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Abstract: 

Assessment of elevated concentrations of potentially toxic elements (PTE) in soils and the 

association with specific soil parent material have been the focus of research for a number of 

years. Risk-based assessment of potential exposure scenarios to identified elevated PTE 

concentrations has led to the derivation of site- and contaminant-specific soil guideline values 

(SGVs), which represent generic assessment criteria (GACs) to identify exceeded levels that 

may reflect an unacceptable risk to human health. A better understanding of the ‘bioavailable’ 

or ‘bioaccessible’ contaminant concentrations offers an opportunity to better refine contaminant 

exposure assessments. Utilizing a comprehensive soil geochemical dataset for Northern Ireland 

provided by the Tellus Survey (GSNI) in conjunction with supplementary bioaccessibilty 

testing of selected soil samples following the Unified BARGE Method, this paper uses 

exploratory data analysis and geostatistical analysis to investigate the spatial variability of 

pseudo-total and bioaccessible concentrations of As, Cd, Co, Cr. Cu, Ni, Pb, U, V and Zn. The 

paper investigates variations in individual element concentrations as well as cross-element 

correlations and observed lithological/pedological associations. The analysis of PTE 

concentrations highlighted exceeded levels of GAC values for V and Cr and exceeded 

SGV/GAC values for Cd, Cu, Ni, Pb, and Zn.  UBM testing showed that for some soil parent 

materials associated with elevated PTE concentrations e.g. the Antrim Lava Group with high Ni 

concentrations, the measured oral bioaccessible fraction was relatively low.  For other soil 

parent materials with relatively moderate PTE concentrations, measured oral bioaccessible 

fraction was relatively high (eg. the Gala Sandstone Group of the Southern Uplands-Down 

Longford Terrain).  These findings have implications for regional human health risk 

assessments for specific PTEs. 
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Introduction 

 

Elevated concentrations of potentially toxic elements (PTE) in soils, including trace metal 

concentrations have been the focus of research for a number of years, investigating the risk 

associated with elevated PTE concentrations to human health.  These studies have included the 

assessment of elevated PTE levels due to human activity in the context of contaminated land 

scenarios ( Okorie et al., 2011; Sialelli et al., 2011; Gbefa et al., 2011; Morillo et al., 2007; 

Zhang, 2006; Hursthouse, 2001; Meunier et al., 2010) as well as studies investigating the 

natural geogenous occurrence of elevated PTE concentrations associated with specific soil 

parent material and soil forming processes (Jordan et al., 2007; Spijker, 2005; Lado et al., 2008; 

Zhang et al., 2008; Tipping et al., 2006). 

 

Over the past years a risk-based approach with regard to the assessment of potential exposure 

scenarios to identified elevated PTE concentrations within the context of contaminated land 

assessments has been established in a number of countries (Rothstein et al., 2006).  Within the 

UK, this risk-based assessment is completed in accordance with guidance documents developed 

by the Environment Agency (EA) using the Contaminated Land Exposure Assessment (CLEA) 

model (Jeffries and Martin, 2009).  The CLEA model allows the derivation of site- and 

contaminant-specific soil guideline values (SGVs), which represent generic assessment criteria 

(GAC) with regard to identified risks posed to human health by chronic exposure to 

contaminated soil.  The developed SGVs are based on the comparison between predicted 

contaminant exposure levels and established Health Criteria Values (HGVs) for specific 

metabolic models.  To this end, exceedence of the so-derived SGVs may reflect an 

unacceptable risk to human health.  Currently, only a limited number of SGVs for different 

land-use scenarios have been issued by the EA, including SGVs for a number of inorganic (Ni, 

As, Cd and Se) as well as organic contaminants (Martin et al., 2009a, 2009b; Morgan et al., 

2009).  In addition to these published SGV values, the Chartered Institute of Environmental 

Health (CIEH) and Land Quality Management Ltd. (LQM) published an additional set of GACs 

for inorganic PTEs including Cr-III/Cr-IV, Cu, V and Zn utilizing the CLEA Model and 
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following the EA SGV approach (Jeffries and Martin, 2009) in deriving the published GACs 

(Nathanail et al., 2009).   

 

In a wider context, the discipline of Medical Geology comprises the assessment of deleterious 

effects to human health as well as animal and plant life from elevated PTE concentrations 

associated with variations in their natural abundance in soils and rocks or conversely their 

deficiency for the case of bionecessary elements (Davies et al., 2005).  Investigating the linkage 

between PTE concentrations and observed health and animal welfare effects has a long history 

reaching back to as early as the Song Dynasty (1000 BC) in China, where lung problems related 

to crushing rocks and producing symptoms of lead poisoning were observed (Davies et al., 

2005).  A broad body of research in the field of medical geology has recognised a number of 

naturally occurring PTEs (Nordberg and Cherian, 2005) such as arsenic (As), cobalt (Co), 

chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), vanadium (V), uranium (U) and zinc (Zn) 

known to influence human disease burden by their respective deficiency or toxicity.  

 

A number of comprehensive regional and national soil sampling programmes have been 

completed in the past across the UK in an effort to assess natural background element 

concentrations in soils.  These include the G-Base surveys conducted by the British Geological 

Survey/BGS (Johnson and Breward, 2004), the UK Soil and Herbage Pollutant Survey 

(Barraclough, 2007) as well as regional surveys such as for Northern Ireland (Jordan et al. 

2000).  These surveys provide background soil concentrations for a range of PTEs on varying 

sampling densities and targeting specific soil depths.  With regard to available soil geochemical 

data across Northern Ireland, the Tellus Survey (Smyth, 2007) completed 2004-2006 provides a 

unique dataset combining comprehensive spatial soil sampling coverage with an extensive suite 

of soil geochemical analysis.  In particular, since the soil parent geology across Northern 

Ireland covers a large variety of rock and associated soil types, typical for the geological and 

pedological conditions across the UK (Jordan et al., 2007), the Tellus data set provides the basis 

for a comprehensive study with relevancy for the whole of the UK. 

 

Common to both the wider investigation of human health and welfare effects associated with 

naturally occurring variations in PTE concentrations and the specific assessment of 
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anthropogenic contaminated land exposure scenarios to human health, is the underlying 

assessment of source-pathway-receptor linkages.   

 

With regard to the assessment of soil borne PTE sources, several studies have demonstrated the 

difficulty in determining actual total PTE soil source concentrations (Pyle et al., 1996; Scancar 

et al., 2000; Marcos et al., 2011, Bonnard and Bour, 2008).  Depending on physico-chemical 

soil conditions, specific PTE species and complexes, present in the soil and relevant for the 

exposure assessment may not be adequately represented in the results of individual laboratory 

analysis techniques and results provided by different soil analytical techniques and associated 

sample preparation and extraction procedures. Hence such laboratory analysis results may 

rather be regarded as pseudo-total concentrations (Ure, 1996; Gupta et al., 1996) within the 

limitations of the specific analytical methodology applied.   

 

In addition to analytical difficulties in assessing soil source concentrations, the actual 

contaminant exposure to human receptors along identified pathways and thus associated health 

effects will furthermore depend on the actual physiological uptake of the contaminant.  This 

‘bioavailable’ fraction of the pseudo-total PTE soil concentration is in turn dependent on the 

fraction, which is ‘bioaccessible’ along an identified exposure pathway (Ruby, 2004).  With 

regard to oral intake as a significant PTE exposure pathway in environmental exposure 

scenarios, this bioaccessible fraction refers to the PTE fraction released in the gastro-intestinal 

(GI) tract by digestive juices, thus representing the maximum contaminant concentration 

available for intestinal absorption (Cave et al., 2011).  Ingestion bioaccessibility is only one of 

the exposure paths and a risk assessment includes inhalation of dust, consumption of local 

vegetables and skin absorption. In the case of the PTE soil concentrations looked at in this 

study, the ingestion path is usually the most important. 

 

A better understanding of the ‘bioavailable’ or ‘bioaccesible’ contaminant concentrations offers 

an opportunity to better refine contaminant exposure assessments and thus to more effectively 

target remedial efforts and health/welfare protection measures, as recognized by local regulators 

and practitioners across England and Wales (Latawiec at al., 2010).  UK Guidance reflects this 
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opportunity for refinement in facilitating the incorporation of bioaccessibility data into the 

CLEA modelling process (Jeffries and Martin, 2009). 

