Hydrological Summary for the United Kingdom

General

May was fairly typical in terms of rainfall and temperatures for the month as a whole, but saw a marked contrast between the cool, unsettled weather which characterised the first three weeks and the hot, dry conditions which followed. As in April, prolonged frontal rainfall was associated with widespread spates, and flood alerts were common during the first half of the month. The rainfall accumulated since early April has greatly reduced the areal extent of drought conditions. Parts of the Midlands, Yorkshire and the Southwest were downgraded from official drought status, and some closed parts of Grand Union canal were reopened to navigation. The substantial rainfall since March and attendant runoff response have contributed to a generally favourable water resources outlook for summer 2012, with an increase in reservoir levels leading to England & Wales stocks 3% above average entering June; importantly, stocks have increased substantially at Bewl and Ardingly and are now less than 10% below average. The unusual extension of the recharge season into the early summer has also prompted a welcome recovery in groundwater resources, although the effect of the previous dry winters continues to manifest itself in locally depressed groundwater levels. The warm temperatures of the latter part of the month signalled an apparent cessation of further recovery but, with exceptional rainfall already received in early June and an outlook broadly favouring wetter conditions, diminishing soil moisture deficits may allow opportunity for further infiltration and a more widespread recovery in groundwater resources.

Rainfall

May began very wet, with a continuation of the exceptionally unsettled weather which characterised April. Vigorous depressions brought sustained rainfall (e.g. on the $8^{th} - 10^{th}$ across much of the UK, particularly northern England and the Scottish borders; on the 13th/14th in northwest Britain, with 88mm in 12h at Kinlochewe on the 13^{th}). From the 22^{nd} onwards, warm, sunny and stable conditions prevailed over much of the UK and, with the exception of localised, occasionally thundery, showers the rest of the month was dry. Rainfall for May as a whole was around average for England & Wales and above average in Scotland (although spatially variable, with over 150% in parts of the Highlands contrasting with <60% in parts of the Western Isles and Caithness), whilst Northern Ireland was relatively dry. May was very wet in the Scottish borders and north east England: in Northumbria and Yorkshire, 2-month rainfall accumulations over April and May were >180% of average. The changeable May conditions bring to a close a very mixed spring, which in totality saw above average rainfall for most of England, and >120% in drought affected areas of the southeast. This has significantly moderated rainfall deficiencies in lowland England over the 12 - 14 month timeframe, although notable deficiencies persist over longer timescales, particularly for Midlands region: over the Oct 2010 – May 2012 timeframe, the west Midlands and Welsh borders have received below 65% of average rainfall, and it is the second driest such period for Midlands in a record from 1910.

River flows

Many index rivers in southern England were in full spate entering May, with over 150 flood alerts across England and Wales; outflows for England & Wales as a whole were the highest on record (since 1961) for early May. With catchments saturated, rapid runoff responses to frontal rainfall led to notable May peak flows in northern Britain in the second week, with further widespread flood warnings. Following the change in synoptic conditions after the third week, recessions became re-established in the majority of index catchments. New May maxima were registered at 14 index rivers (the peak on the Exe was 70% higher than the previous May maximum in a record from 1956), whilst the Thames saw its second highest May flow in a record from 1883. Mean flows for May were in the normal range or below average across much of Scotland and Northern Ireland, but well above

average across most of England and Wales, with some record May runoff totals (including for the Bedford Ouse, in a record from 1933). The delayed response to the exceptional April rainfall has brought many groundwater-fed rivers back into the normal range, with particularly marked recoveries in some catchments: the Coln registered its second lowest April mean flow, followed by its fifth highest May flow, in a record from 1963. However, flows were below average in the Mimram and notably low in the Lambourn, although some recovery is evident in both cases. Whilst current river flows across the index catchment network are largely healthy, substantial long-term runoff deficiencies can still be traced back to early 2010.

