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Abstract 

Snow and ice play their most important role in the nitrogen cycle as a barrier to land-

atmosphere and ocean-atmosphere exchanges that would otherwise occur.  The inventory of 

nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate 

in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability 

of the nitrogen cycle at global and regional scale, and about the extent of disturbance in 

recent decades.   Nitrous oxide concentrations have risen about 20% in the last 200 years and 

are now almost certainly higher than at any time in the last 800,000 years.  Nitrate 

concentrations recorded in Greenland ice rose by a factor 2-3, particularly between the 1950s 

and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere.   

Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional 

emission inventories.  Background ammonium concentrations in Greenland ice show no 

significant recent trend, although the record is very noisy, being dominated by spikes of input 

from biomass burning events.  Neither nitrate nor ammonium shows significant recent trends 

in Antarctica, although their natural variations are of biogeochemical and atmospheric 

chemical interest.  Finally it has been found that photolysis of nitrate in the snowpack leads to 

significant re-emissions of NOx that can strongly impact the regional atmosphere in snow 

covered areas. 

Index terms: ice, nitrate, ammonium, nitrous oxide, trends, ice cores 
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Introduction 

In comparison to biologically active terrestrial and ocean surfaces, ice is not a very dynamic 

source or sink of nitrogen compounds.  However, it nonetheless plays an important role as a 

significant part of Earth’s surface, and as an archive of changes in atmospheric composition.  

Additionally, there is some interesting chemistry associated with N compounds in ice.  In this 

paper, all these aspects of nitrogen and ice will be addressed.  Although the major focus will 

be on ice sheets because of their large area, other ice caps and glaciers are also discussed, in 

so much as they can provide localised archives of past deposition of N compounds. 

The first role of ice and snow in the N cycle is as a barrier between the underlying land or 

ocean surface and the atmosphere.  Permanent ice sheets (mainly Antarctica and Greenland) 

cover over 10% of the land surface, while seasonal snow (mainly in the northern hemisphere) 

covers a maximum of about a further 30% [1]. At its maximum in spring, Arctic sea ice 

covers approximately 5% of the ocean’s surface, while Antarctic sea ice covers around 6% of 

the world’s oceans in austral spring.  There is some limited microbial activity near the 

surface, especially in warmer, wetter, snow and ice.  However, the most obvious implication 

is that the biological N exchanges that would normally occur must be scaled back to account 

for the land and ocean areas that are covered in snow and ice. 

However, the ice sheets and glaciers do of course receive an input of N compounds from the 

atmosphere through wet and dry deposition, and in the next section I carry out an annual 

budget, and an inventory, of N compounds in permanent ice sheets.  Seasonal snow cover 

acts only as a delay for material to reach the underlying surface when the snow melts.  

Changes with time of the deposition of N compounds to the ice sheets (as determined from 

ice cores) can (with care) be used to understand the changing regional atmospheric burden of 

N compounds and to test estimates of emission changes. In a further section such changes, 
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both in the recent past and the more distant past, are considered, studying both anthropogenic 

and natural changes.  Finally the chemistry of N compounds within snow, firn and ice, is 

assessed, considering especially processes by which they may be re-released to the 

atmosphere. 

Nitrogen compounds in snow and ice 

Cold, polar ice sheets, in which there is little or no melting, contain chemicals (including 

nitrogen compounds) in two separate phases [e.g. 2].  Firstly, material deposited as aerosol 

and directly from the gas phase onto the snow surface, is contained within the snow phase.  

Secondly, polar ice contains air bubbles, which are enclosed as the ice is compressed with 

depth.  These bubbles contain a sample of all the stable gases in the atmosphere.  The main N 

compound contained in the air bubbles is of course N2, representing 78% of the content of the 

atmosphere (and therefore the bubbles).  This implies that there are around 2.8 x 106 Tg of N2 

within the polar ice sheets.  However, because this is really just air that is isolated from the 

main part of the atmosphere, it will not be discussed further.  The second N compound in the 

air bubbles is N2O whose changing concentration, because of its role as a greenhouse gas, is 

of interest. 