 

Since the assessment of ‘bioavailable’ contaminant concentrations with regard to human health 

effects relies principally on in vivo experiments, commonly affected by ethical constraints and 

the need for large financial resources, considerable research effort has been focused over the 

past years on developing reproducible laboratory methods to determine the bioaccessible 

fraction of soil-borne contaminants (Wragg and Cave, 2003; Van de Wiele et al., 2007).  A 

number of in-vitro methods as laboratory analogues for the human gut have been developed in 

the past including a number of variants of Physiological Based Extraction Tests (PBET) (Ruby 

et al., 1996) and benchmarked against available animal in vivo studies.  Furthermore, in an 

effort to make bioaccessibility assessments more easily comparable and reproducible, inter-

laboratory comparison studies have been completed between various developed methodologies 

(Wragg and Cave, 2003).  One of the more widely accepted PBET methods for assessing the 

bioaccessibility of inorganic PTEs along the oral exposure route, which has emerged over the 

past years and, which has been successfully benchmarked against available in vivo experiments, 

was developed by the BioAccessability Research Group of Europe (BARGE; BARGE INERIS, 

2011), providing bioaccessible PTE concentrations for both the gastric and gastro-intestinal 

phases.   

 

This paper utilizes the unique soil geochemical data set provided by the Tellus Survey for 

Northern Ireland in conjunction with supplementary bioaccessibilty testing of selected soil 

samples following the Unified BARGE Method (BARGE INERIS, 2011) in order to investigate 

the spatial variability of pseudo-total and bioaccessible concentrations of As, Cd, Co, Cr, Cu, 

Ni, Pb, U, V and Zn. In doing so, this paper will investigate variations in individual element 

concentrations as well as cross-element correlations and observed lithological/pedological 

associations. 
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Materials and methods 

 

2.1 Soil Geochemical Data 
 

A number of soil geochemical surveys have been completed in the past across Northern Ireland 

for varying aims and objectives such as agriculture or mineral exploration.  These surveys were 

completed with varying sampling densities and methodologies as well as specific analytical 

suites completed on collected soil samples.  Relevant regional surveys completed in the past 

include the 1987-1997 Soil Atlas of Northern Ireland survey by the Department of Agriculture 

and Rural Development-DARD (Jordan et al., 2000) and the UK Soil and Herbage Pollutant 

Survey (Barraclough, 2007) covering England, Scotland, Wales and Northern Ireland.  

 

A comprehensive soil geochemical dataset for Northern Ireland was added to the above 

information by the Tellus Project completed 2004-2006 (Smyth, 2007).  The Tellus Project 

represents the most concentrated geological mapping project ever undertaken in Northern 

Ireland.  The project was carried out by the Geological Survey of Northern Ireland (GSNI) and 

was funded by The Department for Enterprise, Trade and Investment (DETINI) and The Rural 

Development Programme through the Northern Ireland Programme for Building Sustainable 

Prosperity.  The Tellus project comprised two concurrent parts, an airborne geophysical survey 

which collected data on magnetic fields, electrical conductivity and radioactivity and a ground 

based geochemical survey which collected soil and stream sediment as well as stream water 

samples.  Regional ‘rural’ soil samples were collected on a grid of one sample site every 2 km
2
 

across rural areas of Northern Ireland.  A parallel ‘urban’ soil sampling programme at a sample 

density of 4 sites per km
2
 was completed across a number of selected urban areas across 

Northern Ireland.  The rural soil samples collected at each sampling site included a surface soil 

sample collected from 5cm to 20cm below ground level (discarding surface organic litter and 

root zone where present) and a deep soil sample collected from 25cm to 50cm below ground 

level.  The samples collected at each site represent a composite sample of five auger 

abstractions (completed with hand-held auger) at corner points and centre of a 20m x 20m 
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sampling square.  Collected rural soil samples were disaggregated prior to sieving to a <2mm 

fraction and a representative sub-sample was obtained and milled for subsequent chemical 

analysis.  Further details on the Tellus soil sampling programme, sampling methodology and 

sample preparation including quality control procedures are summarized in Smyth (2007).  This 

paper focuses on the rural soil geochemical data set collated by the Tellus Project comprising a 

total of 6,862 soil samples.   

 

As part of the Tellus Project, the collected rural soil samples were analysed for a range of up to 

50 determinants.  The completed chemical soil analysis with relevance for this paper completed 

for each soil samples included: 

- Pressed pellet X-Ray Fluorescent Spectrometry (XRF) for determination of major 

oxides and trace elements using Wavelength Dispersive XRF Spectrometry (WD-XRF) 

and Energy Dispersive/Polarised XRF Spectrometry (ED-XRF); completed at British 

Geological Survey (BGS), Keyworth, Nottingham 

- Aqua Regia digest of 1g sub-sample with subsequent analysis by Inductively Coupled 

Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Optical 

Emission Spectrometry (ICP-OES) for determination of trace elements; completed at 

SGS Laboratories (Toronto). 

 

Table1 provides the detection limit and applied methodology for individual elements 

considered in this paper as analysed by XRF and ICP-OES/ICP-MS, respectively.  Further 

details on laboratory methods employed, instrumentation and reagents and quality control 

procedures are summarized in Smyth (2007).   

 

2.2 Bioaccessibility Testing 
 

2.2.1 Selection of Study Dataset for Bioaccessibility Testing 

The Tellus Project provides a comprehensive dataset of pseudo-total element concentrations in 

soils (by ICP-MS/OES and XRF, respectively) across Northern Ireland.  In order to assess the 

bioaccessible concentrations of selected PTEs (as listed in Table 1), a subset of archived surface 
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soil samples from the original rural soil sampling programme of the Tellus Project were 

selected for a smaller ‘study’ subset and for subsequent bioaccessibility testing.   

 

The soil samples selected for the study subset were chosen to represent a broad spatial and 

lithological/pedological coverage across the region covered by the Tellus soil sampling survey. 

In order to minimize potential sampling bias in assembling the study sample subset it was 

decided that the most unbiased but representative approach to the selection of soil samples was 

based on soil and lithological classification (Jordan et al., 2000). Northern Ireland represents an 

unusual diversity of geology for such a small area (Fig. 1). The range of rocks presented forms 

a stratigraphic record which commences in the Mesoproterozoic (comprising deformed and 

metamorphosed sedimentary and volcanic rocks formed at least 600 million years ago) and 

includes examples of all geological systems up to and including the Palaeogene (comprising 

basalt lavas and lacustrine sedimentary rocks formed between circa 55 and 62 million years 

ago; Mitchell, 2004). The basement rocks of Northern Ireland can be partitioned into three 

major terrains. Oldest exposed Dalradian rocks constitute the northern terrain which can be 

traced across to the Highlands of Scotland. The Tyrone Igneous Complex with inliers of 

fossiliferous Ordovican and Silurian sedimentary rocks form the central terrain, an extension of 

the Midland Valley terrain of Scotland. Continental Devonian red-bed sediments and marine 

Carboniferous sedimentary rocks overlie the basement complex in the southwest of the region. 

The Southern Uplands-Down Longford Terrain is composed of Ordovician and Silurian rocks 

with the younger intrusive Newry Igneous Complex. In the northwest surface rocks of the 

Antrim Plateau are composed of Palaeogene basalt lava with underlying Permian, Triassic, 

Jurassic and Cretaceous rocks exposed at the margins. The last 100,000 years of the Northern 

Ireland’s history involves the advance of ice sheets and their meltwaters. As a result, at least 

80% of bedrock is covered by superficial deposits such as glacial till and post-glacial alluvium 

and peat (summarised from Mitchell, 2004). The most appropriate sampling strategy adopted 

for this study ensured that each of the 33 different soil parent categories included at least one 

sample, with additional samples included proportional to the total area covered by individual 

soil categories.  Further consideration was given to ensure that archived samples contained 

sufficient material for carrying out the subsequent bioaccessibility testing.  In total, 91 soil 
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samples comprise the study sample subset.  Figure 1 illustrates the subset sampling locations, 

scattered across Northern Ireland.   

 

 

2.2.2 Laboratory Bioaccessibility Testing 

To determine bioaccessible concentrations of selected inorganic PTEs (as listed in Table 1), the 

unified BARGE method (UBM) Version 14 (Wragg et al., 2009, 2011) was applied.  As 

outlined above the unified BARGE method represents a widely accepted and in vivo validated 

PBET method for the determination of inorganic contaminant bioaccessibility for the human 

oral exposure route to soil contaminants.  The UBM tests were carried out at the BGS 

laboratories, Keyworth Nottingham, following the UBM standard procedure (BARGE INERIS, 

2011).   

