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Abstract

In most spatial analysis of soil variation it is assumed that the random variation

not captured by fixed effects (class means or continuous covariates) is spatially depen-

dent. It is proposed that this should be tested formally, both to justify the kriging

component in subsequent spatial prediction and as evidence of the extent to which the

included fixed effects have succeeded in accounting for soil variation that is spatially

dependent at the scales resolved by the soil sampling. A formal test is possible by

computing the log ratio of the likelihoods for a full model with spatially dependent

random effects and a null model which is pure nugget. It is shown that the sampling

distribution of the log likelihood-ratio under the null model is not χ2(p) where p is the

number of additional random effects parameters in the model with spatial dependence.

This is because, while the null model is nested in the full model, parameters of the

full model take bounding values in the null case. The sampling distribution may be

computed by Monte Carlo simulations. It is shown that the power to reject the null

model by the log likelihood-ratio test depends on the importance of the nugget effect

in the underlying model, and on the sampling scheme. In many circumstances it may

be hard to demonstrate spatial dependence. The recommended procedure was applied

to some data on the organic carbon content of the topsoil and subsoil of a field in

England. This was modelled either with the overall mean the only fixed effects, or

with separate means for different soil map units as fixed effects. There was significant

evidence for spatial dependence in the random effects at both depths when the overall

mean was the only fixed effect. When map unit means were used as fixed effects there

was significant, though weaker, spatial dependence in the topsoil, but the null model

could not be rejected for the subsoil. This has implications for any further sampling

to map organic carbon in the subsoil.
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1. Introduction

In early statistical studies on soil variability and prediction from soil surveys

(Webster and Beckett, 1968) a simple statistical model was used, implicitly or explicitly.

Under this model the value of a soil property at a set of n locations, S, is a random

variate, Y(S), where

Y(S) = Xτ + ε, (1)

X is an n × p design matrix which associates each location in the set with one of p

soil map units, τ is a p × 1 vector of soil map unit means and ε is an independently

and identically distributed (iid) random variate with mean zero and variance σ2. Note

that this is a fixed effects model, in which the soil map units are included because

the scientist is interested in them; and, having identified, them designs an appropriate

scheme on which to sample them. The resulting data are then analysed according to

this model. The resulting estimated map unit means, τ̂ , and estimate of the variance

of ε, s2 can then provide a prediction of the value of the soil property at an unsampled

site, given the map unit that is delineated there, and an associated prediction error

variance (e.g. Leenhardt et al., 1994).

This statistical model is entirely valid, provided that the assumption that ε is

iid is justified by an appropriately randomized sampling scheme (de Gruijter et al.,

2006). This is the design-based approach. However, there may be benefits for spatial

prediction of soil properties if the spatial dependence of soil variation within map units

is modelled statistically, and this is essential where the sample sites have not been

selected by an appropriately randomized design (Lark and Cullis, 2004). The model-

based approach, which encompasses geostatistical prediction, has been enthusiastically

adopted by soil scientists since the seminal work of Burgess and Webster (1980).

In most early soil geostatistics all the soil variation was treated as an autocorre-

lated random process, but it has been recognized that categorical information, such as

conventional soil surveys, and continuous covariates, such as remote sensor measure-
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ments, can be combined with geostatistical modelling of the remaining spatial variation.

This is the basis of much contemporary work on digital soil mapping (McBratney et

al, 2003). Lark et al. (2006) showed how the model in Eq. (1), extended to a linear

mixed model, generalized classical geostatistics accordingly. Now the soil property is

modelled by

Y(S) = Xτ + Zu + ε, (2)

where Z is a design matrix which associates each observation with a random variable in

u. (Note that Z is n×n in the usual case where there is no more than one observation

at any location in space). The random variable u is spatially correlated, so it has

a correlation matrix G with the elements on the main diagonal all equal to 1, and

off-diagonal elements {i, j} taking, in general, non-zero values that depend, under

assumptions of second order stationarity, on a parametric function C(xi−xj|ψ), where

the vector xi is the location of the ith observation and ψ is a vector of autocorrelation

parameters, such as the spatial parameter a of the well-known exponential function