The inorganic N compounds found in the snow phase are nitrate and ammonium.  Nitrate 

(NO3
-) is present in polar ice at concentrations typically between 10-1000 µg kg-1 (0.2-15 

µM), and ammonium (NH4
+) at typically 0.5-300 µg kg-1 (0.03-20 µM).  The lower 

concentrations within this range for both compounds are typically seen in central Antarctica, 

and the causes of the wide range of concentrations will be considered later.  It is likely that 

some dissolved organic nitrogen (DON) compounds are present in polar ice, but there are no 

quantitative data in the literature [3]. 
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Estimates of the total inventory of N2O, NO3
-, and NH4

+, and of the annual budget of the two 

snow-phase chemicals, in the Greenland and Antarctic ice sheets are shown in Table 1 and 2.  

In order to make these approximate estimates, the total volume and annual snow 

accumulation rate (in ice equivalent) are used.  It is assumed that the air bubbles occupy 10% 

(at ambient pressure, roughly estimated from the accumulation-weighted mean altitude of 

each ice sheet) of the ice volume.  This is followed by an approximate estimate of the 

concentration in recent snow in each of Greenland and Antarctica, and of the average 

concentration in the ice sheet (taking account that the ice sheets each contain a mixture of 

interglacial and glacial ice).  For this exercise, no attempt to make a formal areal weighting 

(for which there anyway may be insufficient data) has been made: for that reason, the budget 

and inventory estimates should be considered accurate only to within about 30%. 

Because of its much greater volume, Antarctica contains the larger mass of N compounds in 

its inventory.  Nitrate is the dominant compound in each case.  The total inventory in the ice 

sheets (of around 260 Tg N) is of course very small compared to the inventories in soils and 

oceans, and is of the same order of magnitude as the annual turnover of N between the 

atmosphere and land or the atmosphere and ocean [4].  Similarly the annual budget of N 

compounds deposited onto the ice sheets (Table 2) is very small, of order 0.1% of the total 

global deposition of nitrate and ammonium from the atmosphere. 

Natural sources and sinks of N compounds found in ice sheets 

N2O is a well-mixed trace gas in the atmosphere, with a lifetime of about 120 years.  As 

discussed in earlier papers [5], pre-industrial sources are mainly biological, resulting from 

nitrification and denitrification in soils and the ocean.  Additional anthropogenic sources are 
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discussed in the next section.  N2O is removed mainly by chemistry occurring in the 

stratosphere. 

Nitrate is a member of the oxidised nitrogen family of chemical species (often written as 

NOy).  It can be present in the gas phase as HNO3 and in aerosol as HNO3 or as nitrate salts.  

It is formed directly by oxidation of NO2either directly, or via N2O5 or the NO3 radical, and is 

lost mainly by photolysis, by reaction with OH and by deposition.  However, because there 

are many interconversions between NOy species, while nitrate is the member of NOy that can 

be archived in ice, it is perhaps more useful to think about the sources of NOy.  The natural 

sources of NOy are terrestrial (including ammonia oxidation, biomass burning and soil 

exhalation), plus lightning production of NO, and production in the stratosphere [6, 7]; 

however, there is no clear understanding of  the extent to which each of these sources has 

contributed to the input of nitrate to each polar ice sheet. 

Ammonium salts archived in polar ice sheets from preindustrial times derived from emissions 

of ammonia from both terrestrial and marine sources [6, 8], largely of biological origin.  

Ammonia is easily entrained into aerosol and re-deposited.  It is therefore generally assumed 

that the most important emission source for Greenland snow is the terrestrial systems of 

North America, while sources to Antarctica are generally assumed to be in the surrounding 

Southern Ocean. 

Ice core records: anthropogenic change in N2O 

Because of its long atmospheric lifetime (~120 years), changes in N2O measured in 

Greenland or Antarctic ice cores can be considered to represent changes in emissions (or 

sinks) at global scale.  Nitrate and ammonium, with much shorter lifetimes against 
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deposition, must be considered of regional interest, with each ice core representing changes 

in particular source areas. 