 

In principle, the UBM provides a laboratory analogue for the human digestive system 

(simulation of saliva, gastric and small intestinal phases)  using synthetic fluids (saliva, gastric 

fluid, duodenal fluid and bile This results in the collection of two samples per soil under 

investigation, a ‘stomach’ sample  which is produced after one hour agitation with saliva and 

gastric fluids and a ‘stomach & intestine’ sample  which is collected after one hour agitation 

with saliva and gastric fluid followed by four hours agitation with duodenal fluid and bile.  

BARGE INERIS (2011) and Wragg et al, 2011 provide further details of the testing protocol, 

including a schematic of the test methodology, the required testing equipment and reagents as 

well as step-by-step guidance on sample preparation and preparation of digestive fluids and 

modifications to the methodology since its inception by the BARGE network.  Bioaccessible 

PTE concentrations were measured by ICP-MS on the extracted samples following the 

simulation of the gastric and gastric-intestinal extraction phase, respectively. The 

bioaccessibility extracts were analysed for trace metal contents using an Agilent 7500cx ICP-

MS   The standard operating conditions were as follows: RF power 1550 W; gas flow rates, 

coolant 15 l min
-1

, auxiliary 0.8 l min
-1

, nebulizer 0.85 l min
-1

, make-up gas 0.25 l min
-1

 and 

collision cell gas He 5.5 ml min
-1

.  An internal standard solution was added via a t-piece to the 

sample stream containing Sc, Ge, Rh, In, Te and Ir, giving approximate signal sensitivity of 

greater 200k cps.  Data was acquired in peak jump mode with an acquisition of 3 x 30 s.  
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Calibration standards were matrix matched to the extract.  A total of 91 soil samples within the 

study data set (dried and sieved < 250µm) were tested applying the UBM test.  For every ten 

soil samples analysed from the study subset, a duplicate test soil, a standard control soil (BGS 

102; Wragg et al., 2009) and a blank (no soil) were included in the tested sample batch. 

 

The bioaccessible fraction (BAF) of selected PTEs for individual samples was calculated using 

the determined bioaccessible concentration from the UBM test (Cb) and the pseudo-total PTE 

concentration in the soil sample as provided by the Tellus project data base (Cpt): 

 

      Equation 1 

 

 

As the BAF is commonly used in the context of human health risk assessments, the BAF is 

calculated for individual samples using the highest bioaccessible PTE concentration of the 

respective two digestive extracts (gastric or gastric-intestinal) from the UBM test in a 

conservative approach.  For the purposes of the discussion in this paper, the BAF for both 

individual digestive extracts (gastric or gastric-intestinal) was calculated and presented.  

 

2.2.2.1 Quality Control 

The quality control (QC) of the analysis was monitored by carrying out replicate analyses of  

BGS 102, a commercially available guidance soil, prepared by the BGS, specifically for 

bioaccessibility studies (Wragg et al, 2009).  At present there are no certified values for the 

bioaccessibility of PTEs in reference materials however, the quality control material used in 

this study has been the subject of an international inter-laboratory trial and other studies 

(Broadway et al. 2010; Wragg et al. 2003; 2009; 2011), which have generated the consensus 

values against which the data from this study have been assessed.  Within every batch of a 

maximum of ten soil samples from the study subset, one duplicate soil sample, one quality 

control soil and one blank were extracted.   

Where published consensus values are available for BGS 102, average As, Cd and Pb data for 

the current study (n=10) were within the consensus values for the ‘gastric’ and the ‘gastro-
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intestinal’ phases of the UBM reported by Wragg et al. (2009), of 4.5 ± 1.3 mg kg
-1

 and 5.4 ± 

2.4 mg kg
-1

, 0.3 ± 0.17 and 0.59 ± 0.53 mg kg
-1

, and 12.8 ± 6.0 and 3.1 ± 4.4 mg kg
-1

, 

respectively. The average Cr data returned for the current study (n=10) was within the 

consensus values of 41 ± 1 and 5.8 ± 3.8 mg kg
-1

 for the ‘gastric’ and the ‘gastro-intestinal’ 

phase, respectively as reported by Broadway et al. (2010).  The average quality control data for 

BGS 102 for Ni and Zn were compared with the in-house BGS dataset generated by BGS 

research projects (Northampton, Swansea and T/Humber) which has not yet been published, but 

is monitored as part of a larger BGS database.  Sample results for both of these PTE were 

within the BGS consensus values of 13.0 ± 1.2 mg kg
-1 

 and 10.0 ± 0.70 mg kg
-1

 and 39.6 ± 3.2 

mg kg
-1

  and 7.8 ± 3.9 mg kg
-1

  for the ‘gastric’ and the ‘gastro-intestinal’ phases for Ni and Zn, 

respectively. Comparison of the BGS 102 data for Co, Cu and V against the in-house generated 

values indicated that the data for this study were within the ‘gastric’ and ‘gastro-intestinal’ 

consensus values of 10.4 ± 1.7 mg kg
-1 

and 4.8 ± 0.5 mg kg
-1

, 8.7 ± 0.9 mg kg
-1 

and 9.0 ± 0.9 

mg kg
-1 

 and 6.9 ± 1.5 mg kg
-1 

 and 3.0 ± 0.5 mg kg
-1

, respectively. 

 

2.2.2.2 Laboratory Duplicates 

The data reported are individual sample concentrations and do not represent average 

concentrations of duplicate samples where applicable.  For a number of individual soil samples, 

both ‘gastric’ and ‘gastro-intestinal’ phase replicates were completed.  In total eleven samples 

were extracted in duplicate for the ‘gastric’ phase.  Six of the eleven samples extracted in 

duplicate for the ‘gastric’ phase were also extracted in replicate for the ‘gastro-intestinal’ phase, 

with an additional 17 replicate samples (total of 23 replicate samples comprising 20 duplicates 

and three triplicates).  Where samples were extracted in duplicate, repeatability was calculated 

as the absolute % difference and where replicate analysis has been carried out, repeatability is 

calculated as the % RSD.  The repeatability, as the average repeatability, was better than 10% 

for all PTE in the ‘gastric’ phase, except for Cd which was 10 – 20%. For the ‘gastro-intestinal’ 

phase repeatability was < 20%, except for Pb which was < 25%. The higher pH of the gastro-

intestinal stage can often lead to precipitation of elements giving rise to poorer reproducibility 

than the stomach phase extract (Wragg et al., 2011). This should be taken into account when 

making interpretations using these data.     
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2.2.2.3 Laboratory Blanks 

Blank extractions were carried out at a frequency of 10% for both the ‘gastric’ and ‘gastro-

intestinal’ phases of the UBM test.  An ‘average blank’ was calculated for each PTE of interest 

and its contribution compared to the corresponding ‘average sample PTE concentration’ across 

the samples in the data set.  For the ‘gastric’ phase, all blank extractions for all PTE were below 

5% of the ‘average sample PTE’ concentration, except Zn which was < 10% of the average 

sample Zn concentration.  For the ‘gastro-intestinal’ phase, Cd, Pb, Ni, Cr, Co and V blank 

values were all < 10% of the ‘average sample PTE concentration’. However, for As the average 

blank value was calculated as 11% of the ‘average sample As concentration’. For Cu the blank 

value was 25% of the ‘average sample Cu concentration’ and for Zn, the blank value was 80% 

of the ‘average sample Zn concentration’.   

The blank concentrations in the ‘gastro-intestinal phase tend to be higher because of the 

addition of biological reagents (e.g. bile salts) which are not available in such high purity in as 

more standard analytical reagents and hence produce relatively high blanks for metals such as 

Zn and Cu but are usually low for As, Cd and Pb.  

 

2.3 Data Analysis 
 

Exploratory Data Analysis (EDA; Tukey, 1977) was carried out as an unbiased approach to 

assessing pseudo-total PTE concentrations as provided by the Tellus Survey (ICP-MS/OES and 

XRF data) as well as measured bioaccessible PTE concentrations as determined by the 

completed UBM tests.  The EDA included boxplot analysis of individual element 

concentrations as well as correlation analysis between pseudo-total and respective bioaccessible 

PTE concentrations and cross-element correlation studies.  The aim of the EDA was to explore 

the structure of the individual datasets and to evaluate potential cross-element associations and 

interactions.  To further assess the spatial variability of observed PTE concentrations (pseudo-

total and bioaccessible) and their association with major bedrock type and soil type units within 
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Northern Ireland, geospatial analysis techniques were applied to evaluate and visualise the 

collated data. 