Groundwater

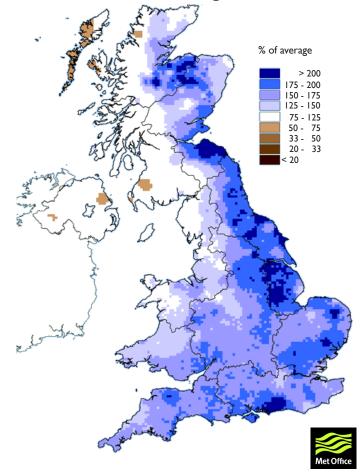
By the end of April, soil moisture deficits (smds) were eliminated across most outcrop areas - an unusual occurrence for the time of year – although rising evapotranspiration during the warm, stable conditions in late May caused smds to re-establish and return to around average levels by month end. Groundwater levels normally decline through May, but this year the spring rainfall has interrupted or reversed groundwater level recessions in many outcrop areas. Notable recent rises have been recorded for the South Downs and Hampshire area, with levels rising by more than 10m during May at Compton and Chilgrove, and over 9 m at West Woodyates where they approached the May maximum. However, more muted responses typify most of the aquifer, and very low levels (a record minimum in the case of Lime Kiln Way) occurred in some index boreholes in the North Downs, Dorset and parts of the Chilterns. Limestone boreholes show mixed responses, partly reflecting aquifer heterogeneity and differing measurement times, with average or higher levels in the Jurassic (with a rise of over 5m at New Red Lion) and Carboniferous, and below average levels at both Magnesian limestone sites despite notable recent increases. Levels continued to fall across most of the slow-responding Permo-Triassic sandstones - with record May minima being recorded at Heathlanes and Newbridge. The focus of the groundwater drought is clearly now localised, on parts of the Chalk and the Permo-Triassic sandstone. The latter will take many months to respond to the recent rainfall, but further early summer recoveries in parts of the Chalk are likely due to recharge currently in the unsaturated zone.

Rainfall . . . Rainfall . . .

Rainfall accumulations and return period estimates

Percentages are from the 1971-2000 average.

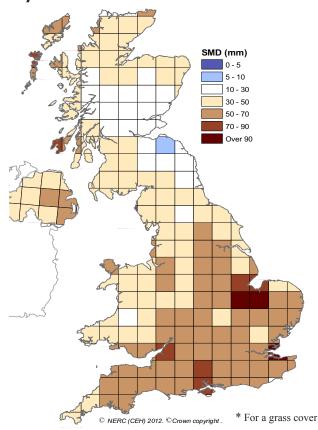
Area	Rainfall	May 2012	Apri2 - Mayi2		April - Mayi2		Octl0-	May I 2	May10 - May12	
				RP		RP		RP		RP
United Kingdom	mm %	67 106	93 49	15-25	300 07	2-5	1839 99	2-5	2236 100	2-5
England	mm %	52 96	187 169	30-50	840 90	5-10	1216 88	8-12	1519 90	8-12
Scotland	mm %	90 23	205 134	5-10	2023 127	>100	2809 3	20-30	3321 113	15-25
Wales	mm %	77 102	238 152	8-12	1427 93	2-5	2049 86	8-12	2561 91	5-10
Northern Ireland	mm %	58 85	125 90	2-5	1339 107	2-5	1878 99	2-5	2330 102	2-5
England & Wales	mm %	56 97	94 66	25-40	921 91	5-10	33 87	8-12	1662 90	8-12
North West	mm %	76 4	79 34	2-5	428 09	2-5	2040 102	2-5	2504 103	2-5
Northumbria	mm %	81 138	216 184	30-50	966 102	2-5	1466 104	2-5	1788 104	2-5
Midlands	mm %	47 88	181 167	15-25	713 82	10-15	1005 79	50-70	1294 82	25-40
Yorkshire	mm %	61 	209 185	40-60	878 95	2-5	1282 93	2-5	l 565 93	5-10
Anglian	mm %	45 99	163 178	25-40	582 84	5-10	823 82	15-25	1094 87	8-12
Thames	mm %	40 75	74 67	20-30	674 84	5-10	966 82	10-20	1211 83	10-20
Southern	mm %	47 95	179 176	25-40	730 83	5-10	1136 85	10-15	1379 85	10-15
Wessex	mm %	42 74	195 174	20-30	850 87	5-10	1220 82	10-15	1484 83	15-25
South West	mm %	45 66	235 168	20-35	1183 88	5-10	1728 82	10-20	2116 85	10-20
Welsh	mm %	76 102	234 153	10-15	1368 93	2-5	1959 86	10-15	2458 90	5-10
Highland	mm %	109 139	224 3	2-5	2491 132	>100	3322 112	10-20	3902 	10-15
North East	mm %	62 99	237 187	60-90	1239 115	2-5	1810 113	5-10	2285 116	5-10
Тау	mm %	89 122	228 162	10-15	1753 124	20-35	2534 115	15-25	3009 115	20-30
Forth	mm %	90 36	199 155	10-15	1541 122	15-25	2263 117	15-25	2680 115	10-20
Tweed	mm %	94 43	208 166	15-25	285 9	5-10	1889 116	10-20	2245 114	5-10
Solway	mm %	85 112	165 106	2-5	1923 123	50-80	2767 114	20-30	3257 3	10-20
Clyde	mm %	90 4	178 105	2-5	2515 132	>100	3480 117	20-35	4046 114	15-25
% = bercentage of 1971-2000 average RP = Return berind										4


