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This is the 27th annual review published in JAAS of the application of atomic 

spectrometry to the chemical analysis of environmental samples. This Update refers 

to papers published approximately between September 2010 and August 2011 and 

continues the series of Atomic Spectrometry Updates (ASUs) in Environmental 

Analysis1 that should be read in conjunction with other related ASU reviews in the 

series namely: clinical and biological materials, foods and beverages2; advances in 

atomic spectrometry and related techniques3; elemental speciation4; X-ray 

fluorescence spectrometry5and industrial analysis: metals, chemicals and advanced 

materials6. To celebrate the 25th anniversary of the Journal of Analytical Atomic 

Spectrometry, a 25-year retrospective of ASU reviews has been published7 to 

highlight the development and evolution of atomic spectrometric techniques and their 

use in measurement applications.    

Specific to this review, in the field of air analysis there is ongoing interest in 

measuring atmospheric Hg species and evaluating procedures for the determination 

of the carbonaceous content of airborne particulate matter. In a measurement arena 

where RMs are relatively scarce, a number of useful interlaboratory comparison 

studies have been reported.  In the field of water analysis, as in previous years, the 

main areas of activity are the development of preconcentration and extraction 

procedures and elemental speciation protocols for elements such as As, Cr and Hg. 

There is increasing interest in evaluating TXRF for trace analysis. In the field of soil 

and plant analysis, sample dissolution and extraction remain a major focus of interest 

– especially methods to assess bioavailability – and there is a hint that ‘greener’ 
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approaches, using less concentrated acid, are becoming important. Especially notable 

are the continued developments in LIBS, a shift towards more widespread use of 

techniques such as HPLC-ICP-MS and synchrotron-based XRF, and growth in 

studies where multiple techniques have been applied to the same sample for trace 

element mapping or speciation analysis. Less desirable are the publication of variants 

on well-established analytical methods with marginal novelty and several instances 

where substantially similar articles appeared almost simultaneously in more than one 

journal, thus generating ‘two publications for the price of one’. It is evident that MC-

ICP-MS and LA-MC-ICP-MS are now so widely available in geoanalytical 

laboratories that applications papers, that include little of novelty from an analytical 

perspective, dominate the literature. However, this trend should not mask the vital 

research required to underpin and improve the quality of the geochemical data on 

which any interpretation is based. Another observation is the high proportion of 

analytical and applications papers with Chinese authors, reflecting the rise of atomic 

spectrometry in China over the past number of years. 

Feedback on this review is most welcome and the lead author can be contacted using 

the email address provided.  
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1 Air analysis 

 

This section highlights noteworthy areas of research and development in the analysis 

of aerosols, particulates and inorganic gases by atomic spectrometric and 

complementary analytical techniques published since the last Update1.  Developments 

in air sampling and sample preparation are discussed first, followed by advances in 

analytical instrumentation and methodologies.  

 

1.1 Sampling techniques 

Monitoring workers’ exposure to airborne particles through the use of 

personal workplace air samplers is an ongoing activity in many countries. Work is 

focused on developing new samplers and evaluating current designs and concepts 

because of reductions in exposure limit values, requirements to sample nanoparticles 

and re-evaluation of sampling conventions. French researchers8 assessed the use of 

the CIP-10R sampler (Arelco, France) to collect sufficient sample mass so that 

concentrations of respirable crystalline silica in air could be measured. This sampler 

operated at a nominal flow rate of 10 L min-1, a substantial improvement on 

historically used cyclonic samplers such as the Dorr Oliver design operating at 1.7 L 

min-1. The higher flow rate was achievable using portable pumps because this sampler 

used foam of uniform porosity to trap airborne particles, thereby generating lower 

backpressures than the filters used in cyclonic samplers. There is increasing concern 
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about the potential for worker exposure to engineered nanoparticles, i.e. particles with 

at least one dimension below 100 nm. To collect such particles, Thayer et al.9 

developed a personal thermal precipitator sampler, which used a thermophoretic force 

generated from an applied thermal gradient, orthogonal to the aerosol flow, to 

separate particles from a moving collection airstream. Collection efficiencies for test 

aerosols at a nominal 5 L min-1 were ca.100% over a particle size range of 15 – 240 

nm. Increasing the flow rate by a factor of 4 to 20 L min-1 resulted in a halving of this 

collection efficiency.  Using SEM and imaging software, it was shown that the 

particle deposition on the collection plate was generally homogeneous over a centre 

spot of 2 mm diameter. The authors suggested that this would allow a grid to be 

placed on the sampling plate for subsequent TEM analysis of the particles. Whilst the 

sampler showed promise, further work was required, most notably to test it under field 

conditions. Also a means of reconstructing, using correction factors, actual sampled 

aerosol concentrations from particle counts determined from electron microscopy 

analysis was needed. R’Mili et al.10 used a thermal precipator sampler, based upon the 

collection of particles onto TEM grids, coupled with LIBS, to demonstrate the 

possibility of real time detection of carbon nanotubes in air. Sleeth and Vincent11 

proposed a modification to the ACGIH-EN-ISO inhalable aerosol convention, which 

was derived from historical laboratory wind tunnel studies conducted at windspeeds 

typically over the range 0.5 – 4 m s-1. This modified algorithm made the convention 

more suitable for windspeeds below 0.2 m s-1 often encountered in many workplaces. 

In a tripartite endeavour, involving researchers from France, Germany and the UK12, 

sampling methods for workplace pollutants such as HCl and HNO3 mists and vapours, 

were evaluated and subsequently codified and published in an International Standard 

(ISO 21438-2:2009).  

Sampling and measurement of trace levels of Hg species in ambient air 

remains a challenge. Researchers in the USA13 tested the performance of KCl-coated 

denuders, used for sampling gaseous oxidised mercury (GOM) in the presence of co-

sampled ozone. In laboratory studies they found that denuders loaded with Hg halides 

lost between 29 and 56% of these compounds when exposed to ozone in the 

concentration range 6 –100 ppb. Collection efficiencies decreased by 12 to 30% for 

denuders exposed to 50 ppb ozone when sampling mercuric chloride. The results 

suggested that the KCl-coated denuder system, widely used over the last ten years, 

might not be as robust as previously thought. The authors recommended further 
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robustness testing, preferably under field conditions. They also recommended that 

field calibration methods be developed to allow in situ automated Hg measurement 

systems to be challenged with known GOM-spiked standards as a means of assessing 

such sampling artefacts.  Whilst these measurement systems are widely used within 

Hg monitoring networks in the developed world, elsewhere manual sampling systems 

continue to be used because of the high capital investment required. True et al. 14 

evaluated the use of hocalitesorbent tubes, widely used in workplace air monitoring 

exercises, to sample trace levels of total gaseous Hg in ambient air. In a paired field 

sampling exercise, lasting five months and involving weekly air samples, mean results 

obtained with such sorbent tubes were comparable (1.4 ± 0.4 ng m-3) with those 

obtained using an in situ measurement approach (1.7 ± 1.9 ng m-3).  The authors 

concluded that this approach could be very cost effective, especially in developing 

nations, as it employed relatively inexpensive and widely available laboratory-based 

CVAAS instrumentation. There remains a lot to understand about atmospheric Hg and 

its biogeochemical cycle. Lai et al.15 investigated several surrogate sampling surfaces 

designed to mimic the capture of airborne Hg species onto natural surfaces via dry 

deposition processes.  These surrogates included both liquid and solid surfaces such as 

deionised water, acidified water, salt solutions, quartz fibre filters (QFFs), KCl–

coated QFFs and gold-coated QFFs. The authors concluded that whilst surrogate 

surfaces could be used to measure dry deposition, extrapolating the results obtained to 

natural surfaces could be challenging!  

 Huang et al,16 developed a diffusion denuder technique for the sampling of 

molecular I species in the atmosphere. Alpha-cyclodextrin, in conjunction with a 129I 

spike applied prior to sampling, was an effective denuder coating for the efficient 

sampling of biogenic I2. Following sampling, the coating was washed off and analysis 

carried out by GC-MS following derivatisation to a 4-iodo-N,N-dimethylaniline 

adduct. Parameters such as: the amount of coating and spike applied; denuder length; 

sampling flow rates and durations; effect of relative humidity and sample storage 

intervals were investigated. Laboratory procedures involving both desorption and 

derivatisation steps were evaluated and optimised. Under optimal conditions, 

collection efficiencies were over 98% and a LOD (3 σ) of 0.17 pptv was achievable 

for an air sample volume of 15 L (30 minutes at 500 mL min-1). By replacing the 129I 

spike with a 127I spike and using multiple denuders, this sampling approach could also 

be used for the determination of ultratrace levels of radioactive I2.  
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 Evaluation of the performance of ambient air sampling systems continues to 

attract attention. Researchers in the USA 17 compared various commercially available 

air samplers designed to sample either the PM10, PM10-2.5 and PM2.5 particle fractions. 

Samplers were co-located in the field on a mobile sampling platform. The study 

design consisted of 20, 45-hour sampling exercises carried out at a number of 

locations in the USA. This particular sampling period was used to ensure that 

sufficient mass was collected for gravimetric analysis. The intra–sampler precision 

was < 8.4 %.  Brown and Keates18 examined the spatial inhomogeneity of anions in 

ambient air particulate matter collected on air filters using a drift-corrected IC 

procedure. This is a useful publication as often, in air monitoring campaigns, air filter 

samples are subdivided to allow more than one chemical assay to be performed. Their 

study highlighted the need to use as much of the filter as possible for analysis. In 

practical terms this translated to the use of filter quarters and preferably filter halves. 

Sampling mixed–phase aerosols, as in the case of diesel fume, is a challenging 

process. Swanson and Kittelson19 compared two approaches used to separate the solid 

and volatile components of an aerosol: the thermal denuder (TD) and the catalytic 

stripper . The catalytic stripper removed the semi-volatile species by passing the 

diesel fume over a heated oxidation catalyst, whereas the TD removed them by 

adsorption onto a charcoal bed following heating of the incoming airstreams. 

Comparative testing was carried out under laboratory conditions using either artificial 

test aerosols or real urban aerosol piped into the laboratory from a nearby busy road! 

With the TD approach, there were measurement artifacts which were attributed to 

formation of semi-volatile particles from nucleation process or condensation of 

vapours. No such artifacts were observed for the catalytic stripper system. The authors 

concluded that much more research was required in evaluating such systems in light 

of current and future regulatory methods that require measurements of solid particles.    

Impactor samplers, where airborne particles are sampled by impaction upon a 

target, have been used for many years to separate airborne particles into discrete size 

ranges. However it is known that upon impaction particles can sometimes bounce and 

impact downwind on subsequent targets within the sampler. As a result a particle size 

distribution that is not representative of the sampled airstream can sometimes be 

profiled.  Factors that influence this degree of bounce can include the relative 

humidity and whether the impaction target is coated or not with an oil or grease to 

minimise such bounce.  Researchers in Taiwan 20 studied the influence of relative 
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humidity on nanoparticle concentration and particle mass distribution measurements 

when using the micro-orifice uniform deposit impactor. Czech and Finnish 

researchers21 comprehensively evaluated the sampling characteristics of the original 

10-stage and 7-stage modified Berner type impactors which had lacked some 

published performance data. A Spanish research team22 showed that it was possible to 

use a Berner–type impactor at low inlet pressures to assist in the study of aerosols 

emitted from high temperature processes such as biomass combustion.   

 

1.2 Reference materials 

New reference materials are available. In the field of elemental analysis, 

IRMM has released ERM-CZ120 – a PM10 type dust RM certified for As, Cd, Ni and 

Pb with informative values for a further 40 elements. This material was produced to 

underpin analytical measurement of air filter samples carried out using the standard 

method EN 14902 (microwave digestion procedure with an ETAAS/ICP-MS finish) 

in support of assessing compliance to European air quality directive limit values. This 

material complements two other similar CRMs, NIST SRM 1648a (Urban Particulate 

Matter) and NIES CRM 28 (Urban Aerosols), thus providing a useful range of 

materials with which to assess, in particular, the performance of the critical sample 

digestion step. Size-specific RMs, especially nanoparticle size materials, are 

increasingly required for the calibration of particle sizing instrumentation. Here, 

IRMM produced ERM FD100 (Colloidal Silica in Water) with a nominal 20 nm size. 

An overview of available RMs in this arena from various vendors can be found on a 

useful website hosted by BAM at www.nano-refmat.bam.de.    

 

1.3 Sample preparation 

The risk of sample contamination during air sampling, handling and preparation of 

filters and their subsequent analysis is a recurring theme. It is therefore instructive to 

hear about approaches to minimise such risks from trace analysts working in other 

measurement fields. Bowie et al. 23 presented an overview (54 references) of sampling 

and analytical methods for the determination of trace elements in marine particulate 

matter using SF-ICP-MS. They reported methods suitable for sampling, filtration, 

digestion and trace metal analysis of particles. Wagner and Mages24 proposed the use 

of cold plasma ashing to prepare samples of particles collected onto polycarbonate 

filters for subsequent TXRF analysis. They suggested that this procedure was superior 
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to conventional acid digestion with regard to ease of use and potential for 

contamination.   

Sample preparation methods in the arena of nuclear safeguard measurements 

are highly topical. Spanish researchers25 developed a microwave digestion method for 

the extraction of 127I and 129I from solid materials for measurement by ICP-MS and 

AMS, respectively. The proposed method was considered to be faster, less labour 

intensive and to consume less sample than previous procedures. It was validated 

through the measurement of 127I by ICP-MS in a variety of CRMs encompassing 

biological, soil and sediment matrices. Average recovery against certified values was 

ca. 90% with some losses suggested as being volatile HI or I2 species. Korean 

researchers26 developed, what they claimed to be, an easy, fast and reliable 

measurement method for the quantitative determination of retained fission gases in an 

irradiated oxide fuel material. Initially a gas collection system was evaluated using Kr 

and Xe gas standard spikes resulting in optimal recoveries in the range 96–98%. An 

optimised fusion method involved fusing 0.1 g of irradiated oxide fuel with 1.0 g each 

of Ni and Sn in a graphite crucible in a helium atmosphere. To test the fusion step, 

spike recovery samples were prepared by wrapping 0.1 g of unirradiated oxide fuel in 

Al foil implanted with known quantities of Kr and Xe prior to the fusion step. 

Recoveries of these spikes were ca. 97%.       

Cairns et al.27 coupled a cation-exchange matrix separation system to ICP-MS 

to determine PGEs emitted from diesel-powered cars. Method LODs (3 σ) were 1.6 

ng g-1 for Pd, 4.3 ng g-1 for Pt and 0.4 ng g-1 for Rh. The method was successfully 

validated using BCR CRM 723, a PGE-containing tunnel dust. Tailpipe emission 

factors for the PGEs ranged from 0.02 ng km-1 for Rh to 70.5 ng km-1 for Pt and it was 

found that particle emission dropped dramatically by up to 86 % for cars fitted with a 

diesel particulate filter. Mathur et al.28 determined concentrations of PGEs in road 

dusts from the city of Hyderbad in India. A NiS-fire assay and a Te coprecipitation 

protocol were used to preconcentrate test samples prior to analysis by ICP-MS. 

Concentration ranges determined were 1.2 – 58 ng/g Pd; 1.5 – 43 ng/g Pt and 0.2 – 

14.2 ng/g Rh. The authors concluded that whilst such concentrations are above crustal 

levels and are associated with road traffic sources, they are lower when compared to 

similar studies conducted in other worldwide cities, where presuamably there has 

been more widespread use of PGE car catalysts. 
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1.4 Instrumental analysis 

1.4.1. Atomic absorption and atomic fluorescence spectrometry 

Pandey et al 29 (109 references) critically evaluated measurement methodologies 

commonly employed for the analysis of Hg species in ambient air. Typically, AFS 

and, to a lesser extent, AAS techniques were employed as detectors. Gold-based 

trapping systems were used to preconcentrate gaseous Hg0 from air samples and 

thermal desorption to liberate the analyte.  In contrast, sampling and analysis of 

reactive gaseous mercury (RGM) species and particulate bound mercury (Hgp) species 

could be hampered by reactivity of the former and extremely low concentrations, 

typically at low pg m-3 in air, of the latter. The authors suggested a number of future 

research directions: evaluation of instrument calibration protocols commonly used to 

reduce sources of bias; further development of methodologies for measurement of 

RGM and Hgp; development of hyphenated GC-based systems for the speciation of 

organo-mercury and the development of fast response real-time sensors to measure 

transient Hg atmospheric concentrations. Researchers in the USA30 compared manual 

Hgp measurements with an automatic method at a number of marine/coastal sites. 

With the manual approach, aerosol samples were collected on open-faced filters. On 

return to a laboratory the Hg was desorbed in a BrCl/HCl leach solution and 

determined by CV-AFS.  The automated approach, using the commercial Tekran 

system, involved sampling onto a quartz filter, a thermal desorption/reduction step 

and on-line analysis of the resultant Hg0 by AFS. The manual filter Hgp values were 

21% higher than those obtained using the automated system and over 85% of the 

paired data was outside the ±25% region surrounding a nominal 1:1 regression line. 

Studies such as this supported the assertion by Pandey et al.29 of a need to investigate 

further this very challenging field of ultratrace determination of Hg species in ambient 

air.    

 The use of ETAAS for the determination of trace elemental species in ambient 

air samples has largely been superseded by the use of ICP-MS. However, the recent 

development of a commercially available CS-AAS system may provide a renaissance 

in this measurement field. This technique was recently reviewed by Welz et al.31 (93 

references).  A solid sampling introduction system is available for this CS-AAS 

system and, in the opinion of this reviewer, offers a potential means of directly 
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measuring small quantities of airborne particles collected onto graphite impactor 

sampler targets for their elemental content.   

 

1.4.2 Laser-induced breakdown spectroscopy 

Gallou et al 32 evaluated the potential of LIBS for monitoring elemental species in 

emissions originating from exhaust stacks. They considered two approaches; using 

LIBS to determine the elemental composition of particles either in situ in an aerosol 

stream or collected on a filter for subsequent off-line analysis. A USN was used to 

produce CuSO4 test aerosols. In this initial work, for similar sampling conditions, 

better LODs were achieved with the direct in situ approach (15 µg m–3) compared to 

the off-line approach (60 µg m–3). Russo and his research group33 presented a useful  

overview of the current status of laser plasma spectrochemistry (46 references). 

Monkhouse34 published a substantial review of on-line techniques, including LIBS 

and related techniques, for the determination of metal species, particularly alkali and 

heavy metals, in industrial processes (474 references).  

 
1.4.3 Mass spectrometry 

1.4.3.1 Inductively coupled plasma mass spectrometry. This technique remains at the 

forefront for the routine determination of trace levels of metals captured on air filter 

samples. Hence developments that have caught the eye of this reviewer tended to 

focus on method robustness testing or the development of more  ‘exotic’ applications. 

 Brown et al.35 suggested method improvements in the use of ICP-MS,  as 

described in EN 14385, for the analysis of metals in emission test samples from 

stationary-sources such as incinerators. In particular they highlighted operational 

issues in using this standard method particularly if used potentially by less 

experienced analysts. The authors pointed out the inherent dangers of using internal 

standard elements to correct for instrumement drift, arising from test samples with a 

high TDS but which have an unknown elemental composition. To further alleviate 

effects of the sample matrix the authors presented the following pieces of common 

sense advice: matrix matching of samples and standards as far as possible; dilution of 

test samples as far as possible; randomised analysis and averaging of test sample 

digestion replicates to minimise effects of drift and the frequent reanalysis of a matrix 

matched QC solution run as a drift compensation sample. In some ways, this paper 

shed light on the difficulties in drafting and publishing standard methods where the 
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target audience may have differing levels of analytical expertise!  An improved 

method36 for the determination of a wide range of trace elements in aerosol samples 

by quadrupole ICP-MS exploited the ion-molecule reactions in a DRC system using 

ammonia as the cell gas to minimise potential isobaric interferents. 

The use of hyphenated ICP-MS techniques has been reported. A method37 to 

determine CrVI in ambient air using IC-ICP-MS involved sampling onto NaHCO3 

precoated cellulose filters in an attempt to preserve the Cr speciation. Interconversion 

occurred, however, so filters prespiked (or spiked after sampling) with known 

quantities of species-specific Cr isotopes (50Cr III and 53Cr VI) were used to correct for 

such interconversions. Filters were subsequently extracted in HNO3 in an ultrasonic 

bath for 40 minutes at 60 ºC. The method LOD was 0.08 ng m-3 (3 σ, based upon the 

repeat analysis of a 1 ng spiked filter and a nominal 24 m3 air sample). The recovery 

of an enriched CrVI spike was ca. 60% throughout the entire sampling and 

measurement protocol. Levels of CrVI in air determined in a field study using this new 

method were ca. 0.4 ng m-3. Further work was planned to evaluate the effects of 

environmental conditions (humidity and temperature) and other gaseous pollutants 

(NO2, O3 and SO2) on CrVI recovery. Researchers in Taiwan38, used LA-ICP-MS to 

investigate the elemental composition of size-segrated airborne particulate matter 

collected with an electric low-pressure impactor sampler.  They prepared calibration 

standards by spiking filters with small quantities of standard solutions. Verification 

was achieved by reanalysis of test portions of samples spiked with metals of interest 

using a standard addition approach. The LODs (3 σ) ranged from 0.02 ng for Cd to 

1.0 ng for Si. Repeat analysis of a calibrant filter gave a short-term instrumental 

precision of 3.5–17.8%. Results were compared with those from filter samples from a 

co-located sampler, which were subjected to a conventional acid digestion prior to 

ICP-MS analysis. The correlation coefficient (R2) ranged from 0.68 for Zn in PM10 

particles to 0.89 for Zn in PM2.5 particles.  

