

The solid phase distribution and bioaccessibility of potentially harmful elements in natural ironstone soils in the UK

Study location

- 7 sampling sites
- · Residential and allotments at each
- Underlying parent geology -Northampton Sand Formation (NSF)
 - Jurassic Ironstone
 - Stratified by
 - Great Oolite
 - Inferior Oolite Lias Group

Study Aim

- · Assess the potential availability of As, Cr and Ni in ironstone derived soils from the Cherwell district via the oral ingestion route.
- Why?

• The Advanced soil geochemical atlas of England and Wales'

salot tha allo olar nigoodoli load				
	Min	Max	Mean	
As mg kg ⁻¹	0	820	20	
Cr mg kg ⁻¹	5.1	1141	68	
Ni mg kg ⁻¹	0.26	459	23	
es have shown soil PHE				

Other studies of Jurassic ironstor ٠ concentrations above UK soil guideline and generic assessment criteria (at the time of the study)

Land use	Soil Guideline Value (mg kg ⁻¹ DW)				
	Inorganic As	Cr*	Ni		
Residential	20 (32)	200 (627)*	75 (130)*		
Allotment	20 (43)	130 (15300)	50 (230)		
Most work in the LIK has been carried out on As and Ph					

© NERC All rights reserve

•

Study Aim II

- · Identification of the source of the bioaccessible PHEs · The source components
- Identification of any relationships with the underlying parent geology

Experimental Auger soil sampling The G strointestinal Tract Total 8\$30 sand hiples for analysis · LPassand Inneyder Dellet, XRF analysis Analysis Bioaccessible As, Cr and Ni Second Andre PBES (Andrew) geochemical field survey • Dried at 35 \pm 2°C Sieved to <250 µm Sieving Ø< 250um © NERC All rights reserve

BGS Modified PBET

- Study used the BGS Modified PBET · Carried out before the UBM was developed enough for use
- Mimics kinetic and chemicals changes in the human GI environment
- Considers Stomach and Small Intestine Conditions
- 2-3 year old child
- 37°C
- Stomach pH @ 2.5
- Small Intestine pH @ 7.0

How PHEs are distributed between the soil components?

Results – Total PHEs

Results – Total PHEs Total PHE 0 200 concentrations 8 the LG 300 50 00 mg/kg 200 new SGV fror **reportential innes** 8 diave & Who 100 ressidential arites allotment sites LG © NERC All rights reserve

significantly higher in Wedian LOAN below Naferianenostesenod

Results - Bioaccessibility

- All results based on highest of the two phases
- All results below the SGV/GAC current or previous
- Not statistically different (A-R)
 - In general a wider range of values for allotment soils Why?

Results - Bioaccessible Fraction (%)

- % BAF for the IO group is higher for all PHE than LG
- Opposite to the observations using the actual mg kg⁻¹ bioaccessibility values WHY???
- · Because of the lower total PHE concentrations for this group

Bioaccessible As source components

At other sites – carbonate/high carbonate play a larger host
 role
 NERC Al light served

Bioaccessible Cr source components

- As with As, sequential dissolution of organic, fertiliser, carbonate, Mn and Al oxides
- Some bioaccessible Cr with Fe oxide but this is the host of the non-bioaccessible form

NERC All rights reserved

- Geochemical hosts of bioaccessible Ni
- Organic, fertiliser, carbonate, Mn oxide (small amounts)
- Non bioaccessible hosts

© NERC All rights reserve

High carbonate, Mn, Al and Fe oxides

Conclusions

- The combination of methodologies has been useful for understanding process control
- Identifying host soil components etc,
- Bioaccessible As and Cr appear to result from the same geochemical host components
- Bioaccessible Ni results from more environmentally mobile host components – e.g. carbonates
- Parent geology is key
 - IO PHEs have higher bioaccessibility as a %
- Land use may play an important role in understanding contaminant bioaccessibility
 - Allotments indicate a broader range of bioaccessibility
 different / changed distributions
 - Additives fertilisers, manure etc,