Cexp(xi − xj|a) = exp

{
−|xi − xj|

a

}
. (3)

It is assumed that the random components have the multivariate normal joint

distribution [
u
ε

]
∼ N

([
0
0

]
,

[
σ2ξG 0
0 σ2I

])
, (4)

where σ2 is the variance of ε and ξ is the ratio of the variance of u to that of ε. The

assumption of an underlying multivariate normal random function is implicit in all

standard likelihood estimators, such as the one used in this paper. The data analyst

should examine the data to ensure that this is a plausible assumption, perhaps after

transformation, but it cannot be absolutely verified. However, it has been observed

that likelihood estimators are robust to departures from normality, and that they are

optimal estimators by an entropy criterion even in cases where strict normality does

not hold (Lark, 2000).
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It is worth reflecting on the persistence of the iid component in the linear mixed

model, ε in Eq. (2) and Eq. (4). This ‘nugget’ variability represents all variation that

does not appear spatially correlated over the intervals xi − xj represented in the data

set. This may include measurement error, but the nugget variance can be larger than

the known measurement error variance (e.g. Rawlins et al., 2003), indicating that there

are substantial sources of variation in the soil operating at larger spatial frequencies

(finer scales) than the sampling scheme can resolve.

It is a common assumption in soil geostatistics that the soil exhibits spatially

dependent variation at scales bounded at the top of the frequency range (fine scales)

by the resolution of the sampling network and not accounted for by the fixed effects in

Eq (2). This assumption is generally reasonable, but it is the contention of this paper

that it should be formally examined as a matter of course. We can think of the fixed

effects in Eq. (2) as representing our soil science knowledge about variable y. This may

be the generalized soil knowledge of a soil survey if the fixed effects include map units,

specific soil knowledge if the fixed effect is the prediction from, for example, a process

model (e.g. Stacey et al., 2006) or tacit soil knowledge that some covariate should

be correlated with the variable — Rawlins et al., (2009) used elevation and gamma

ray emissions as covariates in a model for soil organic carbon. As we increase the

knowledge content of our statistical model so the random effects will become relatively

less important. We may also expect that, as our soil knowledge becomes increasingly

comprehensive, and as proximal remote sensors become increasingly well-tailored to

measuring soil properties, and increase in resolution, so the extent to which we can

explain the spatially correlated component of the variation of soil properties should

increase. This is illustrated, for example, by Rawlins et al. (2009) who showed the

variogram function for the random effects in a model of soil organic carbon decreasing

both in sill variance and in the range as more terms were added to the fixed effects

part of the model. In short, as we increase the content and sophistication of the
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soil knowledge of our statistical models so we should examine the possibility that the

unexplained variation will not show spatial dependence within the frequency range

resolved by the sampling.

A further reason for considering the evidence for spatial correlation in the random

component of a mixed model is the subsequent use of the model for spatial prediction.

If we assume spatial dependence then the best linear unbiased predictor (BLUP) of the

variable at an unsampled site includes a component that is a kriging prediction of the

random term. Rather than implement this automatically, we would be best advised

to weigh the evidence for spatial dependence, and select an approach to prediction

accordingly.

This paper considers the problem of testing the significance of spatial dependence

in the random effects of a linear mixed model. The problems are illustrated by simu-

lation, and then the approach is demonstrated in a case study with some data on soil

organic carbon.

2. Theory and Simulations

2.1 The linear mixed model and model comparisons in the standard case.

The linear mixed model in Eq (2) is fitted to data, y, by finding an estimate of

the random effects parameters, θ = [σ2, ξ,ψ] that maximizes the residual likelihood:

`R (θ|y) = −1

2

{
log |H|+ log |XTHX|+ (n− p)σ2 +

1

σ2
yT

(
I−WC−1WT

)
y
}
, (5)

where W = [X,Z] and H = ξZGZT + I.