 

2.4 Geostatistical Analysis 

Using the complete Tellus geochemical survey data (measured by XRF analysis), geostatistical 

techniques comprising variography and kriging, were used to analysis and map the spatial 

distribution of the PTE compounds (As, Cd, Co, Cr. Cu, Ni, Pb, U, V and Zn). The Theory of 

Regionalised Variables (Matheron, 1971) is the fundamental framework on which geostatistics 

is based. The classical framework for geostatistical analysis, adopted in this study, involved two 

stages: (i) estimation of the variogram and fitting a model to it and (ii) use of the variogram 

model coefficients for spatial prediction (kriging).  

The variogram, a core tool in geostatistical analysis, was used for geostatistical spatial 

prediction. In this study the variogram was used to characterise spatial dependence in soil 

geochemistry. In simple terms, the variogram is estimated by calculating half the average 

squared difference between all the available paired measurements separated by a given lag 

tolerance (distance and direction). A mathematical model may be fitted to the experimental 

variogram and the coefficients of this model can be used for a range of geostatistical operations 

such as spatial prediction (kriging). In this study, variograms were estimated using Gstat 

version (Pebesma and Wesseling, 1998). Mathematical models were fitted to the experimental 

variograms using the weighted least squares functionality of Gstat. Models fitted to the 

experimental variograms were selected from a set of authorised models (McBratney and 

Webster, 1986).  Parameters of the fitted models were used to provide information such as the 

maximum scale of spatial variation of the compounds of interest (Jensen et al., 1996; 

Gringarten and Deutsch, 2001; McKinley et al., 2004). The nugget, c0, represents the spatial 

variation at a finer scale than the sample spacing (Deutsch and Journel, 1998) and measurement 

error (Journal and Huijbregts, 1978). The structured component, c1, represents the spatially 

correlated variation (Lloyd, 2007). The sill or upper bound, c0+c1, is the a priori variance. The 

proportion of structure in the variation that has been resolved by the sampling can be 

determined by the nugget:sill ratio, i.e. the proportion of random to spatially structured 
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variation at the scale of investigation. If the modeled variogram has a sill, the lag distance at 

which this is reached is known as the range of spatial dependence. This can be used to provide 

information on the scale of spatial variation or ‘sphere of influence’ of the PTE compounds. 

Kriging involves interpolation between sampled locations. Ordinary kriging (OK), which 

allows the mean of the measurements to vary spatially (Deutsch and Journel, 1998), was used in 

this study. A measure of uncertainty in the estimates was given by the kriging variance. The 

kriging variance is a measure of confidence in predictions and is a function of the form of the 

variogram, the sample configuration and the sample support (the area over which an 

observation is made; Journel and Huijbregts, 1978). 

Results 

3.1 Data analysis results 

Table 2 provides a summary of the pseudo-total concentrations of individual PTEs for both the 

overall Tellus Dataset as well as the study sample subset.  Table 2 furthermore provides 

summary concentrations from previous studies (Jordan et al., 2000; 2007) as well as measured 

bioaccessible PTE concentrations for the study sample subset.  PTE concentrations are provided 

both as measured by ICP-MS/OES and by XRF analysis, where available.  While individual 

pseudo-total As, Cd and Zn concentrations indicate a good alignment with normal probability 

distributions, the plots for the remaining PTEs indicate that these may not be regarded as 

normally distributed (Fig. 2).  Non-normal distributions are commonly observed in soil 

geochemical data sets (Reimann and Filzmoser, 2000) and have also been reported for previous 

studies completed in Northern Ireland (Jordan et al., 2000; Jordan et al., 2007).  To this end, 

Table 2 provides individual percentile values of measured PTE concentrations as a non-

parametric summary of individual PTE concentration ranges. Other features that can be 

observed in Figure 2 are distinctive kinks in the normal probability plots for individual PTEs 

such as Cr, U and V and to a less obvious degree for Co and Ni which are related to the 

presence of multiple populations within the respective PTE data.  This in turn may reflect 

differential association with specific soil and parent rock types and/or an effect of varying 

abundance of specific PTE species as part of the measured total PTE concentrations (by XRF).  

 



Page 16 of 49 

 

With regard to the Tellus dataset and the study subset, Table 2 illustrates that PTE 

concentrations measured by XRF are commonly higher than respective PTE concentrations as 

measured by ICP-MS/OES highlighting that the Aqua Regia sample digestion in combination 

with subsequent ICP-MS/OES analysis was less efficient in providing representative PTE total 

concentrations. For some PTEs such as Ni and Pb, this difference is less pronounced while for 

other elements such as V and Cr a 2-3 fold difference in total concentration by XRF and 

pseudo-total concentrations by ICP-MS/OES can be observed.  Figure 3 furthermore illustrates 

these differences. To this end, total PTE concentrations as determined by XRF were used in the 

further data analysis for this paper.  

 

Figure 4 illustrates the concentration ranges for individual PTEs within the overall Tellus data 

set (6,862 samples) and within the study sample sub-set (91 samples).  The boxplots highlight 

that while the amount of outliers for individual PTE concentrations is greatly reduced within 

the study sample subset, the quartile ranges of the overall Tellus dataset are still well reflected 

within the study sample subset.  Furthermore, Figure 4 shows that the individual PTE 

concentrations both in the Tellus dataset as well as the study subset are generally positively 

skewed, as can be expected with regard to the observed tailing of PTE concentration in the 

normal probability plots (Fig. 2). Non-normal, positively skewed distributions of untransformed 

soil geochemical data have been widely observed in previous studies (Davies et al., 2005; Mc 

Bratney et al., 1982; Reimann and Filzmoser, 2000), including for soil geochemical data 

collected across Northern Ireland in previous comprehensive studies (Jordan et al., 2007; 

Jordan et al., 2000). Outliers in the study subset for Ni, Cr and V concentrations are 

predominantly related to samples derived from igneous/basalt soil parent material.  Outlier 

values for U concentrations are related to samples derived from soil parent material typically 

associated with elevated U concentrations, including shales, granites and limestones (Alloway, 

2005).  

 

With regard to the measured individual PTE concentrations, a number of outlier values for As, 

Ni, Cu, Pb, Zn and Cd exceed the respective SGV or LQM/CIEH GAC value (Fig. 4), 

indicating potential risk to human health with regard to specific exposure/land use scenarios 

(Table 3).  Furthermore, a large proportion of observed V and Cr concentrations within the 
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interquartile range exceed the respective SGV/GAC values (assuming GAC for Cr-VI in a 

conservative approach). Strong positive correlations (Table 4 and Fig. 5) are observed between 

specific PTE abundances such as Ni with Cr and Co, Zn with Cd, Cr and Co as well as V with 

Co and Cr. 

 

3.2 Geostatistical analysis results  

The parameters of the spherical models fitted to the experimental variograms, i.e. the nugget 

variance (c0), the sill variance of the spatially dependent component (c) and the range (a), for all 

PTEs are given in Table 5. The modelled variograms indicate spatial structure for all of the 

PTEs except U, which demonstrates a highly variable distribution across the region. Spatial 

structure at different ranges of correlation is observed for individual PTE concentrations. 

Shorter correlation distances (≤ 20 km) are indicated for Cd, Cr and Pb. Longer correlation 

distances (> 60 km) are indicated for the PTEs of Co, Cu, V and Zn. For PTE concentrations of 

As and Cr two distinctive correlation distances or ranges are observed (Table 5; shorter ranges 

7-15 km, longer ranges > 40 km). Spatial structure with two longer ranges is recorded for Ni 

concentrations (~ 50 km and 70 km). The nugget:sill ratio (c0:c0+c) varies from 14% (Ni) to 

82% ( Pb) suggesting that for some of the PTEs (Table 5; As, Cr, Cu and Pb) there is 

considerable unresolved variation at scales finer than the resolution of the Tellus survey  (2 

km
2
). The suggestion is that the spatial pattern of the PTEs is related to the distribution of 

geological and soil parent material.  The presence of several scales of spatial structure may be 

related to the presence of multiple populations (more than one lithological/pedological source) 

within several of the data (most obvious for Cr and Ni).   

The parameters from variography were used for spatial prediction using kriging. The kriged 

outputs maps demonstrate lithological associations with the spatial distribution of PTE 

concentrations (Figs. 6 and 7). The presence of the basaltic lavas of the (Palaeogene) Antrim 

Lava Group has a strong control over the spatial distribution of several of the PTE 

concentrations. This is most evident for Ni, Cr, Co, V and Cu and to a lesser degree for Cd and 

Zn. This concurs with the strong positive correlations (Table 4; Fig. 5) observed between PTE 

abundances of Ni with Cr and Co, Cr and Co, in addition to V with Co and Cr. The implication 

is that PTE concentrations of Ni, Cr, V and Cu exceed the respective SGV/GAC values for the 

Antrim basalt lavas potentially indicating a risk to human health with regard to specific 
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exposure/land use scenarios. The spatial distribution of elevated concentrations of Ni, V, Cr, Co 

and Cu suggested a secondary lithological control in the occurrence of these PTEs associated 

with the Southern Upland Terrain.  

