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Abstract: 17 
 18 
To address the continental and large scale aspects of water quality assessments new modelling 19 
approaches are required. This paper describes the development of a continental-scale model of 20 
river water quality - WorldQual. Simple equations, consistent with the availability of data on 21 
the continental-scale, are used to simulate the response of biochemical oxygen demand 22 
(BOD5) and total dissolved solids (TDS) to anthropogenic loadings and flow dilution. A 23 
methodology is developed that is appropriate for scenario analysis on the continental and 24 
global scale. Average monthly river water quality is modeled on a 5 arc-minute grid covering 25 
all Europe. Loadings are derived from assumptions about water use, return flows and other 26 
variables. The model WorldQual is tested against measured longitudinal gradients and time 27 
series data at specific river locations. The model performance on European scale shows that a 28 
good fit can be reached when using concentration classifications as a measure: For BOD5, 51 29 
% of the simulated data is in the same quality class as the measurements and 30 % differ only 30 
by one water quality class; for TDS the respective values are 35 % and 41%. WorldQual was 31 
applied to investigate the impact of climate change on resulting changes of in-stream 32 
concentrations. The results for Europe show that future climate changes only have a small 33 
impact on European in-stream concentration levels of BOD5, except for the Eastern part and 34 
the Black Sea region. This effect is stronger for the IPCM4-A2 scenario than for the MIMR-35 
A2 scenario. 36 
 37 
Nomenclature 38 
 39 
BOD5 = Five-day biochemical oxygen demand (mg l-1) 40 
TDS  = Total dissolved solids (mg l-1) 41 
 42 

INTRODUCTION 43 
 44 
Over the past two decades the idea that water research and policy have not only local and 45 
regional aspects but also important continental and global scale dimensions has gained 46 
credence (e.g. Alcamo et al. 2008). But this new global view of water has focused mostly on 47 
the quantity of water rather than its quality. The state of global water quality was assessed 48 
twenty years ago (Meybeck et al. 1989) but such an effort has not been repeated since. The 49 
reasons for this are not clear, but perhaps it has to do with the difficulty in evaluating water 50 
quality on the large scale. In comparison to the relative ease in estimating water availability 51 



through mass balances of precipitation and other measured parameters, estimating the large 52 
scale patterns of water quality is usually a more complicated task, requiring more detailed 53 
data about sources and sinks of water quality parameters. Also, the spatial distribution of 54 
water quality is frequently more heterogeneous and locally determined than water quantity, 55 
also increasing data requirements. Furthermore, it is often possible to characterize water 56 
quantity with simple metrics such as volume of water per unit drainage area, whereas water 57 
quality can only be described by many different biogeochemical quantities, as wide-ranging 58 
as the content of dissolved solids, or the consumption of oxygen. The sum of these 59 
considerations makes continental or global assessments of water quality a great challenge. 60 
 61 
Although catchment scale modelling of water and solute transport and transformations is a 62 
widely used technique to study pollution pathways and effects of policies and mitigation 63 
measures (e.g. Schob et al. 2006, Bärlund et al. 2007, Hesse et al. 2008, Krause et al. 2008, 64 
Volk et al. 2008) there are only a few examples of continental water quality modelling 65 
approaches (Seitzinger et al. 2002, Green et al. 2004, Grizzetti and Bouraoui 2006). On global 66 
scale, models developed so far focus on pollution pathways and loadings within a river 67 
catchment or into a river stream (e.g. Siebert 2005, Van Drecht et al. 2005, Vörösmarty et al. 68 
2010).  69 
 70 
Yet these challenges need to be met, first of all, because the lack of understanding of large 71 
scale water quality patterns is a major gap in our understanding of the state of the 72 
environment. Second, the assessments of the state of worldwide aquatic biodiversity and 73 
threats to biodiversity require knowledge of ambient water quality and their trends. Third, 74 
poor quality surface waters and groundwater pose a health hazard over large areas that need to 75 
be evaluated. Finally, global drivers such as climate change are likely to have a far-reaching 76 
continental and global impact on water quality. The Intergovernmental Panel on Climate 77 
Change has pointed out that many of the changes expected in water quality may be negative, 78 
including reduced dilution capacity of some rivers because of more frequent droughts, or 79 
increased bacterial loadings to other rivers due to changes in rainfall patterns (Bates et al., 80 
2008).  81 
 82 
To address the continental and large scale aspects of water quality assessments, we present 83 
here a continental-scale model of river water quality - WorldQual. The model is generally 84 
intended to address the following questions: 85 
� What is the current state of water quality over large areas? (Filling in large gaps in spatial 86 

and temporal observations). 87 
� What percentage of river systems will have degraded water quality due to driving forces 88 