The REML estimate is preferred because it reduces the bias in ordinary maximum

likelihood estimation due to error in the fixed effects estimates. The residual likelihood

is the likelihood of a variable that is a generalized filtering of the original data such that

its maximization provides consistent estimates of the random effects parameters that

we require, and it is independent of the value of the unknown fixed effects coefficients

(Patterson and Thompson, 1971). One consequence, however, is that the residual
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likelihood values for alternative models for the same data are comparable only if the

models have the same fixed effects structure.

Consider a case where we wish to compare two alternative random effects models,

with the fixed effects in common. The first model has the exponential covariance

function defined in Eq (3) above. The second is the stable model (Wackernagel, 2003)

Cstable(xi − xj|a) = exp

{
−|xi − xj|α

aα

}
, (6)

where 0 < α ≤ 2. Our question is whether it is appropriate to use the somewhat

more complex stable model. The log-likelihood function for this model, `R (θstable|y) is

always larger than or equal to that for the simpler model, `R (θexp|y) with one fewer

parameter so some other criterion is needed. Formal inference can be based on the

log-likelihood ratio statistic

L = 2 ({`R (θstable|y)− `R (θexp|y)} . (7)

Asymptotically under the null model (i.e. when the simpler model holds) this statistic

is distributed as χ2 with degrees of freedom equal to the difference between the number

of parameters in the two models, one here, and this test is commonly used in practice

to compare linear mixed models (Verbeke and Mohlenbergs, 2000). This distribution

applies because the model comparison meets certain conditions (Cox and Hinkley, 1990)

which define what is called the standard case for model comparison (Stram and Lee,

1994). Specifically:

i. The models are nested, so that the null model is a special case of the more complex

one. This applies for our particular comparison since the exponential model is a

special case of the stable model with α = 1.

ii. The parameters that take fixed values in the null model are not fixed at boundary

values. This applies here because α is fixed at 1 in the null model and can take

values in the interval (0, 2] in the stable model.
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iii. All remaining parameters in the null model take definite values (i.e. they can-

not vary freely without affecting the likelihood). This holds for the exponential

covariance function.

To illustrate this I conducted a simulation using the geoR package in R (Ribeiro and

Diggle, 2001). I simulated data on a 10×10 square grid using the grf function specifying

an exponential variogram with a distance parameter of 5 grid units, a nugget variance,

σ2 = 0.25 and ξ = 3. The only fixed effect was the overall mean, with an expected

value of zero. The linear mixed model was then fitted by REML with the likfit function.

I specified first an exponential and then a stable covariance function. The maximized

likelihoods for the two models were recorded, and the L statistic computed for the

model comparison. This was undertaken on a total of 2500 independent realizations.

Figure 1 shows the empirical cumulative distribution function of L for this case, with

the distribution function for χ2(1) superimposed. The two distributions are very close,

the 95th percentile for the simulations was 3.1, while the corresponding value of χ2(1)

is 3.8. The difference is attributable both to sampling error and to the fact that the χ2

distribution is the asymptotic distribution of L and these values were from a sample

of 100.

2.2 Pure nugget vs correlated models: nested but non-standard.

Our objective is to test a model with parameters that describe spatial autocor-

relation of the random effects, u, against a pure nugget null model. The question is

whether this is a standard case. This is not always a simple question to answer. If

there is a parameterization of a null model and an alternative for which all conditions

i–iii in section 2.1 hold, then the comparison is a standard case. However, although

the conditions do not hold for some particular parameterization of the model they may

hold for an alternative parameterization, and so the comparison may be a standard

case after all. In short the fact that a particular parameterization that we consider

meets the conditions for a standard case is a sufficient but not a necessary condition
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for the standard case to hold. Haskard (2007) found this in the case of comparisons

between an isotropic model (null model) and a geometrically anisotropic equivalent.