 In the potential development of an ICP-MS system for the real-time 

monitoring of airborne radioactive particles39, initial work focused on the 

optimisation of an AridusTM desolvating sample introduction system used to deliver a 

calibrant source to the plasma and the determination of a relative sensitivity factor 

between 159Tb (surrogate element of interest mimicking a radioactive element) and 
174Yb (calibrant element). A vibrating orifice aerosol generator was used to produce 

test 157Tb particles from the liquid phase, which were then sampled, mixed with dried 



 13

174Yb calibrant aerosol from the AridusTM system and analysed. Measurement 

precision was better than 17% but there was a discrepancy between the calculated Tb 

concentration, from the output of this aerosol generator, and the measured value 

determined by ICP-MS. The authors attributed such a difference to liquid sample 

losses within this vibrating orifice aerosol generator system. 

  A useful overview of the status of ICP-MS for the determination of isotopic 

ratios for provenancing purposes was presented by researchers from the University of 

Ghent40 (162 references). More specifically, Chinese researchers41 reviewed (110 

references) developments in the application of isotopic measurements to the study and 

fate of Hg species in the environment. French workers42 investigated the Hg isotopic 

composition in urban  topsoils and showed that it was possible to evaluate the 

anthropogenic contribution relative to background geochemical sources using relative 

isotope abundances. In an interesting application43, the measurement of the foliar and 

soil uptake rates of Hg was successfully accomplished within a controlled 

atmospheric chamber using Hg(0)g enriched in the 198Hg stable isotope.  

 

1.4.3.2 Other mass spectrometry techniques. The status of nearly real-time in–situ 

mass spectrometric techniques for measuring particles in the atmosphere can be 

found in reviews by Lin et al.44 (181 references) and Harris et al.45 (219 references). 

A new Aircraft-based Laser ABlation Aerosol MAss spectrometer (ALABAMA)46 

was capable of measuring the chemical composition and size of aerosol particles in 

the 150–900 nm range. The instrument used a 532 nm laser to detect and size 

incoming particles, a pulsed 266 nm laser to ablate and ionise the particles and a 

bipolar, Z-shaped TOF mass spectrometer to detect both positive and negative ions. 

The 140 kg instrument fitted into a standard 19-inch rack making it one of the 

smallest and lightest in its class. A new aerosol chemical speciation monitor47 could 

characterise and monitor the mass and chemical composition of non-refractory 

submicron particulate matter in near real time. It was based on the technology of 

Aerodyne aerosol mass spectrometers that are widely used for ambient air research 

programmes. This new instrument was tailored towards more routine regulatory air 

monitoring programmes and hence operated at a reduced sensitivity and provided a 

lower time resolution compared to the Aerodyne aerosol mass spectrometer. It also 

did not measure size distribution, helping to reduce the complexity of the system.  

Nevertheless the instrument LOD was ca. 0.2 µg m-3 for a nominal 30 min sampling 
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integration. It was deployed in three different field campaigns and in one campaign 

was operated continuously and unattended for eight weeks providing time integrated 

(30 minute resolution) chemical concentrations of particulate ammonium, chloride, 

nitrate, sulfate and organic species in air.   

 Mass spectrometry can be used for source apportionment studies. Heal 

et al.48, in the first study of its kind in the UK, used AMS to determine 14C abundance 

ratio in fractionated (total, organic and elemental) airborne carbonaceous particles as a 

means of distinguishing fossil and contemporary carbon sources.  The study showed 

that ca. 50 % of the UK urban background PM2.5 carbon is of contemporary origin and 

also noted the ubiquitous presence of biogenic soluble organic carbon, particularly for 

air masses passing over land. Cao et al.49 used IRMS to determine the stable carbon 

isotopes (12C, 13C) in aerosols collected from 14 Chinese cities. The isotopic 

signatures indicated that coal combustion and vehicular emissions were the major 

sources of carbonaceous aerosols. 

 

1.4.4 X-ray spectrometry 

Characterisation of airborne particulate matter using X-ray techniques continues to 

be a fertile area for research. Van Grieken and Worobiec50 summed up their work, 

conducted over the last decade or so, looking at the characterisation of indoor 

particulate pollutants in museums and other special heritage buildings, using a variety 

of X-ray based analytical techniques.   

Hurst et al.51 developed a procedure for the XRF determination of metal-

containing particles collected on filters, from welding processes, using a WDXRF 

system and employing UniQuantTM, a fundamental parameter software package 

removing the need to prepare special calibrant filters. Average recoveries for Cr, Fe, 

Mn and Ni in 16 test welding fume filters samples from the UK Health and Safety 

Laboratory’s WASP proficiency testing scheme were 97 –112% of the reference 

values obtained by ICP-AES. The RSDs were 3–10% for elemental filter loadings in 

the range 5 – 500 µg per filter.  Results for real welding filter samples agreed 

favourably with those obtained with an external calibration approach using calibrant 

filters.  In contrast, Turkish researchers52 used real filter samples as calibrant filters. 

Filters were initially screened by EDXRF and raw elemental counts logged. The 

filters were then subjected to INAA or, in the case of Ni and Pb, AAS analysis. The 

calibration function was completed by entering the filter loading value for each 
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element back into the XRF calibration software. As a check, further filters analysed 

with the now calibrated XRF instrument were reanalysed by INAA/AAS and paired 

data were found to agree to within 20%. An EDXRF procedure53 for the analysis of 

size-segregated aerosol samples collected with impactors gave results comparable 

with those obtained by PIXE analysis.  

 The interrogation of single particles using X-ray based techniques allows 

elemental composition to be identified in order to understand their pollution sources 

and potential environmental fate. Two X-ray microbeam techniques54, µ-PIXE and µ-

SRXRF, gave very good agreement for measurement of Pu/U ratios in microscopic 

particles containing actinide elements. Instrumental resolution also allowed Pu/U 

distributions in particles down to a few µm to be studied. In two closely aligned 

papers, a Chinese research group55-56 described the development of a µ–XRF system 

employing polycapillary X-ray optics for the quantitative analysis of single aerosol 

particles. There was a plateau at the focal point of the X-ray beam with a diameter of 

ca. 21 µm within which the X-ray beam intensity was homogeneous with a dispersion 

of <3%. This was deemed helpful for the interrogation of smaller particles and the 

quantification of elements within such particles. Geng et al.57 characterised individual 

aerosols collected during an urban haze episode in Korea using a quantitative low-Z 

ED-EMPA technique and compared the results with those obtained on particles 

collected on non-haze days. It was noted that whereas on non-haze days the nitrate-

containing sea salt and mineral dust particles in the < PM 2.5 significantly 

outnumbered the sulfate–containing particles, the reverse occurred on haze days. This 

finding suggested that different particle sources or formation mechanisms for fine 

particles exist during such haze episodes.  

Solid-state speciation analysis of airborne particles using XAFS is a powerful 

tool and is increasingly being used to increase our knowledge of the origins, 

transformations and fate of particles in the atmosphere. Osan et al.58 undertook the 

speciation of Cu and Zn in size-fractionated airborne particulate matter using SRXRF 

and XANES techniques. The SR techniques were sufficiently sensitive that species 

could be identified in particles collected in impactor samplers arising from airborne 

concentrations as low as 140 pg m-3! The Cu and Zn in particles of <2 µm occurred 

typically as nitrate and sulfate. Tirez et al.59 used XANES to evaluate the performance 

of the Zatka selective leaching procedure to differentiate between “soluble”, 

“sulfidic”, “metallic” and “oxidic” fractions of Ni in airborne particles. Whilst the use 
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of XANES was able to confirm the potential of this Ni fractionation approach, it was 

less suitable for identifying Ni species within individual fractions. This limitation was 

due to the lack of availability of pure phase Ni compounds required to generate 

XANES reference spectra and the collinearity between the spectra of Ni species 

within a defined fractionation group e.g. soluble NiSO4.6H20  and Ni(NO3)2.6H20. For 

airborne particulate matter collected in the vicinity of a steel mill, Ni included in a 

spinel structure, NiFe2O4, was identified as the principal Ni species. Airborne 

particulate matter collected at rural locations, away from anthropogenic sources, 

showed a 50:50 distribution between soluble and oxidic Ni species. Elzinga et al.60 

explored the use of µ-XAS in characterising the speciation of Fe in particles, 

originating from urban dust samples, as current thinking is that this dust source may 

contribute a substantial Fe load into the oceanic biogeochemical cycle where it is 

required for phytoplankton growth. Zelenay et al.61 used a combination of STXM and 

XAS to investigate the in-situ water uptake and release in sub-µm sized ammonium 

sulfate particles.  

Readers are directed to our companion Update for further information on 

developments and applications in X-ray spectrometry 5. 

 

1.4.5 Combustion and photometric based techniques 

The carbonaceous content of aerosols remains difficult to quantify. The effects of co-

sampled metals (salts) on the quantification of elemental (EC) and organic carbon 

(OC) in diesel exhaust particles were studied with the widely used thermal-optical 

approach62. Real ambient air filter samples and laboratory-generated test filter 

samples (diesel fume sampled initially onto filters, followed by sampling metal 

aerosols nebulised from pure metal salt solutions) were used. Co-sampled metals 

changed the CO2 evolution profiles of carbon-containing particles, catalysed the 

oxidation of EC and the charring of OC and hence generally reduced the measured 

EC/OC ratios. Transition metals were more active than alkali and alkaline-earth 

metals but preliminary results suggested that the effects of metals were not simply 

additive. Therefore it was difficult to predict the activity of different metals and their 

resultant impact on EC/OC analysis for any particular filter sample.  In similar work, 

Chinese researchers63-64 measured EC/OC ratios from PM2.5 air filters collected in 

Beijing using thermal-optical methods. Sampling artifacts were characterised and 

their influence on the measured OC concentrations presented, as were different 
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artifact reduction approaches. Results from the intercomparison of thermal-optical 

methods, including the effects of charring correction protocols, were reported and 

interested readers should consult the paper. 

 Elemental carbon is sometimes reported as black carbon, a strongly light-

absorbing component, although the two are not exactly the same, since they are 

operationally defined by different measurement systems. Quantification of black 

carbon is possible as there is a relationship between the amount of light absorbed and 

the extent of the blackness of a filter use to trap black carbon. Such relationships are 

exploited in commercial measurement systems such as the aethalometerTM, multi-

angle absorption and light transmission photometers. However such measurement 

systems can be expensive so Cheng et al.65 proposed a low cost methodology 

involving the digitalisation of the blackness of filters, using a simple office scanner in 

conjunction with Adobe photoshop softwareTM. When the digitalised colour scans 

were compared against EC values determined on the same filters using a thermal-

optical approach, the resultant high degree of correlation could be exploited to 

generate a calibration model. Further “unknown” filter samples were analysed by both 

methodologies and the average differences were ca. 10%.  Quick on the heels of this 

work, Ramanathan et al.66 took this approach a step forward by demonstrating the use 

of camera technology and associated software embedded in modern mobile phones as 

a viable low-cost measurement system for potential use in the field. Quincey et al.67 

presented further datasets, from recent UK air monitoring programmes, to support the 

validity of the relationship he published in 200768 between OECD black smoke 

measurement index values and black carbon values via aethalometer measurements. 

This allows historical monitoring data, generated with a now defunct measurement 

technique, to be compared to current monitoring data generated with a newer 

measurement technique.  

Whilst instrumental techniques dominate this air measurement arena, 

photometric–based techniques can still play a meaningful role in measuring chemical 

species in the atmosphere. Exposure to Pb found in old paint and subsequently 

released as particles into soils and house-dust remains a concern, particularly in the 

USA, given the high percentage of timber dwellings and the widespread historical use 

of leaded paints. A rapid, inexpensive, field method69 for the determination of Pb in 

paint samples involved leaching the sample in 25% (v/v) HNO3, filtering and forming 

a turbid solution of lead molybdate by mixing the filtrate with solid potassium 



 18

molybdate in 1 M ammonium acetate. The Pb concentration was determined using an 

inexpensive and portable turbidity unit.  Comparison between the proposed method 

and one involving a microwave-assisted digestion and ICP-AES analysis gave good 

agreement (R2 =0.97).  At the federally regulated level of 1 mg cm-2, this proposed 

method met the performance requirements of the US EPA national lead laboratory 

accreditation programme.   Gilfedder et al.70 described a cheaper and widely available 

alternative method to NAA for the determination of total and non-water soluble I 

species in atmospheric aerosols.  Filter sub-samples were combusted at 1000 ºC, and 

the liberated I2 collected in water and quantified using UV/VIS spectrophotometry. 

The method LOD was 6 ng absolute (3 σ), equating to ca. 3 pmol m-3 and the 

precision was better than 5% RSD. The non-water-soluble I fraction was determined 

by difference between a total I value and a water-soluble I value determined by ICP-

MS.  The solubility of Fe in atmospheric particulate matter is important to assess its 

potential bioavailability to ocean phytoplankton. Using a colorimetric Fe(II)-ferrozine 

complex assay, Upadhyay et al.71 assessed the performance of differing extractant 

solutions on Fe solubility measurements in atmospheric particulate matter. Results for 

the air samples they tested indicated that the soluble Fe fraction in PM2.5 was ca 1 % 

and ca 0.2 % in larger particles. In this study the soluble Fe fraction in PM2.5 was 

present almost exclusively as FeII. In contrast, for larger particles  Fe III was a 

substantial component (20 – 60 %) of this soluble Fe fraction, consistent with a soil 

particle origin.  

 

1.4.6 Other instrumental techniques 

A wide range of other instrumental techniques, some old, some mature, some 

forgotten, some rediscovered and some emerging are being used for the elemental, 

isotopic and morphological analysis of airborne particulate matter.  

Lucarelli et al.72 reminded readers, and particularly those brought up on ICP-

MS, of the powerful attributes of PIXE for trace analysis, in particular the PIXE-PIGE 

combination for the unrivalled analysis of mineral dusts.  Italian researchers73 

assessed the contribution to PM10, PM2.5 and PM1.0 airborne levels in Rome arising 

from periodic Saharan dust episodes. The bulk composition of dust samples was 

examined using PIXE and individual particles were interrogated using SEM-EDS. 

This work is important for ascertaining the relative contribution from natural dusts 
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episodes on urban air quality, which in Europe, as in many other parts of the world, is 

increasingly been regulated.  

In K0-INAA analysis of foundary air filters74, Compton scattering effects 

elevated the spectra baseline and hindered the identification of some photopeaks. 

However, the application of a Compton suppression system improved the LODs for 

elements such as Fe and Zn.  

Pointurier and Marie75 evaluated µ-Raman spectroscopy and SEM to identify 

the chemical forms of U in µm-sized particles.  Initial work demonstrated that 

characteristic Raman bands for several U compounds relevant to the nuclear industry, 

such as UO2, U3O8 and UO2F2, could be identified in <1–30 µm particles. The method 

was tested in a nuclear facility where dusty surfaces were swabbed with adhesive 

carbon disks, which were analysed by SEM-EDS to locate and select particles 

containing U for further analysis. The sample holder was transferred to the µ-Raman 

instrument and the selected particles identified using landmarks. Particles as small as 

5 µm could be surveyed and analysed efficiently but smaller particles could not be 

located. Wilkinson et al.76 described the use of a new table-top SEM-EDS system for 

the interrogation of urban particles collected on filters and reported on the 

performance characteristics of the instrument for this particular application.  

The chemical characterisation of airborne particles may require a battery of 

instrumental techniques. Jiang et al. 77 have characterised the chemical composition of 

nm-sized elemental carbon particles emitted from diesel vehicles using SEM-EDS, 

MALDI-TOF-MS, FTIR spectroscopy and 13C NMR spectroscopy. The particles 

emitted from a diesel-powered bus, typically 50 nm spherical particles with smooth 

surfaces and with an OC/EC mass ratio of 0.07 ± 0.01 were deduced to be an 

aggregate of a new fullerene - C36(OH)2. 

  It is always welcome to learn about new instrumentation. Martin et al.78 have 

demonstrated a new instrument for the in-situ measurement of atmospheric I species. 

The instrument titled ROFLEX (Resonance and Off-Resonace Fluorescence by Lamp 

Excitation) was optimised in laboratory experiments and achieved a LOD of 1.2 pptv 

for I atoms and a LOD of 13 pptv for I2 (S/N =1, 10 minute integration). The system 

was subsequently deployed in a field campaign resulting in the first concurrent 

observation of ambient mixing ratios of I atoms and molecules in the 1–350 pptv 

range.   
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1.4.7 Intercomparison studies  

Papers that compare the performance of different methods and techniques or different 

laboratories are always most welcome in the field of air analysis given the inherent 

challenges in developing robust QA/QC procedures. Ashley et al.79 undertook a 

preliminary interlaboratory evaluation of a standardised ICP-MS method (ASTM 

D7439) for the determination of trace elements in workplace air filter samples. 

Performance evaluation filters were prepared by spiking filters with 21 elements of 

interest at nominal filter loadings of 0.5 or 5.0 µg/filter and were circulated to 20 

laboratories. Resultant interlaboratory RSDs ranged from 0.073 to 0.273 with the 

majority of data below the design goal of 0.20 RSD. Recoveries from the spiked 

filters ranged from 88 to 120%. Further interlaboratory evaluations were proposed and 

this reviewer recommends, if possible, the use of real matrix samples to assess the 

performance of the key digestion step. Ashley et al.80 also undertook an 

intercomparison exercise to ascertain the performance of a field-based fluorescence 

method for the determination of trace levels of Be in polyvinyl alcohol wipes used in 

surface swabbing monitoring exercises. Test wipes were spiked with a BeO CRM 

material to provide spiking levels in the range 0.03 to 5.6 µg Be/wipe. Eight 

laboratories took part and interlaboratory precisions ranged between 4.5 and 16%. 

Calculated spike recoveries were in the range 90–99% for dry wipes and 87–93 % for 

wetted wipes, after correction for water content. 

Gerboles et al.81 presented the results from an elegantly designed 

intercomparison exercise for the determination of As, Cd, Ni and Pb in PM10 using the 

EN 14902 standard method, which involves a microwave-assisted digestion and 

subsequent analysis using ETAAS or ICP-MS.  Test samples distributed to 13 

national reference laboratories were a spiked solution, an aliquot from a digested 

(blind) CRM, an aliquot of the same (blind) CRM undigested and two real PM10 air 

filter samples. Reference values were the spike values, values obtained from the CRM 

certificate or, in the case of the real air filter samples, values obtained via a robust 

statistical analysis of returned participant data. About 93% of all returned test results 

met data quality criteria of the EU air quality directive, although this dropped to 76% 

for the analysis of real air filter samples only probably as a result of digestion and 

contamination issues during sample workup.  

Brown et al.82 compared polarised EDXRF and LA-ICP-MS approaches for 

the determination of trace metals in PM10 air filter samples with the reference ICP-MS 
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approach described in standard method EN 14902.  The low systematic bias observed 

was not unexpected since these alternative approaches were calibrated using filter 

samples, previously ‘certified’ using the ICP-MS reference method, i.e. the 

calibrations were not independent! Given that the XRF and LA-ICP-MS approaches 

only interrogated a small area of a filter sample, it is not unsurprising to see random 

variability in such data sets arising from “nugget effects” (discrete particles trapped 

on filter samples that are enriched in one or more metals of interest compared to other 

collected particles) or “hotspot” effects (variability of particle deposition on filters 

which is a function of sampler design employed). In contrast, with the reference ICP-

MS approach, the whole filter sample is generally analysed following an acid 

dissolution step. The authors rightly concluded that further instrumental and method 

improvements would be required before such alternative procedures could compete 

against the reference method approach.  

 

2  Water Analysis 

This section highlights new developments and improved analytical methods that use 

atomic spectrometry for the determination of trace metal(loids) and their associated 

elemental species in water published since the last Update1. 

 

2.1  Sample preparation 

The preservation and stabilisation of As species in water samples has been of great 

interest. Kumar and Riyazuddin83 critically reviewed (65 references) current methods 

for the preservation of inorganic As species in environmental water samples. They 

concluded that filtration, refrigeration at 4 °C and storage in the dark were primary 

requisites, and noted that there is no universal preservation agent, so that each sample 

matrix has to be tested for stability before analysis. This conclusion was amply 

demonstrated by a study on the stabilisation of thioarsenates in iron-rich waters84, 

which showed that the determination of these compounds could be problematic. 

Methods used for their preservation in sulfidic waters containing little Fe failed in the 

presence of elevated concentrations of Fe (from 1 up to 500 mg L-1). It was 

recommended that these samples be flash frozen with dry ice at -79 °C with a minimal 

head space volume after the addition of a 0.01 M neutralised EDTA solution. Under 

this procedure the species were stable at -18 °C for up to 11 days. A different 

approach was followed by Watts et al.85, who showed the utility of ion-exchange 
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cartridges to selectively retain and preserve As species during field sampling prior to 

analysis in the laboratory. 

A review (54 references) of state-of-the-art methods23 for the clean collection 

and processing of marine particulate matter for trace metal determination covered 

sampling, size-fractionated filtration and digestions of samples for ICP-MS analysis 

 

2.2  Preconcentration, extraction and separation procedures 

Methods capable of selectively preconcentrating analytes above the LOD of 

instrumental techniques continue to be of great interest. These tend to be based on 

solid or liquid phase extraction or precipitation techniques.  

