesian inverse calculations to estimate
CO2 fluxes from atmospheric data. Our analysis suggests that
inverse calculations should incorporate a priori correlation
of pCO2 patterns and compute CO2 fluxes using observed
winds to optimize the information content of the available
surface ocean data. Such a strategy would require the addi-
tion of a surface ocean box in inversions in order to merge the
oceanic and atmospheric data streams most effectively.
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