In the most natural parameterization in which the geometrical anisotropy is expressed

as the ratio of the major and minor axes of an ellipse, and the direction of the major

axis is a second anisotropy parameter, the case appears to be non-standard since, if

the ratio is one then the direction parameter does not take a fixed value. However,

Haskard (2007) found by simulation that L for this comparison did have the distribu-

tion expected in the standard case, and presented an alternative parameterization of

the models in which this is apparent.

For the obvious parameterizations of a nugget null model and a spatially cor-

related alternative the comparison seems to be non-standard. The argument is as

follows.

i. The models are nested, as required. If the autocorrelated model is described by

parameters θ = [σ2, ξ,ψ] then the pure nugget model is a particular case with

ξ = 0.

ii. However, it is necessary in the autocorrelated model that ξ is non-negative, and

so this parameter is at a boundary value in the null model, which violates the

second condition for the standard case.

Alternatively one may argue that the pure nugget model is a special case of the general

autocorrelated one in which, for example if a spherical autocorrelation function is

proposed, the distance parameter is smaller than the shortest interval between any two

observations in the data (although larger than the lower bound of zero). However, in

this case the parameters ξ and σ2 do not take definite values, since any combination

of values such that σ2(1 + ξ) takes a fixed value will have the same likelihood. This

violates the third condition for the standard case. In short, there is no evident way of

expressing the pure nugget model as a nested case of a more general variance model for
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a random effect while meeting all conditions for the standard case, so it seems likely

that the distribution of L will follow a mixture of χ2 distributions.

I tested this conjecture by simulation. I used the grf function in geoR to simulate

a pure nugget process on the nodes of a 10 × 10 square grid, and then fitted linear

mixed models with the mean the only fixed effect and with exponential or spherical

covariance functions using the likfit function and estimation by REML from random

initial values. If the contrasts between each of these spatially dependent alternative

models and the nugget null model were standard cases then the distributions of L would

be χ2(2) since in each case the alternative model has two additional parameters: a (the

distance parameter of the exponential covariance function or the range of the spherical

covariance function) and ξ. This procedure was repeated to generate 2500 independent

realizations of the L statistic for both the spherical versus nugget and exponential

versus nugget contrasts. Figure 2 shows the empirical cumulative distribution functions

of L for these case, with the distribution function for χ2(2) superimposed, from which it

seems that, as in other cases (Verbeke and Mohlenbergs, 2006) the distribution function

is a mixture of Chi-squareds, including χ2(0) for which the distribution funcion is an

impulse of height one at zero. Table 1 shows the 95th percentiles for the simulation

comparisons, and the equivalent for χ2(2). It is clear that the assumption of a χ2(2)

distribution would result in excessively conservative decisions on average, the 95th

percentile for χ2(2) exceeds the 99th percentile for both simulated distributions of L.

Also reported in Table 1 is the distribution of the log likelihood-ratio statistic when

we first select which spatial model (exponential or spherical) to compare according

to which has the largest likelihood. The result shows that the effect of this pre-test

selection is somewhat anti-conservative, but it is small, and much smaller than the

effect of assuming a χ2(2) distribution.

On this basis I propose that the sampling distribution of the log likelihood-ratio

statistic under the null (nugget) model should be generated by the Monte Carlo pro-
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cedure used here. To summarize:

i. Generate, at the locations of the sample points, a realization of a random function

with a pure nugget variogram.

ii. Fit a linear mixed model with a pure nugget random effect to the data by REML.

iii. Fit alternative mixed models with one or more alternative covariance structures

(such as it is intended to use in analysis of real data). These models may be

nugget+spherical, nugget+exponential etc.

iv. Identify the best-fitting model from step (iii) and compute the L statistic from

the likelihood values for this model and the model fitted at step (ii).

v. Repeat steps (i)–(iv) multiple times to generate a sampling distribution for L under

the null hypothesis of a pure nugget process.