% = percentage of 1971-2000 average

RP = Return period

Important note: Figures in the above table may be quoted provided their source is acknowledged (see page 12). Where appropriate, specific mention must be made of the uncertainties associated with the return period estimates. The RP estimates are based on data provided by the Met Office and reflect climatic variability since 1910; they also assume a stable climate. The quoted RPs relate to the specific timespans only; for the same timespans, but beginning in any month the RPs would be substantially shorter. The timespans featured do not purport to represent the critical periods for any particular water resource management zone. For hydrological or water resources assessments of drought severity, river flows and/or groundwater levels normally provide a better guide than return periods based on regional rainfall totals. All monthly rainfall totals since December 2011 are provisional.

Rainfall . . . Rainfall . . .


April 2012 - May 2012 rainfall as % of 1971-2000 average

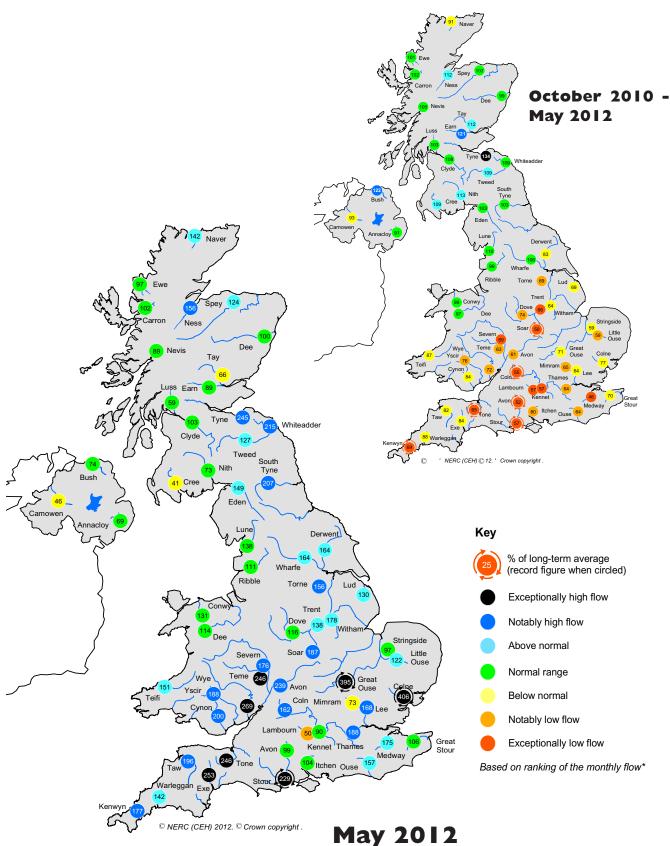
as % of 1971-2000 average

October 2010 - May 2012 rainfall

MORECS Soil Moisture Deficits* May 2012

Met Office 3-month outlook Updated: June 2012