 

2.2.1  Solid phase extraction 

Solid phase extraction continues to be a very important methodology for 

preconcentrating analytes due to its flexibility and the ease of coupling to most atomic 

spectrometric instrumentation. The selectivity of the solid phase can be modified by 

adsorbing different chelating or complexing agents onto the surface. The choice of 

this modifier was often the only novelty in many of the articles published but 

sometimes interesting combinations of methods crop up. In one example, silica was 

modified with an ionic liquid86 (1-methyl-3-butylimidazolium bromide) for the 

preconcentration of PbII. The modified silica retained PbII between pH 5-7, which  

was then eluted with 1.0 M HCl. The preconcentration factor was 185 for a 100 mL 

sample, the LOD with FAAS was 0.7 µg L-1 (n=10) and the linear range was between 

0.1 to 0.75 µg mL-1 with an RSD of 4.2% at the bottom of the calibration curve. 

In the diffusion gradient in thin films (DGT) technique, a time-integrated 

passive sampling technique, the dissolved analytes diffuse through a hydrogel of 

known thickness and bind to an analyte-specific binding phase underneath. These 

devices can be used in situ for aquatic monitoring and are reported to reduce analyte 

contamination or loss. A titanium-based adsorbent 87 accumulated AsIII, AsV and SeIV 

quantitatively, but <20% of SeVI was absorbed. The analytes were eluted using 1M 

NaOH with an efficiency of 75.2 (AsV) to 88.7% (SeIV) . The ICP-MS LODs after a 4-

day deployment were 0.01 µg L-1 for inorganic As and 0.05 µg L-1 for SeIV. 

Total dissolved and labile concentrations of Cd, Cu, Ni and Pb88 were 

determined in Black Sea waters. The total dissolved fraction was retained on silica 

spheres modified with 3-aminopropyltrimethoxysilane and the labile fraction was 
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determined after sample collection using the DGT technique. The LODs ranged from 

0.002 µg L-1 for Cd to 0.02 µg L-1 for Pb for the total dissolved fraction. The ratios 

between labile and total dissolved fractions were in the range of 0.2 (Cu) to 0.8 (Ni). 

Yebra-Biurrun and Carro-Marino et al. took a different approach89 to the same 

problem. To obtain the total dissolved trace metal fraction, seawater was filtered 

(<0.45 µm), and immediately acidified in the field, the sample was then transported to 

the lab at 4°C. The total dissolved fractions of Cu, Mn and Zn were retained on a 

mini-column packed with Serdolit Chelite Che resin after on-line sonolysis of the 

samples. The analytes were then eluted with 110 µL of 3M HCl. The labile metallic 

fraction was obtained by pumping unacidified filtered (<0.45 µm) seawater through 

the column in the field, the analytes being eluted from the columns in the laboratory 

with the same eluent as used previously. The authors found that Mn and Zn were 

mainly in the labile fraction and that Cu was mostly present in the total dissolved 

fraction. 

Methods for the determination of total trace element concentrations in 

seawater continue to be published. Lee et al.90 determined total Cu, Cd, Fe and Pb in 

open ocean water by preconcentrating volumes as low as 1.5 mL off-line onto beads 

of nitriloacetate resin and analysing the resulting solution by ID-ICP-MS. The IDA 

was used to correct for the low recoveries of between 5% for Cd and 90% for Pb. The 

LODs were between 0.07 nM for Fe and 6 nM for Cd. The ICP-MS analysis of highly 

saline formation water from petroleum exploration91, involved the preconcentration of 

Cd, Co, Ni, Pb, U, V and Zn on mini-columns packed with Toyopearl AF-Chelate 

650M iminodiacetate resin. Iron was retained on Toyopearl 8 hydroxyquinoline resin 

and Mo on a silica column functionalized with 8-hydroxyquinoline. Any 

organometallic compounds were retained on a C18 sample pretreatment column. 

Sample volumes of 7.5 mL were used for quantification. Recoveries were affected by 

the sample salinity, which ranged from 16.6 to 166‰. Whereas multi-isotopic 

elements could be quantified by IDA, thereby negating any salinity effect, mono-

isotopic elements had to be quantified by the method of standard additions. The LODs 

were between 0.0007 (Cd) and 0.041 (Mn) ng mL-1.  

Rare earth elements were isolated from seawater using 2,6-diacetylpyridine 

functionalised Amberlite XAD-4 92 and from Lake Baikal samples 93 using syringe-

driven chelating columns prior to ICP-MS analysis. However, Kim et al.94 cautioned 

that the use of chelating columns could cause large fractionations of heavy REEs 
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compared to light REEs. They suggested that this was due to unidentified 

complexation of heavy REEs with organic substances naturally present in the samples 

and recommended that either the extraction had to be quantitative (>95% recovery) or 

IDA be used when large matrix effects were expected. 

Gadolinium-based MRI agents were extracted from surface and waste water 

samples using a bis-(2-ethylhexyl)-phosphate-coated RP C18 support95. Using this 

SPE material a 100-fold enrichment with >95% recovery for the contrast agents was 

possible. The results were in good agreement with direct ICP-MS measurements and 

the authors suggested that the method could be applied when less sensitive analytical 

techniques were available. 

A review96 (164 references)  on the use of nanoparticles in sample preparation 

covered all fields of analytical chemistry, not just trace element analysis. The authors 

noted that the nanoparticles typically have four main uses: as sorbent agents, as an 

inert support for a sorbent such as a complexing agent, as magnetic particles and as an 

ionisation agent for SIMS. A more specific review by Pyrzynska97 (94 references) 

considered the use of carbon nanostructures for separation, preconcentration and 

speciation of metal ions. Carbon nanotubes, the most common form of carbon 

nanostructure reported in the literature, were used for the preconcentration of AuIII 98 

and PdII 99 from water samples. Karatapanis et al.100 used silica-modified magnetic 

nanoparticles as a support for cetylpyridinium bromide for the preconcentration of Cd, 

Co, Cu, Mn and Pb complexed with 8-hydroxyquinoline. The nanoparticles with the 

adsorbed metal complexes attached were separated using a magnetic field and the 

complexes desorbed using acidic methanol and analysed by ETAAS. The LODs were 

between 2.3 ng L-1 (Cd) and 15.3 ng L-1 (Mn) spike recoveries 93-113% and RSD  

<3.6% (n=6).  

Biological materials often have useful active sites that can be exploited for 

analytical chemistry purpose. For instance penicillium digitatum has been 

immobilised on pumice stone for the determination of Co, Fe and Ni in water101. In 

most applications the organisms are dead, but Tyburska et al.102 showed that Se 

uptake by the bacterium Lactobacillus plantarum immobilised on silica was far 

superior if the bacteria were alive. Up to 66% of the Se was adsorbed on the external 

surface of the cell walls, whereas the remainder was actively accumulated inside the 

bacteria. To obtain a quantitative recovery, the stationary phase was dried and the Se 

quantified using a continuous powder introduction system coupled to an MIP-AES 



 25

instrument. A LOD of 52 ng g-1 for Se in the stationary phase was achieved. This 

corresponded to 0.06 ng mL-1 in the sample solution with a preconcentration factor of 

1000. The precision was 3% RSD (n=5). 

An exciting development is the use of lab-on-a-chip technology to construct 

mini-SPE manifolds. A microdialysis probe has been coupled to ICP-MS using a 

chip-based system103 with an interior channel functionalised with 

polymethylmethacrylate for the analysis of saline solutions. The LODs were 5.86 to 

76.9 ng L-1 for Co, Cu, Mn, Ni and Pb with an enhancement factor of 5 for a 15 µL 

injection. A glass microfluidic device with 3 micro-channels packed with controlled 

pore glass functionalised with 8-hydroxyquinoline104 was selective for Cd, Co and Ni, 

as might be expected for this functional group. When the system was operated at a 

flow rate of 20 µL min-1 and coupled to an ICP-MS, the LODs were between 0.006 ng 

mL-1 for Co and 0.009 ng mL-1 for Ni. Results for NRCC CRMs CASS-2 (Near Shore 

Seawater) and SLEW-1 (Estuarine Water) were in good agreement with the certified 

values. 

 

2.2.2  Liquid Phase Extraction 

Cloud point extraction (CPE) methods for the isolation of trace elements from 

solution continue to be developed, although the number of new methods is 

diminishing as other approaches come into vogue. The growing number of methods 

that do not require a chelating agent is welcomed because the chelating agents are 

frequently synthesised and so are not commercially available. Methods without a 

chelating agent have been reported for AuIII 105 and Ni106. Interestingly, CPE was 

successfully coupled with CV-AFS107  for the determination of Hg in waters and 

environmental RMs (GBW07310 (River Sediment) and GBW10020 (Citrus Leaf)). 

The use of surfactants during CPE of the analytes led to foaming. However, the use of 

SnCl2 reduced formation of foam and a two-stage gas-liquid separator could be used 

to remove any foam produced. Using dithiazone as the complexing agent, an 

enhancement factor of 29 for a 45 mL sample was achieved, resulting in linearity 

between 0.05 to 5.0 ng mL-1 and a LOD of 5 pg mL-1. At a concentration of 0.5 ng 

mL-1 the RSD was 5.2% (n=7). 

 A timely review on the use of ionic liquids for liquid phase extraction of trace 

elements and their species has been published108 (73 references). In this case, ionic 

liquids refers to organic salts, composed of organic cations (such as imidazolium, 
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phosphonium, pyrrolidinium, pyridinium or quaternary ammonium) and their anions 

(either hexafluorophosphate, tetrafluoroborate, alkylsulfates, alkylsulfonates, chloride 

or bromide). They are becoming more widely used as they are considered a ‘greener’ 

technique than the use of organic solvents. The chelating agents used to bind the 

metals before extraction are the same or very similar to those used for CPE so novel 

methods can be generated quite quickly. These liquids can be easily adapted to a 

number of modes of use, such as DLLME and single drop microextraction. The fact 

that these liquids have effectively no vapour pressure made them suitable as 

functional groups for SPE.   

 Dispersive liquid-liquid microextraction is a microextraction technique also 

well adapted for use with ETAAS. Its use was reported for the determination of MoIV 

in tap and waste waters109 and Au in waters110. In the determination of Cr, Cu, Ni and 

Zn in waters with ICP-AES detection111, the problem of injecting organic solvents 

into the plasma was overcome by evaporating the solvent phase after separation and 

redissolving the analytes in 1 M HNO3. Jia et al. 112 adapted this technique for use 

with ICP-MS for the determination of Bi, Cd, and Pb in water samples. Flow injection 

with a methanol/water carrier was used to introduce the CCl4 (17 µL) containing the 

metal NaDDTC complexes into the plasma. Despite the disadvantage of needing to 

add oxygen to the plasma, the high enrichment factors of 460 for Cd to 900 for Pb for 

a 5 mL water sample resulted in LODs of 0.5 (Cd) to 4.7 (Bi) ng L-1. Spike recoveries 

were  at least 83% at the 50 ng L-1 level with RSDs <6.7% (n=10). 

 

2.2.3  Precipitation Methods 

Bayon et al. 113 developed an improved co-precipitation method for the determination 

of REEs  as well as Ba, Cu, Mn, Ni,  Sc, Th, U, V, Y and Zr, using iron hydroxide as 

the precipitating agent and correction by Tm addition. Quantitative recoveries were 

obtained for all elements except Ba and Cu and good agreement was achieved with 

the certified and literature values for the elements investigated. Unfortunately LODs 

for the target elements with ICP-MS detection in either medium or high-resolution 

mode were not reported.  In a novel method for the determination of Ag in water 

samples, reported114 in Chinese with an English abstract, Ag was precipitated as its 

oxide after the addition of NaOH and collected on a microcolumn packed with silica 

beads. The precipitate was eluted using 10% v/v HNO3 for FAAS detection. An 

enrichment factor of 25 from a sample volume of 5.4 mL was achieved. The LOD was 
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0.6 µg L-1,  the calibration was linear over a range of 2-150  µg L-1 and the precision 

was 2.0% RSD at the 40  µg L-1 level (n=11). 

 

2.3  Speciation 

Recent reports on Sb speciation in natural waters all involved non-chromatographic 

methods. Two were based on the use of DLLME for the determination of SbIII and 

total Sb115-116. Both used N-benzoyl-N-phenylhydroxylamine as the chelating agent. 

The only other method of note117 used a hollow-fiber-supported liquid membrane for 

the extraction of chelates of SbIII with NaDDC onto 1-octanol immobilised into the 

pores of a polypropylene hollow fiber. Total Sb was determined after the reduction of 

SbV with L-cysteine. Under optimised conditions, the LOD was 0.8 ng mL-1 for a 160-

fold enrichment. The RSD (n=5) for a 50 ng mL-1 SbIII standard was 6.2%. 

 As noted in the ASU speciation Update4, methods for the speciation of As are 

now well established and despite the fact that such analyses are carried out routinely 

in many laboratories, the development of new analytical protocols is still fertile 

ground. A review118 (84 references) of methods for the speciation analysis of As in 

water samples by HPLC-ICP-MS over the last decade covered the important topics of 

interference mitigation and removal, either mathematically or using collision cells, 

and analytical validation. An interesting study 119 explained an apparent discrepancy 

between XAS and IC-ICP-MS results in the analysis of sulfidic waters by 

demonstrating that the (oxy)thioarsenites detected by XAS were extremely unstable 

and could rapidly be convert to (oxy)thioarsenates by oxygen present in the air or in 

the water used to dilute the samples. The problem was solved by carrying out the 

entire chromatographic process inside a glove box and by diluting the samples in an 

anoxic alkaline medium. The selective extraction and separation of inorganic As 

species using low pressure SPE columns is still of interest. In the period covered by 

this review, molecular recognition technology gels120, magnetic nanoparticles121, 

polyanaline122 and single walled carbon nanotubes123 were.used as packing materials 

for this purpose. In addition, the use of ionic liquids for LLME124 and the combined 

use of an alumina microcolumn and CPE125 have been reported. Tian et al.126 

preconcentrated AsIII, AsV, DMA and MMA on a minicolumn packed with MnO2 

prior to HPLC separation. Because AsIII is rapidly converted to AsV on this solid 

phase, they also selectively preconcentrated complexes of AsIII with APDC on 

cellulose fibre. After HG-AAS detection, the LODs were 0.019 (AsIII), 0.33 (AsV), 
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0.39 (MMA) and 0.62 (DMA) µg L-1 for a 20 µL injection after preconcentration 

from a 2.0 mL sample. 

 The determination of Cr species in water is entirely dominated by non-

chromatographic methods. An anionic ionic liquid was immobilised onto a PVC 

microcolumn for the retention of CrVI 127 after elimination of CrIII with a cation-

exchange column. In a method that combined DLLME with LA-ICP-MS for the 

determination of CrVI128, the chelate that CrVI formed with APDC was extracted and 

dried.  Microdroplets (7 µL) of the extraction medium were laser ablated from a 

polystyrene substrate. The ICP-MS detection gave a LOD of 0.11 µg L-1
 using  the 

52Cr isotope and 0.31 µg L-1 using 53Cr. Chen and co-workers reported two methods 

for the determination of CrIII and CrVI based on the thermal separation and detection 

of the Cr species by combined ETV-ICP-MS.  In one study129, the  thermally stable 

and volatile chelate of CrIII with 1-phenyl-3-methyl-4-benzoyl-5-pyrazone was 

vapourised at 1000 °C whereas CrVI was retained in the graphite tube. In the second 

study130, 8-hydroxyquinoline was used as a chemical modifier to form a complex with 

CrIII that was volatile at 1100 °C. For a 10 µL sample injection, the LOD of the 

second method (0.013 ng mL-1) was better than that of the first  (0.031 ng mL-1). The 

precision was 5%  (RSD) at a concentration of 1.0 ng mL-1 (n=9). In a sequential CPE 

method involving selective extraction of CrIII and CrVI followed by ICP-AES 

detection131, the high extraction efficiency of the method resulted in LODs 

comparable to those of IC-ICP-MS methods using DRC–based instruments. The 

LODs for 30 mL samples were 0.02  and 0.05 ng mL-1 for CrIII and CrVI, respectively. 

The precision was 2-4% (RSD) in the concentration range 10–40 ng mL-1 (n=6). 

 Methods for the Hg speciation analysis of water samples included an 

interesting non–chromatographic method which involved the functionalisation of 

cellulose fibers with L-cysteine to trap and preconcentrate the Hg species in a mini-

column132. Discrimination between Hg2+ and MeHg+ was achieved by changing the 

atomisation mode of the CV atomic fluorescence unit used. In cold atomisation mode 

only Hg2+ was seen, whereas the flame/ heat mode gave a total Hg signal. The MeHg+ 

concentration was obtained by difference. The use of DLLME for the extraction of 

Hg2+ and MeHg+ complexed with DDTC into CCl4
133, gave enrichment factors of 138 

and 350 for MeHg+ and Hg2+, respectively, for 5 mL sample and LODs of 0.0076 and 

0.0014 ng mL-1, respectively. The solvent was evaporated and the residue re-dissolved 

in the HPLC mobile phase before separation and ICP-MS detection.  
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 The chemical speciation of OTC has been reviewed134 (218 references) As 

with As speciation, these analyses are carried out on a routine basis and most of the 

novelty is in the preconcentration and sample preparation phase. A rapid method (7 

minute GC separation) for the determination of OTC combined SPME with GC-ICP-

MS135. A baker’s yeast has been proposed as a suitable solid phase extractant136. 

 Multi-element methods are always welcome as the effort required to carry out 

speciation analysis is still considerable. A method for the determination of Br and I 

species in drinking water by IC-ICP-MS 137 used an ICS-A23 column to separate the 

species present with a mobile phase of 0.03 M ammonium carbonate. The LODs of 

0.032 (BrO3
-) 0.063 (Br-), 0.008 (IO3

-) and 0.012 (I-) µg L-1were more than sufficient 

to determine that over 36 % of the samples had BrO3
- above the Chinese drinking 

water limit of 10 µg L-1. 

 

2.4  Instrumental Methods 

  

2.4.1  Atomic adsorption spectrometry  

Inclusion of a variable magnetic field for Zeeman background correction in the 

ETAAS determination of a number of elements in water and sludge samples138, 

improved the linearity from 1 order of magnitude to up to 3 orders of magnitude.  

 When gold nanoparticles were used as a chemical modifier for the 

determination of As and Sb in saline solutions139, the analytes were stable in the 

graphite tube at temperatures of up to 1100 °C. The LODs of 2.3 and 3.0 µg L-1 for As 

and Sb, respectively,.were sufficient for measurement of the elements in seawater. 

 The F concentration in drinking waters was determined using ETAAS with a 

commercially available HR continuum–source AASinstrument140. The F was 

determined as GaF after the injection of 500 µg Ga into the graphite tube as a 

molecule forming agent. The use of sodium acetate and RuIII nitrosyl nitrate as 

modifiers meant a maximum pyrolysis temperature of 550 °C could be used with an 

optimum molecule forming temperature of 1550 °C. The spike recovery was 97–

106%. There was good agreement with results obtained using an ion selective 

electrode. The LOD as F was 5.2 pg. 

  

2.4.2  Atomic emission spectroscopy 
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Most of the innovation reported in the period covered by this Update has been in the 

use and development of tungsten coil atomic emission spectrometry. A single coil 

instrument used to detect Co in a polluted water RM141 may become a useful portable 

instrument for monitoring polluted samples in the field142, especially as dual coil 

instruments143 have been reported to boost sensitivity by a factor of between 2 (Cr and 

Yb) and 70 (Ag and Cu). At present the instrumentation appears unable to detect trace 

elements in unpolluted waters. 

 Another promising “portable” atomic emission source is the electrolyte 

cathode atmospheric glow discharge, in which a discharge is ignited between a metal 

anode and the surface of an electrolyte solution with the sample capillary acting as the 

cathode. The LODs reported in a Chinese language paper144  were 1.95 and 0.008 mg 

L-1for Mn and Na, respectively.   Water samples have even been analysed for Cd and 

Na using an 18 W discharge driven by an ac power supply145. The LODs were 0.09 

and 0.04 mg L-1 for Cd and Na, respectively. 

  

2.4.3 Vapour generation techniques 

Vapour generation remains an important method for augmenting the sensitivity of 

atomic spectrometric methods for a select group of elements. Although the technique 

is mature there is still some space for innovation, one being the development of a 

“lab–on–a–valve” manifold for Hg CV generation with a microscale reaction 

chamber and gas liquid separator146. 

 Photochemical vapour generation, in which an organic acid and UV light are 

used to generate volatile species, was used for the determination of Co147 with a 

vapour generation efficiency of 23-25%. Using AFS detection, the LOD was 0.08 ng 

mL-1 and the precision (RSD) for a 20 ng mL-1 standard was 2.2 % (n=11) . The same 

technique was reported for the vapour generation of Hg148 but the touted advantage of 

it being more environmentally friendly compared to the use of borohydride of SnIICl2 

seems dubious. Gil et al.149 reported the more concrete advantage that this method can 

reduce Hg2+, as well as MeHg+, EtHg+, PhHg+ and thiomersal (the sodium salt of 

ethyl(2-mercaptobenzoato-(2-)-O,S) mercurate(1-)) to Hg0 with equal efficiency. 

  

2.4.4 X-ray fluorescence spectrometry  

In the determination of CrIII and CrVI, Whatman P81 and DE81 ion exchange 

celluloses were used for the selective separation and preconcentration of the Cr 
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species prior to energy dispersive PIXE analysis150. EmporeTM cation and anion 

exchange disks were used151  in series for the same purpose after pH adjustment to pH 

3 of a 100 mL water sample. Each disk was dried then analysed using WDXRF 

spectrometry. Absolute LODs were 0.17 and 0.16 µg for CrIII and CrVI, respectively, 

and the spike recovery at the 50 µg L-1 level was 94-114%. 

