

Assessing the link between the Geochemistry of Soils and the Bioaccessibility of Arsenic, Chromium and Lead in the Urban Environment

	Joanna Wragg and Mark Cave	
	29 th June 2010	
© NERC All rights reserved		

Northampton

- Large Market town in central England
 Population of c. 200,000
 - Busy Road and Rail links
- Primary industrial activities were shoe making and other leather industries
 - Now a hub for finance and distribution industries
- BGS surveyed the area as part of the G-BASE programme
- Ironstone soils, naturally elevated in arsenic
- 45% of the soils have As concentrations above the residential SGV of 32 mg mg⁻¹

© NERC AI rights reserved

What have we done?

- 275 Surface soils (G-BASE Urban sampling program)
 Composite samples
 - 5 auger flights at a depth of 10-20cm from the centre and corners of a 20 x 20m square
 - · Collected from unbuilt ground every kilometre square
- XRF analysis of major and trace elements
 All samples
- Bioaccessibility
 - Subset of 50 samples
 - Using the newly validated BARGE UBM method

© NERC All rights reserved

Total vs Bioaccessible PHEs

Data modelling

- Predict the bioaccessibility of PHEs using the major element geochemical data
- R
 - · Density plots to identify populations in data
 - Identify and remove hotspots from the model
 - Background bioaccessibility prediction

Density plots

Data modelling

- Predict the bioaccessibility of PHEs using the major element geochemical data
- R
 - · Density plots to identify populations in data
 - Identify and remove hotspots from the model
 Background bioaccessibility prediction
 - Linear regression model based on the major element concentrations and PHE in the soils

Optimum models

	As	Cr	Pb		
Intercept	-3.036	-3.506	-11.1		
Soil pH	5.26E-01	3.55E-01	n/a		
Na	n/a	1.22E-03	n/a		
Mg	2.66E-04	n/a	n/a		
A	n/a	-1.23E-05	n/a		
Р	8.13E-04	n/a	n/a		
Mn	-1.15E-03	n/a	n/a		
Fe	-2.66E-05	-2.04E-05	n/a		
As	6.97E-02	n/a	n/a		
Cr	n/a	2.35E-02	n/a		
Pb	n/a	n/a	0.581		
" All coefficients significant at the 99% CI min					

Data modelling

- Predict the bioaccessibility of PHEs using the major element geochemical data
- R
 - · Density plots to identify populations in data
 - Identify and remove hotspots from the model
 Background bioaccessibility prediction
 - Linear Regression model based on the major element concentrations and PHE in the soils
 - Predict the background bioaccessibility of the whole area
 - Mapping of background bioaccessibility, even for removed hotspots (limitation)
 - As a layer in Google Earth

© NERC All rights reserved

Bioaccessible

Conclusions

- Possible both geogenic and anthropogenic influences on bioaccessibility of PHEs
 - As mainly influenced by soil geochemistry inferior oolite
 - Cr mixed influences, background geology and possibly the previous industrial heritage of Northampton (shoemaking and tannaries)
 - Pb see the input from the urban environment, roads, sewage works
- Looking forward
 - We have a large NIR dataset to investigate
 - Need to investigate methods to separate the geochemical controls from the anthropogenic inputs

© NERC All rights reserved

Thankyou!

© NERC All rights reserved