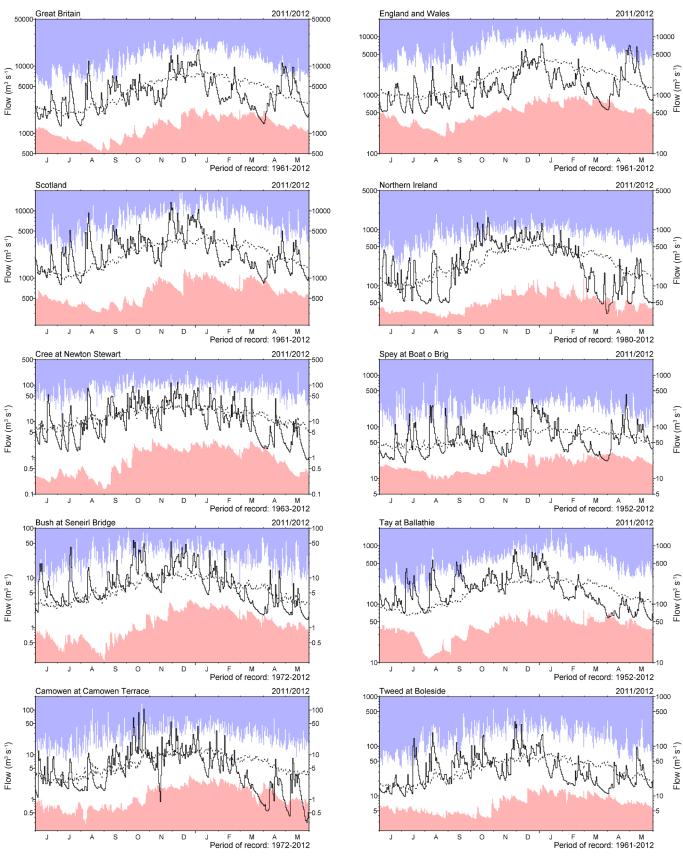
For UK average rainfall, the forecast for this summer is very uncertain, due to a lack of strong driving factors. Although there is a somewhat elevated chance, relative to climatology, of the summer being wet, it looks unlikely that there will be extreme wet conditions (as occurred in the summer of 2007). The probability of very dry conditions remains close to climatology.


The probability that the UK average rainfall for June – July – August will fall into the driest of our five categories is around 20%, while the probability that it will fall into the wettest of our five categories is 25 - 30% (the 1971 – 2000 probability for each of these categories is 20%).

The complete version of the 3-month outlook may be found at: <u>http://www.metoffice.gov.uk/publicsector/contingency-planners</u> This outlook is updated towards the end of each calendar month.

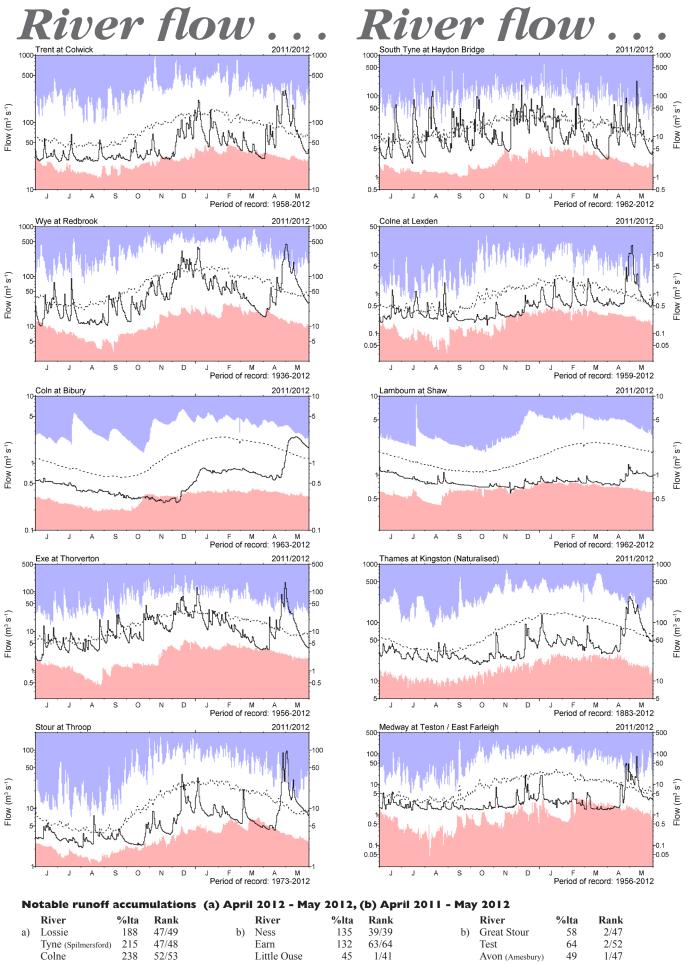
The latest shorter-range forecasts, covering the upcoming 30 days, can be accessed via:

http://www.metoffice.gov.uk/weather/uk/uk_forecast_weather.html These forecasts are updated very frequently.


River flow ... River flow ...

River flows

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.