 Preconcentration methods typically used with FAAS or ICP-AES detection 

are now being combined with TXRF spectrometry for the detection of some trace 

elements in waters. For example, AsIII and AsV in water samples were retained on 

alumina slurry and quantified by TXRF spectrometry152. The preconcentration factor 

was 100 and the LOD 0.7 µg L-1 for a 50 mL sample preconcentrated onto 10 mg of 

alumina. Mercury determination in waste water by TXRF spectrometry is a challenge 

due to the high vapour pressure and low boiling point of the element that could 

produce evaporative losses during drying onto the reflector. Margui et al.153 overcame 

this problem by complexing Hg with thiourea before deposition of the sample on the 

reflector. The advantage of TXRF spectrometry over ICP or flame techniques that the 

analytes do not require eluting from the stationary phase, could be useful during the 

analysis of traditionally difficult–to–elute elements such as the PGEs. 

 

2.4.5 Inductively coupled plasma mass spectrometry 

There has been very little reported innovation in the development of ICP-MS 

instrumentation. All the innovation appears to be in the application of existing ICP-

MS technology. 

 Total dissolved and particulate concentrations of trace elements were 

determined in Antarctic sea by ICP-MS using a high resolution instrument154 after 

filtration of the sample through <0.2 µm and >0.5 µm filters. As would be expected, 

particulate metal concentrations in sea ice were higher than those in snow and 

seawater suggesting a signal from Antarctic shelf sediments.  

 The ultratrace determination of Pu in marine samples155 was achieved using a 

MC–ICP-MS instrument combined with the use of a combination of an AG1-X8 and 

UTEVA®/TRU extraction columns. The instrumental LOD was 0.02 fg mL-1 with an 

absolute LOD of 0.11 fg. This method allowed the 239Pu and 240Pu concentrations and 

their atom ratios to be determined in just 15-20 L samples of NW Pacific ocean water. 

 With the proliferation of MC–ICP-MS instruments, the isotopic analysis of 

environmental matrices is a growth application area. The accuracy and precision of 
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238Pu determination in water samples was improved by combining ICP-MS with α–

spectrometry156. The activity of 238Pu was calculated from the amount of 239Pu and 
240Pu obtained from ID-ICP-MS analysis, together with the intensity ratio of 238Pu: 239, 

240Pu obtained by α–spectrometry. The bias (7%) and total uncertainty ( 5–12%)  were 

better than values obtained previously (up to 44%). The use of MC–ICP–MS for the 

precise determination157 of the open ocean 234U: 238U ratio gave a long term 

reproducibility of better than ±0.3‰ (2σ) for the measurement of δ234U. The average 

δ234U value of 146.8 ± 0.1‰ (2σ, n=19) constrained the vertical mixing times of the 

ocean to <1000 years. The challenge of obtaining accurate B isotope ratios was 

addressed in three papers. Louvat et al.158 overcame the heavy memory effects 

associated with this element by using a DIHEN,. Sensitivity was improved by 2-5 

times and the wash times were 10 times shorter than when using a double pass spray 

chamber. The reproducibility for δ11B was ±0.25‰ (2σ) for seawater and coral 

samples. Guerrot et al159 considered matrix separation to be necessary before B 

isotope ratio analysis, as the seawater matrix, even when diluted 100–fold could cause 

an offset in the results of up to –7‰. When B was separated from the matrix using an 

Amberlite IRA-743 column, the overall method reproducibility was ±0.4‰ (2σ). For 

a double pass spray chamber with a PFA microcentric spray chamber, wash out times 

were <20 minutes. Of interest for readers without a MC instrument is the paper by 

Vogl et al.160 who managed to determine B isotope ratios in water and food samples 

with a single–detector instrument. By using a quartz cyclonic spray chamber, and a 

PFA micronebuliser working in free aspiration mode, the wash out time could be 

reduced to <6 minutes. The B was isolated from the matrix in a 3–step 

chromatographic separation using one column packed with AG50W-X8 and two 

columns in sequence packed with Amberlite IRA-743. The repeatability of the δ11B 

measurements was 0.2 – 0.8‰ in low resolution mode and 0.3–0.5‰ in medium 

resolution mode. Another challenging element is Hg due to its low environmental 

concentrations and well–known memory effects. Chen et al.161 developed a 

chromatographic preconcentration method for Hg from dilute solutions. The Hg was 

isolated from the sample on an AG1-X4 resin. The excess L-cysteine had to be 

digested with BrCl which in turn had to be neutralised with NH2OH.HCl before 

sample introduction. A variation of 2.4‰ in δ202Hg was measured in the analysis of  

16 natural water samples with Hg concentrations ranging from 0.9 to 15600 ng L-1. 
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Both mass–dependant and mass –independent fractionation of Hg isotopes occurred in 

natural waters. 

 

2.4.6  Laser-based Spectrometry 

Laser–ignition–assisted spark–induced breakdown spectroscopy has been developed 

for the determination of Hg in water162. The Hg2+ ions were electrodeposited onto a 

copper plate and a laser pulse used as an ignition source prior to spark–induced 

breakdown spectroscopy. This allowed a reduced discharge voltage with an improved 

discharge stability to be used. The LOD was 2 µg L-1. 

Very few laser techniques at present are capable of detecting trace elements at 

natural unpolluted concentrations. However, the combined ETA-LEAFS method of Le 

Bihan et al.163 for the determination of Hg at trace levels gave  a LOD of 10 ng L-1 for 

a 10 µL sample.  Measurements were made at 253.652 nm using 0.1 M oxalic acid as 

matrix modifier,. 

Techniques typically associated with liquid phase atomic spectroscopy have 

been tested with the aim of improving the sensitivity of LIBS. Zhong et al.164  coupled 

a USN with LIBS for the detection of Mg in pure water to achieve a LOD of 0.242 mg 

L-1. Unal et al.165 coupled continuous flow HG with LIBS to determine Sn in water 

with a LOD of 0.3 mg L-1. 

 

3 Analysis of soils, plants and related materials 

This section highlights noteworthy areas of research and development in the analysis 

of soils, plants and related materials by atomic spectrometric and complementary 

analytical techniques published since the last Update1 

 

3.1 Sample preparation 

 

3.1.1 Sample dissolution and extraction 

A new automated method for the isolation of U from environmental samples166 

coupled a multi-position LiBO2/LiBr fusion system to extraction chromatography 

with commercial UTEVA® resin. Excess lithium arising from the flux was flushed 

from the resin with 20 mL of 3 M HNO3 prior to elution of U in 10 mL of 0.1 M HCl 

for quantification by ICP-MS. Measurement of a 233U yield tracer and results for 

analysis of CANMET RM CLV-2 (Spruce Needles), IAEA 384 (Lagoon Sediment) 
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and NIST SRM 2709a (San Joaquin Soil) suggested that the method recovered >93% 

of U present. 

A considerable number of articles dealing with the pre-treatment of samples 

for quantification of Np and/or Pu by ICP-MS have appeared. A flurry of papers by 

Qiao et al. described variants on the use of a FIAlab-3500bTM system for the 

automated sequential–injection–based anion-exchange separation of Np167, Pu168 or 

both169-170 from solid samples. The optimised methods offer huge savings in time 

relative to traditional radiochemical separations, but there still remains a need to dry 

the final eluate on a hot plate and reconstitute in 0.5 M HNO3 to remove HCl prior to 

introduction to the instrument. Other new methods for isolation of Np171 or Np and 

Pu172 could be used with both ICP-MS and -spectrometry.   

Researchers continue to optimise methods of acid digestion for particular 

analytes or types of sample. A HNO3-H2O2 mixture was recommended for 

measurement of Zn in Pakistani soils173; HCl-HNO3-HF gave best performance for the 

digestion of mastic (plant resin from the Mediterranean evergreen shrub Pistacia 

lentiscus)174; and HF-HClO4-HNO3 was required to determine total K content in soils 

from Papua New Guinea175 because aqua regia extracted only 66%, and HClO4-

HNO3 only 25%, of the K obtained with the optimal acid mixture.  

The application of microwave-assisted methods for extraction in Hg speciation 

analysis has been reviewed176 (59 references). A central composite design of 

experiments177 assisted researchers in optimising a microwave-based method suitable 

for aqua regia extraction of soil from a former industrial site. To reduce the amounts 

of concentrated acids used in the digestion of botanical samples, other workers178 

modified the atmosphere within closed microwave vessels. Digestion under air, argon, 

and various pressures (5, 10, 15 and 20 bar) of pure oxygen was compared, for 2, 3, 7 

and 14 M HNO3. Oregano served as a test material. Efficient digestion of a 500 mg 

sample could be achieved in 3 M HNO3 under 5 bar of O2. Concentrations of Al, Ca, 

Fe, K, Mg and Na obtained using the method, with quantification by ICP-AES, were 

in excellent agreement with certified values for BCR CRM 62 (Olive Leaves) and 

NIST SRMs 1515 (Apple Leaves), 1547 (Peach Leaves) and 1575a (Pine Needles).  

Microwave-induced combustion was recommended179 for digesting humic acids 

extracted from forest soil in a method for the determination of Br, Cl and I by IC or 

ICP-MS. 
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Ultrasound-assisted extraction methods for Ag and Au180 prior to 

determination by ETAAS have been developed using a suite of RMs. A mixture of 

25% v/v HNO3 + 25% HF v/v proved optimal for the extraction of Ag, whilst 25% 

v/v HNO3 + 25% v/v HCl was preferred for the extraction of Au. An alternative 

extractant, 0.6% (m/v) thiourea in 2% v/v H2SO4, was also recommended for both 

analytes because extraction times could be reduced to 10 minutes for some matrices, 

rather than the 20 minutes required with the acid mixtures, and waste was less toxic. 

Methylmercury and inorganic Hg were extracted from BCR CRM 580 (Estuarine 

Sediment) into 1+1 methanol-HCl 181 and measured by IC with ICP-MS. The 

determination of AsIII and AsV in harbour sediment182  involved extraction into a 1+1 

mixture of 0.5 M H3PO4 and 0.1 M NH2OH.Cl followed by HPLC-HG-AAS analysis. 

However, one group of researchers183 was extremely sceptical about the effectiveness 

of ultrasound-assisted extraction, at least when applied to dried, powdered plant 

samples. Ultrasonic extraction using a variety of extractants, including water, HNO3, 

EDTA, the surfactant CelLytic P™ and the enzyme lignin peroxidase, gave no better 

recovery of Cd or Cu from plant samples than simple magnetic stirring. It was 

suggested that previously reported improvements resulted from the rupture of cell 

walls by osmotic tension when dried samples were immersed in aqueous solutions. 

Work has continued to refine extraction methods for the determination of 

mobile or available elements in soil. Matula184 compared three extractants (water, 

ammonium acetate and the Mehlich 3 mixture) and two analytical techniques 

(colorimetry and ICP-AES) for the measurement of available P. Marked differences 

were found not only between the reagents, which is expected, but also between the 

techniques – for example the mean measured concentration of water-soluble P was 14 

mg kg-1 by ICP-AES but 9.6 mg kg-1 by the colorimetric method – highlighting the 

need for standardised methodology in this area of analysis. Vasile and Tanase185 used 

four different extraction procedures to determine mobile form of Cd, Ni and Zn in 

BCR CRM 483 (Sewage Sludge Amended Soil). They too concluded, unsurprisingly, 

that the nature of the extractant affected the amounts of analytes measured. Duzgoren-

Aydin et al.186 evaluated six extraction methods for use in routine environmental 

monitoring programmes and recommended cold extraction in 0.5 M HCl in tandem 

with microwave-assisted total digestion to determine the more labile metal fraction. In 

contrast, Huang et al.187 investigated the possibility of eliminating chemical 

extractions altogether by measuring the metal pool available to plants by means of 
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stable isotope dilution. Soil suspensions were spiked with 112Cd and 206Pb and shaken. 

Aliquots of the mixture removed at different times (from 1 minute to 25 days) were 

filtered, and their 111Cd/112Cd and 208Pb/206Pb ratios measured by ICP-MS. Amounts 

of isotopically exchangeable metals were compared with analyte concentrations in 

conventional single and sequential extracts.  

Physiologically-based extraction tests are used to estimate metal solubility in 

the human gastro-intestinal tract following ingestion of plants or soils. Li et al.188 

applied a precursor of the unified bioaccessibility method189 to assess the availability 

of Cu and Zn in the mouth, stomach and small intestine following ingestion of 

decoctions (boiling water extracts) of plants used in traditional Chinese herbal 

medicine. A novel aspect of the work was inclusion of a simulated biomembrane to 

represent the barrier between gastrointestinal tract and blood. Some traditional Indian 

medicines190 composed of plant-derived material and inorganic compounds had 

extremely high concentrations of toxic elements (up to 304 g g-1 As, 10 mg g-1 Hg 

and 36 mg g-1 Pb) extractable in a two-stage process simulating stomach and intestinal 

conditions . More than 80% of As and Pb species but <1% of the Hg species were 

bioaccessible. It was claimed that ingestion of some of these substances, at doses 

typically prescribed, represented a significant risk of metal poisoning. Beeston et 

al.191 developed a mathematical particle diffusion model to describe the desorption of 

metals from soils undergoing leaching with simulated gastric fluid. The study showed 

that analytes that have very similar solid:extractant distribution coefficients in batch 

experiments may display very different leaching profiles due to diffusion-limited 

processes. 

Le Bot et al.192-193 developed a two-step sequential extraction for the 

determination of bioaccessible and pseudototal metal concentrations in dust wipes as a 

means to assess health risk arising from human exposure to metals in house dust. Step 

1 involved addition of 1.4% HCl, 15 minutes sonication and then 1 hour extraction at 

37 °C. Step 2 was a conventional acid digestion of the residue.  

Parallel extraction of soil samples with different reagents has been 

proposed194 as a time-saving alternative to sequential extraction and was used to study 

Se speciation in soil extracts by HPLC-ICP-MS. The Se extraction efficiencies of six 

reagents, and stabilities of Se species therein, were assessed and three – ultrapure 

water, 0.1 M phosphate buffer at pH 7 and 0.1 M NaOH – were selected. These 



 37

reagents were applied to soils with total Se concentrations between 210 and 1560 g 

kg-1 to estimate the water-soluble Se, exchangeable Se, and Se bound to organic 

matter, respectively.

The fractionation of As in soil by sequential extraction combined with 

measurement of arsenate and arsenite in extracts by HPLC-ICP-MS195 has been 

proposed as a useful means of speciation analysis, especially where As concentrations 

are too low for application of X-ray absorption techniques. A novel seven-step 

procedure was designed with particular attention to maintaining the AsIII and AsV 

states during extraction, for example by selective complexation of AsIII or removal of 

redox-active matrix elements such as iron. Changes in As speciation and 

distribution196 in individual sediment grains during sequential extraction were studied 

by µ–XRFS. A strong association between As and Fe in grain coatings survived 

treatment with 0.5 M NaH2PO4 (step 1) even though 66% of As was removed, but 

disappeared after step 2, which targeted the iron oxyhydroxide phase. The study found 

evidence of re-precipitation and of attack on non-target mineral phases, underlining 

the operational nature of sequential extraction procedures. A dynamic flow-through 

extraction system197 was used to study the effects of soil additives on As fractionation. 

The extractograms obtained suggested that MnO2 addition may decrease As leaching 

rates from contaminated soil. 

The week or so needed to carry out the full BCR sequential extraction 

procedure can be considered a drawback so new approaches have been proposed in 

order to reduce the time requirement greatly. A microwave procedure198 could be 

completed in only 22 minutes but involved a change of reagent in step 3 (5 M acetic 

acid replaced 1 M ammonium acetate) and omitted the advisory residual step. Results 

for Cd, Cr, Cu, Ni and Pb in BCR CRM 701 (Lake Sediment) agreed with certified 

values except for Ni in step 2, Cr in steps 2 and 3, and Cu and Pb in step 3. Amounts 

of analytes extracted from freshwater and marine sediment samples by conventional 

and microwave extraction were also comparable according to a paired t-test at 95% 

confidence interval Another approach199 involved packing 0.5 g sediment and 1.0 g of 

sea sand (the dispersing agent) into a 10 mL syringe, through which 25 mL 0.11 M 

acetic acid in step 1; 25 mL 0.1 M hydroxylammonium chloride in step 2; and 10 mL 

hot 8.8 M H2O2 then 25 mL 1.0 M ammonium acetate in step 3 were drawn using a 

vacuum manifold. Results similar to target values were obtained for BCR CRMs 601 
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and 701 (Lake Sediments) in steps 1 and 3, but not in step 2. Additional data200 have 

been published on amounts of Mo extractable from the Slovakian CRMs S-VM (Soil 

Eutric Cambisol), S-SP (Soil Rendzina) and S-MS (Soil Orthic Luvisol) by the 

revised BCR sequential extraction. A study of lagoon sediments from Lagos, 

Nigeria201 re-iterated that the revised BCR procedure gives different results from the 

original protocol in step 2.  

Systematic errors arising from analyte absorption on filter papers202 used in 

pre-treatment procedures for environmental samples have been quantified. Losses 

ranging from 15% (Fe) to 27% (Cd) occurred when an aqua regia digest of soil was 

filtered. The authors recommended that filtration be replaced with other approaches 

such as centrifugation whenever possible. 

 

3.1.2 Preconcentration procedures 

Numerous analyte preconcentration procedures have appeared since our last Update1. 

Those intended for application to the analysis of soils, plants or related materials, or 

which used relevant CRMs in method validation are summarised in Tables 1-3. Table 

1 covers various types of liquid and surfactant–assisted extraction, Table 2 

precipitation methods and Table 3 SPE. These methods are undeniably useful in 

laboratories where instrumentation is limited to techniques with relatively poor LOD. 

However, concerns remain that not all studies are fully validated by analysis of CRM 

and that, where CRM are used, they are not matched to the sample in terms of matrix 

and element concentration levels. 

 

 

3.2 Instrumental analysis 

 

3.2.1 Atomic absorption spectrometry 

Sardans et al.203 have reviewed recent advances in, and future prospects for, the 

application of ETAAS to the analysis of soils and sediments (with 191 references).  

Workers in Argentina204 used self-reversal background correction to establish 

a method for the determination of Pb in airborne particles by ETAAS that was tolerant 

of up to 0.01 M of Si arising from the sample matrix. A related group205 used self-

reversal ETAAS to measure the Pb in sediment, sludge and soil with slurry sample 
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introduction. The LOD were 0.025 g g-1 at 217.0 nm and 0.1 g g-1 at 283.3 nm, 

with RSD <8.2% for n = 5. 

Slurry and solid sample introduction methods were used: in the measurement 

of Mn and Pb in sediment by FAAS with a slotted tube atom trap206; for the 

determination of Cd and Pb in soils and sediments by ETAAS using a permanent 

mixed Ir-Nb modifier207; and for the measurement of Cd and Pb208 in soil with a flame 

furnace atomiser and CaCO3 or KHF2 as chemical modifiers. In the measurement of 

five elements in soils by solid sampling ETAAS209, best results were obtained with 

mixed Pb-Mg(NO3)2 modifier for Cd, Pb, and Zn; NH4F for Cu; and tungsten 

permanent modifier plus Mg(NO3)2 for Cr. A method210 involving the 

electrodeposition of palladium from a single drop of modifier solution onto a graphite 

platform was successful for the determination of Hg in solid samples of soils, 

sediment and plants by ETAAS. 

Articles described the performance of a coupled HG-FAAS instrument with 

integrated atom trap for the determination of Ge and Sn211 and Ni212. The trap, which 

has been previously reported213, consisted of a combination of a water-cooled single 

silica tube and a double-slotted quartz tube. In-situ preconcentration in the trap for 2 

minutes yielded 10-, 200- and 14-fold enhancements in sensitivity for Ge, Ni and Sn, 

respectively. The procedures developed were tested by analysis of a suite of RMs, 

including coal fly ash, soils, sediments, and water, and then applied to real samples. 

 

3.2.2 Atomic emission spectrometry 

Compared to the use of an atmospheric pressure MIP, use of a reduced pressure 

argon MIP emission source214 for elemental analysis gave better LODs ranging from 

2.9 ng mL-1 for Cu to 33 ng mL-1 for Zn. Satisfactory results were obtained for the 

analysis of NIST SRM 2710 (Montana Soil) and IAEA 336 (Lichen).  

Replacing the desolvation system of a USN with a pre-evaporation tube215 

improved the performance of ICP-AES for the analysis of complex matrices. At a 

sample uptake rate of 0.3 mL min-1 the sensitivity and LOD were enhanced roughly 

four-fold when a pre-evaporation tube heated to 400 °C was inserted between the 

USN and plasma torch in place of the conventional desolvation assembly (heated U 

tube, condenser and membrane desolvator). Loss of Hg in the heater/condenser was 

eliminated and plasma robustness was improved. In analysis of NIST SRMs 2710 and 
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2711  (Montana Soils), 83% of results agreed with certified values when the Ar 

emission line at 763.511 nm was used as an internal standard and calibrants were 

prepared in 2% HNO3. This avoided the need to add an internal standard or to 

reagent-match the standard solutions.  

There has been continued interest in sample introduction procedures for ICP-

AES. An optimised method for slurry sample introduction216 suitable for sewage 

sludge used a sample concentration of 0.2% w/v and 5% HNO3 + 0.005% Triton X-

100® as stabiliser. Calibration could be performed with aqueous standards. Results 

obtained were statistically similar to those from analysis of acid digests of the same 

samples and to certified values for RTC CRM 007-040 (Sewage Sludge). Masson217 

successfully determined P in plant RMs by ETV-ICP-MS. He used a computer-

controlled ETV unit and introduced CHClF2 into the furnace during the heating cycle. 