It is recommended that the above procedure is used de novo since even in the stan-

dard case the χ2 distribution of L is only asymptotic, and so the distribution may be

influenced by sample size and configuration. Before demonstrating this approach in a

case study, I next report some simulations to evaluate the power of this procedure to

reject the null hypothesis of a pure nugget process in a range of circumstances.

2.3 Power to reject the nugget model.

The objective of these simulations was to assess the sensitivity of the log likelihood-

ratio as a test of spatial dependence in the random effects of a linear mixed model fitted

to data from 100 sample points (with different configurations) within a 10-unit × 10-

unit region. The following procedure was used.

i. For the specified sample layout (and in these experiments considering only the

nugget+exponential covariance function as an alternative to the null hypothesis

of a pure nugget process), use the procedure summarized in the final paragraph
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of section 2.2 to generate the sample distribution of the L statistic under the null

hypothesis, and so a threshold value to reject this null hypothesis with P ¡0.05.

ii. Use the grf function in geoR to generate a realization of a random function with a

specified covariance function on the same sample points.

iii. Fit two linear mixed models to the simulated data, specifying a pure nugget

covariance structure for the first and an nugget+exponential for the second, and

compute the L statistic for the comparison. Note whether this statistic exceeds

the threshold obtained in step (i), and so whether the null hypothesis may be

rejected.

iv. Repeat steps (ii)–(iii) 2500 times, and note the proportion of these simulations

for which the null hypothesis is rejected. This is an estimate of the power of the

test.

This procedure was followed for a number of cases detailed below.

2.3.1 Square sample grid. In the first set of experiments the sample locations were on a

square grid, with grid points on the vertices and edges of the 10-unit × 10-unit region

(1.111-unit spacing), see Figure 3a. The distance parameter of the specified model for

simulation was either 1 unit or 3 units. The variance of the random variable, σ2(1 + ξ)

was fixed at 100, and the spatial dependence ratio, ξ/(1 + ξ), was set at 0.1, 0.25, 0.5,

0.75, or 0.9. This gives a total of 10 distinct random variables, from each of which

2500 realizations were simulated and modelled. In each case the resulting value of L

was compared to the 95th percentile of the empirical sampling distribution for the null

model obtained by simulation, and the proportion of occasions on which the null model

could be rejected by this criterion was computed.

2.3.2 Augmented square sample grid. This same basic procedure was repeated in a

further set of experiments in which the sample sites included 49 locations on a square

grid (7 × 7) with points on the vertices and edges of the 10-unit × 10-unit region. An
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additional 51 points were then added at locations that were optimized, following the

procedure of Lark (2002), to minimize the estimation variance of the spatial dependence

ratio, assuming that the random variable had an exponential covariance function with

a distance parameter of 3 units and a spatial dependence ratio of 0.25. Figure 3b shows

the resulting configuration.

2.3.3 Optimized sample array. Finally the same procedure was repeated with 100

sample sites at locations within the 10-unit × 10-unit region that were selected to

minimize the same objective function used to optimize the supplementary points in

the augemented square sample grid (section 2.3.2 above). The sample array is shown

in Figure 3c.

2.3.4 Simulation results The power to reject the null nugget model in favour of the alter-

native with autocorrelation, estimated by the procedure given in the opening paragraph

of section 2.3, is plotted against the spatial dependence ratio for each sampling config-

uration (Figure 4). Note that in all cases the power to reject the null model declines

with the spatial dependence ratio and is about 0.3 or less when the spatial dependence

ratio was 0.1. This decline was most marked when sampling on the regular grid and

with the shorter distance parameter for the specified covariance function. There were

improvements from using the optimized array, particularly the one in which all 100

points were located by the optimization algorithm, and in this case there was little

difference in power between cases where the specified distance parameter was 1 and

when it was 3. In summary, the power to reject the null model of uncorrelated spa-

tial variation may be small, particularly when the spatial dependence ratio is small

and sampling is on a regular array with no additional points to examine variation at

short lags. The power of the log likelihood-ratio test depends strongly on the sampling

design.