 

Arsenic is notably absent from basaltic lavas and overlying deposits. The distribution of As is 

more closely associated with sandstone and shales of the Midland valley and Southern Upland 

Terrains (Ordovician-Silurian) where concentrations of this PTE exceed SGV/GAC values. 

PTE concentrations of Cd, Zn and Pb show outlier areas which exceed the respective SGV or 

LQM/CIEH GAC value but do not closely correspond to specific lithological and pedological 

associations. 

 

3.3. UBM bioacessibility testing results  

The results of the UBM bioacessibility tests completed on the study sample subset are 

summarized in Table 6.  The results indicate that while the bioaccessible concentrations for As 

and Cu are similar for both the gastric and gastro-intestinal phase, for the majority of PTEs 

considered in this study, bioaccessible concentrations were significantly higher for the digestive 

extracts from the gastric phase. As a further measure of the bioaccessibility of individual PTEs 

within the study subset, the bioaccessible fraction (BAF) was calculated following Equation 1 

for each of the samples within the study subset.  Table 6 summarises the percentile values 

across the calculated BAFs for individual PTEs.   

 

Figure 8 and Table 7 illustrate the correlation between measured individual pseudo-total PTE 

concentrations and their respective bioaccessible concentrations following the UBM test.  

Correlated PTEs include Cd, Zn, As, Pb, Cr, U and Co for both digestive phases as well as V 

for the gastric phase.  Ni only shows limited correlations between pseudo-total sample 

concentrations and respective bioaccessible concentrations for both phases.  Figure 8 

furthermore shows that bioaccessible As and Cd concentrations follow a well-defined general 

trend across the measured pseudo-total concentration ranges for As and Cd.  With regard to the 

relationship between pseudo-total and respective bioaccessible concentrations for the remaining 

PTEs considered in this study, Figure 8 also highlights that for individual samples, the 

measured bioaccessible concentrations do not follow the bioaccessibility fraction as portrayed 
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in the overall general trend.  This can be observed for Co, Cu and Cr with individual samples 

showing a higher bioaccessibility fraction. Pb and Cu concentrations furthermore also exhibit 

individual samples with a lower bioaccessibility fraction than the respective overall general 

trend.  The plots for Ni and V as well as to a lesser degree for Cr and U show some distinct 

features across the measured pseudo-total and bioaccessible concentration range which may 

reflect the presence of two distinct bioaccessibility fractions across the sample subset.  A cross-

element correlation study shows strong positive correlations (Pearson Correlation Coefficient 

r>0.7) between the gastric-phase bioaccessible concentrations of Cd and pseudo-total 

concentrations of Zn (r=0.9842).  Similar strong correlations are observed between 

bioaccessible Cr and pseudo-total concentrations of Co (r=0.7296), Ni (r=0.7638) and V 

(r=0.796).  Furthermore, bioaccessible Pb was strongly correlated with pseudo-total 

concentrations of Zn (r=0.767) and Cd (r=0.765) as well as between bioaccessible Zn and 

pseudo-total Cd concentrations (r=0.989).   

 

This concurs with the spatial distribution of elevated concentrations of these PTEs and suggests 

distinct bioacessibility fractions may be associated with different lithological controls. The 

calculated bioaccessible fraction (BAF) for individual PTEs and their respective bioaccessible 

concentrations for the gastric phase have been mapped to investigate any apparent relationship 

with lithological controls (Figs. 9-11). The association between the spatial distribution of 

elevated PTE concentrations of Ni, Cr, Co, V and Cu and the Antrim Lava Group (Figs. 6 and 

7) is observed for the calculated BAF but not replicated in all cases for the gastric phase. 

Chromium is the notable anomaly where bioaccessible concentrations of up to 9.96 mg/kg are 

recorded for the gastric phase in the basaltic lavas. High calculated BAFs and gastric phase 

concentrations for As, Cd, Co and Ni (along with high Pb, Zn anomalies) show a close 

association with sandstones and shales of the Southern Upland Terrain and with Palaeozoic 

intrusives (Slieve Gullion and Newry granodiorites).  

4. Discussion 

 

When comparing the pseudo-total PTE concentrations (by ICP-MS/OES) from the Tellus 

survey and the study sample subset with the results obtained by similar analytical techniques as 
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part of previous soil geochemical surveys completed in Northern Ireland the specific sampling 

regime of the individual surveys needs to be considered.  While soil samples retrieved as part of 

the Tellus Survey and as part of the previous surveys documented by Jordan et al. (2000) were 

collected from a depth interval of 5-20 cm and 5-25 cm below ground surface, respectively, 

samples collected as part of the UK Soil and Herbage Pollutant Survey/UKSHPS (Barraclough, 

2007) were retrieved from much shallower depth of up to 5cm below ground surface.  Table 2 

shows that for a number of PTEs, including As, Cd and Cu, the observed concentrations ranges 

are however similar across the different datasets.  For Co and Cr, the concentrations observed in 

the Tellus survey are lower than those observed in the previous survey summarized by Jordan et 

al. (2000).  At the same time, the concentrations for Pb observed in the Tellus data commonly 

exceed the concentrations reported by Jordan et al. (2000).  Pseudo-total concentrations of Ni 

and Zn are similar between the Tellus Survey and the previous survey reported by Jordan et al. 

(2000).  With regard to the more shallow samples analysed as part of the UKSHPS, Cr and Zn 

concentrations observed in the more shallow UKSHPS samples exceed the concentrations 

observed in the Tellus Survey.  Lead and Ni concentrations in the Tellus samples however 

exceeded the concentrations observed in the shallow UKSHPS samples.   

 

Figure 5 and Table 4 illustrate the strong correlations between specific element abundances 

such as Ni-Cr, Ni-Co, Cr-V-Co, Ni-V and Cr-Co.  The natural occurrence of these elements has 

been associated with (ultra-)mafic rocks and igneous ore deposits (Lewis, 1993; Swaine, 1960; 

Jordan et al., 2000).  This lithological correlation concurs with the geostatistical analysis, 

highlighting the strong control of the Antrim Lava Group on the spatial distribution of the 

above PTEs.   

 

As observed in Figure 5, exceedences of the respective SGV/GAC values for As, Ni, Cu, Pb, 

Zn and Cd were observed for a number of outlier values within the Tellus data set and the study 

sample sub-set.  Moreover, a large number of samples exceeded the respective SGV/GAC value 

for Cr and V.  The geostatistical analysis showed the association of elevated PTE 

concentrations in excess of respective SGV/GAC values, for example for Ni, with the Antrim 

Lava Group, as previously observed by Zhang et al. (2008).  Variations of Ni concentrations 

across the Upper and Lower Basalts of the Antrim Lava Group are likely to be related to the 
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role of olivine fractionation in the differentiation of the Basalt formations as described by Lyle 

(1979) and Lyle and Patton (1989).  Variability of V concentrations (as V2O3) where observed 

by Patterson and Mitchell (1955) for the Basalt succession of the Antrim Lava Group. 

  

The UBM tests highlighted that significant fractions of individual PTE concentrations where 

bioaccessible for the gastric and the gastrio-intestinal phase, respectively.  In general, 

bioaccessible concentrations were higher for the gastric phase extractions, as may be predicted 

in view of the applied pH regime (Baes and Mesmer, 1986) and as similarly observed by 

Poggio et al. (2009) and Gbefa et al. (2011) when investigating contaminated land scenarios.  

Comparing the calculated bioaccessible fractions (BAF%) for individual PTEs of the study 

subset (Table 6) with other studies such as Madrid et al. (2008), Okorie et al. (2011) and Poggio 

et al. (2009) investigating human bioaccessibility of anthropogenic soil pollution showed that in 

the presented study lower BAF% values were generally observed for Cr and Ni as well as for 

As, Zn and Cu.  This general difference in lower bioaccessibility values for naturally 

occurring/geogenous PTEs versus PTEs associated with anthropogenic sources has been 

generally reported (Ljung et al., 2007). 

 

While Nathanail et al. (2009) report that the relationship between pseudo-total concentrations 

and the respective bioaccessible fraction is not necessarily linear, Table 7 and Figure 8 show 

that a number of strong correlations between individual pseudo-total PTE concentration and 

respective bioaccessible concentrations (gastric phase) are observed in the study data set.  