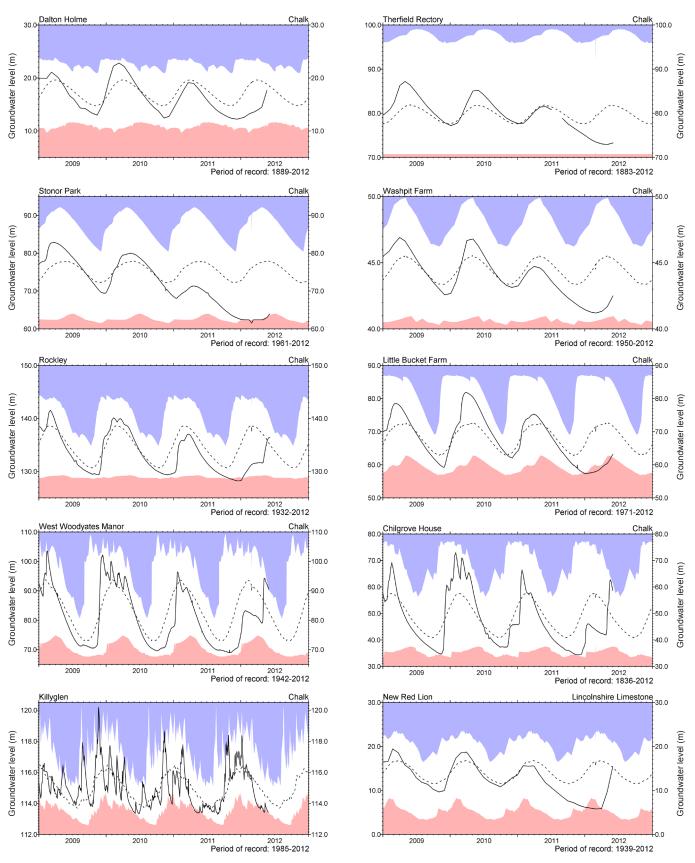
River flow hydrographs

River flow

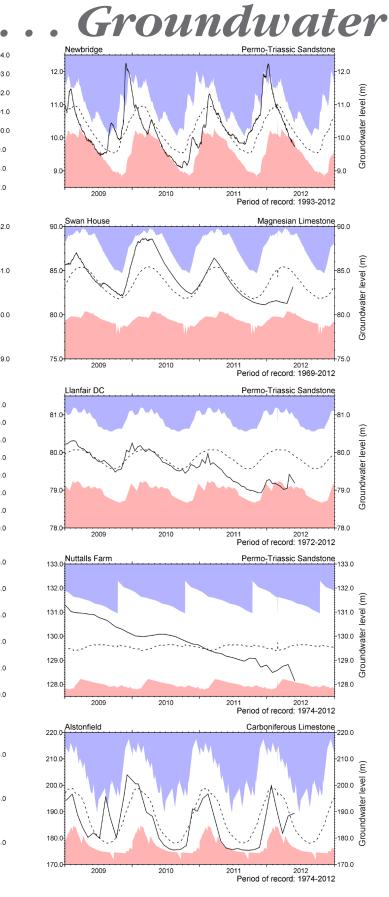
The river flow hydrographs show the daily mean flows together with the maximum and minimum daily flows prior to June 2011 (shown by the shaded areas). Daily flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas. Mean daily flows are shown as the dashed line.

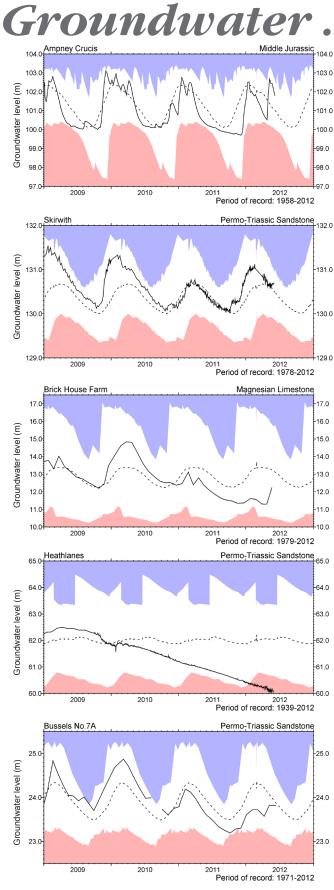
6	a) Lossie	188	47/49	b)	Ness	135	39/39	b)	Great Stour	58
	Tyne (Spilmersford)	215	47/48		Earn	132	63/64		Test	64
	Colne	238	52/53		Little Ouse	45	1/41		Avon (Amesbury)	49
	Mole	218	38/39		Kennet	54	2/50		Stour	56
	Lymington	239	51/52		Lambourn	52	2/49		Piddle	57
	Exe	213	56/56		Coln	49	2/48		Kenwyn	65
	Dart	163	53/54		Pang	43	2/43		Nevis	125
	Camowen	40	2/40		Medway	35	1/48		Mourne	125
	ta — long tarm avarac	Dan Dan	k = lowest on mean	J	-	(Bush	137