3. A case study with soil data

The soil data reported here were collected at a field at Silsoe in Bedfordshire,
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England, (52◦ 0.36′ N, 0◦ 25.3′ W) as part of a study on within-field spatial variation.

The soil was sampled at 100 locations, as shown in Figure 5, and at each location two

cores were collected, one from depth 0 – 200mm, and a second from depth 200–800

mm. Soil organic carbon content (SOC) was determined on a subsample from each

core following the method of Walkley-Black (Walkley and Black, 1934) and expressed

in units of g Carbon per 100g oven-dry soil.

The field had previously been mapped by J.A. Catt from Rothamsted Research,

who delineated map units that were allocated to legend classes based on the soil series

of the Soil Survey of England and Wales (Clayden and Hollis, 1984). This map has

been published elsewhere (Lark et al, 1998). Each soil sample could be unambiguously

allocated to a legend unit of this map. The soils in this field are variable. The field lies

over a fault between two Cretaceous formations, the Lower Greensand to the north,

and the Gault Clay to the South. This solid geology is overlain by colluvium, alluvium

and Quaternary deposits. A brief description of the soil series is given in Table 2. As an

approximation the soils formed over the Lower Greensand can be designated as Cam-

bisols according to the FAO World Reference base, (IUSS Working Group WRB, 2006)

and the soils formed over the Gault Clay as Cambisols and Luvisols. The principal

variations among the soils are with respect to texture, caused by differences between

their parent materials. Lark et al (1998) showed that the soil map units differed with

respect to expected potential soil moisture deficits under different weather scenarios,

and with respect to crop yield. Organic inputs to the soil as litter are therefore likely

to be variable, and it is known that the dynamics of soil organic carbon are affected

by soil texture (e.g. Hassink and Whitmore, 1997) so, a priori, it is plausible that dif-

ferences between these soil map units will account for significant variation in observed

soil organic carbon content. Table 3 provides summary statistics for the data on SOC,

including averages within the soil map units, and statistics for the residuals from the

map unit averages.
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The Monte Carlo procedure summarized in the final paragraph of section 2.2 was

used to obtain the sampling distribution of the L statistic under the null (nugget) model

with alternatives (i) nugget+exponential covariance, (ii) nugget+spherical covariance

and (iii) the best-fitting of two, as judged by the likelihood. Percentiles of these em-

pirical distributions, the threshold values to reject the null hypothesis with P ¡0.05 and

P ¡0.01, are shown in Table 4. Note that these are smaller than the corresponding

values for the χ2(2) distribution presented in Table 1.

I then fitted linear mixed models to each data set with the grand mean the only

fixed effect, and considering pure nugget, exponential and spherical covariance functions

in turn. Because only 100 data were available I restricted the models to isotropic ones.

The results are shown in Table 5a. Note that for both the upper and lower depth-

intervals the exponential model fitted best, as judged by the log likelihood. The log

likelihood-ratio for the exponential model compared to the nugget model exceeded

the 99th percentile for the simulated distribution for the L statistic computed for the

best-fitting model, so the null model can be rejected in both cases with P < 0.01.

I then repeated the analyses, but with soil map unit included as a fixed effect. The

results are shown in Table 5b. Note that, for both depth intervals, the null hypothesis

that the map unit means are all equal can be rejected (P = 0.038 for 0–200 mm and

P = 0.009 for 200–800 mm). At the 0–200 mm depth the random variation exhibits

spatial dependence with L = 11.38 allowing us to reject the null model with P < 0.001.