such as population change and economic growth? 89 
� How will climate change affect water quality over large river areas? 90 
� How will changes in water use and wastewater discharges affect water quality over large 91 

continental areas?  92 
 93 
The first application of the WorldQual model is to river systems of Europe. The model itself 94 
has been developed as part of the EU-funded SCENES Project (“Water Scenarios for Europe 95 
and for Neighbouring States” 2006-2011) which has had the principal goal of developing new 96 
scenarios of the future of water resources in Europe (Kämäri et al. 2008). Estimates of future 97 
water quality are needed for two major reasons: to assess the future state of aquatic 98 
ecosystems and to determine the suitability of surface water supply for different water users 99 
such as industries, agriculture and the domestic sector. The aim of this paper is to describe a 100 
modeling methodology to tackle some of these questions and to present results of applying 101 
this methodology. For this, the paper addresses the future of Europe’s water resources as 102 



impacted by climate change under natural flow conditions. Biochemical oxygen demand 103 
(BOD5) is used as a representative measure for scenario calculation but the framework is 104 
generic and thus applicable to any other substance e.g. salts or total nutrients. 105 
 106 
 107 

MATERIAL AND METHODS 108 
 109 
Modeling Strategy 110 
 111 
Before explaining the modeling strategy, it should be noted that modeling water quality on the 112 
continental scale is only now becoming feasible because of new developments in large scale 113 
modeling of water resources. These developments include the availability of “fine” scale 114 
continental hydrologic models (5 arc-minute resolution) which allows the tracking of the 115 
pathways of rivers on a continental scale grid and enables the matching of river quality 116 
monitoring stations with modeled river coordinates. Another new development is the 117 
computation of stream velocity which permits time of travel computations in streams on the 118 
continental scale. Time of travel is a key variable in computing the longitudinal gradients of 119 
non-conservative substances such as BOD5. Finally, the development of spatially-explicit 120 
water use models makes it possible to locate return flows and wastewater discharges more 121 
accurately on the continental-scale.  122 
 123 
The design of the WorldQual model is determined by its goals which are: 124 
� To fill in for gaps in observational data over large areas. 125 
� To characterize average and extreme conditions in water quality in the absence of 126 

observational data. 127 
� To assess the impact of climate change on water quality over large regions  128 
� To develop scenarios of changing water quality under changing water use and wastewater 129 

discharges.  130 
 131 
These goals influence the design criteria for the model which can be divided into: 132 
� Spatial and temporal resolution of calculations, 133 
� Water quality constituents, 134 
� Model equations. 135 
 136 
Spatial and Temporal Resolution 137 
 138 
The first decision regarding the design of WorldQual has to do with selecting the spatial and 139 
temporal resolutions of the model. Since water quality can be altered very significantly and 140 
quickly in the vicinity of large wastewater sources, we select a model that can compute the 141 
continuous spatial change in water quality along each river reach within a 5 arc-minute grid 142 
cell. Each river is divided into “reaches”, the size of a grid cell, and within each reach, the 143 
model computes continuous spatial changes in water quality from the beginning to the end of 144 
the reach. Only “smooth” changes are computed within the river reach since the model cannot 145 
take into account every wastewater point source.  146 
 147 
With regards to temporal resolution, we select a monthly averaging period for computing 148 
water quality. This is a compromise between two cases. On one hand, it would be preferable 149 
to compute water quality at daily or hourly intervals, because the model would then simulate 150 
temporarily high levels of contamination. However, modeling at this time scale is not realistic 151 
because it requires modeling inputs that are not available on the continental basis. On the 152 
other hand, it would be preferable to compute annual average water quality because the 153 



database of water quality measurements at this time scale is relatively large, at least in many 154 
industrialized countries. However, averaging water quality constituents over a year is too 155 
crude a resolution to capture the important seasonal variability of water quality caused by the 156 
seasonal variations in flow and other conditions. Hence we select a monthly averaging period 157 
as a compromise between daily and annual averages.  158 
 159 
Water Quality Constituents 160 
 161 
The next decision is to select the water quality constituents to be computed by the WorldQual 162 
model. At first we select the following substances to calculate with the model, but other 163 
substances will be included into the model calculations later: 164 
 165 
� Biochemical oxygen demand (BOD5) which is an indicator of the level of organic 166 

pollution and its oxygen-depleting potential, and serves as a metric for the overall health 167 
of aquatic ecosystems. 168 

� Total dissolved solids (TDS) which is a measure of the suitability of water for household, 169 
industrial and agricultural use. Since TDS does not decompose or otherwise decay in a 170 
waterway, it is a useful tracer of flow inputs and outputs in a river reach and can be used 171 
for validating the flow balance of a river.  172 