After carbon dioxide (CO2) and methane (CH4), nitrous oxide (N2O) is the next most 

important long-lived anthropogenic greenhouse gas.  It also acts as an ozone-depleting 

substance in the stratosphere [9], and is currently the most important one.  Routine 

atmospheric measurements were started only in recent decades, so our knowledge of the 

increase of N2O in the atmosphere comes mainly from polar ice cores.  They show that N2O 

was relatively steady at 260-270 ppbv for  the last two millennia until about 1850.  Since 

1850 there has been an increase to about 320 ppbv, with a steeper rate of rise since 1950 (Fig. 

1).  The increase is consistent with enhanced emissions from fertilised agricultural lands.  A 

recent isotopic study, using Antarctic firn air samples along with archived air samples from 

Cape Grim in Tasmania, also confirms this assessment [10].  The isotopic measurements are 

consistent with the suggestion that the mechanism of enhanced N2O emissions from soil, 

resulting from fertiliser use, is through activation of nitrification processes. 

Ice core chemical records 

Ammonium is mainly deposited as aerosol, while nitrate can be deposited as aerosol and as 

nitric acid adsorbed directly from the gas phase onto ice surfaces.  Concentrations can depend 

on emissions, but also on transport strength and pathways, strength of deposition en route, 

and on the efficiency of deposition at the ice core site.  The use of concentration profiles from 

ice with time as indicators of changing emissions implicitly assumes that all other factors, 

while undoubtedly showing significant variability, have not exhibited a trend.  This is 

probably a reasonable assumption in the relatively stable climate conditions of the last 

century, but is unlikely to be true when comparing over much longer timescales, such as 

between glacial and interglacial conditions [11].  Additionally, while tracers such as 
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ammonium are irreversibly deposited to the snow surface, nitrate can be re-emitted from the 

snow either by re-evaporation of nitric acid, or through photolysis.  This really affects mainly 

sites in central Antarctica with very low snow accumulation, and will be discussed later, but 

for now, it prohibits us from assessing trends in emissions using data from strongly affected 

sites. 

Ice core records: anthropogenic change in nitrate 

First, considering nitrate and starting with Arctic records.  Several records covering the last 

century have been published from both Greenland and the nearby Canadian Arctic [e.g. 12, 

13-15].  All records show an increase in concentration during the 20th century, with the 

strongest slope from ~1950-1980 (examples from north and central Greenland are shown in 

Fig. 2). Nitrate peaked and started to turn over in the 1990s.  Later authors describe a small 

increasing trend from 1890-1920, followed by a slight decrease before the main trend 

commences [15]. Peak values in the 1980s were typically about 75-100% higher than the 

baseline, suggesting, if other factors remained equal, an up to two-fold increase in NOx 

emissions.  The increase is consistent with the estimated trends in emissions, assuming that 

Greenland sees a mixture of North American and Eurasian sources. ∆15N of NO3
- decreased 

significantly in parallel to the increase in nitrate [16], although it is not yet clear how this can 

be used to interpret the main source of the nitrate increase.  In the Yukon in western Canada, 

an ice core record [17] also shows an approximate doubling in nitrate concentration between 

1950 and 1980: here the emissions are assumed to be from Eurasia.  Ice core records have 

also been obtained from Svalbard [14, 18], further east: these show an increase in nitrate, 

particularly during the period 1960-1990.  However, the records are very noisy and suffer 

from disturbance due to the percolation of meltwater, so it is hard to quantify the observed 

change.  Finally a record from Severnaya Zemlaya, north of Russia at 95°E [19], shows a 
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rapid increase in nitrate concentration in the 1960s, followed by a slower decline, and appears 

to be more closely related to regional emissions of NOx from the Siberian Arctic. Taken 

together all these records indicate that the Arctic atmosphere is strongly affected by 

anthropogenic NOx emissions originating further south, in line with understanding gained 

from studies of Arctic Haze [e.g. 20]. 

In contrast to Greenland, data from Antarctica, although showing considerable year-to-year 

noise, show no significant trend over the 20th century [e.g. 21, 22] (Fig. 2).  Antarctica is very 

distant from major industrial or urbanised areas, and this result suggests that nitrate over the 

Southern Ocean and Antarctica is still largely of natural origin. 