This shows that, at scales between the broad pattern captured by the soil map, and

the shortest interval in the sampling scheme (5 m) there are sources of variation in soil

organic carbon which cannot be treated as iid random variation. If we require better

predictions of SOC than the map unit means then we must sample sufficiently finely to

resolve this variation, or identify its origins and develop a proximal sensor of sufficient

resolution to account for it. By contrast, at 200–800 mm, while the exponential model

fits best by the Likelihood criterion the log likelihood-ratio for the comparison to the
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null model is small, L = 1.93, so we accept the null model (P > 0.05). This indicates

that no improvement on the map unit mean as a predictor of soil carbon at this depth

is possible without sampling at intervals less than 5 m.

4. Discussion

The case study illustrates how the log likelihood ratio can be used to assess the

evidence for spatial dependence in the random effects of a linear mixed model for soil

properties, by means of empirical sampling distributions of the statistic under the null

hypothesis, obtained by simulation. Statistical modelling of soil properties is not a

purely numerical exercise but should be undertaken in the light of our understanding

of the soil, and to the end of generating new insight. While the parameters of a spatially

correlated random effect must always be interpreted with caution it is useful for the

soil scientist to know whether the set of covariates and classes included in the fixed

effects of the model appears to have accounted for all spatially dependent variation

resolved by the sampling scheme, or whether the random variation seems to be caused

by processes operating at scales that the sampling can resolve. In this latter case

there may be insight into the processes if the random effects are separately mapped by

kriging. This was shown by Lark and Webster (2006) in a case study on the height of

a geological unit, the Lower Chalk in the Chilterns in south east England. The fixed

effects that they considered where polynomial functions of the eastings and northings,

which captured the overall geological structure of the unit, the dip. The random

variation was then mapped and could be seen to be driven in part by the drainage

pattern. In addition to providing insight, an understanding of the spatial structure of

the random effects, given evidence that they are spatially correlated, may assist with

planning sampling for further study. As in the example in this paper there may be

scope to improve predictions with finer-scale sampling, but if there is no evidence for

spatial structure of the random effects in the data then this implies that the sampling

will have to be on a grid with finer spacing than the shortest interval between existing
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data points. This may be prohibitive.

Consider the common practice of kriging soil variables from neighbours within a

local window, rather than the whole data set. If the random effect is a pure nugget

process then kriging is effectively local averaging of a white noise process, which will

generate predictions which are a random variable with an imposed correlation struc-

ture which is quite spurious. When there is no evidence for spatial correlation of the

random effects then the BLUP should be formed with a nugget model. However, the

experiments to evaluate the power of the log-likelihood ratio in section 2.3, showed that

the evidence for a spatially correlated random effect may be weak for data generated

from a spatial process with a large nugget effect. There is often considerable uncer-

tainty about the correlation structure of random effects in linear mixed models, and

this is a strong argument for considering Bayesian approaches in which the uncertainty

in the variance parameters is accounted for in prediction (Diggle and Ribeiro, 2006).

The simulations reported in section 2.3 show that the power of the log likelihood-ratio

statistic to reject the null model depends on the sample design as well as on the variance

parameters of the random effects.

It is worth considering the relationship between the log likelihood-ratio and

Akaike’s AIC which is often used to compare alternative variogram models (Webster

and McBratney, 1989). The AIC for a particular model, for which the maximized

log-likelihood is ` and which has κ parameters, is

AIC = −2`+ 2κ. (8)

The AIC approximates the Kullback-Leibler divergence between the predicted distri-

bution for a new observation, given the data, and its true distribution (Akaike, 1973).

If we were comparing two models we would select the one with the smallest value of

AIC. This is equivalent, for the case where we compare an alternative model (with

κa parameters) with a nested null model (with κn parameters), to requiring that the
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log-likelihood ratio

L > 2(κa − κn).

When (κa − κn) is smaller than about 6 then the AIC is generally less conservative

than L compared to the asymptotic χ2 distribution for the standard case. However,

unlike the likelihood ratio test, AIC is not a formal testing procedure, but rather a rule

of thumb for model comparison (Verbeke and Mohlenbergs, 2006).