 173 
These substances are also relevant indicators for studying compliance with the general 174 
ecological requirements for European waters specified in the Water Framework Directive of 175 
the European Union (Anon 2000). They can contribute to (but are not sufficient for) 176 
determining "good ecological status" and "good chemical status” of river systems, as called 177 
for by the Directive. We note again that these constituents are only the first parameters to be 178 
modeled, and they will be followed by total phosphorus and total nitrogen as indicators of the 179 
ecological health and level of eutrophication in rivers. 180 
 181 
Model Equations 182 
 183 
In selecting model equations the challenge is the same as with all river modeling, namely that 184 
a compromise must be found between the desire to simulate conditions precisely, and the 185 
reality that data limitations will hinder the running and testing of the model. These data 186 
limitations are especially crucial for modeling water quality on the continental basis. Aim of 187 
this paper is to show, that the model is generally able to work on global scale with simple 188 
types of equations and with a limited amount of data input. Therefore the model presented 189 
here was fed with standard values from literature or with results from other model 190 
calculations as described in the next section. Therefore also, the model is not calibrated. 191 
 192 
Solute transport in open water channels is an important topic in water quality studies. In 193 
addition to any biological and biochemical reactions that may occur in river streams, polluting 194 
solutes that enter water courses are transported and dispersed downstream. The ability to 195 
describe and predict the effects of the transport processes on the distribution of solute 196 
concentration is of great importance. In applications on such a large scale only very simple 197 
approaches can be considered, such as was introduced by Chapra (1977). Based on this work 198 
different formulations for conservative and non-conservative substances were derived. 199 
 200 
For non-conservative substances (e.g. BOD5) the equation from Thomann and Mueller (1987) 201 
was used, which describes the change in concentration of a substance c within a river reach as 202 
a function of an initial concentration and of a distributed load that enters at an equal rate along 203 
the river reach within a grid cell (Fig.1). The advantage of this approach is that it calls for a 204 



distributed wastewater load along the river reach within a grid cell rather than requiring 205 
information on the location of all point sources within the reach. We note that it is feasible to 206 
estimate the total load within a 5 arc-minute grid using available information (see below) but 207 
it is not possible to estimate the location and magnitude of every point source along every 208 
river reach over an entire continent. The mathematical formulation for non-conservative 209 
substances is given in equation (1) assuming a temperature dependent decay rate dec(T): 210 

 211 
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 223 
 224 
Temperature dependent decay rates for BOD5 follow equation (5) (Benham et al. 2006, Bowie 225 
et al. 1985). The decay rate at 20 °C is 0.23 1/month and the temperature correction 226 
coefficient is 1.047 (Paliwal et al. (2007), Bowie et al. (1985), Thomann and Mueller (1987), 227 
Chapra (1997)).  228 
 229 



For conservative substances the equation from Thomann and Mueller (1987) was selected.  It 230 
simulates the change in an initial concentration and distributed source as it is diluted by 231 
increasing flow input along the river reach. The concentration is expressed in equation (6):  232 
 233 
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 243 
Other variables are the same as in (1). Conversion factors are also used here to obtain a 244 
consistent result.  245 
 246 
Note that the equations are different mainly in that in Equation 1 the decay rate of the 247 
substance is the mechanism of decrease in concentration, whereas flow dilution is the cause in 248 
Equation 6. The flow dilution effect is not included in (1) because an analytical solution is not 249 
available for the case where concentration is affected by both a decay coefficient and flow 250 
dilution. However, the lack of a dilution term only affects calculations within a grid cell. The 251 
mass balance carried out at the beginning of each grid cell ensures that the dilution effect is 252 
properly taken into account for both equations. 253 
 254 
Data input 255 
 256 
Data input into the model equations can be divided into hydrological components and 257 
pollution loadings. Here the strategy for modeling water quality on the European-scale takes 258 
into account the large gaps in data at different locations and over time. 259 
 260 
Hydrological variables like river discharge, cell runoff, and flow velocity will be fed by 261 
output from the global model WaterGAP (Water – Global Assessment and Prognosis, Fig. 2). 262 
WaterGAP is developed at the Center for Environmental Systems Research of the University 263 
of Kassel, Germany. It comprises two main components, a global hydrology model and a 264 
Global Water Use Model (Alcamo et al. 2003, Döll et al. 2003, Flörke and Alcamo 2004, 265 
Verzano 2009). The Global Hydrology Model simulates the macro scale behaviour of the 266 
terrestrial water cycle to estimate water resources. All calculations are performed on 5’ grid 267 
cell level to ensure that the most detailed input information available on that level can be 268 
used. The Global Water Use Model of WaterGAP (Aus der Beek et al. 2010, Flörke et al. 269 
2011) consists of five sub-models to determine the water withdrawals and water consumption 270 
in the household, electricity, manufacturing, irrigation, and livestock sectors. In this context, 271 
water withdrawals depict the total amount of water used in each sector while the consumptive 272 
water use indicates the part of withdrawn water. The water use sectors only consume a part of 273 
the water withdrawals and the remaining water returns into the river system. These return 274 
flows are used to calculate input loadings in WorldQual. 275 
 276 