lta = *long term average; Rank 1* = *lowest on record*

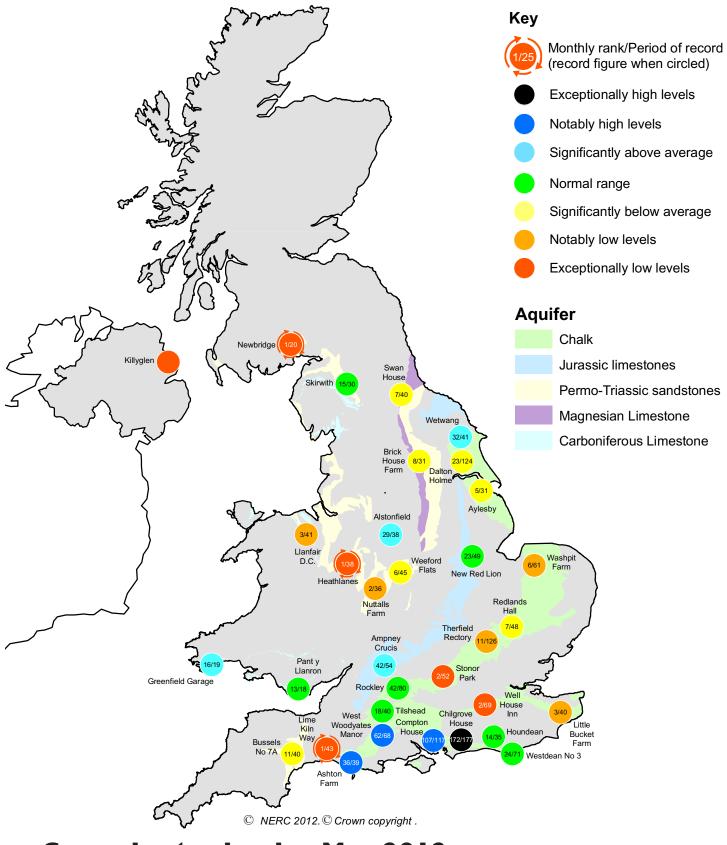

```
6
```

1/47


2/39 2/472/43 28/29 29/29


37/37

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly mean and the highest and lowest levels recorded for each month are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously and, for some index wells, the greater frequency of contemporary measurements may, in itself, contribute to an increased range of variation. The latest recorded levels are listed overleaf.



Groundwater levels May / June 2012

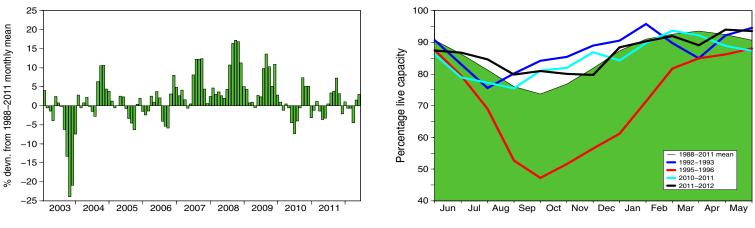
Borehole	Level Date	May av.	Borehole
Dalton Holme	17.64 21/05	18.95	Chilgrove House
Therfield Rectory	73.28 01/06	81.66	Killyglen (NI)
Stonor Park	63.92 06/06	77.92	New Red Lion
Tilshead	89.44 31/05	90.01	Ampney Crucis
Rockley	136.41 06/06	136.17	Newbridge
Well House Inn	87.17 06/06	97.06	Skirwith
West Woodyates	90.42 31/05	84.52	Swan House

Level	Date	May av.	Borehole	Level	Date	May av.
58.45	31/05	48.97	Brick House Farm	12.23	21/05	13.29
113.43	30/05	114.42	Llanfair DC	79.19	31/05	79.97
15.35	31/05	15.62	Heathlanes	60.09	31/05	62.01
101.80	06/06	101.22	Nuttalls Farm	128.15	31/05	129.63
9.73	31/05	10.25	Bussels No.7a	23.82	10/06	24.00
130.69	01/06	130.61	Alstonfield	189.38	28/05	185.89
83.14	21/05	84.95	Levels in metres ab	ove Ordn	ance De	atum

Groundwater . . . Groundwater

Groundwater levels - May 2012

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. Rankings need to be interpreted with caution; where the latest monthly mean values are based on one or two level measurements only, their recording dates can be very influential, particularly during periods of relatively rapid change. Rankings may be omitted where they are considered misleading.