Nitrate trends have been measured at high altitude glaciers and ice caps in mid-latitudes, 

representing more regional sources (see Table 3 for a summary of the main sites outside 

Greenland and Antarctica that are discussed in this paper).  For such ice cores sites, very high 

altitude is a prerequisite in order to avoid significant melting.  For the European Alps, a 

number of studies have derived nitrate records covering the last century [23, 24].  A 

comprehensive and more recent study was carried out at Col du Dome, at 4250 m asl in the 

French Alps [25] (Fig. 2).  The very high snow accumulation rate (~ 3 m water 

equivalent/year) meant that it was possible to consider summer and winter snow layers 

separately.  The authors concluded that the summer input is influenced mainly by emissions 

from within 1000 km of the site, while the winter input comes from a wider area comparable 

to the size of Europe.  They found that there had been an approximately 5-fold increase in 

summer nitrate concentration over the last century, with the strongest rate of increase 

between 1960 and 1980, in agreement with at least one estimate [26] of emissions from 

France, Italy, Switzerland and Spain (WE4 nations).  For winter, although concentrations are 

lower, the increase over the century is still a factor 4 between 1950 and 1990, levelling off in 
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the last decade of the 20th century.  This seemed to be consistent with inventory estimates of 

emissions changes from all of Europe [27].  The summer values imply, in contrast to some 

emissions inventories, that NOx emissions from the WE4 nations had not stabilised after 

1990.  Using the anthropogenic emissions inventories and the background pre-industrial 

concentration of nitrate it was possible to estimate the natural emissions from both the WE4 

countries and Europe as a whole. 

At the northwestern end of the Tibetan Plateau, a core has been collected at 7010 m asl at 

Mount Muztagata [28] (Fig. 2).  NO3
- concentrations increased by a factor ~2 , mainly 

between about 1980 and 2000.  The atmospheric flow suggests that the main sources to this 

site are from the west, and the increase appears consistent with the inventory trends in 

regional emissions from central and southwest Asia (semi-circle of countries from Pakistan to 

Kazakhstan).  At the eastern end of the Himalayas, the situation is less clear: nitrate 

concentrations have increased significantly over recent decades compared to their 1000-year 

background at Dasuopu (7000 m above sea level) [29], but the data resolution is insufficient 

to give a clear timing or magnitude of any increase.  At the nearby East Rongbuk Glacier, the 

increase is less clear [30].  New records extending into the 21st century, after the strongest 

period of industrialisation in the surrounding nations (India, China), are certainly required.  

Finally in Asia, an ice core further north, at Belukha in the Siberian Altai (4062 m asl) shows 

a convincing increase  (factor close to 2) between 1950 and 1980 [31], although this sits on a 

very noisy background.  For this core, as for some of the other non-polar ice cores where the 

combination of latitude and altitude is not sufficient to ensure cold summers, care must be 

taken in interpreting trends, because the high percentage of melt layers in the core indicates 

that some percolation of water (and hence ionic load) could have occurred. 

Ice core records: anthropogenic change in ammonium 
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For ammonium, there is no clear recent trend in Greenland [32], although this would have to 

be discerned from a noisy background, that is largely due to the dominance of biomass 

burning spikes in the record [e.g. 33].  By splitting the annual snowfall into approximately 

monthly slices, it appears as if an upward trend since 1950 can be observed in the 

winter/spring concentrations [32], when Greenland sees a greater proportion of  airmasses 

from Eurasia [34], but not in the summer, when airmasses are most frequently from North 

America. The lack of an increase has to be treated a little cautiously, not only because of the 

noisy signal, but also because the conversion of ammonia to aerosol, and therefore its 

deposition efficiency, both en route and in Greenland, will have altered as sulfate and nitrate 

have increased.  Nonetheless, at face value, this suggests that Greenland in summer (which 

dominates the annual budget) is still seeing ammonium from undisturbed (northern) North 

American ecosystems [32] or from marine sources.  Unsurprisingly, ammonium 

concentrations in Antarctic snow show no anthropogenic trend.   