Pollution loadings in WorldQual are distinguished between point sources and diffuse sources. 277 
Point sources are divided into manufacturing, domestic and urban loadings, whereas diffuse 278 
loadings come from scattered settlements, agricultural input (for instance livestock farming 279 
and irrigated agriculture), and also from natural background sources. Detailed information 280 
about the development of point and diffuse loading calculations are described in Williams et 281 
al. (this issue) and Malve et al. (this issue). The country-scale estimates of water use and 282 
pollution loadings are downscaled by the model within the respective countries using 283 
demographic and socio-economic data. Water temperature used in the WorldQual model to 284 
calculate decay rates of non-conservative substances is calculated by a non linear function 285 
(Voß et al. 2009). 286 
 287 
Baseline climate and scenario selection 288 
 289 
Climate forcing data used for the baseline in this study has been compiled and regionalised by 290 
the Climate Research Unit (CRU) of the University of East Anglia, Norwich, UK (version TS 291 
2.1, Mitchell and Jones, 2005). CRU data covers Europe in 10’ resolution and monthly time 292 
steps. In order to use it for the water quality modelling the dataset have simply been 293 
disaggregated to a spatial resolution of 5’. 294 
 295 
The climate scenarios chosen for this work were based on two global circulation model -  296 
IPCC SRES A2 emission scenario combinations essentially comparing the effect of different 297 
future rainfall patterns.  298 
 299 

• IPCM-A2: IPSL-CM4, Institute Pierre Simon Laplace, France + A2 scenario (Denvil, 300 
2005): high temperature increase with low precipitation increase or precipitation 301 
decrease 302 

 303 
• MIMR-A2: MIRCO3.2, Center for Climate System Research, University of Tokyo, 304 

Japan + A2 scenario (Nozawa, 2005): high temperature increase, high precipitation 305 
increase or low decrease. 306 

 307 
The original spatial resolution (IPCM4-A2: lat 2.5° x lon 3.75°, MIMR-A2: lat 2.8° x lon 308 
2.8°) was re-sampled by bilinear interpolation to 5’minutes grid cells. 309 
 310 
The time frame of the climate scenarios used in the model calculations are the 2050s (2040 – 311 
2069). As base year 2005 is used as it is the reference year for water use calculations in the 312 
SCENES project. Scenario development in SCENES was a stakeholder driven process 313 
(Kämäri et al. 2008). A characteristic feature in all storylines developed in this process was 314 
the focus on climate change impacts as a major trigger to changes in human and thus societal 315 
awareness and behaviour (Kok et al. 2009, Kok et al. 2011). Thus the SCENES stakeholders 316 
who participated in the storyline development also played a key role in choosing an 317 
appropriate IPCC SRES scenario to relate the modelling work within SCENES to the 318 
storylines. Their recommendation was to concentrate on the A2 scenario only in order to 319 
emphasise the trigger role of climate change in all storylines. 320 
 321 
 322 

RESULTS AND DISCUSSION 323 
 324 
To test the model, 15 basins across Europe were selected. These represent a range of large 325 
river basins (> 9000 km² to 820 000 km²), climates (arid and humid), geogenic background 326 
conditions (e.g. different salt concentrations) and degrees of anthropogenic influence (e.g. 327 



