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 5 

ABSTRACT 6 

Radiocarbon dating has the capacity to significantly improve our understanding of the aquatic 7 
carbon cycle. In this study we used a new passive sampler to measure the radiocarbon (14C) 8 
and stable carbon (δ13C) isotopic composition of dissolved CO2 for the first time in a peatland 9 
stream throughout a complete year (May 2010 – June 2011). The in-stream sampling system 10 
collected time-integrated samples of CO2 continuously over approximately one month 11 
periods. The rate of CO2 trapping was proportional to independently measured streamwater 12 
CO2 concentrations, demonstrating that passive samplers can be used to estimate the time-13 
averaged dissolved CO2 concentration of streamwater. While there was little variation and no 14 
clear trend in δ13CO2 values (suggesting a consistent CO2 source), we found a clear temporal 15 
pattern in the 14C concentration of dissolved CO2. The 14C age of CO2 varied from 707±35 to 16 
1210±39 years BP, with the youngest CO2 in the autumn and oldest in spring/early summer. 17 
Mean stream discharge and 14C content of dissolved CO2 were positively correlated. We 18 
suggest that the observed pattern in the 14C content of dissolved CO2 reflects changes in its 19 
origin, with older carbon derived from deeper parts of the peat profile contributing 20 
proportionally more gaseous carbon during periods of low stream flow. 21 
 22 
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1. Introduction 26 

Peatland formation has produced a global terrestrial carbon store of approximately the same 27 

size as the current atmospheric carbon pool (Clymo and Bryant, 2008). Considerable research 28 

effort is now being focussed on the effect of man and climatic variability on this important 29 

terrestrial carbon store involving a combination of flux measurements and process-based 30 

studies (e.g. Billett et al., 2010).  Drainage waters are increasingly being recognised as 31 

important conduits for carbon release from peatlands, and are now known to represent an 32 

important flux term in the annual carbon balance (Dinsmore et al., 2010; Koehler et al., 2011).  33 

 34 
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Organic-rich surface waters draining peatlands are typically acidic and supersaturated with 35 

respect to CO2 and CH4 (e.g. Dawson et al., 1995; Billett and Moore, 2008). In these systems 36 

carbon exists in three main forms: POC (particulate organic carbon), DOC (dissolved organic 37 

carbon) and DIC (dissolved inorganic carbon) (Eatherall et al., 1998). For DIC, carbon in 38 

streamwater can exist in the form of carbonate, bi-carbonate, or dissolved CO2, the proportion 39 

of which varies with pH and temperature according to the carbonate buffering system (Hope 40 

et al., 1995; Aufdenkampe et al., 2011).  41 

 42 

In streams draining peatlands, where DIC is primarily present as CO2 due to low pH, CO2 43 

supersaturation varies both spatially (Dawson et al., 1995; Dawson et al., 2001) and 44 

temporally (Dinsmore and Billett, 2008; Johnson et al., 2010). Degassing (evasion) of CO2 45 

from the water surfaces of peatlands and other saturated carbon-rich systems is known to 46 

represent an important emission pathway connecting the below-ground carbon store to the 47 

atmosphere (Kling et al., 1991; Dinsmore et al., 2011). Consequently, for a better assessment 48 

of the importance of peatland carbon fluxes, and their potential response to change (e.g. 49 

climate and/or management) a greater understanding is required of the size and source of CO2 50 

loss via peatland streams. 51 

 52 

Radiocarbon (14C) analysis can provide important information on the age and rate that carbon 53 

is cycled through various components of ecosystems. 14C dating of peat, or the constituents 54 

that form peat, has been widely used to reconstruct the development of peatlands and to 55 

quantify rates of carbon accumulation and loss (e.g. Clymo and Bryant, 2008). 14C analysis of 56 

waters draining peatlands has largely focussed on the age of the DOC component (e.g. Benner 57 

et al., 2004; Evans et al., 2007). For waters draining intact peatlands, DOC has typically been 58 