This allowed the analyte to be vaporised at 1200 °C thereby eliminating matrix 

interference effects. Replicate analysis of 2 mg test portions gave precision <10% 

RSD  (n = 5) and a LOD of 30 g g-1.  

An article in Japanese with English abstract218 described a type of portable 

atomic emission spectrometry in which a liquid electrode plasma was used to analyse 

1 M HCl extracts of soil.  In tungsten-coil AES142, the poor LODs for elements with 

emission lines below 400 nm when using a 15 V, 150 W coil harvested from a slide 

projector bulb were improved substantially by use of a 24 V, 250 W coil from a 

commercial light bulb. Sensitivity enhancements of up to 2000-fold were reported, 

and elements such as Mg and Ni, which were previously undetectable, had LODs less 

than 1 mg L-1. A portable instrument incorporating a hand-held CCD spectrometer 

gave results close to target values for NIST SRM 1643e (Trace Elements in Water), 

except for Rb, but performed less well for analysis of NIST SRM 2711 (Montana 

Soil). A more robust instrument with an aluminium, rather than glass, atomisation 

cell219 was also described. Although tungsten-coil AES clearly has considerable 

potential for field analysis of aqueous samples, the methods needed to prepare soil 

samples for analysis – 2 hours in a block digestor at 100 °C with HNO3 – may prove 

difficult to transfer out of the laboratory! 

Determination of Cl in plants by an axially-viewed ICP-AES instrument220 has 

been reported for the first time; an argon-filled spectrometer and VUV wavelengths 

were used. A relatively mild sample digestion regime (extraction in 4% HNO3 at 95 
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°C for 90 minutes) was applied to minimise losses of Cl. However, because these 

conditions were insufficiently vigorous to oxidise carbohydrates in the matrix, 

spectral interference from residual C occurred. This was overcome by use of matrix-

matched standards containing 4% v/v HNO3 and 0.15% w/v sucrose. The instrumental 

LOD at the most sensitive wavelength, 134.7 nm, of 0.041 mg L-1 was similar to those 

previously-reported for ICP-AES methods for Cl determination in various matrices 

and corresponded to a method LOD of 16 mg kg-1 dry weight. Recoveries of Cl from 

three NIST and 14 ASPAC RMs were 100 ± 13%, except for 67% from NIST SRM 

8433 (Corn Bran) and 78% from ASPAC 41 (Mung Bean Leaves). 

 

3.2.3 Atomic fluorescence spectrometry 

Two articles described methods for the rapid simultaneous determination of As, Bi, Te 

and Se in soil221 and tea leaves222 by multi-channel HG-AFS. Although the 

applications, and cited authors, differed in the two studies, there was an uncanny 

similarity in the text describing the development of the analytical methods. In both 

cases a four-channel AFS instrument was used and optimal performance was obtained 

with 0.3% m/v thiourea, 1.5 % m/v KBH4, 10 % v/v HCl, 200 mL min-1 carrier gas 

flow rate, 900 mL min-1 shield gas flow rate and a viewing height of 4 mm. 

The use of HPLC-HG-AFS in speciation analysis continues. Improvement in 

the LOD for measurement of SbV in oxalic acid extracts of soil223 from 0.3 to 0.07 g 

L-1 was achieved by using post-column on-line reduction with L-cysteine. A method 

for the separation and determination of five As species224 – arsenite, arsenate, MMA, 

DMA and roxarsone (a poultry feed additive) – in soil, plant, feed and chicken 

manure by RP-HPLC-HG-AFS with a NaH2PO4:CH3OH solution containing 

tetrabutyl ammonium bromide as mobile phase and gradient elution has also been 

described (in Chinese with English abstract).  

An interesting approach for separation of volatile As species225 involved a 

combination of a short packed cotton column and cryotrapping. The column was 

placed in a specially-designed manifold, immersed in liquid nitrogen, and arsines 

(either synthetic standards generated on-line or arising from samples) were collected 

from a stream of He. The cold cotton column was then allowed to warm and the 

trapped species were released, in order of volatility, into the AFS instrument. Using 

this approach, AsH3, CH3AsH2, (CH3)2AsH and (CH3)3As could be separated and 
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measured in sediment samples with LODs ranging from 2.5 to 11 pg, and RSD < 5% 

(n = 5). The precise role of the sorbent in the separation process was unknown, 

although the authors speculated that the presence of amino groups on the cotton may 

be important. However, use of temperature ramping alone did not provide adequate 

separation of trapped volatile arsenicals. 

 

3.2.4 Inductively coupled plasma mass spectrometry  

Two comprehensive and authoritative reviews featured ICP-MS. Husted et al.226 

described approaches for multi-element and speciation analysis in plants by a range of 

atomic spectrometry techniques, with particular emphasis on the contribution of ICP-

MS to plant metallomic research (310 references). Beauchemin227 focussed 

exclusively on applications of ICP-MS to environmental samples including, but not 

limited to, plants and soils (243 references).   

Ogawa et al.228 recommended NH3 as the reagent gas for use in a DRC when 

determining Cr and Fe by ICP-MS in rock, soil and water samples. An optimal flow-

rate of 0.6 mL min-1 NH3 suppressed or eliminated interferences due to polyatomic 

argon ions and there was no formation of clusters between NH3 and Cl. A Chinese 

collaboration found that introduction of O2 to a DRC at a flow rate of ca. 2 mL min-1 

removed problems associated with the determination of Cd in samples rich in Mo and 

Zr229 and of Hg in samples rich in W230. In both cases, interfering oxide or hydroxide 

species were converted to higher oxidation oxides. Excellent agreement with certified 

values was obtained for a range of GBW soil and sediment CRMs for which analyte 

concentrations had previously been overestimated. 

Comparisons between ICP-QMS and SF-ICP-MS have illustrated that use of 

the latter, more expensive, approach is not always necessary. Tsai et al.231 developed 

an ICP-QMS method to measure 226Ra in water and sediment based on BaSO4 

coprecipitation and use of the -emitter 133Ba as a yield tracer. The LODs (0.02 mBq 

L-1 for water and 0.10 Bq kg-1 for sediment) represented a substantial improvement 

over those obtained by the standard analytical method of radon emanation followed 

by liquid scintillation counting. Results agreed well with those from SF-ICP-MS 

(correlation coefficient = 0.982) and with the target value for SRM 4357 (Ocean 

Sediment). Clausen et al.232 assessed the suitability of several instruments for 

measurement of W in soil and water from military small arms firing ranges in the 
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USA. They too concluded that ICP-QMS was fit-for-purpose. The major challenges in 

the analysis were memory effects and lack of suitable CRMs, although the former 

could be reduced using a desolvating fluoropolymer sample introduction system. 

Stable isotope measurement by MC-ICP-MS continued to increase in 

popularity. Studies relevant to the global cycling of Hg41 have been reviewed (110 

references). A collaborative project based around new facilities at Imperial College 

London233 developed an improved double-spike MC-ICP-MS method that involved 

the addition of 64Zn and 67Zn, acid digestion, then ion-exchange sample clean-up, to 

estimate the isotopic pool of plant-available Zn in soil. Takagi et al.234 conducted a 

detailed evaluation of the influence of matrix elements Al, Ca, Fe and Na on the 

measurement of Pb isotope ratios. Concentrations >10 mg kg-1 (>1 mg kg-1 for Al) 

caused significant bias and it was necessary to separate Pb from the sample matrix by 

bromide complexation and anion-exchange chromatography before analysis of soil, 

dust, and blood. The method developed was used in a preliminary study, focusing on 

two children, which suggested that house-dust was an important source of Pb 

exposure for these individuals.  

Duester et al.235 described a multi-element ETV-ICP-MS method for 

measurement of Ag, Al, Sb, Sn, Ti and Zn in engineered nanoparticles that associated 

with leaves of the aquatic plant Lemma minor during an incubation experiment. A 

simple, two stage heating programme was used (400 °C then 2200 °C). The method 

could be calibrated with aqueous standards and gave recoveries in the range 85 to 

116% for analysis of eight elements in GBW 07602 (Bush Twigs and Leaves). Both 

platform and wall atomisation236 were deemed suitable for the measurement of Cr, La, 

Mo, Pb, Ti, V and Zr in GBW 07401 (Soil) by ETV-ICP-MS with the addition of 

PTFE as fluorination reagent. Similar results were obtained whether samples were 

introduced as slurries or in the form of acid digests. 

Laser ablation ICP-MS is amongst the techniques discussed in an introductory 

review by Lombi et al.237 of approaches to in situ analysis of metal(loids) in plants 

(167 references). The article was particularly aimed at non-specialist readers and 

provided valuable information on strengths and weaknesses of different types of 

analysis. The potential usefulness of LA-ICP-MS in environmental forensics238 was 

highlighted in a study of soils and sediment; data obtained correlated well at the 95% 

confidence interval with results from ICP-AES and ICP-MS. The use of standards 

prepared in CaCO3 and normalisation of the 208Pb signal to 42Ca allowed Pb pollution 
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in coral to be measured239. A novel DGT gel240 based on precipitated ferrihydrite had 

greater stability and higher P binding capacity than gels previously available. This has 

been used with LA-ICP-MS to obtain 2D maps of labile P species in soil. Important 

future applications are likely to include study of geochemical processes in the 

rhizosphere to aid understanding of nutrient uptake in plants.  

Application of a phenylation purge-and-trap GC-ICP-MS method241 has verified that 

monoethylmercury occurs in nature. The method, which has a LOD of 0.001 ng g-1, 

found traces of EtHg+ in soil from the Florida everglades. The authors speculated that 

the significance of this species in the global Hg cycle was not previously widely 

recognised due to a lack of suitable analytical methodology. 

Use of enzymatic probe sonication242 in the HPLC-ICP-MS speciation of Se in 

Brassica seeds and meal (the protein-rich residue from oil processing of the seeds 

used as animal feed) meant that Se could be extracted from samples in only 2 minutes 

compared to ca. 12 hours in an incubator. Other workers243 used an optimised 16-hour 

enzymatic extraction and a CE-ICP-MS instrument to measure SeIV, SeVI, SeCys2 and 

SeMet in rice. Spike recoveries were 90-103%, with RSD < 7% (n = 6) and 

instrumental LOD values of 0.1-0.9 ng mL-1. 

Studies involving parallel elemental and molecular analyses by ICP-based 

techniques and approaches such as ESI-MS have become more common. Interesting 

examples from the past year include the use of HPLC-ICP-MS244 to study the 

degradation and transformation of roxarsone in soil, and the development of 

approaches involving IC-ICP-MS245 to identify Fe-aminopolycarboxylic acid 

complexes in soil solution that provided insight into chelate-assisted 

phytoremediation. 

  

3.2.5 Accelerator Mass Spectrometry 

Improved methods for the extraction of I have been reported. One procedure25 

involved the addition of stable 127I carrier followed by microwave-assisted digestion 

of solid samples in HNO3. Iodine was extracted from the digests into CHCl3, back-

extracted into aqueous solution, and then precipitated as AgI for the measurement of 
129I by AMS or as KI for the measurement of I by ICP-MS. The ICP-MS results were 

evaluated by analysis of nine CRMs, including plants, soils and sediments, yielding 

an average 127I recovery of 90%. The AMS data for IAEA 375 (Soil from Chernobyl) 

were also satisfactory. Other workers246 combusted solid samples in a tube furnace 
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and trapped the I released in alkaline solution before coprecipitation of AgI with 

AgCl, avoiding the need to add stable iodide carrier. The coprecipitate was dried, 

ground, mixed with niobium powder and pressed to form the target. Iodine in aqueous 

samples was isolated by anion-exchange chromatography and coprecipitation. 

Recoveries were >80% for solid samples and >65% for waters, determined by 

measurement of a 125I yield tracer by γ–spectrometry. The method could measure 
129I/127I ratios as low as 2 x 10-11.  

 

3.2.6 Laser-induced breakdown spectroscopy 

Some useful review articles have been published focussing on LIBS. Gaudiuso et 

al.247 provided an introduction to the technique before discussing analytical 

applications in environmental, cultural heritage and space science (154 references). 

Another review248 dealt specifically with soil (60 references). Fortes and Laserna249 

discussed not only portable systems but also developments in remote analysis, where 

optical fibres are used between laser and sample, and stand-off analysis, where the 

laser beam travels through open space (89 references). 

There has been considerable interest in developing methods for enhancing the 

emitted spectral line intensity in LIBS. Two papers250-251 described how applying a 

carefully timed high-voltage discharge could effectively reheat the laser-induced 

plasma thereby improving sensitivity, precision and S/N in the measurement of a wide 

range of major and trace elements in soil. Confusingly, the approach was referred to 

by different names: LA fast pulse discharge plasma spectrometry250 and LA spark-

induced breakdown spectroscopy251. Workers in Japan and Korea recommended the 

use of a transversely excited atmospheric CO2 laser at 10.6 m, rather than the 

conventional Nd:YAG, in combination with a specially designed sample holder 

incorporating a metal sub-target to assist plasma formation. 252 The use of silicon 

grease as a sample binder allowed smaller samples of soil than previously possible 

(ca. 4 mg) to be analysed and LODs of 4 mg kg-1 for Cr and 13 mg kg-1 for Pb to be 

achieved. Placing a stainless steel mesh on top of the sample253 further enhanced 

plasma formation, improving the Cr LOD to 0.6 mg kg-1. Two further contributions, 

both in Chinese with English abstracts, showed that addition of 15% KCl increased 

the electron temperature and electron density of the plasma254  and thus doubled 
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signals for Mn and Ti in soil analysis and that decreasing soil moisture content from 

20 to 0% increased plasma temperature255 by ca. 4000 K. 

Comparisons between data generated by LIBS and by ICP-AES have 

continued to fuel debate over whether LIBS has yet reached the point of being truly 

quantitative, or whether it remains best used for semi-quantitative screening. Workers 

in Italy256 normalised emission intensities for Cr, Cu, Pb, V and Zn to the LIBS 

spectral background and plotted the results against data previously obtained for the 

same soil samples by ICP-AES. Relationships were linear with good correlations (R2 

> 0.97). The LODs of between 17 (Cr) and 60 (Cu) mg kg-1 were adequate for many 

applications. Other workers257 found a poorer fit between LIBS data and ICP-AES 

results when measuring Cu, Fe and Pb in soils from Brittany. However, the agreement 

was still good enough for semi-quantitative ‘LIBS maps’ to be generated on site, 

which helped identify contaminated areas and hence inform the collection of samples 

for subsequent laboratory analysis. A PLS multivariate data analysis258 based on the 

300-350 nm region of the LIBS spectrum was found to give significant improvement 

in the measurement of Cu and Zn in a silty clay loam: correlations with ICP-AES (R2 

values) were 0.94 for both analytes (cf. 0.62 for Cu and 0.45 for Zn by univariate 

calibration). In contrast, univariate and multivariate calibration produced similar 

results to one another and to ICP-AES analysis for B, Ca, K, Mg, Mn, P and Zn – but 

not for Fe – when LIBS was applied to sugar cane leaves259 provided calibrants were 

of similar matrix composition to samples. 

The measurement of soil organic C by LIBS remains challenging, although a 

detailed study260 of Fe interference on the 247.8 nm emission line led to the 

development of a method that can determine C at sub-percent levels and gave results 

that agreed well with those obtained by standard oxidation-combustion methods. 

 

3.2.7   X-ray techniques 

Several review articles have featured X-ray techniques. Our sister Update5 covered 

the breadth of advances in the field (498 references). Mesjasz-Przybylowicz and 

Przybylowicz261 focussed on the role of PIXE in understanding toxic metal 

hyperaccumulation in plants (54 references). Wu et al.262 dealt exclusively with the 

measurement of REEs (85 references). Workers in the USA263 reviewed the use of 

XANES and FTIR, NMR and Raman spectroscopies for P speciation in soils (213 

references). Lombi et al.237 included X-ray techniques in their tutorial review of 
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approaches for visualising analyte distribution in plants (167 references) and provided 

the overview264 introducing a special section of articles about in situ analysis in 

biogeochemistry, published in the May 2011 issue of the Journal of Environmental 

Quality. 

In the area of soil and sediment analysis, EDXRF methods have been 

described for measuring Br and I265 and Nd, Pr and Sm266. Multivariate calibration 

methods based on PLS267 were evaluated for measurement of 14 elements in sediment 

by XRF spectrometry. The average prediction error was ±37% relative to reference 

data from ICP-MS. Application of both XRF and XRD spectrometries268 to soil 

samples allowed researchers to carry out a rapid assessment of the migration of 

contamination from the Nisa uranium deposit in Portugal. The same techniques plus 

ICP-AES were used to study K reserves in Scottish soils269, where it was noted that 

aqua regia digestion released K from phyllosilicates, excluding muscovite mica, but 

not from K-feldspars. Margui et al.270-271 investigated the suitability of TXRF for 

measurement of trace Se in soils and soil extracts. With analyte preconcentration by 

DLLME, a LOD of 0.05 mg kg-1 was obtained. Good agreement was reported 

between SR-XRF and PIXE measurements of Pu:U mass ratios54 in ‘hot particles’ of 

nuclear materials recovered from sediments in Greenland and Spain. 

In the analysis of plants, optimised methods were reported for multi-element 

analysis272 of cauliflower by EDXRF; for the measurement of Fe, Pb and Zn273 in 

plants grown under hydroponic conditions by SR-XRF; and for the measurement of 

As274 in onion by TXRF. Lombi et al.275 used the new Maia detector system at the 

Australian Synchrotron facility successfully to obtain 2D tomograms of Ni and Zn 

across hydrated plant roots. The fast fluorescence detector meant that the experiment 

could be carried out rapidly, before the sample dehydrated or radiation damage 

became critical.  

Portable XRF instruments for rapid field screening of soils remain popular. 

For example, Peinado et al.276 described a method for measuring As, Cu, Pb and Zn 

that had LODs in the range 8-22 mg kg-1, RSD 4-16% (n = 9) and gave good 

agreement with certified values for RTC CRM 052-050 (Loamy clay 1). In the study 

of soils affected by an abandoned mine, over 60 samples were collected, sieved and 

analysed on site in less than two days.  

 

3.3 Speciation 
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Reviews focusing on speciation of Si277 (203 references) and Sn134 (211 references) 

both included information relevant to soil, plants and related materials. This topic is 

covered in depth in another Update4.  

 

 

3.4 Analytical quality control 

There has been a notable increase in publications featuring the analysis of traditional 

herbal plants and medicines in recent years and so an international proficiency test 278 

on the measurement of Cd and Pb in the herbal medicine Herba Desmondii 

Styracifolii was timely. More than 100 laboratories from 42 countries participated. 