different population densities and pollution loadings). Another important criterion is that at 328 
least monthly measurements were available for different substances in these basins for testing 329 
the model. In this paper, results from all catchments are summarised and the BOD5 results 330 
presented more detailed examination of the Ebro, Thames river basins and similarly the TDS 331 
results for Ebro and Vistula basins. 332 
 333 
Test results are presented in two formats. Firstly, longitudinal profiles show the ability of the 334 
model to simulate spatial gradients of river water quality. In Figures 3 to 10 (a, b) model 335 
calculations are compared to monthly average observations because this corresponds to the 336 
target temporal resolution of the model. The model is tested against data from high river flow 337 
periods (Figs. 3 to 10 a) and low flow periods (Figs. 3 to 10 b). The year 2000 is selected for 338 
testing because of the good availability of data. The second format for testing the results is to 339 
compare model calculations on yearly time series of measurements at specific locations in the 340 
rivers (e.g. up- or middle stream) (Figs. 3, 4 ,7 ,8 c). 341 
 342 
Because of the lack of data density the quality of model calculation can not be presented with 343 
usual methods like, Nash-Sutcliff coefficients or coefficients of determination. Concentrations 344 
were divided into classes and the difference of these classes between calculated and measured 345 
values evaluated. The concentrations were equally distributed into 7 (BOD5) or 9 classes 346 
(TDS) in order to have comparable data sets. The resolution for BOD5 is 5 mg/l and for TDS 347 
250 mg/l.  Another possibility to test the model quality is the use of the 90-percentile 348 
concentration. Here a set of all available data pairs of monthly average concentrations 349 
(measured and simulated) for the year 2000 is used (BOD5: Ebro (205), Thames (50), Europe 350 
(1421), TDS: Ebro (207), Vistula (306), Europe (1468)). 351 
 352 
BOD5 353 
 354 
The results for Europe show that for the complete data set the model gives a satisfactory result 355 
since 51% of reaches were predicted in the same water quality class as observed data and 356 
30 % show a difference of only one class between measured and simulated values. 9 % of 357 
rivers were modelled with a difference of two classes and only 8 % differ by more than two 358 
classes. The 90-percentile (Tab. 2) for the measured data is 7.7 mg/l and for the calculated 359 
11.0 mg/l. The modelled results generally overestimate the observed values. This is an 360 
encouraging result given that the model has not been calibrated for water quality (only for 361 
river flows) and is driven by national level data that has largely been reported through 362 
European level databases. There will be regions where the model poorly reproduces observed 363 
data due to local conditions that are not captured in European scale data. Two examples for 364 
the Ebro and the Thames river basins will serve to illustrate this point.  365 
 366 
For the Ebro, the model shows a clear underestimation of BOD5 concentrations in comparison 367 
to longitudinal measurements for high and low flow conditions as well as in the monthly time 368 
series. (Figs. 3a to 3c); 20 % of the measured and calculated values belong to the same water 369 
quality class, 40 % differ by one class and 13 % by two classes. 27 % show a difference of 370 
more than three classes. Underestimation in the Ebro is mainly due to the estimation of 371 
pollution loading of livestock. In WorldQual the loading input from livestock production is 372 
generally treated as a diffuse source, but according to European Pollutant Emission Register 373 
database (2010), many animal production facilities within the Ebro basin (poultry and pork) 374 
discharge their wastewater directly into the river water and are thus point source inputs. This 375 
phenomenon can be found mainly in the down stream region. If the inputs are modified to 376 
treat the animal waste like inputs from a manufacturing point source, the modified input 377 
loadings show an increase of the manufacturing loads from 1.2 t to 117.9 t, from 1.2 % of 378 



total loadings to 54.7 % respective (Tab. 3). With this modified input the BOD5 in-stream 379 
concentration fit improves considerably when compared to the longitudinal measurements for 380 
both high and low flow conditions (Figs. 4a and 4b). However, the BOD5 concentration is 381 
now overestimated in summer between June and September (Fig. 4c). These results are also 382 
reflected by the model goodness-of-fit (Tab. 2). The difference of classes between measured 383 
and calculated values are not better than with the regular input and the 90-percentile shows an 384 
overestimation with 14 and 22.6 mg/l respectively (Tab. 2). More information is probably 385 
needed on the timing of the animal production discharges if this aspect of the model is to be 386 
improved. 387 
 388 
In contrast to Ebro, the Thames shows an overestimation of simulated values against 389 
measured along river length especially for low flow conditions (Figs. 5a / b). This result is 390 
confirmed by the 90-percentile (Tab. 2). For regular input only 14 % of calculated 391 
concentration values belong to the same class as the measured ones, but as can be seen 70 % 392 
show only a small difference of one and 16 % of two classes. One source of uncertainty may 393 
be the inaccurate estimation of river flows in the Thames, especially in the upper catchment. 394 
Another more important uncertainty factor concerns the share of domestic loading that, 395 
especially for the middle and down stream Thames, is very high (~80%, Tab. 3). Local 396 
information on domestic sewage treatment shows that within the Thames basin removal of 397 
BOD is likely to be 97 % rather than 90 % used in the standard load estimation methods for 398 
WorldQual (Williams et al., this issue, Butwell et al., 2009). Making this correction, the 399 
simulated BOD5 concentration fit much better to in-stream measurements (Figs. 6a / b). Only 400 
the upper part of the catchment shows still an overestimation in concentrations probably due 401 
to the underestimation of river flows in this region mentioned above. The 90-percentiles of 402 
measured and calculated values are 2 mg/l and 4 mg/l, respectively and there are no 403 
differences within the water quality classes (Tab. 2). 404 
 405 
TDS 406 
 407 
Of all calculated concentrations of European rivers 35 % belong to the same class as 408 
measured values – 41 % and 14 % differ by one and two classes, respectively. Only 7 % show 409 
a difference by three or more water quality classes. The calculated TDS concentration for 410 
Europe is generally underestimated (Tab. 4). The 90-percentiles differ by about 400 mg/l. 411 
Possible reasons can be river flow conditions and uncertainties in loading input, as for the 412 
BOD5 concentration. A third factor can be the geogenic background concentration. As can be 413 
seen in Tab. 1, the background calculation is based on the geologic variation considering a 414 
median salt concentration of all available non-agricultural water quality measurement points 415 
within the rivers of a country (Salminen 2005). In the case that data for a country are not 416 
available the drinking water mean value of 250 mg/l was used. As for BOD5, taking account 417 
of the lack of model calibration and the use of high level European data, these results are 418 
encouraging. 419 
 420 
As for BOD5 allowance for local conditions can improve the model performance in specific 421 
basins. In the Vistula river basin modelled TDS concentrations underestimate the measured 422 
concentrations (Figs. 7a - c) especially in the upper part of the river. For the first 300 km the 423 
measured TDS values are very high, up to 4200 mg/l. These upstream levels are due to the 424 
contribution of salt effluents from the mining industry (Ericsson & Hallmans 1996, 425 
Buszewski et al. 2005, Turek 2004). This input load is not accounted for in the model 426 
estimated loads and therefore the 90-percentiles of measured and calculated values differ by 427 
~1600 mg/l (Tab. 4). Only 8 % of the calculated values have the same water quality class as 428 
the measured values. 70 % differ by one or two classes and 22 % by three or more classes. In 429 