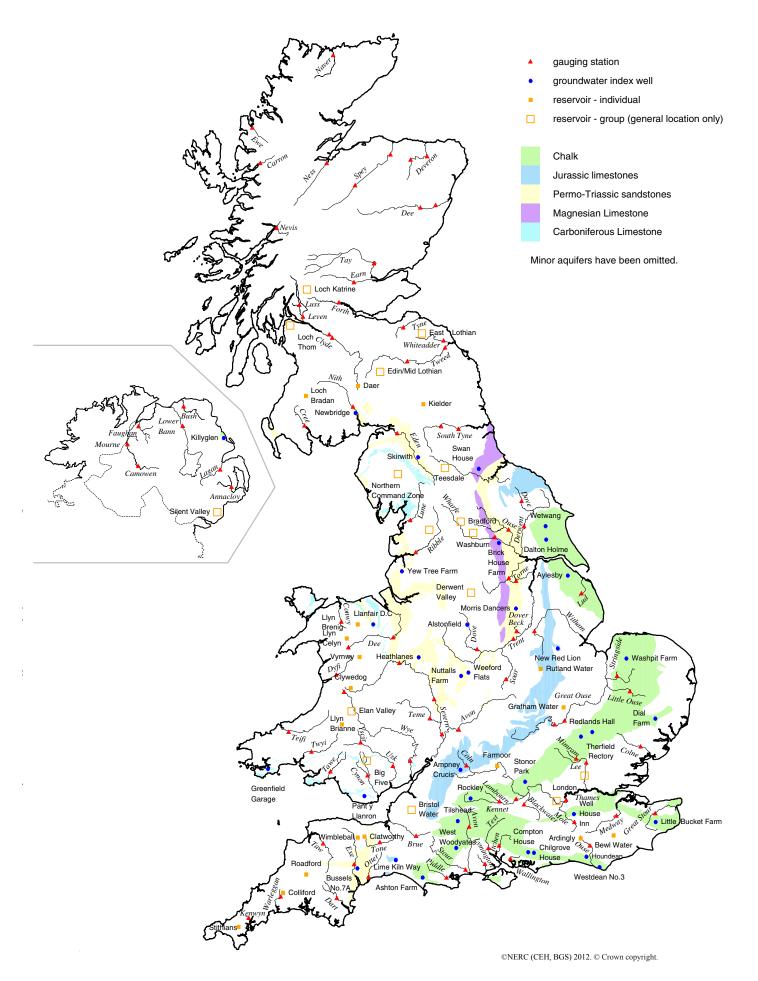

Notes: i. The outcrop areas are coloured according to British Geological Survey conventions.

ii. Yew Tree Farm levels are now received quarterly.

Reservoirs . . . **Reservoirs**

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years


These plots are based on the England and Wales figures listed below.

Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	С	apacity (MI)	2012 Apr		lun	Jun Anom.	Min Jun	Year* of min	2011 Jun	Diff 2-
North West	N Command Zone	•	124929	84		80	-3	66	2010	90	-10
	Vyrnwy		55146	91	100	94	5	72	1990	83	11
Northumbrian	Teesdale	•	87936	92	100	90	4	64	1991	95	-5
	Kielder	((199175)	88	91	93	I	85	1989	93	0
Severn Trent	Clywedog		44922	99	99	100	3	83	1989	97	3
	Derwent Valley	•	39525	90	99	96	9	56	1996	69	27
Yorkshire	Washburn	•	22035	96	100	94	7	72	1990	74	20
	Bradford supply	•	41407	90	98	92	6	70	1996	80	12
Anglian	Grafham		(55490)	96	96	95	I	72	1997	91	4
	Rutland	((116580)	73	85	95	4	75	1997	85	10
Thames	London	•	202828	97	98	98	5	83	1990	93	5
	Farmoor	•	13822	100	97	99	2	90	2002	100	- 1
Southern	Bewl		28170	49	60	79	-8	57	1990	83	-4
	Ardingly*		4685	51	69	89	-10	89	2012	92	-3
Wessex	Clatworthy		5364	92	100	96	10	67	1990	75	21
	Bristol WW	•	(38666)	80	91	96	8	70	1990	78	18
South West	Colliford		28540	75	79	80	-5	52	1997	74	6
	Roadford		34500	81	85	85	I	48	1996	68	17
	Wimbleball		21320	97	100	99	8	74	2011	74	25
	Stithians		4967	87	90	93	7	66	1990	80	13
Welsh	Celyn and Brenig	•	131155	98	100	100	2	82	1996	96	4
	Brianne		62140	91	100	98	3	84	2011	84	14
	Big Five	•	69762	93	100	96	7	70	1990	79	17
	Elan Valley	•	99106	93	100	95	I	81	2011	81	14
Scotland(E)	Edinburgh/Mid Lothian	•	97639	96	95	94	4	52	1998	94	0
	East Lothian	•	10206	95	100	100	3	84	1990	99	I
Scotland(W)	Loch Katrine	•	111363	94	89	80	-7	66	2001	92	-12
	Daer		22412	100	100	98	7	70	1994	99	-
	Loch Thom	•	11840	100	97	93	2	74	2001	95	-2
Northern	Total⁺	•	56920	86	84	82	-3	69	2008	80	2
Ireland	Silent Valley	•	20634	84	80	76	-4	56	2000	75	I
() figures in parentheses relate to gross storage			lenotes reserv	oir groups	⁺excludes Lough Neagh				*last occurrence		

Details of the individual reservoirs in each of the groupings listed above are available on request. The percentages given in the Average and Minimum storage columns relate to the 1988-2011 period except for West of Scotland and Northern Ireland where data commence in the mid-1990's. In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes. * The monthly record of Ardingly reservoir stocks is under review.

Location map . . . Location map

National Hydrological Monitoring

Programme

The National Hydrological Monitoring Programme (NHMP) was instigated in 1988 and is undertaken jointly by the Centre for Ecology & Hydrology (CEH) and the British Geological survey (BGS) – both are component bodies of the Natural Environment Research Council. The National River Flow Archive (maintained by CEH) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Northern Ireland Environment Agency. In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and Northern Ireland Water.

Most rainfall data are provided by the Met Office (address opposite).

To allow better spatial differentiation the monthly rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA.

The monthly, and n-month, rainfall figures have been produced by the Met Office, National Climate Information Centre (NCIC) and are based on gridded data from raingauges. They include a significant number of monthly raingauge totals provided by the EA and SEPA. The Met Office NCIC monthly rainfall series extends back to 1910 and forms the official source of UK areal rainfall statistics which have been adopted by the NHMP. The gridding technique used is described in Perry MC and Hollis DM. (2005) available at http://www.metoffice.gov.uk/climate/ uk/about/Monthly_gridded_datasets_UK.pdf

The regional figures for the current month are based on limited raingauge networks so these (and the return periods associated with them) should be regarded as a guide only.

The Met Office NCIC monthly rainfall series are Crown Copyright and may not be passed on to, or published by, any unauthorised person or organisation.

From time to time the Hydrological Summary may also refer to evaporation and soil moisture figures. These are obtained from MORECS, the Met Office services involving the routine calculation of evaporation and soil moisture throughout the UK. For further details please contact:

The Met Office FitzRoy Road Exeter Devon EX1 3PB

Tel.: 0870 900 0100 E-mail: enquiries@metoffice.com

Fax: 0870 900 5050

The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Enquiries

Enquiries should be addressed to:

Hydrological Summaries for the UK Centre for Ecology & Hydrology Maclean Building Crowmarsh Gifford Wallingford Oxfordshire OX10 8BB

Tel.: 01491 838800 Fax: 01491 692424 E-mail: nrfa@ceh.ac.uk

Selected text and maps are available on the WWW at http://www.ceh.ac.uk/data/nrfa/nhmp/nhmp.html Navigate via Hydrological Summary for the UK.

Some of the features displayed on the maps contained in this report are based on the following data with permission of the controller of HMSO.

(i) Ordnance Survey data. © Crown copyright and/or database right 2005. Licence no. 100017897.

(ii) Land and Property Services data. © Crown copyright and database right, S&LA 145.

(iii) Met Office rainfall data. © Crown copyright. All rights reserved. Unauthorised reproduction infringes

crown copyright and may lead to prosecution or civil proceedings.

Text and maps in this document are \mathbb{O} NERC (CEH) 2012 unless otherwise stated and may not be reproduced without permission.