Mean results were close to the assigned concentrations determined by ID-ICP-MS but 

it was noted that some laboratories had difficulty in providing a sensible estimation of 

the uncertainty associated with their analytical methods, reporting values from 0.6 to 

71% for Cd and from 0.04 to 74% for Pb.  
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Table 1. Preconcentration methods involving liquid-phase extraction used in the analysis of soils, plants and related materials 

Analyte(s) Matrix Method Digestion Reagent(s) Detector Notes CRMs Reference 
As Maize, soil CPE HNO3/H2O2 

Microwave 
Triton X-114® surfactant; 
ammonium  pyrrolidine 
dithiocarbamate chelator 

ETAAS Preconcentration factor 
50; LOD 0.025 g g-1

BCR CRM 189 
Wholemeal Flour 

279 

Au Sediment, 
soil, water 

DLLME HNO3/HCl 
Ultrasound 

Tetra-n-butylammonium 
ion pairing agent; acetone 
dispersant, chlorobenzene 
solvent 

ETAAS Preconcentration factor 
220; LOD 42 ng L-1 
(water), 1.5 ng g-1 
(solids)

NIST SRMs 2782 
Industrial Sludge, 
2710 and 2711 
Montana Soil 

110 

Cd Soil, water LPME  S-methyl-3-salicylidine 
dithiocarbazate chelator; 
chloroform solvent 

ETAAS Preconcentration factor 
100; LOD 6 pg mL-1 

 280 

Cr Hair, 
sediment, 
soil, water 

LPME HNO3/H2O2 
Hot plate 

2-(4-methoxybenzoyl)-N’-
benzylidine-3-(4-
methoxyphenyl)-3-oxo-N-
phenyl-propono hydrazide 
chelator; MIBK solvent 

FAAS LOD 0.32 g L-1; CrIII 
measured then total Cr 
after reduction of CrVI 

LGC 6019 River 
Water, RTC-
CRM044 Soil 

281 

Cu Soil, water CPE  Triton X-100® surfactant;
N, N’-bis(salicylaldehyde) 
ethylenediamine chelator 

FAAS LOD 0.82 g L-1  282 

Mn, Ni Soil, 
vegetable, 
water 

DLLME  Ionic liquid solvent FAAS Preconcentration factor 
80; LOD 0.93 g L-1 for 
Ni and 0.52 g L-1 for 
Mn  

NWRI TMDW-500 
Drinking Water 

283 

Se, Te Soil, water LPME Cold acid 
digestion 

Ammonium pyrrolidine 
carbodithioate chelator; 
toluene solvent 

ETAAS Preconcentration factor 
500; LOD 5 ng L-1 for 
Se and 4 ng L-1 for Te

NIST SRM 1643e 
Trace Elements in 
Water 

284 

CPE = cloud-point extraction, DLLME = dispersive liquid-liquid microextraction, LPME = liquid phase microextraction
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Table 2 Preconcentration methods involving precipitation used in the analysis of soils, plants and related materials 

Analyte(s) Matrix Carrier Detector Notes CRMs Reference 
Cd, Co, 
Cu, Fe, 
Mn, Ni, Pb 

Environmental 
samples, food 

Thulium hydroxide FAAS LOD 0.1-1.6 g L-1 NWRI TMDA 54.4 
Fortified Lake Water, 
HR-1 Humber River 
Sediment

285

Cd, Co, 
Cu, Fe, 
Mn, Ni, Pb 

Food, plants, 
water 

Neodymium hydroxide FAAS LOD 0.2-3.3 g L-1 NIST SRM 1570a 
Spinach Leaves, NWRI 
TMDA 54.4 Fortified 
Lake Water

286

Cd, Cu Hazelnut, tea, 
tobacco, water 

2-{[4-(4-fluorophenyl)-5-sulfanyl-
4H-1,2,4-triazol-3-yl]methyl}-4-
{[(4-
fluorophenyl)methylene]amino}-5-
(4-methylphenyl)-2,4-dihydro-3H-
1,2,4-triazol-3-one

FAAS LOD 1.5 g L-1 for Cu and 
0.45 g L-1 for Cd

NWRI TMDW-5000 
Drinking Water, HPS 
SA-C Sandy Soil C 

287

Co, Cr, Fe, 
Pb, Zn 

Hair, peritoneal 
fluid, sediment, 
soil, urine, 
water

Cu-N-benzoyl-N-phenyl-
hydroxylamine 

FAAS LOD 0.3-2.3 g L-1 NIST SRM 1547 Peach 
leaves, LGC 6019 River 
water 

288

Fe, Ni Food, water Cu-4-(2-pyridylazo)-resorcinol FAAS LOD 0.68 g L-1 for Fe, 0.43 
g L-1 for Ni

NWRI TMDA 54.4 
Fortified Lake Water, 
NIST SRM 1568a Rice 
Flour, GBW 07605 Tea

289
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Table 3. Preconcentration methods involving solid phase extraction used in the analysis of soils, plants and related materials 

Analyte(s) Matrix Substrate coating Column substrate Detector Notes CRMs (or other 
validation) 

Reference 

Bi Sediment, 
water

Gallic acid Silica gel FAAS Preconcentration factor 250; 
LOD 0.26 ng mL-1

GBW 07350 
Sediment

290

Bi Blood None 
 

Bamboo carbon HG-AFS, 
ICP-MS 

LOD 13 ng L-1 HG-AFS, 10 ng 
L-1ICP-MS 

BCR CRM 320 
River Sediment 

291

Cd, Cu Plant, water N’-{4-methylidene}-
5-(4-
H)oxazolone]phenyl
}acetamide

Alumina FAAS Preconcentration factor 160 for 
Cd, 400 for Cu; LOD 0.05 ng 
mL-1 for Cd, 0.06 ng mL-1 for 
Cu 

NIES No.2 Pond 
Sediment, No.3 
Chlorella 

292

Cd, Ni, Zn Leaves, fish 
liver, water 

Aminophenol and 
azo derivative 

Polyurethane foam FAAS Preconcentration factors 125 
(aminophenol foam) and 430-
500 (azo derivative foam); 
LOD 0.06-0.22 g L-1

NIST SRM 1577b 
Bovine Liver 

293

Cd, Pb water Nitroso R salt resin Amberlite XAD-2 FAAS  IAEA 336 Lichen, 
NIST SRM 1515 
Apple Leaves

294

Co, Fe, Ni Carrot, 
parsley, 
water

Penicillium 
digitatum 

Pumice stone FAAS LOD 1.4-1.9 ng mL-1 GBW 07605 Tea 
Leaves 

101

Cr Eggplant, 
tobacco, 
water 

None Tea industry waste 
activated carbon 

FAAS Preconcentration factor 50; 
LOD 0.27 g L-1; CrIII 
measured then total Cr after 
reduction of CrVI

NRWI TMDW-500 
Drinking Water, 
HPS SA-C Sandy 
Soil C 

295

Cr, Cu, Ni, 
Zn 

Plant, soil, 
water 

4-[(E)-3-
phenylallylidene) 
amino]benzenethiol

Sepabeads SP70 FAAS Preconcentration factor 157; 
LOD 1.6-2.6 g L-1 

Spike recovery 296
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Cu, Fe, 
Mn, Pb 

Plants, rice 
flour 

None Multi-walled 
carbon nanotubes 

FAAS Preconcentration factor 20; LOD 
3.5-8.0 g L-1

NWRI TMDA 54.4 
Fortified Lake 
Water, HR-1 
Humber River 
Sediment

297

Cu, Fe, Ni Spices None Diaion HP-20 FAAS Analytes sorbed as com plexes 
with 2-[2-[(2-hydroxy-5-
sulfophenylazo)benzylidine]hyd
razino]benzoic acid; LOD 0.72-
1.4 g L-1

NIST SRM 1515 
Apple Leaves 

298

Cu, Mn, 
Zn 

Fruit, soil, 
water 

3-((1H-indol-3-yl)(3-
nitrophenol)methyl)-
1H-indole

Triton X-100®  

coated PVC 
FAAS Preconcentration factor 270;

LOD 1.8-2.1 ng mL-1 
Spike recovery 299

Hg Water None  Multi-walled 
carbon nanotubes 

CV-
AAS 

LOD 0.012 g L-1 INCT-PVTL-6 
Polish Virginia 
Tobacco Leaves

300

Mn Leaves, 
water 

2-aminothiophenol Amberlite XAD-4 FAAS Preconcentration factor 14; LOD 
2.0 g L-1

NIST SRMs 1515 
Apple Leaves, 1570 
Spinach Leaves

301

Mo Liver, milk, 
vegetables 

None  Activated carbon FAAS Analytes sorbed as complexes 
with cupferron; 
Preconcentration factor 100; 
LOD 1.0 ng mL-1

GBW 07602 (NCS 
DC73348) Bush 
Branches and 
Leaves

302

Pb Sediment, 
water

none Ion-imprinted 
mesoporous sorbent

FAAS LOD 15 g L-1 GBW 08619 Water 303

Pb Water 4-(8-
hydroxyquinoline-
azo)benzamidine

Activated carbon ICP-
AES 

Preconcentration factor 100; 
LOD 0.43 ng mL-1 

GBW 08301 River 
Sediment, 08302 
Tibet Soil

304

Pb Water Ionic liquid Silica FAAS Preconcentration factor 185; 
LOD 0.7 g L-1

NIST SRM 2709 
San Joaquin Soil 

86
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4  Analysis of geological materials  

This section highlights noteworthy areas of research and development in the analysis 

of geological materials by atomic spectrometric and complementary analytical 

techniques published since the last Update1. In this review period there were 

insufficient developments in sample dissolution, preconcentration and separation 

techniques to warrant a separate section as in previous reviews; instead they have 

been included with the relevant instrumental technique.   

 Several trends were apparent in recent publications related to the analysis of 

geological materials. While techniques such as FAAS, ICP-AES and ICP-MS reached 

a state of maturity some time ago, it is evident that MC-ICP-MS and LA-MC-ICP-MS 

are now so widely available in geoanalytical laboratories that the literature is 

dominated by applications papers that include little of novelty from an analytical 

perspective. However, this trend should not mask the vital research required to 

underpin and improve the quality of the geochemical data on which any interpretation 

is based305. One of the main purposes of this Update is to highlight such 

developments.  Another observation is the high proportion of analytical and 

applications papers with Chinese authors, reflecting the rise of atomic spectrometry in 

China over the past 25 years306.  

        

4.1   Quality control and reference materials  

The role of ISO’s Committee on Reference Materials in formalising procedures for 

the certification of RMs was described by Botha307. She provided an instructive 

background to ISO Guide 34, which specified a list of metrologically valid procedures 

for the characterisation of a RM, together with a case study to demonstrate its 

application. This paper should be read in conjunction with Kane’s account of the 

experience of the International Association of Geoanalysts (IAG) as a certifying 

body308. She described some of the practical problems that arise in the application of 

the recommendations of the ISO Guides to specific certification exercises. Some of 

the most challenging issues in this respect were deriving uncertainties compliant with 

the Guide to Uncertainty in Measurement (GUM) and establishing the traceability of 

certified values.   

Problems can arise if a common analytical terminology is not adopted across 

scientific fields. Potts309 noted the general low awareness of the correct use of 

metrological terms across the geoanalytical community and the influence that editors 
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of scientific journals can exercise by promoting good practice in the use of 

international terminology. The difficulties faced in the geoanalytical community by 

some of the revised definitions in the International Vocabulary of Metrology were 

eloquently expressed by Ramsey310. Ideally, definitions should make the meaning of a 

term clear to specialists and generalists alike but this is not always the case in 

practice. He suggested reasons for this lack of clarity and proposed improvements in 

terminology to address the real concerns of producers and users of the geoanalytical 

measurements alike. 

A review of RMs311 in geoanalytical and environmental research (322 refs) 

identified that in spite of the number of RMs available, additional homogenous 

microanalytical RMs and certified materials for stable isotope work were still 

required. In an annual review of papers containing data on RMs of geological interest, 

Jochum et al.312 included a selection of Chinese journals for the first time. They noted 

that the Chinese journal Rock and Mineral Analysis contained many relevant articles, 

demonstrating the importance of RMs for calibration and quality assurance in Chinese 

laboratories. Many laboratories in China have been developing increasing numbers of 

geochemical RMs, which are certified and issued by GBW. As many of the data on 

these RMs are inaccessible to western scientists because of the linguistic barrier, an 

overview of Chinese RMs in current use has been made available311. 

 Several groups of workers have reported extensive data sets for the isotopic 

contents of some commonly used geological RMs. Jochum et al.313 undertook an 

extensive study of USGS GSD-1G (Synthetic Glass) and the MPI-DING  reference 

glasses, involving a range of bulk and microanalytical techniques in 13 laboratories. 

Reference and information values were determined for B, Ca, H, Hf, Li, Nd, Pb, Si, 

Sr, Th and U isotopes using the recommendations of the IAG for certification of RMs. 

The glasses were homogeneous for nearly all isotope systems from ng to mg levels of 

test mass. Matthews et al.314 reported bulk Th and U concentrations and isotope ratios 

of five microanalytical RMs from the USGS and MPI-DING series of glass RMs. A 

comparison of results for the powdered and glass versions of BHVO-2 (Basalt, 

Hawaiian Volcano Observatory) and BCR-2 (Basalt, Colombia River) showed small 

but significant differences, particularly for U concentrations and 230Th/238U in BHVO-

2. Chauvel et al.315 presented major and trace element data as well as Hf, Nd, Pb and 

Sr isotopic compositions for eight basalt and five sediment RMs. In contrast to the 

volcanic rocks, the sediments were characterised by much larger uncertainties on all 
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measurements, even though the concentrations were not particularly low. It was 

concluded that the sediment powders were inhomogeneous so very fine grinding of 

the sediments, dissolution of relatively large test masses and the systematic use of 

Parr bombs were recommended.  

The n(238U)/n(235U) of NIST SRM 960 (Uranium Metal Standard), for which the 

commonly accepted consensus value is 137.88, has been re-measured in a 

collaborative effort between several geochemistry laboratories and the IRMM316. The 

new value is about 0.031% lower than the old one, is SI traceable and has an 

uncertainty calculated according to GUM. However, this value should not be 

considered as the officially certified value as certification is currently underway at the 

US Department of Energy laboratories in New Brunswick.  

Although there are several well-characterised natural zircon RMs, many are 

limited in quantity or originate from relatively inaccessible locations. A potential new 

secondary RM is from the Penglai zircon megacrysts, hosted in Early Pliocene 

alkaline basalts from Hainan Island, China and available in large quantities317. New 

U-Pb ages were determined by SIMS and ID-TIMS, O isotopes by SIMS and IRMS, 

and Hf isotopes by LA- and solution-MC-ICP-MS.  Results suggested that this 

material was fairly homogeneous in Hf and O isotopic compositions. These zircons 

may be too young and contain variable high amounts of common Pb to be a suitable 

RM for the calibration of unknown samples, but could act as a QC material for 

microbeam U-Pb measurements of young zircons (<10 Ma). Li et al.318 made some 

reconnaissance measurements of Li concentrations and isotope ratios by SIMS in five 

commonly used zircon standards. Only one of the five RMs, the University of Mainz 

M257 zircon standard, was sufficiently homogeneous to be employed as a working 

RM for this purpose.   

Other potential RMs for microanalysis have been characterised recently. Kennedy 

et al.319 assessed the potential of Grenville Skarn Titanite from the Canadian Shield as 

a RM for microanalytical Pb-Th-U dating. Careful selection of chips for TIMS and of 

analysis areas during SIMS allowed high quality isotopic data to be obtained from 

these large crystals of titanite. Garnet P1, a megacryst garnet from the Premier 

kimberlite, had a suitable composition to act as a QC monitor for the routine analysis 

of garnets by EPMA in the exploration for kimberlite deposits320. Four new silicate 

glasses, prepared by fusion of about 1 kg each of powdered material to provide basalt, 

syenite, soil and andesite RMs of natural composition for microanalytical work were 
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characterised using a variety of techniques321. In general these glasses, referred to, as 

‘Chinese Geological Standard Glasses’ are well homogenised with respect to major 

and trace elements. Preliminary reference and information values for 55 elements, 

together with the analytical uncertainties were reported. 

Crowley322 provided some baseline data on the mineralogical and chemical 

composition of some RMs prepared from naturally occurring marble and carbonatite 

for the measurement of C and O isotopes. The NIST NBS 19 (TS-Limestone) and 

IAEA-CO-1 (Marble) RMs were essentially pure samples of calcite containing 

minimal (<1%) amounts of quartz whereas both NIST NBS 18 (Calcite) and IAEA-

CO-8 (Calcite) contained a range of phases, in addition to the calcite. It was 

recommended that IAEA-CO-8, which was estimated to contain at least 4% non-

carbonate material, should be refined to remove the non-carbonate material or be 

replaced by a material of more suitable composition. 

 

4.2   Solid sample introduction  
 

4.2.1 Laser ablation  

Several recent reviews of advances in LA-ICP-MS have been written from a 

geoanalytical perspective. In their distillation of papers published in 2008 and 2009, 

Arevalo et al.323 (55 refs) highlighted developments in fs laser ablation, ablation cell 

design and the influence of different carrier gases. Continued efforts to improve the 

precision and accuracy of LA-ICP-MS measurements were also noted. In a 

complementary paper, Woodhead324 (111 refs) summarised the diversity of geological 

problems that are now being addressed through the application of LA-ICP-MS data.    

Laser ablation has been adopted in many geoanalytical laboratories for the 

quantitative determination of trace elements in bulk rocks in preference to lengthy 

sample preparation procedures. For the determination of 54 major and trace elements 

in carbonate materials by LA-ICP-MS, Chen et al.325 assumed that the sum of the 

major matrix components expressed as carbonates was equal to 100%, and corrected 

the minor element concentrations on this basis, as an alternative to applying an 

internal standard obtained by stoichiometry considerations or another technique. 

Calibration against multiple silicate glass RMs gave results that agreed with data from 

solution ICP-MS to within 10% for Mg, Mn, Sc, Sr and REEs. When calibrating 

against MPI-DING reference glasses rather than NIST SRM 610, improved accuracy 
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was achieved for small laser spot sizes (≤32 µm), whereas no difference was observed 

for spot sizes of 44 and 60 µm.  

 The ablation of fire assay buttons to determine PGEs after fusion of the 

original material with a lead or nickel sulphide collector is not a new concept. 

However, Vanhaecke et al.326 have now evaluated the merits of a 795 nm fs LA 

system, combined with a quadrupole-based ICP-MS instrument equipped with DRC, 

for analysing Pb fire assay buttons. The use of matrix-matched standards permitted 

accurate results to be obtained despite the severe signal suppression observed on 

introduction of the heavy matrix into the ICP. Spectral interferences on some of the 

target nuclides due to the presence of Pb2+ ions were overcome by pressurising the 

reaction cell with ammonia. The performance of the fs LA system was superior to that 

of a 193 nm excimer-based ns system giving a 3–10 fold improvement in detection 

capabilities, as well as better accuracy. The LODs for Au, Pd, Pt and Rh were <0.010 

µg g-1.  

 Matrix effects observed during LA are well documented if not totally 

understood. Hu et al.327 confirmed the difference in laser-induced fractionation when 

ablating the NIST SRMs 610-614 (Trace Elements in Glass) compared to ablating 

natural silicate materials. They advocated the use of USGS RMs GSD-1G and GSE-

1G (synthetic glasses) in the analysis of geological samples by LA-ICP-MS. Janney et 

al.328 studied matrix effects during in situ measurement of Mg and Si isotope ratios in 

natural and silicate glasses using two different 193 nm LA-MC-ICP-MS systems. 

Isotopic fractionation at the ablation site was the main source of matrix effects when 

employing a double-focusing mass spectrometer. In contrast, the large non-mass-

dependent matrix effects observed when measuring Mg isotope ratios using a single-

focussing instrument were attributed to non-linear scattering processes occurring in 

the hexapole collision cell as Mg became increasingly diluted by matrix elements. 

A procedure329 for measurement of the abundances of Ga, Ge and first-row 

transition metals used a 213 nm laser coupled to a SF-ICP-MS instrument at medium 

resolution (M/ΔM = 4000). The analytical protocol hinged on maximising the ablation 

rate of the laser system and the sensitivity of the ICP-MS instrument, while 

minimising the production of isobaric oxide and argide polyatomic ions. Using 43Ca 

as an internal standard and multiple reference glasses for calibration, the uncertainties 

were ca. ±3% (2s) and measured concentrations were statistically indistinguishable 

from reference values (except for Ti) when analysing MPI-DING reference glasses. 
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Laser-induced fractionation may necessitate the development of matrix-

matched calibration standards. In order to prepare a calibration standard for multi-

elemental analysis of sulfide minerals, Danyushevsky et al.330 doped a mixture of 

CANMET RMs RTS-4 (Sulphide Ore Mill Tailings) and CZN-1 (Zinc Concentrate) 

with a range of trace elements before fusing with lithium borate flux in a conventional 

XRF bead preparation technique. The standard was shown to be homogenous to <5% 

for all 55 elements determined except for Au, Pt, Se and Tl. Its use significantly 

improved the accuracy of sulfide analysis compared to the use of other RMs, such as 

the NIST 600 series.   

Hou et al.331 assessed the feasibility of determining B isotope ratios in 

geological materials by LA-MC-ICP-MS. Instrumental mass bias and isotope 

fractionation were calibrated using the standard-sample-standard bracketing method. 

The δ11B values obtained were consistent, within analytical error, with literature 

values or those obtained by positive ionisation TIMS. Long-term analytical precisions 

were ±0.58‰ (2σ, n=50) for IAEA B4 (Tourmaline) and ±0.97‰ (2σ, n=57) for an 

in-house tourmaline standard IMR RB1, both of which had relatively high B contents 

(31,400 ppm for B4). No matrix effects were encountered when different calibration 

standards were used. In a similar approach, Fietzke et al.332 developed a LA-MC-ICP-

MS method based on a 193 nm excimer laser for measuring B isotope ratios in 

carbonates with a reproducibility of 0.5‰ (SD) within single periods of sample 

ablation for samples containing 35 ppm B. The instrumental fractionation behaviour 

was similar for three types of standard: NIST SRMs 610-612 (Trace Elements in 

Glass), carbonate pressed powder pellets and seawater evaporates. This finding 

provided confidence to employ NIST glasses as internal standards, thus overcoming 

the problem of finding a suitable matrix-matched carbonate standard.  

 A novel method333 for the determination of Th and U isotope ratios in silicate 

glasses and carbonates by LA-ICP-MS, applicable to samples with U concentrations 

as low as 0.4 µg g-1, used a 213 nm Nd:YAG laser connected to a single collector SF–

ICP-MS instrument. Measurements were made on zircon, travertine and silicate glass 

RMs of basaltic to intermediate composition. Corrections for U-Th elemental 

fractionation made using USGS BCR-2G (Basalt Glass) as the reference standard 

appeared to be equally applicable to zircon and calcium carbonate within the errors of 

the technique. This was not the case when NIST SRM 612 (Trace Elements in Glass) 

was employed for this purpose. Precision and accuracy were largely independent of 
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Th and U concentrations and of the Th/U ratio. The use of SF-ICP-MS provided the 

potential to combine Th-U isotope ratio determinations with additional multi-element 

and isotope analyses during a single line scan.  

 Although protocols for U-Pb dating of zircons are well established, there are 

still significant challenges in the dating of apatite by LA-ICP-MS. Chew et al.334 

assessed methods for correcting for both the presence of “common Pb” and the 

occurrence of laser-induced fractionation when determining U-Pb and Th-Pb ages of 

apatites. Mathematical corrections based on either 207Pb or 208Pb were the most 

suitable for dating single grain detrital apatites. Laser-induced Pb/U fractionation was 

relatively minor and easily corrected for by using the back-calculated intercept of the 

time-resolved signal. Of the seven well-known apatites analysed using a 193 nm 

excimer laser coupled to single collector ICP-MS, the Kovdor carbonatite apatite 

exhibited the most promise as an apatite standard for dating by LA-ICP-MS. 

An ICP-QMS instrument335 equipped with an extended range pulse counting 

detector was capable of making isotope ratio measurements that require a substantial 

dynamic range, such as U-Pb dating of zircons, without having to switch between 

pulse counting and analogue modes. The linear response of the detector over the range 

2,000 to 110 million cps indicated that the next generation of quadrupole instruments 

could be viable alternatives to MC-ICP-MS instruments.  