In the European Alps, three different records show an upward trend in ammonium 

concentration, mainly between about 1950 and 1980 [23, 35].  As with the nitrate signal, the 

record from Col du Dome has been split into seasons, and the main increase (factor 3) is in 

summer, when the concentrations are also highest.  Encouragingly, concentrations estimated 

from combining emissions estimates with a multilayer atmospheric dispersion model were 

consistent with atmospheric concentrations estimated by inverting the ice core values [35]: 

this gives some confidence to uncertain emissions estimates. 

In Asia, large increasing trends in ammonium concentrations are observed at Mount 

Muztagata (~factor 3 increase, 1960-1990) [28], East Rongbuk Glacier (~factor 2, 1950-

1980) [36], and Belukha (factor 1.6, 1950-1980, followed by plateau) [31].  Modelling work 

is needed to separate out the influence of higher emissions from that of increased 
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concentrations of sulfate and nitrate that may neutralise gaseous NH3, leading to greater NH4
+ 

deposition.  It is also suggested that a part of the increase may arise from the strengthening of 

natural ammonia emissions from plants and soils due to increasing temperature [36].  Still, it 

seems likely that a large part of each increase is related to increased agricultural emissions, 

and that these ice core trends can be used to constrain poorly-known emission estimates for 

the regions influencing these core sites. 

An unusual trend has been observed in ammonium concentrations in an ice core from the 

Bolivian Alps (Illimani).  The year to year variations [37] have been calibrated against 

temperature anomalies in the Amazon Basin (most airmasses at Illimani track back over the 

Amazon): a remarkably good correlation was found.  This was used to propose that 

ammonium in this ice core could be used as a proxy for temperature across the Amazon Basin 

further back in time.  Ammonium increased by about a factor 3 from 1700 to 2000 (Fig. 3), 

which was then interpreted as an Amazon Basin increase of about 0.6°C over this period. The 

authors [37] suggest that the mechanism for the observed relationship is that higher 

temperatures lead to greater emissions of NH3 from soils, and from vegetation through 

changes in the temperature-dependent canopy compensation point. This is intriguing but 

surprising, as the calibration requires that a 1°C increase in temperature leads to a factor 3 

increase in ammonia emissions.  Further work is clearly needed, as this is an important result 

that challenges current understanding, and yet offers the potential for a rather precise 

temperature proxy. 

The long perspective – N2O 

The Antarctic ice core record extends back 800,000 years (800 ka).  N2O has been measured 

on several long cores: there can be artefact issues [38], in which a very high scatter is 

observed at some depths.  This is believed to be due to either chemical or biological [39] 
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production in the ice. Although the exact cause has not yet been proven, it is possible to filter 

out the scattered data by excluding measurements from ice with a high dust concentration (it 

is expected that higher levels of both chemical and biological material are present in such 

ice), and to confirm that the filter works by comparing different ice cores [5].  Because of this 

need to exclude some parts of the core, the record is not yet complete throughout the last 800 

ka, but the general relationship between climate and N2O concentration is now clear (Fig. 5).  

N2O tends to be high during warmer periods: typically 200 ppbv during colder times, and 280 

ppbv during warmer periods (Fig. 4) [5].  It is important to note that, until the 20th century, 

the concentration had never risen above 300 ppbv: it is now above 320 ppbv. 

During cold glacial periods, climate is dominated by a millennial scale dynamic, with 

Greenland showing very rapid jumps in temperature (Dansgaard-Oeschger (D-O) events) that 

are accompanied by sharp jumps in methane concentration.  Antarctica shows subdued out-

of-phase climate changes that are paralleled by slow CO2 changes.  N2O [40] also changes on 

millennial scales, but with a dynamic different to either CH4 or CO2: N2O does increase 

across most D-O events, but its increase is typically smoother, and begins during the D-O 

cold phase, when methane is still low.  Natural sources of N2O are nitrification and 

denitrification, with an estimated ratio of about 2:1 for soils and oceanic emissions [41]. The 

changes in N2O on glacial and millennial scales are therefore believed to arise from marine 

and/or low-latitude terrestrial changes.  Isotopic data  [42] suggest that the ratio of marine to 

terrestrial production has not changed much in the last 33 ka, which includes the last glacial 

termination.  This implies that both sources increased in strength by ~40% across the 

termination. 