found to have 14C contents that exceed 100 %modern (Tipping et al., 2010), unambiguously 59 

indicating the presence of “bomb-14C” (Levin and Hesshaimer, 2000).  60 

 61 
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Analysis of the 14C age of the DIC component (or its gaseous constituent, CO2) transported by 62 

rivers has previously been undertaken using one of two methods: (1) an indirect method 63 

whereby water samples are collected in the field, returned to the laboratory and the entire DIC 64 

recovered as CO2 by “gas-stripping” (e.g. Mayorga et al., 2005), or (2) a direct method 65 

whereby CO2 evading from the water surface is captured using a floating chamber and 66 

adsorbed onto a molecular sieve, which can be subsequently processed in the laboratory to 67 

recover the CO2 for isotope analysis (Billett et al., 2006; Billett and Garnett, 2010).  68 

 69 

Studies using the chamber method have revealed that in UK peatlands CO2 degassed from the 70 

water surface is often derived from a much older source (up to at least 1000 years BP) than 71 

the DOC component, and that its isotopic signature (14C and δ13C) can vary considerably both 72 

temporally and spatially between and within catchments (Billett et al., 2007). This within-73 

catchment variability in source and age has also been demonstrated for CO2 released from 74 

peatland pipes (Billett et al., in press a), which are known to act as important point sources for 75 

greenhouse gas release from peatlands (Dinsmore et al., 2011). In contrast, CO2 evaded from 76 

a Finnish stream during the spring thaw was predominantly derived from carbon fixed within 77 

recent decades, as evidenced by the substantial component of bomb-14C (Billett et al., in press 78 

b). Using the gas-stripping  method, Mayorga et al. (2005) showed that the majority of CO2 79 

evaded from Amazon rivers was derived from young (< 5 years old) carbon sources. 80 

 81 

Whilst both the direct and indirect methods for determining the 14C concentration of aquatic 82 

CO2 have provided valuable insights, they both rely on the collection of samples over short 83 

periods of time. Consequently we currently do not know whether these ‘spot samples’ are 84 

representative of longer timescales or the full hydrograph range. One solution would be to 85 

increase the temporal resolution of sample collection, however, this is time-consuming and 86 

the cost of 14C analysis is likely to make this approach prohibitive. Recently, a new passive 87 

sampling method has been developed and tested for the collection of CO2 for carbon isotope 88 

analysis from a range of environments including soil-respired CO2 (Garnett et al., 2009), 89 
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atmospheric CO2 (Garnett and Hartley, 2010) and dissolved CO2 in water-logged peat 90 

(Garnett and Hardie, 2009). The approach is similar to the established passive sampling 91 

methods used to collect time-integrated solute samples in surface waters over periods of 92 

weeks or months (e.g. Vrana et al., 2005; Rozemeijer et al., 2010).  The technique is suited for 93 

the collection of samples over extended sampling times (up to several months) and whilst it 94 

has previously been deployed to sample CO2 from water-saturated soils, it has hitherto not 95 

been employed to sample dissolved CO2 in stream waters. Here, we report for the first time a 96 

12 month series of carbon isotope (14C and δ13C) analyses of dissolved CO2 collected from a 97 

peatland stream using the passive sampling technique. The volume of CO2 recovered and rate 98 

of CO2 trapping are also reported. We relate these results to measurements of stream and 99 

climatic conditions and hypothesised that: i) the passive sampling method provides a reliable 100 

method for the collection of dissolved CO2 from peatland drainage waters for carbon isotope 101 

analysis, and ii) that changes in the isotopic composition of streamwater dissolved CO2 102 

provides information on annual variability in source and age.  103 

 104 

2. Methods 105 

2.1. Study site and measurement of site characteristics 106 

Sampling was performed in the Black Burn, a peatland stream draining Auchencorth Moss in 107 

central Scotland (55º47’34 N; 3º14’35W). The catchment has an area of 3.4 km2, spans an 108 

altitude range of ~250-300 m asl, and contains 85%  peatland with peat depths reaching >5 m 109 