Figure 8 illustrates that for some PTEs, such as As, Cd, Co, Cu and Pb this relationships 

follows a general linear trend.  In doing so, a number of outliers can be observed with an either 

‘anomalously’ high or low bioaccessibility fraction for some of these PTEs (Co, Cu and Pb).  

Outliers are often observed to be associated with igneous (basalt) soil parent material (Co and 

Cu).  With regard to Cu, both ‘anomalously’ high as well as low bioaccessibility fractions are 

associated with individual soil samples derived from ‘basalt’ soil parent material.  Previous 

studies by Lyle (1979), Lyle and Patton (1989) and Patterson and Mitchell (1995) demonstrate 

the geochemical variability of the basalt parent material of the Antrim Lava Group.  

 



Page 22 of 49 

 

The cross-element correlation study showed strong positive correlations between gastric-phase 

bioaccessible concentrations of Cd and pseudo-total concentrations of Zn, bioaccessible Cr and 

pseudo-total concentrations of Co, Ni, and V as well as between bioaccessible Pb with pseudo-

total concentrations of Zn and Cd and between bioaccessible Zn and pseudo-total Cd 

concentrations.  While these correlations may reflect element interaction processes during the 

extraction stage as previously reported for Pb and Zn interactions (Finzgar et al., 2007) it is also 

plausible that these positive correlations represent an artefact of the original co-abundance of 

these elements associated with the soil parent material, as most of these elements are commonly 

associated with (ultra)mafic rocks and ore deposits.   

 

With regard to Cr, Ni, U and V, Figure 8 may be interpreted to reflect a combination of 

overlapping multiple relationships within the overall data sets for individual PTEs.  This may 

reflect the varying relative abundance of different PTE species with specific bioaccessibility 

fractions as documented for example by Stewart et al. (2003) for Cr-III/Cr-VI bioaccessibilities.  

This varying relative preferential abundance of specific PTE species may in turn be related to 

individual soil parent materials and associated geochemical characteristics across Northern 

Ireland.  

 

Figure 4 illustrates the widespread exceeded values of the GAC for Cr and V (Table 3).  

Exceedences of the Cr GAC are largely based on the conservative assumption that observed Cr 

concentrations are present as Cr-VI and thus require site specific confirmation as part of a 

detailed quantitative risk assessment approach. Exceedence of the Vanadium GAC is also 

widely observed.  For both, the UBM bioaccessibility testing however yielded relatively low 

BAF values of 7.77% median BAF-V and 1.12% median BAF-Cr when compared to a median 

BAF-Cr values of 22.9% for urban soils as observed by Okorie et al. (2011). 

 

With regard to gastric BAFs for individual PTEs as observed across key geological units as soil 

parent material, the study shows that BAFs generally fall below 10% for Cr and below 20% for 

V across the various key geological units.  The BAFs for U generally ranges between 10-20% 

across the individual units with the largest interquartile ranges observed for the Ballyshannon 

Limestone Formation and the Slieve Gullion Complex.  Figure 7 illustrates the gastric BAFs for 
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a number of individual PTEs showing marked variations across key geological units of soil 

parent material.  With regard to As, Figure 12 shows that generally the As-BAF falls below 

20% with a higher interquartile range observed for the metasediments of the Gala Group.  The 

highest BAFs for Cd are observed for the metasediments, such as those from the Gala and 

Hawick Group as well as the Ballyshannon Limestone Formation (Fig. 12).  Ni-BAFs show a 

higher median for the Upper Basalts of the Antrim Lava Formation than for the Lower Basalt of 

the formation.  At the same time Ni-BAFs in the Upper Basalts are more positively skewed 

with a larger interquartile range.  Generally, Ni-BAFs for both the Upper and Lower Basalts fall 

below 20%.  Highest median Ni-BAFs are observed for the Gala Group and the Lough Neagh 

Clays.  With regard to Pb-BAFs, the median values for both the Upper and Lower Basalts are 

similar, although the interquartile range for the Upper Basalts is significantly larger.  The 

highest Pb-BAFs are again found in the metasediments (Gala Group and Hawick Group) as 

well as the Ballyshannon Limestone and the Clougher Valley Formations.  Zn-BAFs generally 

show values below 20% across the units, with the largest interquartile ranges observed for the 

Upper Basalts, the Ballyshannon Limestone Formation and the Lough Neagh Clays.  The 

distribution of BAFs for individual PTEs highlights that while some key soil parent materials, 

such as the Basalt succession of the Antrim Lava Group are associated with elevated pseudo-

total PTE concentrations in excess of current SGV/GAC values, with regard to the 

bioaccessibility of these individual PTEs, other units with moderate pseudo-total 

concentrations, such as the Gala Group exhibit far larger BAFs.  This is furthermore 

demonstrated for the case of Ni in Figure 12, where the trend of lower bioaccessibility fractions 

(with values of bioaccessible Ni of below 10 mg kg
-1

) is predominantly provided by samples 

from basalt soil parent material, while the steeper trend of higher bioaccessibility fractions 

(with values of bioaccessible Ni of up to > 30 mg kg
-1

) is provided by samples from soil parent 

material associated with the Gala Group, Ballyshannon Limestone Formation and the Lough 

Neagh Clays.  To this end, the study highlights that human health risk assessments for regions 

characterised by specific soil parent materials need to reflect the variability of observed PTE 

bioaccessibilities.  
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5. Conclusion 

Based on the comprehensive soil sampling and analysis programme completed by the Tellus 

Project (Smyth, 2007), the study investigated the abundance and spatial variability of observed 

geogenous pseudo-total concentrations of a range of PTEs in the context of their association 

with specific soil parent materials. In particular, the study supplemented the available Tellus 

soil geochemical database with additional oral bioacessibility data for a range of PTEs applying 

the widely acknowledged UBM procedure (BARGE-INERIS, 2011).   

 

The analysis of pseudo-total PTE concentrations highlighted exceedence of respective GAC 

values for V and Cr (applying the Cr-VI GAC value in a conservative approach) across 

Northern Ireland with further exceedence of respective SGV/GAC values for Cd, Cu, Ni, Pb, 

and Zn.  The UBM tests however showed in this context that for some soil parent materials 

which were associated with observed elevated pseudo-total PTE concentrations, the measured 

oral bioaccessible fraction was relatively low (e.g. Antrim Lava Group and Ni concentrations).  

On the other hand, for other soil parent materials with relatively moderate pseudo-total PTE 

concentrations, the measured oral bioaccessible fraction was relatively high (e.g. Gala Group).  

This in turn is likely to affect the outcomes of regional human health risk assessments for 

specific PTEs.  The observed variations in oral BAF are likely to be related to the abundance of 

specific PTE species across the different soil parent materials which may have also been 

indicated by the differences in pseudo-total concentrations of individual PTEs as analysed by 

ICP-MS/OES or XRF.   

 

The cross-element correlation study showed strong positive correlations between gastric-phase 

bioaccessible concentrations of specific PTEs and pseudo-total concentrations of other co-

elements.  While some of these correlations may reflect element interactions during the 

extraction stage (e.g. Pb and Zn interactions) these correlations may also be rather associated 

with observed source co-abundances of specific PTEs for specific soil parent materials.  A more 

detailed study focusing on individual element speciation and labiality together with 

bioaccessibility testing may provide further insight into element interactions affecting specific 

oral PTE bioaccessibilities.   
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In comparing the findings of this study with previous regional soil geochemical studies, 

similarities were observed with studies employing similar sampling strategies, in particular 

depth selection (Jordan et al., 2000).  The comparison with previous studies targeting more 

shallow sampling depths (Barraclough, 2007) showed partial similarities as well as marked 

differences (e.g. Cr, Zn. Pb, Ni).  The variation of specific PTE concentrations across the 

vertical soil profile, its association with soil forming/weathering processes and soil conditions 

and in turn the associated implications on individual PTE speciation and PTE bioaccessibility 

was beyond the scope of this paper but presents an exciting challenge for future studies.  

Furthermore, the impact of Quaternary processes affecting the spatial distribution of soil parent 

material has not been explicitly investigated as part of this study but may further aid the more 

detailed spatial correlation of soil PTE concentrations and soil parent material in future studies. 