The long perspective – nitrate 



13 

 

Over the last 800 ka, nitrate in central Antarctic ice varies very strongly (factor 5 higher in 

Last Glacial Maximum (LGM), 21 ka ago, compared to present).  However, it shows a very 

strong correlation with the concentration of calcium [11] (Fig. 5).  In central Antarctica, 

nitrate is very readily lost from the ice (see later section), and it appears that high dust 

(represented by calcium) concentrations help to stabilise it.  Thus, the glacial-interglacial 

changes do not, unfortunately, hold any information about sources of nitrate, but rather 

indicate the role of dust in stabilising the deposited nitrate.  Even where dust concentrations 

are low, the residual variability at sites in central Antarctica seems to be controlled by the 

snow accumulation rate, with greater preservation when the accumulation rate is a little 

higher.  This offers the possibility to use nitrate as an aid to estimating past snowfall rates 

[43].  One should expect to be able to use nitrate concentrations in coastal regions of 

Antarctica (where snow accumulation is higher), under climate conditions close to those of 

today (ie the Holocene period, last 11 ka) to understand changes in the past sources of nitrate 

to Antarctica.  One hope has been that we might learn about past input of nitrate from the 

stratosphere [44].  However, the discovery (using measurements of isotopes of O and N in 

nitrate) that much of the nitrate deposited in coastal Antarctica may be recycled after 

emission from snow in central Antarctica [45] suggests that even this will be challenging.  

Although nitrate is routinely measured in Antarctic ice cores, its interpretation in terms of 

sources remains speculative and challenging. 

Interpretation is also difficult in Greenland: the glacial atmosphere there was also subject to 

hugely increased concentrations of dust, which are likely to have radically altered the 

deposition processes for nitrate.  Having said that, nitrate is rare in having very similar 

average concentrations in the LGM and the Holocene: changes can be seen [46] at the glacial 

termination, but they are tiny compared to the vast factorial changes in all other chemical 
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content.  Nitrate does show clear annual cycles that are used as a component of the layer-

counted dating of Greenland ice cores.  There has been a widespread paradigm in the solar-

terrestrial physics community that large spikes of nitrate concentration in ice cores could be 

used to define the statistics of occurrence of solar energetic particle (SEP) events [47].  

However, it has now been clearly shown that this is not the case [48]: most of the spikes are 

due to the passage of biomass burning plumes (discussed under ammonium). 

In summary, nitrate is routinely measured in ice cores.  The difficulties in interpreting its 

concentrations have been recognised for a long time, but the study of processes over the last 

two decades has mainly raised additional questions.  As a result, there is still little 

understanding of the natural sources of nitrate to the ice sheets, or of their change over time.  

Improved modelling of all the confounding factors is urgently required to improve this 

situation, as there is undoubtedly important information about natural NOx tied up in the data. 

The long perspective – ammonium 

In Greenland ice, ammonium appears to be primarily derived from terrestrial emissions.  In 

the recent past (during the Holocene period), the dominant features of Greenland records are 

sharp spikes, typically just one snowfall wide, of high ammonium concentration that have 

been firmly associated with biomass burning [32, 33].  The identification rests on the co-

deposition of a number of chemicals that are all connected to biomass burning: organic acids 

such as formic [49] and in more recent analyses the burning marker, black carbon, and the 

biomass burning marker, vanillic acid [48].  Because the appearance of an ammonium spike 

in Greenland requires both a biomass burning event and transport of the plume to Greenland, 

identification of individual events is not useful; however, if assumptions about average 

climate can be made, it might be possible to track the overall frequency of biomass burning 
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events through at least the Holocene period [50]: this has not been attempted thus far 

however. 