 Fisher et al.336 identified three main factors that needed to be addressed in 

order to improve the accuracy and precision of measurements of Sm-Nd isotopic 

ratios by LA-MC-ICP-MS. Correction for the isobaric interference of 144Sm on 147Nd 

was calculated using the measured 149Sm concentration and recently published Sm 

isotopic abundances. Samarium mass bias was determined using an exponential law 

and the 147Sm/149Sm measured in the sample. Accurate measurement of 147Sm/144Nd, 

which is vital for providing robust initial Nd isotope compositions, was achieved by 

calibration to an external glass RM synthesised specifically for this purpose. The 

accuracy of the proposed LA-MC-ICP-MS protocol was demonstrated by comparing 

values obtained by ID-TIMS in the analysis of several well-characterised mineral 

RMs (apatite, titanite, allanite and monazite). The instrumental configuration in this 

study also allowed the determination of Eu and Gd concentrations, thereby permitting 

simultaneous determination of Eu anomalies along with Sm-Nd isotopic composition. 

A similar approach was adopted by Iizuka et al.337, who demonstrated that the 

substantial (>5%) fractionation of 147Sm/144Nd observed during the ablation of 
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monazite could be corrected using a suitable matrix-matched standard. An Archean 

monazite standard 16-F-6 provided correction of 147Sm/144Nd fractionation with an 

uncertainty of ca. 1%. Other improvements to the analytical precision and accuracy 

were achieved by calibration of the Faraday amplifier responses and normalisation of 

Nd isotope ratios using a synthetic monazite standard containing a negligible amount 

of Sm. 

 A rigorous assessment of the accuracy and precision of the measurement of 
176Hf/177Hf in rutile by LA-MC-ICP-MS was undertaken by Ewing et al.338. Key 

features of the protocol adopted were interpolation between long baseline 

measurements every ten analyses, correction for all potential isobaric interferences 

and application of an external correction for Hf mass bias, when appropriate, based on 

regular measurements of a synthetic rutile containing ca. 5000 ppm Hf. Because rutile 

contains negligible Yb, the Yb mass bias coefficient was calculated from several 

measurements on zircon using a 233 µm diameter crater. The precision obtained was 

typically of the order of ±10-12 εHf units for individual analyses of rutile with 40-50 

ppm Hf. 

 Laser ablation ICP-MS is now established as a routine technique for multi-

element analysis of fluid inclusions and has proved to be a powerful tool in 

understanding processes of ore formation339. Quantitative measurement of anions in 

an individual fluid inclusion by LA-ICP-MS is more challenging than that of cations 

because of their high first IPs, resulting in relatively low sensitivities, and polyatomic 

interferences on S from ambient air, e.g. 16O16O+. In the determination of Br, Cl and S 

in fluid inclusions, Seo et al.340 used a scapolite mineral sample as a RM for Br and Cl 

and NIST SRM 610 (Trace Elements in Glass) as a RM for S. For reliable S 

measurements, repeated cleaning of the ablation chamber and careful background 

corrections for the host material were critical in order to minimise S background 

signals caused by remobilisation of S from the inner surfaces of the ablation chamber. 

For a 25-35 µm diameter fluid inclusion, the LODs were 17±10 µg g-1, 340±220 µg g-

1 and 160±110 µg g-1 for Br, Cl and S respectively.  

One of the first attempts to determine accurate Pb isotope ratios of individual 

fluid inclusions by LA-MC-ICP-MS has been reported by Pettke et al.341. They 

prepared fluid inclusion standards with known Pb and Tl isotopic compositions and 

explored different schemes for correcting for mass bias. Isotope ratios were derived 

from bulk integration of the transient signal. Instrumental mass bias correction was 
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based on Tl admixed via desolvated nebulisation. Isotopic fractionation at the ablation 

site posed no limitation on accuracy provided the ablation was well controlled. The 

external precision of ablation of NIST SRM 610 (Trace Elements in Glass) with a 60 

µm beam was ±0.011% (2SD, relative) for 208Pb/206Pb and 207Pb/206Pb, whereas 

inclusion-to-inclusion reproducibilities for the same ratios were ±0.05% (2SD, n=11); 

each inclusion contained ca. 1 ng Pb. The accuracy of the technique was demonstrated 

by analysis of synthetic fluid inclusions containing NIST SRM 981 (Natural Lead 

(Isotopic)). 

Construction of an improved cryogenic sample cell for LA-ICP-MS enabled 

Aerts et al.342 to measure quartz solubility by diamond-trap experiments. The ablation 

chamber, cooled by Peltier elements and insulated to prevent condensation, was 

capable of cooling samples to -35 °C.  

A novel technique that has great potential for geochemical analysis is Laser 

Ablation of a Sample in Liquid (LASIL), in which the ablation occurs at a solid sample 

surface submerged in a liquid343. The ablation could be performed in a 25 µL 

freestanding droplet, which acted as a micro-laser cavity, to produce a stable 

suspension of particles. Post-ablation chemistry provided true solutions for direct 

calibration against aqueous standards. As LASIL was an off-line sampling technique, 

the resulting solution was not confined to analysis by ICP-MS. Initial experiments 

using NIST SRM 611 (Trace Elements in Glass) were very promising.     

 
4.2.2 Laser-induced breakdown spectroscopy 

Laser-induced breakdown spectroscopy is used on a regular basis for making 

geochemical measurements, often in remote locations or for QC purposes. Recent 

applications of LIBS included elemental mapping of speleothems344, quantitative 

measurements of loss on ignition in iron ore345, the identification of REEs and 

associated elements in monazite sands346 and characterisation of historical building 

materials according to the quarries from which they were mined347.  

Methods for analysis by LIBS without the use of calibration samples continue 

to be reported even though matrix-matched calibration standards are normally 

required and calibration-free LIBS is often only semi-quantitative. Praher et al.348 

developed a new algorithm for more accurate calibration-free LIBS of samples 

containing CaO, Fe2O3 and MgO as major constituents. In the algorithm the width and 

intensity of selected lines were corrected for self-absorption by a fast iteration 
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procedure. The calculated oxide concentrations were within 10%, 20% and 5% of the 

nominal contents for Fe2O3, MgO and CaO respectively, with RSDs of <20%. 

Interest in the application of LIBS to geochemical analysis has been stimulated 

in part by space missions to Mars and other planets. Ongoing studies to develop 

miniaturised LIBS systems to perform in situ analysis under Martian atmospheric 

conditions demonstrated that the LODs and accuracy of such instruments for 

multielemental measurements were very promising349.  Agreement with certified or 

independently measured compositions was typically within 10-20%. Tucker et al.350 

acquired LIBS spectra for 100 igneous rocks at 9 m standoff distance under Mars 

atmospheric conditions to determine the most effective protocols for calibrating and 

modelling the data to predict major element compositions. Their prescription for a 

successful calibration was also applicable to terrestrial studies. Another study 

focussed on the measurement of sulfur in a simulated Mars atmosphere351. Partial 

least squares analysis was successful at modelling S concentrations for a subset of 

samples with similar matrices. Optimal results were obtained by restricting the 

wavelength range to channels close to the most intense S lines ~ 540-570 nm. The 

lowest S content in this study was 0.76 wt% S. A decision tree for the identification 

and quantification of S in remote LIBS analysis was constructed on the basis of these 

experiments. 

Another laser-based technique, off-axis integrated cavity output spectroscopy, 

is capable of measuring stable isotope ratios in gases. A novel prototype portable 

instrument352 based on this technology had potential for rapid measurements of the 
13C/12C and 18O/16O  composition of carbonate minerals in the field. Carbon and 

oxygen ratios were recorded from absorption spectra (in the near-IR region) of carbon 

dioxide evolved from acidification of carbonates. Analyses were accurate to better 

than 0.5‰ for both δ13C and δ18O and could be improved by applying standard-

sample bracketing corrections.  

 

4.3 Instrumental analysis 

4.3.1 Atomic absorption spectrometry 

Because of the technique’s relatively low sensitivity, FAAS usually requires 

preconcentration of the elements to be determined. For the measurement of Pd in gold 

ores, Bulut et al.353 employed a N4O2 mixed-donor-ligand derivative (TNACIN) as 

chelating agent on Amberlite XAD-2010 resin. After a mixed acid digestion in 
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HCl/HNO3/HF, the samples were added to the column and Pd eluted with 1.0 M HCl 

in acetone. The eluate was evaporated to near dryness and taken up in 2 mL of 1.0 M 

HNO3 before analysis by FAAS. The analytical LOD of 0.82 µg L-1 was calculated 

from the instrumental LOD and the overall preconcentration factor of 250. Precision 

was <1% (n=10) at a concentration of 1.25 µg mL-1 Pd.   

Kaya and Volkan354 designed a new chloride-generation system for the 

determination of Ge in geochemical samples by nitrous oxide–acetylene AAS. A glass 

cylindrical reaction chamber with four valves was positioned in a home-made oven 

and the temperature maintained at 80±3 °C: this increased the vapour pressure of the 

GeCl4 generated by 10-fold. Hydrochloric acid and the digested rock sample were 

introduced into the system and the reaction chamber closed for 1 min before the 

GeCl4 produced was swept to the AAS nebuliser by argon carrier gas. After the 

measurement period, the carrier gas was used to purge the system and dehumidify the 

reactor. The LOD was 0.01 ng mL-1 (3s) and the precision (RSD) 2.4% (n=9) for a Ge 

solution of 1 ng mL-1.   

 

4.3.2 Atomic emission spectrometry 

A review of publications for 2008-2009 involving the use of AAS, ICP-AES, INAA 

and XRF spectrometry for geochemical analysis noted that novel developments in 

ICP-AES are relatively scarce and tend to involve new methods of sample 

preparation355. This trend has continued. Padmasubashini and Murty356 investigated 

the use of activated carbon and chitin for batch preconcentration of Nb and Ta prior to 

determination by ICP-AES. After fumation with HF/H2SO4 on a sand bath and fusing 

of the dried residue with KHSO4, the samples were dissolved in a mixture of H2SO4 

and H2O2. Ascorbic acid was added to an aliquot of the sample digest and the pH 

adjusted to 3 before adding the carbon or chitin. After an hour, the carbon/chitin was 

processed to recover the analytes in a final solution of 0.2% citric acid. The accuracy 

of the method for Nb was demonstrated by the analysis of a range of NIST SRMs; 

similar results were obtained using either activiated carbon or chitin for the solid 

phase extraction. However, the method lacked adequate sensitivity to measure Ta in 

these materials.   

Sulfate in francolite, the major mineral phase of phosphorites, can act as a 

potential indicator of seawater sulfate concentrations in palaeoenvironmental 

reconstructions. Goldberg et al.357 evaluated methods for extracting trace sulfate from 
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francolite and measuring its concentration and sulfur isotopic composition. They 

advocated the use of 10% v/v acetic acid to remove calcite, dolomite and ankerite 

without affecting francolite, and rinsing several times with 10% v/v NaCl to remove 

calcium sulfates and absorbed sulfates. For S isotope determination, sample 

combustion at 600 °C was found to be an efficient way of removing non-francolite S-

bearing phases. Techniques evaluated for the quantification of trace amounts of 

sulfate included XRF spectrometry (fused bead and pressed powder pellet), elemental 

analysis with a CNS analyser, gravimetry and ICP-AES. The most accurate S data 

were obtained by dissolution of the sample in 10% HCl and measurement by ICP-

AES, except when sulfate concentrations were very low, in which case the 

gravimetric method was the only option.   

 

4.3.3 Inductively coupled plasma mass spectrometry 

4.3.3.1 Quadrupole ICP-MS.  Inductively coupled plasma MS has revolutionised 

elemental and isotopic analysis in many fields since its commercial introduction in 

1983. For a historical perspective on the development of ICP-MS in relation to 

environmental analysis, a review by Beauchemin227 (243 references) should be 

consulted. A summary of trends in the coupling of IC with ICP-MS for the 

determination of halide and metal species in various sample types, including 

geological materials, is available358 (131 references).  

Although alkali fusion is an efficient method for the decomposition of 

silicate rocks, it can be prone to high blanks arising from impurities in the flux. 

Shimizu et al.359 developed a flux-free fusion that did not require the resulting fused 

glasses to be homogenous as long as any refractory minerals were completely 

dissolved. A pressed pellet of powdered sample was fused in a platinum crucible 

inside a Siliconit® tube furnace at 1600 °C for 2-3 mins. After quenching, the glass 

was dissolved using a (2 + 1) mixture of HF and HClO4 before final uptake in 2% 

HNO3 with a trace of HF and analysis by ICP-QMS. Complete digestion of felsic 

samples containing refractory minerals such as zircon and tourmaline was 

demonstrated. For most of the elements measured the data obtained were well within 

the range of those previously published for the geological RMs analysed. However, 

the method was not considered to be valid for highly volatile elements such as Pb and 

Tl.  
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The advantages of ICP-MS over ICP-AES for the measurement of REEs in 

geological samples have long been recognised as simpler spectra and better LODs. In 

a comparison of ICP spectrometric techniques, Ardini et al.360 confirmed that both 

ICP-QMS and SF-ICP-MS operating in high resolution mode could provide accurate 

data for REEs in sediment digests with a precision of 3-8% (RSD). The LODs were 

18-52 ng g-1 for SF-ICP-MS and 10-780 ng g-1 for ICP-QMS. Although attempts were 

made to measure the REEs concentrations in these solutions directly by ICP-AES, 

rather than after separation, through careful selection of emission wavelengths and the 

application of on-line internal standardisation, Ho, Lu, Pr, Tb, and Tm could not be 

measured because of strong spectral interferences and insufficient sensitivity. The 

same authors361 also investigated the measurement of REEs in geological samples 

with an ICP-QMS instrument equipped with a DRC pressurised with oxygen. Only 

some of the REEs were amenable to measurement at m/z M+16 and Eu, Gd, Lu and 

Yb had to be determined in standard mode. Although it was possible to switch from 

the vented to the pressurised mode relatively rapidly, no direct comparison was 

carried out of the accuracy achievable by the DRC method with that of the normal 

mode using mathematical corrections to compensate for polyatomic interferences.        

Despite the fact that the NiS fire assay is a mature technique for accurate 

determination of Au and PGEs, questions have been raised about its reliability. Savard 

et al.362 compared the performance of NiS fire assay followed by Te coprecipitation to 

that of high-pressure asher (HPA) digestion combined with ID for the determination 

of PGEs in ten geological RMs by ICP-MS. No systematic differences in the 

recoveries of Ir, Os, Pd, Pt and Ru were discerned. The advantages of NiS fire assay 

were that it was possible to include Au and Rh in the analytical scheme, the relatively 

large test mass (15 g) reduced the nugget effect and it was faster and less expensive 

than HPA. In contrast, it was possible to determine Re in addition to the PGEs when 

using ID-HPA. This technique, which had lower blank levels and consequently lower 

LODs, provided better precision for the analysis of homogeneous samples with low 

PGE content but was more susceptible to the nugget effect as ID techniques can only 

treat small test masses, e.g. 2 g. This valuable study showed that these techniques 

should be regarded as complementary rather than competing approaches and should 

lay to rest any further argument on this subject.  

  Information on long-term instrumental performance in other laboratories can 

be extremely valuable for comparative purposes. Ulrich et al.363 reported long-term 
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observations on Ba and Nd oxide formation in relation to the determination of REEs 

by ICP-QMS, as well as the interferences of DyO+ and ZrO+ on Hf and Ag, 

respectively. The efficacy of corrections for these interferences was demonstrated by 

data from 51 individual analysis of the USGS RM BHVO-2 (Basalt, Hawaiian 

Volcanic Observatory) at high and low rates of oxide formation. Because the use of 

enriched isotopes 6Li, 147Sm and 235U as internal standards required the measurement 

of Li, Sm and U isotope ratios, data for these ratios in rock RMs USGS AGV-2 

(Andesite) and GSJ JA-3 (Andesite) were acquired over a three-year period. Long-

term RSDs were 7% for 6Li/7Li, 0.67% for 147Sm/149Sm and 1.01% for 235U/238U. The 

authors argued that the accurate and moderately precise Pb isotope data obtainable by 

ICP-QMS make the technique particularly suitable for the analysis of samples with 

very low Pb content, which otherwise would need to be analysed with ion counters on 

SF instruments.   

 

4.3.3.2 Sector field ICP-MS. Rapid advances in MC-ICP-MS technology and its 

widespread availability in recent years have stimulated an unprecedented growth in 

the measurement of isotope ratios for geochemical applications. In contrast, 

significant analytical developments have not been as evident as in previous years.  

There is much interest in the determination of B isotopes in environmental 

samples by MC-ICP-MS. Ni et al.364 investigated inter-laboratory biases in δ11B 

values for foraminiferal shells, which have the potential to provide records of palaeo-

oceanic pH. There was no fundamental bias between TE NTIMS and MC-ICP-MS in 

the measurement of the δ11B values of pure boric acid solutions. However, δ11B 

values for non-foraminiferal carbonates were about 2‰ lighter when measured by 

NTIMS, whereas δ11B values for foraminifera measured by the same NTIMS 

procedure were 2 to 6‰ heavier than those measured by MC-ICP-MS. It was inferred 

that organic material released on dissolution of the forminifera gave rise to biases in 

the NTIMS measurements. No residual organic material was present in the MC-ICP-

MS determinations as the matrix was separated from the sample before analysis. Use 

of a standard addition approach allowed accurate (±0.35‰, 2σ) δ11B measurements of 

foraminifera by MC-ICP-MS to be obtained. Treatment of the samples with 

concentrated H2O2 did not completely resolve the discrepancy in the TIMS values and 

it was concluded that very careful protocols are required to ensure that the 

inaccuracies in the NTIMS approach are kept to a minimum. Although the procedures 
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developed by Vogl et al.160 concerned the measurement of B isotopes in water and 

food samples, many of the principles discussed are applicable to a much wider range 

of environmental samples. The protocols were based on a three-step matrix separation 

using IC followed by single collector SF-ICP-MS in either low or medium resolution 

mode.  Expanded uncertainties were 1.4-1.6‰ at low resolution and 2.9-3.2‰ at 

medium resolution. Their author’s assessment of matrix tolerance to 2 mg kg-1 of 

alkaline and alkaline earth elements in the final measurement solution was particularly 

relevant, as this is not always appreciated in the determination of non-traditional 

isotopes where variations of only a few ‰ can be very significant. The reader may 

also wish to note the approach of Guerrot et al.159 to the separation of B isotopes from 

seawater using Amberlite IRA-743 B-specific resin prior to determination by MC-

ICP-MS.  

In principle, sample introduction into MC-ICP-MS via a demountable direct 

injection high efficiency nebuliser (d-DIHEN) offers several advantages for isotopic 

measurements of B and other elements that suffer from memory effects. Sensitivity 

should be improved because 100% of the sample is introduced into the plasma and 

considerably shorter washout times should result. In practice, however, these potential 

benefits are often not realised because of difficulties in the operation and optimisation 

of this type of nebuliser. In the procedure adopted by Louvat et al.158, the spray from a 

d-DIHEN was first optimised outside of the torch. The major parameter affecting the 

quality of the spray was the distance between the capillary and the needle tip, which 

was adjusted under a 4x magnification binocular microscope. Once the device was 

inserted into the plasma torch, another important consideration was the distance 

between the needle tip and the end of the auxiliary gas tube in the torch. This 

determined the proximity of the plasma to the nebuliser. Compared to the use of a 

dual Scott – cyclonic spray chamber, sensitivity for B was improved 2-5 times and the 

washout time was up to 10 times shorter. A stabilisation time of approximately two 

hours after lighting the plasma was required before the MC-ICP-MS instrument was 

ready for B isotope measurements. The long-term stability of the 11B/10B ratio using 

sample-standard bracketing was 0.25‰ (2s). A comparison between δ11B values of 

four modern corals determined by d-DIHEN MC-ICP-MS and positive TIMS showed 

excellent agreement with a bias of <0.4‰.  

 Most Mg isotope studies focus on the evolution of the early solar system, for 

which high precision measurements are necessary. Adoption of new chemical 
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purification techniques365 resulted in superior figures of merit for the MC-ICP-MS 

determination of Mg ratios in silicate rocks than was previously possible. Although 

time-consuming, the six-step Mg purification scheme ensured 99.9% recovery and 

excellent separation of Mg from elements that can pose direct isobaric interferences or 

influence instrumental mass bias compared to standards. A double-spike method 

employing an approximately equal mixture of highly purified 24Mg and 26Mg was 

used to determine the absolute isotopic ratios. Total procedural blanks were <15 ng, a 

negligible level compared to the typical 200 µg amount of Mg processed through the 

purification protocol. External reproducibilities of 2.5, 20, 195 and 235 ppm were 

reported for the measurement of 26Mg* (excess 26Mg resulting from the in situ decay 

of 26Al), relative 25Mg/24Mg (without 24Mg-26Mg spike), absolute 25Mg/24Mg and 

absolute 26Mg/24Mg, respectively. The chemical purification steps in this procedure 

were a modification of the technique reported by Schiller et al.366 in a study of 26Al-
26Mg dating of basaltic meteorites.  

 A method developed by Zambardi and Poitrasson367 sets a new benchmark for 

the precision achievable in the measurement of Si isotopes in silicate rocks by MC-

ICP-MS. Samples were decomposed by fusion with NaOH in silver crucibles and the 

Si was purified by ion-exchange chromatography using Bio-Rad AG50-X12 cation-

specific resin. A 1 µg g-1 Mg spike was added to correct for mass bias. Total 

procedural blanks for 28Si were 30 ng, corresponding to 0.1-0.2% of the 28Si signal. 