 

The UBM bioaccessibility test has only been validated against in-vivo data for As Cd and Pb, 

whilst this shows is that it is a good analogue of bioavailability for these elements, the data for 

other elements can only be considered as a useful line of evidence in interpreting results.  The 

test produces two results: the first mimicking the conditions found in the stomach in a fasting 

state (pH 1.2); and the second mimicking the upper intestine with a higher pH (6.5). The higher 

pH of the latter stage can often lead to precipitation of elements giving rise to poorer 

reproducibility than the stomach phase extract (Wragg et al 2011). This should be taken into 

account when making interpretations using these data.   
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Table 5            Parameters of the spherical models fitted to the experimental variograms for all 

PTEs except U which displayed no spatial structure; (c0) is the nugget variance, 

(c) is the sill variance and (a) is the range.  

Table 6 Bioaccessible Fraction (BAF) for individual PTEs using pseudo-total PTE 

concentrations as per XRF analysis and respective bioaccessible PTE 

concentrations for gastric and gastro-intestinal digestive extracts from UBM test. 

Table 7 Pearson Correlation Coefficient (r) for individual PTEs between pseudo-total 

concentrations (XRF) and respective bioaccessible concentrations in gastric and 

gastric-intestinal phase as per UBM test. 

FIGURES 

Figure 1 Geological map with locations of sampling locations. Geological map simplified 

from Mitchell 2004. 

Figure 2 Normal Probability Plots for individual PTE pseudo-total concentrations mgkg
-1

 

Figure 3 Comparative Boxplots of individual PTE pseudo-total concentrations as 

determined by XRF and ICP 

Figure 4 Comparative Boxplots of Boxplots of individual PTE pseudo-total 

concentrations (by XRF) for the Tellus Database and the Study Sample subset 

Figure 5 Cross-element Scatter Plots for specific pseudo-total PTE Concentrations (mgkg
-

1
) showing high correlation values 

Figure 6 Kriged outputs maps demonstrating the spatial distribution of As, Cd, Co and Cr 

concentrations in mgkg
-1
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Figure 7 Kriged outputs maps demonstrating the spatial distribution of Ni, Pb, V and Zn 

concentrations in mgkg
-1

. 

Figure 8           Plots of individual pseudo-total PTE concentrations (by XRF) versus respective 

gastric bioaccessible PTE concentrations 

Figure 9 Maps showing the spatial distribution of calculated bioaccessible fraction (BAF)    

for As, Cd and Co, and their respective bioaccessible concentrations for the 

gastric phase. 

Figure 10 Maps showing the spatial distribution of calculated bioaccessible fraction (BAF)    

for Cr, Ni and Pb, and their respective bioaccessible concentrations for the 

gastric phase. 

Figure 11 Maps showing the spatial distribution of calculated bioaccessible fraction (BAF)    

for U, V and Zn, and their respective bioaccessible concentrations for the gastric 

phase. 

Figure 12        Comparative boxplots of individual PTE-BAFs mapped for specific soil parent 

materials  
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PTE XRF ICP-MS/OES 

 
MDL [mgkg

-1
] Method MDL [mgkg

-1
] Method 

As 0.9 WD-XRF 0.1 ICP-MS 

Cd 0.5 ED-XRF 0.01 ICP-MS 

Co 1.5 WD-XRF 0.1 ICP-MS 

Cr 3.0 WD-XRF 1.0 
ICP-
OES 

Cu 1.3 WD-XRF 0.5 
ICP-
OES 

Ni 1.4 WD-XRF 0.5 ICP-MS 

Pb 1.3 WD-XRF 0.2 ICP-MS 

U 0.5 WD-XRF 0.05 ICP-MS 

V 2.9 WD-XRF 1.0 
ICP-
OES 

Zn 1.2 WD-XRF 1.0 
ICP-
OES 

Table 1 
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Jordan et 

al. 2000/07†

UK-SHS      

NI†
UK-SHS    

UK† Tellus† Tellus* Study† Study* Gastric† Gastro-

Intestinal†
Jordan et al. 

2000/07†

UK-SHS      

NI†
UK-SHS    

UK† Tellus† Tellus* Study† Study* Gastric† Gastro-

Intestinal†

5%ile --- 2.21 1.36 1.10 4.00 0.82 4.70 0.28 0.31 5%ile 6.43 4.10 2.96 2.70 4.00 6.32 7.45 0.93 0.53

25%ile --- --- --- 2.80 6.50 2.73 6.02 0.64 0.59 25%ile 15.01 --- --- 12.20 14.00 16.28 19.70 1.68 0.89

Median --- 4.48 7.09 4.60 8.70 4.50 8.30 1.09 1.01 Median 29.16 21.00 15.80 26.10 29.10 28.50 31.00 3.06 1.52

Mean --- 6.61 10.90 6.36 10.28 6.43 10.24 1.79 1.55 Mean 45.10 28.80 21.00 39.71 51.65 41.19 48.24 4.58 2.16

75%ile --- --- --- 7.30 11.70 7.73 11.28 1.55 1.31 75%ile 60.32 --- --- 49.60 56.10 53.50 60.28 5.94 2.42

95%ile --- 17.90 25.70 15.60 20.50 13.09 16.79 2.73 2.31 95%ile 110.94 82.60 45.20 128.00 155.05 109.70 165.84 10.57 5.86

Jordan et 

al. 2000/07†

UK-SHS      

NI†
UK-SHS    

UK† Tellus† Tellus* Study† Study* Gastric† Gastro-

Intestinal†
Jordan et al. 

2000/07†

UK-SHS      

NI†
UK-SHS    

UK† Tellus† Tellus* Study† Study* Gastric† Gastro-

Intestinal†

5%ile <0.80 0.20 0.12 0.12 0.20 0.14 0.30 0.12 0.03 5%ile 6.73 11.50 12.30 12.90 16.60 12.62 16.34 2.97 0.71

25%ile 0.20 --- --- 0.20 0.40 0.21 0.40 0.17 0.06 25%ile 12.83 --- --- 18.30 22.20 17.85 22.02 5.41 1.47

Median 0.33 0.35 0.29 0.29 0.50 0.29 0.60 0.23 0.08 Median 17.92 18.60 37.40 24.80 28.80 27.10 30.40 8.68 2.63

Mean 0.38 0.36 0.39 0.37 0.56 1.09 1.28 0.78 0.22 Mean 23.16 30.10 52.50 34.33 40.19 38.85 43.46 16.87 6.02

75%ile 0.50 --- --- 0.41 0.70 0.42 0.70 0.31 0.11 75%ile 26.81 --- --- 36.90 41.00 43.48 45.48 18.12 5.75

95%ile 0.91 0.65 1.15 0.80 1.00 0.95 1.20 0.85 0.21 95%ile 55.32 93.50 138.00 84.04 92.35 106.73 111.05 65.37 18.88

Jordan et 

al. 2000/07†

UK-SHS      

NI†
UK-SHS    

UK† Tellus† Tellus* Study† Study* Gastric† Gastro-

Intestinal†
Jordan et al. 

2000/07†

UK-SHS      

NI†
UK-SHS    

UK† Tellus† Tellus* Study† Study* Gastric† Gastro-

Intestinal†

5%ile 2.72 --- --- 0.60 1.80 2.11 3.71 0.46 0.19 5%ile --- --- --- 0.14 1.00 0.27 1.00 0.03 0.02

25%ile 6.49 --- --- 4.38 6.30 4.55 7.33 1.32 0.47 25%ile --- --- --- 0.68 1.70 0.70 1.63 0.08 0.07

Median 10.53 --- --- 8.60 10.90 9.30 11.60 1.95 0.77 Median --- --- --- 0.95 2.30 1.01 2.30 0.13 0.11

Mean 15.08 --- --- 12.16 16.44 12.03 15.63 2.74 0.97 Mean --- --- --- 1.22 2.36 1.29 2.45 0.17 0.15

75%ile 20.66 --- --- 15.20 18.70 14.75 18.68 3.55 1.28 75%ile --- --- --- 1.29 2.80 1.37 2.70 0.19 0.17

95%ile 40.31 --- --- 37.05 44.50 36.76 45.76 7.17 2.26 95%ile --- --- --- 2.50 4.00 3.19 4.77 0.47 0.34

Jordan et 

al. 2000/07†

UK-SHS      

NI†
UK-SHS    

UK† Tellus† Tellus* Study† Study* Gastric† Gastro-

Intestinal†
Jordan et al. 