On longer timescales, ammonium in Greenland shows an interesting pattern with highest 

values during the Younger Dryas (YD) cold period that occurred during the last glacial 

termination [32, 50].  One interpretation is that the ammonium increased due to increased 

biogenic emissions from North America, as the ice sheet retreated and gave way to 

vegetation.  The YD was a return to cold conditions with stronger transport and lower snow 

accumulation rates, so that the still-high emission flux would be registered as a higher 

deposition flux in Greenland.  If correct, this would suggest that strong vegetation emissions 

were already happening well before the completion of the termination. 

In Antarctica, ammonium concentrations are much lower than in Greenland, except very near 

to seabird (including penguin) colonies (elevated concentrations are observed only within a 

few km of such colonies [51]).  They are also unusual among measured chemicals in that the 

concentration recorded over a full glacial cycle in two cores [52] is inversely proportional to 

the snow accumulation rate, such that the flux is almost constant.  Only non-sea-salt sulfate 

shows a similarly flat flux over such major climate shifts.  The interpretation is that both 

ammonium and non-sea-salt sulfate are derived from marine biological activity and that this 

was rather constant with time in the production area of the Southern Ocean that affects 

Antarctic ice cores. 

Snow as a source of NOx to the atmosphere 

It has been shown that snowpacks are a strong source of NOx to the atmosphere [53-55].  The 

mechanism has been shown to be photolysis of nitrate in the snow.  The strength of the 

source is perhaps not surprising because it can be shown that the inventory per unit area of 
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nitrate in the top few cm (photic zone) of snowpacks is much higher than the inventory per 

unit area for the lowest km of the troposphere.  However, for NOx to be released it must be 

available at the surface of snow crystals, not trapped within them: this is evidently the case. 

The photochemistry of snow (of which nitrate photolysis is only one example) has been 

reviewed thoroughly and I will not repeat that material here [55].  However, the effects of 

nitrate photolysis have been observed particularly strongly at South Pole, where the very 

shallow boundary layer leads to concentrations of NO as high as 500 pptv [56], and to a 

highly oxidising environment, with high OH, and ozone production.  Even the more modest 

concentrations of NOx seen at coastal Antarctic stations seem to be dominated by snowpack 

emissions during at least the summer months [57].  Nitrate photolysis should be a significant 

source of NOx emissions at any snow covered site (including snow on sea ice and seasonal 

snow at mid latitudes).  It is unlikely to be a significant source at global scale [55] but could 

be a major influence on boundary layer chemistry at remote regions where NOx would 

otherwise be at low concentration. 

Conclusions 

This review has shown that snow can be a significant local source of NOx affecting 

atmospheric chemistry in a shallow but important skin above the surface.  However the most 

important role of snow and ice must remain its influence as a cap on exchanges that would 

otherwise occur, and this should be remembered when modelling such exchanges. 

The other major role of ice is that it provides, through ice core records, archives of past 

change in deposition of the two main compounds nitrate and ammonium, and of the long-

lived greenhouse gas N2O.  The rise of nitrous oxide in the last two centuries is clearly seen, 

while the rise in nitrate at various sites around the globe (but not yet Antarctica) should allow 
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some validation of otherwise poorly known emission inventories.  An increase in ammonium 

is not yet as clearly imprinted at high latitudes.  Care must be taken in interpreting trends, 

where transport and chemical form may also have altered with time.  There may be good 

scope for work of this sort at further sites to delineate more regional emissions, but modelling 

is most likely required to interpret the findings fully and correctly. 

Finally over long time periods, the change in N2O (low in cold periods) gives clues about 

large scale changes in terrestrial and marine emissions.  Nitrate is very hard to interpret over 

long time periods, but ammonium may provide a helpful constraint on the timing of increased 

terrestrial influence from North America coming out of the last glacial period, and on the 

(apparently small) change in marine emissions of ammonium in the relevant part of the 

Southern Ocean over glacial cycles. 
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Table 1. Estimate of total inventory of N compounds in the Greenland and Antarctic ice 

sheets.  See text for further details of the calculations.  The uncertainty for nitrate and 

ammonium is large, mainly because of the difficulty of estimating a depth and spatially-

averaged concentration from relatively sparse measurements. 