order to raise the TDS concentrations in the model to these levels an additional input of 12 430 
Mio t salt would be needed, which is about 91 % percent of the total loading amount 431 
mentioned in Ericsson & Hallmans (1996) (Tab. 5). Using the modified input the simulated 432 
concentration along the river length fits the measured high and low flow conditions very well, 433 
and also the monthly dynamics are closely reproduced (Figs. 8a – c). The 90-percentiles differ 434 
only by ~300 mg/l (Tab. 4). 47.5 % of calculated values belong to the same class as the 435 
calculated ones, 42.6 % differ by one or two classes, and only 10 % show a difference of three 436 
or more classes. 437 
 438 
With regular loading input the model calculates a concentration for the Ebro River that is too 439 
low for low flow conditions, especially in the lower half of the river (Figs. 9a / b). The 90-440 
percentile confirms this result with a measured value of 862 mg/l against a calculated value of 441 
543 mg/l (Tab 4). Main factor of TDS input within the Ebro basin is the irrigation sector 442 
(~66 % with regular input, Tab. 5). There is evidence of significantly higher irrigation 443 
following a monthly cycle that is clearly different from that used in the WorldQual loading 444 
calculations (Causapé et al., 2006, Tedeschi et al. 2001). They report very intensive irrigation 445 
practices especially in the downstream part of the Ebro for the effluents of Cinca and Segre 446 
Rivers. Using these local data TDS loadings increase from 0.7 Mio t to 12.5 Mio t per year. 447 
Furthermore the monthly distribution is changed. With these changes the contribution of 448 
loading from the irrigation sector rises up to 97 % (Tab. 5). The results with the modified 449 
input show a better result for low flow conditions and a similar one for high flow conditions 450 
(Figs. 10a / b). All in all there is more dynamics along the river, but the 90-percentiles in 451 
Tab. 4 show a clear overestimation of TDS concentration because of too high concentration 452 
values for the months June and July. 453 
 454 
Scenario application: Impact of climate change on water quality 455 
 456 
The in-stream concentration of BOD5 in Europe for the baseline 2005 shows that little 457 
influence of loading on water quality is detected for Northern Europe (Fig. 11). In contrast, 458 
the highest concentrations can be found for the Iberian Peninsula, Western Asia and Eastern 459 
Mediterranean. All other rivers of Europe have low to medium BOD5 concentrations. The 460 
BOD5 concentration in rivers for the scenario calculation is coupled with water quality 461 
classes, which are used in literature and present the natural and chemical status of a river 462 
system (Pettine 2004). Thereby <1 mg/l means very good and >50 mg/l means highly polluted 463 
river streams. For the baseline as well as for the two scenarios all cells within a river basin 464 
belong to one of these seven classes. In order to investigate the in-stream BOD5 465 
concentrations in more detail, the differences between the classes (scenario minus baseline) 466 
were calculated for the IPCM4-A2 and MIMR-A2 scenarios (Figs. 12 a,b). Thereby positive 467 
values (degradation of water quality), negative values (improvement of water quality) and 468 
zero values (no changes) occur. The climate change scenarios have three potential effects on 469 
water quality: first, the changes in precipitation lead to changes in runoff and thus in-stream 470 
water availability; second, changes in air temperature affect in-stream degradation of organic 471 
substances and thus the BOD5 concentration; and third, two loading components in 472 
WorldQual namely diffuse loading and wash-off from sealed areas is affected by changes in 473 
precipitation. 474 
 475 
As can be seen for both scenarios there is no change in water quality classes in most rivers of 476 
Northern, middle and Western Europe. Following the IPCM4-A2 scenario in Eastern Europe 477 
and in the Black See region the in-stream concentration will get worse by up to 2 classes 478 
compared to the baseline 2005. Different patterns can be found in the MIMR-A2 scenario in 479 
which only the Black Sea region will show an increase of BOD5 concentrations.  480 