Over a year, the reproducibilities for a natural silicate rock were ±0.05 and ±0.08‰ 

for δ29Si and δ30Si, respectively (2s, n=42). These values were significantly better 

than those reported by other workers, especially for δ30Si. Measurement of δ29Si and 

δ30Si in 12 geological RMs led to the conclusion that spiking the solutions with Mg 

for on-line mass bias correction provided much more reliable results than the simple 

sample-calibrator bracketing approach. 

 It is difficult to discern much of novelty in some recent analytical papers 

concerned with radiogenic isotope systems368-369. While investigating the calibration 

of in-house Th isotope standards, Mason and Henderson370 documented all of the 

relevant issues involved in the correction of instrumental biases when undertaking 

high precision measurements for U-Th chronology. Linear law mass bias provided a 

reasonable approximation for Th-U and Th mass fractionation and its use was likely 

to lead to inaccuracies of <0.5‰. A MC-ICP-MS method369  for determining Nd and 

Sm concentrations and Nd isotope ratios in geological samples used a 149Sm–150Nd 
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spike. The values obtained for a selection of silicate RMs agreed with previously 

published values to within 1% for Nd and Sm concentrations and to within 22 ppm 

(2σ) for 143Nd/144Nd ratios. The internal run precision was better than 15 ppm (2σ) for 
143Nd/144Nd. However, these results did not justify the claim that MC-ICP-MS was 

superior to TIMS given that modern TIMS instruments are capable of precisions of <5 

ppm for the same ratio.  

Chemical abrasion is used on a regular basis in U–Pb zircon geochronology 

for minimising or removing the effects of Pb loss. This involves high temperature 

annealing to repair radiation damage in zircon and prevents preferential leaching of 

Pb relative to U during multi-step digestions. Data obtained using such techniques371 

indicated that multi-step chemical abrasion in its current form could not be routinely 

applied to baddeleyite geochronology. However, a newly developed HCl–HF discrete 

digestion method was successful at isolating the zircon and baddeleyite components 

of composite grains. Initial HCl digestion steps completely dissolved the baddeleyite 

grains with minimal impact to the zircons rims and intergrowths. The zircon was then 

dissolved in a single or two-step HF digestion to determine the date of the igneous or 

metamorphic over-growths. 

 Because of the very small quantities of Pa and Ra in volcanic rocks and the 

extreme ratios between the daughter and parent isotopes, mass spectrometric analyses 

of U-Th-Pa-Ra disequilibria in such samples are analytically challenging. Although 

numerous studies have reported U-series disequilibria measurements in silicate 

samples, Koornneef et al.372 were the first to publish a study in which all the elements 

were separated from a single spike sample aliquot and the same solution used to 

determine elemental concentrations and isotopic compositions by MC-ICP-MS. In 

this way, any errors due to sample heterogeneity were removed. The method was also 

less time-consuming than previously used methods because it involved fewer columns 

in the chemical separation and the concentrations and isotope ratios were determined 

on the same sample aliquot. The reproducibility of 234U/238U, 230Th/238U, 231Pa/235U 

and 226Ra/230Th activity ratios from ten separate dissolutions of USGS BCR-2 (Basalt, 

Columbia River) were 0.4%, 1.4%, 1.1% and 2.4% (2SD) respectively. The method 

was suitable for samples with Pa and Ra contents as low as ca. 25 fg.  

 Yang et al.373 described a straightforward one-step chemical separation using 

anion-exchange chromatography on AG1-X8 resin which gave 90% recovery of Hf 

for isotopic analysis by MC-ICP-MS. Rock powders were subjected to a HNO3-HF 
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mixed acid attack and boric acid used to complex any residual fluorides. The total 

procedural blank of <20 pg was considered to be negligible. From multiple 

measurements of several USGS RMs and standard zircons and baddeleyite used in U-

Pb geochronology, the authors concluded that the procedure provided a significant 

improvement in Hf isotope determinations by MC-ICP-MS because of the greatly 

reduced time in sample preparation without compromising the precision and accuracy 

of the measurements.  

 Yin et al.41 reviewed the current status of research on Hg isotope variations in 

the environment. For high precision measurements by MC-ICP-MS, a cold Hg vapour 

was usually introduced into the plasma. This allowed Tl to be introduced, via a 

desolvating nebuliser, to correct for instrumental mass bias. Measurement precision 

was good enough (<0.2‰) for natural fractionation processes to be evaluated. The 

results were used to elucidate the sources and the fate of Hg in the environment.  

 

4.3.4 Other mass spectrometric techniques 

4.3.4.1 TIMS. High precision measurements of K isotopes, previously dependent on 

SIMS analysis, have applications in cosmochemistry and 41Ca–41K chronometry 

studies. Precise measurements of K isotope ratios are challenging because of the large 

ratios involved and their accuracy can be compromised by issues related to isobaric 

interferences and abundance sensitivity. A novel TIMS method374 for the 

measurement of 39K, 40K and 41K utilised the expanded dynamic range and improved 

S/N of a TritonTM instrument that had an amplifier array adapted to analyse samples 

of terrestrial basalts. Samples were prepared by IC using AG50W-X8 200-400 mesh 

cation-exchange resin in Teflon micro-columns. For samples containing 150 ng K, 

reproducibilities of 100 ppm (2 SD) for 41K/39K were achieved; for smaller samples 

with 10 ng K, the precision was 200 ppm or better. The method was thus suitable for 

high-precision K isotope measurements of material from refractory inclusions in 

chondritic meteorites. A simple procedure375, based on spiking with 40K and use of the 

power law to correct for mass fractionation in the determination of K isotopes in 

natural samples, gave a precision of <0.1% for 41K/41Ca in the dating of micas and 

other K-rich minerals.  

The excellent external precisions achievable make TIMS the favoured 

technique for the measurement of Nd isotope ratios in geological materials. As an 

example of the reproducibilities that can be achieved376, external precisions of ±15 
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ppm for 143Nd/144Nd (2σ) and ±8 ppm for 142Nd/144Nd (2σ) were reported for USGS 

RM BCR-2 (Basalt, Colombia River). Complete acid dissolution of rock samples was 

achieved in a two-step procedure involving both Savillex and Parr bombs. Chemical 

separation via a three column protocol ensured efficient removal of Ce and Sm from 

Nd, a necessary prerequisite for high precision measurements of Nd isotope ratios by 

TIMS. Copard et al.377 described the rigorous cleaning techniques needed to measure 

Nd isotopic compositions of living and fossil deep sea coral species. These data were 

required to investigate whether it was possible to reconstruct seawater Nd isotope 

signatures and past changes in ocean circulation. After mechanical and chemical 

cleaning of samples to avoid Nd contamination from manganese oxide and iron 

hydroxide coatings, Nd was purified using a combination of Eichrom TRU and Ln 

resin columns. The Nd isotopic compositions of modern coral were similar to those of 

adjacent water masses. 

 As noted in section 4.3.3.2, chemical abrasion in conjunction with MC-ICP-

MS or TIMS is now used regularly in U–Pb zircon geochronology for minimising or 

removing the effects of Pb loss. While its successful application on low to moderately 

damaged zircons is not disputed, Das and Davis378 investigated its application to 

Precambrian zircons with a wide range of radiation damage. Annealing at 1450 °C 

followed by HF leaching worked well for restoring primary U-Pb ages of weakly to 

moderately damaged uncracked zircons. Cracked grains were more effectively treated 

by annealing at 1000 °C so that disturbed Pb remained more accessible to leach 

solutions. However, once a zircon had been severely damaged, CA was unlikely to 

yield primary U-Pb ages from the grain. In a detailed multi-step CA-TIMS analysis of 

a suite of natural zircons, Mattinson379 confirmed that the accepted value for the 235U 

decay constant was too low by ca. 0.087%. As other research had suggested the need 

for revision of the natural 235U/238U ratio as well, Mattinson strongly recommended 

that both values be revised and adopted for use in U-Pb geochronology. Schoene et 

al.380 used the same sample solution to perform both highly precise ID-TIMS 

measurements for U-Pb geochronology and trace element analysis by SF-ICP-MS. 

Following zircon dissolution and ion-exchange separation to obtain a fraction for U-

Pb dating by TIMS, the “zircon wash” fraction was collected, dried and redissolved in 

a solution of HNO3 and HF doped with 1 ppb Ir as internal standard. This approach 

yielded a large amount of additional geochemical information for very little additional 
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effort. Future work will involve applying the method to a wider range of minerals and 

elements in a plethora of geological environments.  

Richter et al.381 reported significant improvements in routine U isotope ratio 

measurements using a modified TE method for TIMS. It was developed for use in the 

nuclear industry but can be applied to geochemical analysis. In the modified protocol, 

the TE process was interrupted on a regular basis to permit correction for peak tailing, 

internal calibration of a secondary electron multiplier versus the Faraday cups, peak-

centering and refocusing of the ion source. The measurement uncertainty (k=2) for 

n(234U)/ n(238U) of better than 0.12%, which represented an improvement of 5-10 fold 

compared to the normal TE protocol. The modified TE method presented a significant 

improvement in terms of uncertainty and accuracy and has been applied to other 

studies, e.g. Ca isotope measurements. To encourage its adoption, it has been 

incorporated into the operating software of the TritonTM TIMS instrument. 

 
4.3.4.2 SIMS. As noted in a review by Widenbeck382, applications of SIMS in Earth 

sciences increased over the past decade as more SIMS facilities became available and 

matrix effects were understood better. The impact of the SHRIMP  on research into 

lunar geochronology has been described from an Australian perspective 383. 

Although SIMS is routinely used for U-Pb age determinations in zircons at a 

lateral resolution of 10-30 µm, dating at a scale of ca. 5 µm remains challenging. Lui 

et al.384 demonstrated that a CAMECA 1280 SIMS instrument was capable of in situ 

U-Pb dating of zircons at a scale of <5 µm using a Gaussian illumination O2
– or O– 

primary beam. Three zircon standards with a range of ages were dated with 1-2% 

precision and accuracy by pooling 15-20 repeat measurements; these figures of merit 

were comparable to those obtained by routine measurements at the 10-30 µm scale 

with an alternative primary beam. The Gaussian illumination primary beam produced 

shallow craters ca. 500 nm, resulting in negligible U/Pb fractionation. Chamberlain et 

al.385 reported U-Pb dating of micro-baddeleyite crystals as small as 3 µm in mafic 

rocks with a CAMECA 1270 SIMS instrument, using the field aperture in the transfer 

column to screen out ions from host phases. The method relied on locating target 

grains in thin section by X-ray mapping and back-scattered electron imaging prior to 

SIMS.  

Researchers at Wisconsin386 developed a SIMS method for the determination 

of  Fe, O and S isotope ratios in geological materials at a resolution of 10 µm. 
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Accuracy and precision of 0.3‰ was achieved routinely for 18O/16O measurements 

using Faraday cup detectors and a 10 µm primary Cs+ beam. Smaller beams of 3 µm 

to <1 µm yielded precisions of 0.7–2‰ using electron multipliers in pulse-counting 

mode for measuring 18O. Analytical artefacts related to sample topography and crystal 

orientation effects were overcome by careful sample preparation to ensure that 

variations in surface relief were of the order of a few µm or less for individual 

samples. Anomalies resulting from crystal orientation were reduced by decreasing the 

sputtering energy of the primary ions from 20 to 10 keV. Further experiments at the 

same SIMS facility387 showed that in situ S isotope measurements could be performed 

with a grain-to-grain precision of ±0.3‰ in chalcopyrite, galena and pyrrhotite, and 

±0.2‰ in pyrite (2 SD). The precision for sphalerite under comparable conditions was 

±1.7‰. This degraded performance was related to preferred directions of beam 

transmission within the sphalerite crystal structure and was improved by reducing the 

depth of the analysis pits or lowering the total impact energy of the primary ions. 

Rollion-Bard and Marin-Carbonne388 demonstrated that instrumental mass 

fractionation in the SIMS determination of O isotopes in carbonates was related to the 

MgO content for carbonates containing small amounts of iron and manganese (FeO + 

MnO  <1 wt%). For Fe- and Mn-rich carbonates, the Fe and Mn contents needed to be 

taken into account when correcting for IMF. Because of the large variation in the Mg 

content of natural carbonates, calibration using carbonate RMs with different Mg 

contents was advocated to obtain accurate δ18O data by SIMS.  

 Quantification of the 40Ca–40K decay system by SIMS is not usually undertaken 

as it requires a mass resolution of 25,000 for full separation of the two ions. Harrison 

et al.389 overcame this difficulty by measuring the doubly-charged species Ca2+ and 

K2+ instead. Their method exploited the fact that although the first IPs of K and Ca are 

similar, the second IP of K is nearly three times that of Ca. The K2+ species were 

suppressed by a factor of ca. 103 relative to the singly-charged species, permitting 

direct 40Ca2+/39K2+ dating in K-rich minerals at moderate mass resolution (ca. 4000). 

  

4.3.5 X-ray techniques 

For a comprehensive review of recent applications of XRF spectrometry to the 

analysis of geological materials, our sister Update5 on XRF should be consulted. A 

short summary355 of trends in XRF analysis in relation to the Earth Sciences identified 
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significant developments in 3D µ-XRF and advances in enabling XRF and XRD 

analysis to be performed on the same spot.   

 The ability to determine iodine in situ by XRF techniques has been exploited. 

A combination of EPMA and sychrontron-based µ-XRF390 was used to map the 

micro-scale distribution of I in biocarbonates in a marine clayey formation in order to 

understand natural I behaviour in clay rock systems. Bioaccumulation of I in 

carbonate shells of ca. 160 Ma in age was demonstrated. However, the difference in 

results obtained by these two techniques highlighted the experimental challenges in 

measuring I in calcium carbonates. In a study of Pd-Pt aggregates from an alluvial 

deposit391, SFXRF confirmed the biogenic origin of the precious metal compounds, 

which were found to contain surprisingly high levels of I, in the range 10–120 µg g-1. 

Of the three techniques used, only SFXRF was sufficiently sensitive; PIXE and a 

mobile µ-XRF spectrometer failed to detect I in these samples. 

XRF techniques have been used to characterise As speciation in geothermal 

systems. In situ measurements of the redox state and molecular structure of As in 

rhyolitic peraluminous glass by XAFS392 provided information on species controlling 

the partitioning of As between hydrous melts and aqueous fluids. Hydrous silicate 

melts were shown to be important in transporting As, and similar elements like B and 

Sb, in shallow magmatic hydrothermal settings because of their high affinity for water 

and hydroxide ligands. James-Smith et al.393 employed SRXRF to determine As 

speciation in fluid inclusions in samples from gold ore deposits. Arsenic K edge XAS 

spectra were obtained from fluid inclusions at temperatures ranging from 25 to 200 °C 

and compared with spectra of aqueous AsIII and AsV solutions and minerals. However, 

the XAS information was limited by the rapid photooxidation that occurred in all 

inclusions, despite the relatively low photon flux density used, as a result of a 

complex interaction between redox-sensitive complexes in solution and the products 

of water radiolysis generated by the beam.  
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 5 Glossary of terms 

 
2D   two-dimensional 

3D   three-dimensional 

AAS   atomic absorption spectrometry 

ACGIH  American Conference of Governmental Industrial Hygienists  

AES   atomic emission spectrometry 

AFS   atomic fluorescence spectrometry 

AMS   accelerator mass spectrometry 

APDC   ammonium pyrrolidine dithiocarbamate 

ASPAC   The Australasian Soil and Plant Analysis Council  

ASTM   American Society for Testing and Materials 

ASU   Atomic Spectrometry Updates 

BAM   Federal Institute for Materials Research and Testing  (Germany)  

BCR   Community Bureau of Reference (of the European Community) 

CCD   charge coupled detector 

CANMET  Canada Centre for Mineral and Energy Technology 

CE   capillary electrophoresis 

CNS   carbon,nitrogen,sulfur 

CPE   cloud point extraction 

CRM   certified reference material 

CS   continuum source 

CV   cold vapour 

DDTC   diethyldithiocarbamate 

DGT   diffusion gradient in thin films 

d-DIHEN  demountable direct injection high efficiency nebuliser 

DIHEN  direct injection high efficiency nebuliser 

DLLME  dispersive liquid liquid microextraction 

DMA   dimethyl arsenic acid 

DRC   dynamic reaction cell 

ED   energy dispersive 

EDS   energy dispersive spectrometry 

EDTA   ethyldiaminetetraacetic acid 
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EDXRF  energy dispersive X-ray fluorescence  

EN   European Standard 

EPA   Environmental Protection Agency 

EPMA   electron probe microanalyser 

ERM   European Reference Material 

ESI-MS  electrospray ionisation mass spectrometry  

ETA   electrothermal atomisation 

ETAAS   electrothermal atomic absorption spectrometry 

ETV   electrothermal vaporisation   

EU   European Union 

FAAS   flame atomic absorption spectrometry 

FTIR   Fourier transform infrared 

GBW National Research Center for Certified Reference Materials 

(China) 

GC   gas chromatography 

GSJ   Geological Survey of Japan 

GUM   Guide to Uncertainity in Measurement 

HG   hydride generation 

Hgp   particulate bound mercury 

HPA   high pressure asher 

HPLC high performance liquid chromatography 

HPS High Purity Standards (USA) 

HR high resolution   

IAEA International Atomic Energy Agency 

IAG International Association  of Geoanalysts 

IC   ion chromatography 

ICP   inductively coupled plasma 

ICP-AES inductively coupled plasma atomic emission spectrometry 

ICP-MS  inductively coupled plasma mass spectrometry 

ICP-QMS  inductively coupled plasma quadrupole mass spectrometry 

ID   isotope dilution 

IDA   isotope dilution analysis 

IMF   instrumental mass fractionation 

IMR   Insitute of Mineral Resources (China) 
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INAA   instrumental neutron activation analysis 

INCT   Institute of Nuclear Chemistry and Technology (Poland) 

IP   ionisation potential 

IR   infrared 

IRMM   Institute for Reference Materials and Measurements  

IRMS   isotope ratio mass spectrometry 

ISO   International Organisation for Standardization 

LA   laser ablation 

LASIL   laser ablation of a sample in liquid 

LEAFS laser excited atomic fluorescence spectrometry 

LGC Laboratory of the Government Chemist 

LIBS laser induced breakdown spectroscopy 

LLME   liquid liquid microextraction 

LOD   limit of detection 

LPME   liquid drop microextraction 

Ma   million years 

MALDI  matrix-assisted laser desorption/ionisation 

MC multicollector  

MeHg methyl mercury 

MIBK methyl isobutyl ketone 

MIP microwave induced plasma 

MMA   monomethylarsonic acid 

MPI   Max Planck Institute (Germany) 

MRI   magnetic resonance imaging 

MS   mass spectrometry 

m/z   mass to charge ratio 

NAA   neutron activation analysis 

NaDDTC  sodium diethyldithiocarbamate 

NCS   China National Analysis Centre for Iron and Steel 

Nd:YAG  neodymium doped:yttrium aluminum garnet  

NIES   National Institute for Environmental Sciences (Japan) 

NIST   National Institute of Standards and Technology (USA) 

NMR   nuclear magnetic resonance 

NRCC   National Research Council of Canada 
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NTIMS  negative thermal ionisation mass spectrometry 

NWRI   National Water Research Institute (Canada) 

OECD   Organisation for Economic Co-operation and Development 

OTC   organotin compound 

PFA   perfluoroalkyl 

PGE   platinum group element 

PIGE   particle induced gamma-ray emission 

PIXE   particle induced X-ray emission 

PLS   partial least square 

PM1.0   particulate matter (with an aerodynamic diameter of up to 1.0 µm) 

PM2.5   particulate matter (with an aerodynamic diameter of up to 2.5 µm) 

PM10-2.5  particulate matter (with an aerodynamic diameter of between 2.5 and 10 µm) 

PM10   particulate matter (with an aerodynamic diameter of up to 10 µm) 

ppm   part per million 

pptv   part per trillion volume 

PTFE   poly(tetrafluoroethylene) 

PVC   poly(vinyl chloride)  

QA   quality assurance 

QC   quality control 

REE   rare earth element 

REMCO  Committee on Reference Materials (ISO technical committee) 

RGM   reactive gas phase mercury 

RM   reference material 

RP   reversed phase 

RSD   relative standard deviation 

RTC   Resource Techology Corporation (USA) 

s   standard deviation of sample 

SD   standard deviation 

SeCys2   selenocycstine 

SEM   scanning electron microscopy 

SeMet   selenomethionine 

SF sector field 

SHRIMP  sensitive high resolution ion microprobe 

SI   système international d'unités 
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σ   population standard deviation  

SIMS   secondary ion mass spectrometry 

S/N   signal to noise ratio 

SPE   solid phase extraction 

SR   synchrotron radiation 

SRM   standard reference material 

SRXRF  synchrotron radiation X-ray fluorescence 

STXM   scanning transmission X-ray microscopy 

TD   thermal desorption 

TDS   total dissolved solids  

TE   total evaporation 

TEM   transmission electron microscopy 

TIMS   thermal ionisation mass spectrometry 

TOF    time of flight 

TXRF   total reflection X-ray fluorescence 

USGS   United States Geological Survey 

USN  ultrasonic nebuliser 

UV   ultra violet 

UV/VIS  ultra violet / visible  

VUV   vacuum ultraviolet 

WDXRF  wavelength dispersive X-ray fluorescence  

XAFS   X-ray absorption fine structure spectrometry 

XANES   X-ray absorption near edge structure 

XAS   X-ray absorption spectrometry 

XRD   X-ray diffraction 

XRF   X-ray fluorescence 

YAG   yttrium aluminium garnet 
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