Greenland  2.8E6 km3  2.5E18 kg ice  2.8E14 m3 air  

 Mean concn  Inventory (with large ±)  

N2O  260 ppbv  0.1 TgN   

NO3
-  60 µg kg-1  30 Tg N  TOTAL  

NH4
+  7 µg kg-1  10 Tg N  40 Tg N  

Antarctica  25.4E6 km3  2.2E19 kg ice  2.5E15 m3 air  

N2O  260 ppbv  0.7 Tg N   

NO3
-  40 µg kg-1  200 Tg N  TOTAL  

NH4
+  1 µg kg-1  20 Tg N  220 Tg N  

 

Table 2. Estimate of annual budget of N compounds from the atmosphere to the Greenland 
and Antarctic ice sheets.  See text for further details.  The uncertainties are rather large, 
mainly because of the difficulty of making a precipitation-weighted spatial average from 
sparse data. 

Greenland  520 Gt a-1 ice   

 Mean concn  Deposition (with large ±)  

NO3
-  120 µg kg-1  0.015 Tg N a-1  TOTAL  

NH4
+  7 µg kg-1  0.003 Tg N a-1  0.02 Tg N a-1  

Antarctica  2288 Gt a-1 ice   

NO3
-  40 µg kg-1  0.02 Tg N a-1  TOTAL  

NH4
+  1 µg kg-1  0.002 Tg N a-1  0.02 Tg N a-1  
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Table 3.  Major ice core locations discussed in this paper, excluding Greenland and 
Antarctica. 

Site Lat / ° Long / ° Altitude / m asl Region 

Eclipse Icefield 60.51N 139.47W 3017 Yukon, western Canada 

Svalbard cores ~79N ~15W  High Arctic 

Col du Dome 45.84N 6.84E 4250 Europe/Alps 

Severnaya Zemlaya 81.52N 94.82E 760 Siberian Arctic 

Mt Muztagata 38.28N 75.1E 7010 Central Asia 

Dasuopu 28.38N 85.72E 7200 Tibet/S Asia 

East Rongbuk  27.98N 86.92E 6450 Tibet/S Asia 

Belukha 49.81N 86.58E 4062 Siberia 

Illimani 16.62S 67.77W 6300 Andes/Bolivia 
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Figure 1. N2O evolution over the last 2000 and 200 years.  Circles are from the Law Dome 

ice core and firn [58], triangles are annual averages from South Pole (courtesy of NOAA, see 

http://www.esrl.noaa.gov/gmd/ccgg/iadv/).  This is an update of a figure in [59]. 

Figure 2. Nitrate in recent decades at various sites. From the top: Greenland sites B16 

(dashed red, 73.94°N, 37.63°W) and B21 (solid blue, 80.00°N, 41.14°W) [13]; Col du Dôme 

(summer values, 5 year running mean) in the French Alps [25]; Mount Muztagata, central 

Asia (5 year running mean) [28]; Law Dome (red dashed, 66.78°S, 112.82°E) [21] and Siple 

Dome (blue solid, 81.65°S, 148.81°W) [22], Antarctica (both 5 year running means). 

Figure 3. Ammonium concentration in the Illimani core over the last 1600 years.  The authors 

[37] interpreted the rise since 1700 as being due to a modest temperature rise across the 

Amazon Basin, leading to increased ammonium emissions. 

Figure 4. N2O evolution over a glacial cycle.  The figure shows a composite spline (1000 year 

cutoff) of N2O and CO2 concentration from different polar ice cores over the last 135 ka [40], 

along with an estimate of temperature (difference from average for last millennium) from 

Dome C, Antarctica [60]. 

Figure 5. Concentrations of N2O [5], nitrate and non-sea-salt calcium (nss Ca, an indicator of 

terrestrial dust) [43] over the last 800 ka in the Dome C (Antarctica) ice core.  Also shown is 

the deuterium (δD) record, representing the temperature signal along the core. For N2O, only 

the data without any potential artefact are shown. 
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