2000/07†

UK-SHS      

NI†
UK-SHS    

UK† Tellus† Tellus* Study† Study* Gastric† Gastro-

Intestinal†

5%ile 15.16 4.48 4.37 2.00 9.55 8.00 32.55 0.20 0.25 5%ile --- 6.88 6.12 4.55 12.60 11.05 34.02 2.08 0.84

25%ile 28.72 --- --- 17.00 56.70 23.00 67.85 0.73 0.57 25%ile --- --- --- 24.00 56.50 31.25 59.37 4.11 1.97

Median 46.51 39.20 29.20 33.00 94.10 35.00 96.60 1.20 0.85 Median --- 38.90 39.20 38.00 85.00 40.00 89.00 6.72 2.98

Mean 54.49 57.40 34.40 45.06 139.43 46.10 133.49 1.79 1.21 Mean --- 61.90 45.40 54.05 101.91 59.98 106.78 8.81 3.77

75%ile 68.64 --- --- 58.00 161.00 57.75 166.95 2.24 1.68 75%ile --- --- --- 65.00 121.40 72.75 127.75 11.02 4.42

95%ile 125.80 161.00 72.80 127.00 375.78 124.90 386.44 4.56 2.98 95%ile --- 171.00 97.40 156.45 234.05 164.95 257.85 23.66 8.54

Jordan et 

al. 2000/07†

UK-SHS      

NI†
UK-SHS    

UK† Tellus† Tellus* Study† Study* Gastric† Gastro-

Intestinal†
Jordan et al. 

2000/07†

UK-SHS      

NI†
UK-SHS    

UK† Tellus† Tellus* Study† Study* Gastric† Gastro-

Intestinal†

5%ile 6.36 6.30 5.65 4.80 4.80 6.81 8.36 3.43 2.69 5%ile 21.18 27.50 24.10 18.00 22.15 19.05 26.14 6.22 4.84

25%ile 17.26 --- --- 15.80 18.60 20.50 24.18 6.47 5.82 25%ile 43.68 --- --- 38.00 47.00 44.00 54.02 8.21 6.33

Median 27.10 31.10 17.30 27.60 31.60 34.30 35.60 11.33 9.76 Median 65.38 76.00 65.90 59.00 71.80 62.00 73.80 10.58 7.80

Mean 34.68 31.60 20.60 33.93 41.97 38.25 44.03 11.97 10.71 Mean 69.07 81.90 81.30 64.74 78.55 93.14 108.88 32.20 13.02

75%ile 44.43 --- --- 42.90 49.50 48.60 57.53 15.45 14.10 75%ile 88.79 --- --- 83.00 101.90 88.25 104.88 15.97 8.98

95%ile 88.99 54.00 51.40 86.50 105.35 81.58 98.48 25.96 23.43 95%ile 125.31 165.00 195.00 123.45 149.90 130.95 168.11 45.58 15.87

Total / Pseudo-Total Bioaccessible

Total / Pseudo-Total Bioaccessible

Vanadium  [mgkg
-1

]

Total / Pseudo-Total Bioaccessible

Zinc  [mgkg
-1

]Copper  [mgkg
-1

]

Total / Pseudo-Total Bioaccessible

Total / Pseudo-Total Bioaccessible

Nickel  [mgkg
-1

]

Total / Pseudo-Total Bioaccessible

Lead  [mgkg
-1

]

Uranium  [mgkg
-1

]Cobalt  [mgkg
-1

]

Total / Pseudo-Total Bioaccessible

Chromium  [mgkg
-1

]

Total / Pseudo-Total Bioaccessible

Total / Pseudo-Total Bioaccessible

Arsenic  [mgkg
-1

]

Total / Pseudo-Total  Bioaccessible

Cadmium  [mgkg
-1

]

 

Table 2 
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  EA - SGV [mgkg
-1

 DW]   LQM/CIEH - GAC [mgkg
-1

 DW] 

PTE As Cd Ni   Cr-III Cr-VI Cu V Zn 

Residential 32 10.0 130 
 

3000 4.3 2330 75 3750 

Allotment 43 1.8 230 
 

34600 2.1 524 18 618 

Commercia
l 

640 230.0 1800   30400 35.0 71700 3160 665000 

Table 3 

 

Correlation Coefficient  

 
As Cd Co Cr Cu Ni Pb V U Zn 

As 1                   

Cd 0.0879 1                 

Co -0.0788 0.1038 1               

Cr -0.1227 -0.0334 0.8936 1             

Cu -0.0369 0.1002 0.7147 0.6292 1           

Ni -0.0800 0.0671 0.9395 0.9514 0.7278 1         

Pb 0.1745 0.6172 -0.0363 -0.0683 0.1458 0.0165 1       

V -0.1038 -0.0148 0.8931 0.8264 0.5850 0.8161 -0.1078 1     

U 0.1016 -0.0115 -0.3125 -0.3623 -0.1072 -0.3129 0.1195 -0.2817 1   

Zn 0.1114 0.9837 0.1876 0.0419 0.2105 0.1500 0.6602 0.0609 -0.0132 1 

Table 4 
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Element Modelled parameters 

 c0 c1 c2 a1 a2 c0+c1+c2 c0:c0+c1+c2 % 

As 64.17 19.40 14.17 7436 42311.9 83.56 0.7679 76.79 

Cd 0.42 0.17  10000   0.59 0.7124 71.24 

Co 54.61 152.78  73603.7   207.39 0.2633 26.33 

Cr 3773.63 1590.93 11760.50 10370.4 89597.6 17125.06 0.2204 22.04 

Cu 1001.33 690.74  60425.1   1692.07 0.5918 59.18 

Ni 741.33 1220.30 3284.49 50817.8 73913.7 5246.12 0.1413 14.13 

Pb 55056.60 12324.10  17736   67380.70 0.8171 81.71 

V 1250.32 3644.78  81864.3   4895.10 0.2554 25.54 

Zn 1521.50 2078.69  95924.3   3600.19 0.4226 42.26 

Table 5 
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As   Cd   Co   Cr   Cu 

 BAF % 

 
BAF % 

 

BAF % 

 

BAF % 

 

BAF % 

 
Gastric  

Gastro-
Intestinal   

Gastric  
Gastro-

Intestinal   
Gastric  

Gastro-
Intestinal   

Gastric  
Gastro-

Intestinal   
Gastric  

Gastro-
Intestinal  

5%ile 5.23 5.86 
 

25.85 6.19 
 

7.81 3.03 
 

0.58 0.45 
 

12.09 11.05 

25%ile 9.64 8.69 
 

33.42 11.46 
 

12.53 5.04 
 

0.90 0.63 
 

22.57 20.57 

Median 13.33 11.98 
 

46.40 16.74 
 

16.43 6.26 
 

1.12 0.81 
 

31.37 27.76 

Mean 13.98 12.56 
 

48.63 17.10 
 

18.38 6.60 
 

1.33 0.98 
 

31.11 28.70 

75%ile 16.60 14.82 
 

61.95 20.76 
 

21.73 7.90 
 

1.61 1.25 
 

38.03 34.17 

95%ile 24.44 22.63   75.97 29.15   38.39 10.70   2.70 1.84   50.85 58.55 

               

Ni   Pb   U   V   Zn 

 BAF % 

 

BAF % 

 

BAF % 

 

BAF % 

 

BAF % 

 
Gastric  

Gastro-
Intestinal   

Gastric  
Gastro-

Intestinal   
Gastric  

Gastro-
Intestinal   

Gastric  
Gastro-

Intestinal   
Gastric  

Gastro-
Intestinal  

5%ile 3.01 1.86 
 

12.45 2.75 
 

1.52 1.50 
 

3.03 1.07 
 

6.93 4.25 

25%ile 5.58 3.31 
 

22.95 6.10 
 

4.36 3.67 
 

5.12 2.07 
 

11.09 7.09 

Median 8.16 4.79 
 

31.92 9.66 
 

6.09 5.20 
 

7.77 3.55 
 

17.13 12.23 

Mean 12.16 5.50 
 

32.98 10.86 
 

6.54 5.59 
 

8.72 3.99 
 

22.17 13.25 

75%ile 16.28 7.29 
 

41.22 14.88 
 

8.19 7.45 
 

10.54 5.58 
 

23.08 16.20 

95%ile 35.05 10.97   60.17 22.86   11.93 10.53   19.63 9.13   68.49 29.57 

Table 6 

PTE Correlation Coefficient (r) 

  gastric gastro-intestinal 

As 0.9756 0.9758 

Cd 0.9996 0.9995 

Co 0.7696 0.7842 

Cr 0.8327 0.7203 

Cu 0.6092 0.6126 

Ni 0.3875 0.5145 

Pb 0.9333 0.9155 

U 0.8287 0.8148 

V 0.6884 0.4848 

Zn 0.9897 0.9875 

Table 7 
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Figure 3 
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