 481 
Analyses concerning the impact of  climate change on the BOD5 decay rate and on the 482 
affected loadings have shown, that they are very small and do not considerably influence the 483 
in-stream concentration. The main effect for the results is the change in water availability due 484 
the different climate conditions. IPCM4-A2 is drier than MIMR-A2 and therefore there will 485 
be smaller river flow for IPCM4-A2. If you have no changes in loadings the effect of less 486 
river availability will be an increase of concentration and a decrease of water quality. 487 
 488 

CONCLUSIONS 489 
 490 
This paper has presented a new global scale water quality model – WorldQual and illustrated 491 
its performance through its application to modelling BOD5 and TDS across Europe. The use 492 
of such a model at the European scale has also been illustrated by considering the effects of 493 
climate change on future BOD5 concentrations. 494 
 495 
With reference to the European rivers it has been shown that the model is robust and works in 496 
the expected way. Overall of Europe, comparisons between observed and modelled 497 
concentrations were encouraging given that the models were only calibrated for water flow 498 
and not water quality. The aim of the model is to provide a mechanism for investigation 499 
trends in water quality which might occur in response to continental scale drivers such as 500 
climate change, European policy or changing populations. Global models are no substitute for 501 
detailed models of individual catchments if the focus of management is at that local scale. 502 
However, it has been shown that local information can improve the simulations of individual 503 
river basins within the WorldQual model framework. 504 
  505 
Because of the acceptable model performance in targeting water quality classes the modeling 506 
methodology described here can be applied to scenario analysis pointing out potential water 507 
quality hotspots.  508 
 509 
The results for Europe show that future climate changes are likely to have only a small impact 510 
on European in-stream concentration levels of BOD5, except for the Eastern part and the 511 
Black Sea region. In these regions, the impact on flow conditions seems to be more 512 
pronounced than in other parts in Europe, leading to a potential degradation of water quality. 513 
This effect is expected to be larger for the IPCM4-A2 scenario than for the MIMR-A2 514 
scenario. 515 
 516 
As a next step the model will be tested with further substances like total nitrogen and total 517 
phosphorus and other scenario calculations including changing socioeconomic drivers, such 518 
as treatment levels and population, which are expected to have a bigger effect on in-stream 519 
water quality. 520 
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Table 1. Assigned background concentrations of total dissolved solids  700 
 701 
COUNTRY CONCENTRATION 

[mg l-1] 
COUNTRY CONCENTRATION 

[mg l-1] 
ALBANIA 250 JORDAN 250 

ANDORRA 250 KUWAIT 250 

AZERBAIJAN 250 LEBANON 250 

AUSTRIA 186 LATVIA 278 

ARMENIA 250 LIECHTENSTEIN 250 

BELGIUM 247 LITHUANIA 640 

BOSNIA AND 
HERZEGOVINA 250 LUXEMBOURG 250 

BULGARIA 250 MALTA 250 

BELARUS 250 MOLDOVA 250 

CROATIA 250 NETHERLANDS 293 

CYPRUS 250 NORWAY 17 

CZECH REPUBLIC 109 POLAND 263 

DENMARK 99 PORTUGAL 74 

ESTONIA 250 ROMANIA 250 

FAROE ISLANDS 250 
RUSSIAN 
FEDERATION 250 

FINLAND 25 SAUDI ARABIA 250 

FRANCE 127 SLOVAKIA 206 

GEORGIA 250 SLOVENIA 250 

GERMANY 135 SPAIN 288 

GREECE 229 SWEDEN 24 

HUNGARY 606 SWITZERLAND 250 

ICELAND 250 
SYRIAN ARAB 
REPUBLIC 250 

IRAN 250 TURKEY 250 

IRAQ 250 UKRAINE 250 

IRELAND 105 MACEDONIA 250 

ISRAEL 250 EGYPT 250 

ITALY 201 UNITED KINGDOM 78 

  
SERBIA AND 
MONTENEGRO 250 

 702 
 703 

704 



Table 2. Difference of 90-percentiles of calculated values against measured values for BOD5 705 
in-stream concentration with regular and modified input loading [mg/l]. 706 
 707 

measured calculated measured calculated
Europe 7.73 10.97 - -
Thames 2.01 11.57 2.01 4.03