5. Conclusions

The log likelihood-ratio for comparisons between models with and without spatial

correlation of the random effects is not distributed as χ2 with degrees of freedom equal

to the number of additional parameters in the more complex model. The distribution

can be approximated by simulation, as detailed in this paper. The power to reject

a null model with no spatial correlation may be weak if the sampling scheme is not

suitable and the nugget variance is large compared to the spatially correlated variance.

There are good practical and scientific reasons to examine the strength of evidence for

spatial correlation of the random effects in linear mixed models for soil data, both for

prediction and for planning further sampling and measurements of covariates.
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Table 1. Percentiles for L statistic comparing alternative models to a null (pure

nugget) for simulated data sets from a pure nugget process on a regular grid. The same

percentiles of χ2(2) are shown for comparison as this is the asymptotic distribution of

L in the standard case.

Alternative model

Percentile Spherical Exponential Best-fitting of χ2(2)
Spherical or
Exponential

0.95 2.42 2.84 2.95 5.99
0.99 5.07 5.31 5.39 9.21
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Table 4. Percentiles for L statistic comparing alternative models to a null (pure

nugget) for simulated data sets from a pure nugget process on the sample grid from

Silsoe.

Alternative model

Percentile Spherical Exponential Best-fitting of
Spherical or
Exponential

0.95 3.57 3.21 4.00
0.99 7.02 6.13 7.23
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Table 5. Results for fitting linear mixed models to SOC data for two depths with

a). (top) fixed effect the overall mean and b). (bottom) fixed effect the soil map unit

mean.

(a) Depth

0–200 mm 200–800 mm

Log likelihood

Covariance model Null (nugget) −83.83 −102.09
for random effects. Spherical −69.77 −100.28

Exponential −69.59 −95.12

Model with largest likelihood Exponential Exponential
σ2 0.160 0.290
ξ 1.143 0.511
a 77.3 m 34.3m

L for comparison 27.58 13.96
to null model.

(b) Depth

0–200 mm 200–800 mm

Log likelihood

Covariance model Null (nugget) −73.43 −92.31
for random effects. Spherical −68.24 −92.05

Exponential −67.74 −91.34

Model with largest likelihood Exponential Exponential
σ2 2.62×10−8 0.22
ξ 38.1×106 0.664
a 8.4 m 7.3 m

L for comparison 11.38 1.93
to null model.
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Figure captions.

1. Empirical cumulative distribution function of L for a comparison of the stable

covariance model with the exponential at 100 locations on a regular grid with

data generated from a process with an exponential covariance structure. The

distribution function for χ2(1) is shown for comparison.

2. Empirical cumulative distribution function of L for a comparison of the exponential

covariance model and the spherical covariance model with the pure nugget model

at 100 locations on a regular grid with data generated from a process with a

pure nugget covariance structure. The distribution function for χ2(2) is shown

for comparison.

3. Sampling schemes with 100 locations in a 10-unit×10-unit square. a). Regular

square grid b). Square grid (49 sites) with 51 sites located to minimize the

prediction error variance of the spatial dependence ratio for an exponential model

with a = 3 and the spatial dependence ratio equal to 0.25. c). 100 locations

selected to minimize the same objective function as in (b).

4. Proportion of occasions out of 2500 simulations in which the null (nugget) model is

rejected in favour of the exponential plotted against the specified spatial depen-

dence ratio of the simulated process. The three sampling schemes illustrated in

Figure 3 are used: grid (Figure 3a), grid with optimized points (Figure 3b) and

optimized array (Figure 3c). The specified distance parameter of the simulated

process is 1 or 3 units.

5. Sampling scheme at Silsoe. The coordinates are in metres relative to datum

508000,235000 on the UK Ordnance Survey Grid.
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