Ebro 14.00 7.86 14.00 22.60

regular modified

 708 
 709 
 710 
Table 3.  BOD5 loadings and loading fractions 2000 for Ebro and Thames for different sectors 711 
with regular and with modified input loading. 712 
 713 

[t/a] [%] [t/a] [%] [t/a] [%] [t/a] [%] [t/a] [%]
Ebro - regular 1 201 1.2 15 075 15.2 16 0.02 2 0.002 82 734 83.5

Ebro - modified 117 906 54.7 15 075 7.0 16 0.01 2 0.001 82 734 38.4
Thames - regular 1 013 1.3 62 871 80.0 430 0.55 1 323 1.683 12 977 16.5

Thames - modified 304 1.4 7 960 37.1 27 0.13 167 0.779 12 977 60.5

99 029
215 734

78 613
21 435

diffuse total

[t/a]

manufacturing domestic
scattered

settlements
urban runoff

 714 
 715 
 716 
Table 4. Difference of 90-percentiles of calculated values against measured values for TDS 717 
in-stream concentration with regular and modified input loading [mg/l]. 718 
 719 

measured calculated measured calculated
Europe 776.23 370.83 - -
Vistula 1970.74 297.73 1970.74 1669.36
Ebro 861.62 543.24 861.62 1546.23

regular modified

 720 
 721 
 722 
Table 5.  TDS loadings and loading fractions 2000 for Ebro and Thames for different sectors 723 
with regular and with modified input loading. 724 
 725 

industry domestic
scattered

settlements
urban
runoff

diffuse total

[t/a] 1 201 15 075 16 2 82 734 99 029
[%] 1.2 15.2 0.02 0.002 83.5 100.0

[t/a] 117 906 15 075 16 2 82 734 215 734
[%] 54.7 7.0 0.01 0.001 38.4 100.0

[t/a] 1 013 62 871 430 1 323 12 977 78 613
[%] 1.3 80.0 0.55 1.683 16.5 100.0
[t/a] 304 7 960 27 167 12 977 21 435
[%] 1.4 37.1 0.13 0.779 60.5 100.0

Thames - modified

Ebro - regular

Ebro - modified

Thames - regular

 726 
 727 
 728 

729 
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Figure 1: Basic model concept for solute transport in open channel flow. 
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Figure 2: Linkage between WaterGAP (Hydrology Model and Water Use Models) and 
WorldQual. 
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 746 
Figure 3. BOD5 results for Ebro River with regular input.  747 
(a) Longitudinal profile, high flow, May 2000  748 
(b) Longitudinal profile, low flow, March 2000 749 
(c) Time series – middlestream  750 
 751 

752 



(a) 753 
 754 

May 2000

0

5

10

15

20

0 100 200 300 400 500 600 700 800

 river length [km]

B
O

D
 c

on
ce

nt
ra

tio
n 

   
   

   
   

   
   

[m
g/

l]

measured calculated
 755 

 756 
 757 
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 767 
Figure 4. BOD5 results for Ebro River with modified input.  768 
(a) Longitudinal profile, high flow, May 2000  769 
(b) Longitudinal profile, low flow, March 2000 770 
(c) Time series – middlestream 771 

772 
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(b) 778 
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Figure 5. BOD5 results for Thames River with regular input.  783 
(a) Longitudinal profile, high flow, November 2000  784 
(b) Longitudinal profile, low flow, August 2000  785 
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Figure 6. BOD5 results for Thames River with modified input.  798 
(a) Longitudinal profile, high flow, November 2000  799 
(b) Longitudinal profile, low flow, August 2000  800 
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Figure 7. TDS results for Vistula River with regular input.  816 
(a) Longitudinal profile, high flow, March 2000  817 
(b) Longitudinal profile, low flow, November 2000  818 
(c) Time series – upper- and middlestream 819 
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Figure 8. TDS results for Vistula River with modified input.  836 
(a) Longitudinal profile, high flow, March 2000  837 
(b) Longitudinal profile, low flow, November 2000  838 
(c) Time series – upper- and middlestream  839 
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Figure 9. TDS results for Ebro River with regular input.  852 
(a) Longitudinal profile, high flow, May 2000  853 
(b) Longitudinal profile, low flow, March 2000  854 
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Figure 10. TDS results for Ebro River with modified input.  866 
(a) Longitudinal profile, high flow, May 2000  867 
(b) Longitudinal profile, low flow, March 2000  868 
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Figure 11. BOD5 in-stream concentration in Europe – Baseline July 2000s.  875 
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Figure 12. Effect of climate change on BOD5 in-stream concentration in Europe. 921 
(a) Changes in water quality classes in July (2000s vs. 2050s) under IPCM4-A2 climate 922 
(b) Changes in water quality classes in July (2000s vs. 2050s) under MIMR-A2 climate 923 
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