(Dinsmore et al., 2010). The vegetation in the catchment is predominantly a mixture of 110 

grasses and sedges covering a basal layer of mosses associated with a hummock/hollow 111 

microtopography. The dominant bryophytes are Sphagnum and Polytrichum species and the 112 

main vascular plants Deschampsia flexuosa, Molinia caerulea, Festuca ovina, Eriophorum 113 

angustifolium, Eriophorum vaginatum, Juncus effusus, Juncus squarrosus and Calluna 114 

vulgaris (Dinsmore et al., 2009a). The area is the focus of a long-term study of carbon cycling 115 

(Billett et al., 2010; Dinsmore et al., 2010) and is one of the UK Centre for Ecology and 116 

Hydrology’s ‘Carbon Catchments’, with continuous measurement of particulate, dissolved 117 
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and gaseous forms of aquatic carbon since 2006. Carbon isotopic composition of both 118 

dissolved organic carbon and CO2 evading from the stream surface (Billett et al., 2006, 2007) 119 

has been previously characterised. 120 

 121 

Discharge in the Black Burn is monitored at 15 minute intervals using an In-Situ Inc Level 122 

Troll® pressure transducer and rating curve produced from manual dilution gauging 123 

measurements (r2 = 0.88); stream temperature was also provided by the Level Troll® sensor. 124 

Dissolved CO2 concentrations were calculated from weekly headspace spot samples collected 125 

approximately 10 m downstream from the location of the CO2 passive samplers throughout 126 

the study period. The headspace method involved equilibration of an ambient air volume (20 127 

ml) with a stream water sample (40 ml) by vigorously shaking in a syringe for one minute at 128 

stream temperature. The equilibrated headspace was then transferred to a separate gas-tight 129 

syringe and analysed, alongside an ambient air sample, using gas chromatography. Dissolved 130 

gas concentrations in the stream water at time of sampling were calculated using Henry’s law 131 

(Hope et al., 1995) and expressed in units of ppmv and epCO2. Environmental variables 132 

including soil temperature and depth of water table were provided from a 133 

micrometeorological station located ~400 m from the stream sampling point (M. Coyle, 134 

personal communication, 2011). 135 

 136 

2.2. Sampling of dissolved CO2 using passive samplers 137 

We deployed passive samplers similar in design to those previously used to sample CO2 from 138 

a range of environments (Garnett and Hardie, 2009; Garnett et al., 2009; Garnett and Hartley, 139 

2010). The samplers were constructed from glass tubing with a central compartment 140 

containing Type 13X zeolite molecular sieve  (1/16” pellets, BDH, UK) held in place using 141 

quartz wool, and surrounded on either side by lengths of narrower glass tubing (Fig. 1). The 142 

central compartment was made from glass tubing with dimensions of 70 mm length and 11 143 

mm inner diameter. The ends of the cartridges were built from 100 mm lengths of glass 144 

tubing with inner diameters of 4 mm and 8 mm. Lengths (50 mm) of Tygon tubing (Fisher, 145 
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UK) were attached to either end of the cartridge, and a plastic clip (WeLoc, Scandinavia 146 

Direct, UK) placed over the Tygon tubing at the wider end to create a seal. At the upstream 147 

end of the sampler (the narrow end; ‘inlet’) we used a gas permeable hydrophobic filter to 148 

allow gas exchange with the inside of the cartridge but prevent the entry of water. The 149 

hydrophobic filter was constructed from a 5 cm length of Accurrel PP V8/2 HF tubing 150 

(Membrana GmbH, Germany; Gut et al., 1998) pushed onto a 5 cm length of nylon tubing, 151 

which was in turn inserted into the Tygon tubing of the inlet of the sampler. A glass stopper 152 

was used to seal the end of the Accurrel filter, and joins reinforced using a rubber sealant 153 

(Plasti-dip, USA). The resulting samplers were thus completely water-tight, but allowed rapid 154 

gas exchange to occur through the hydrophobic filter. This allowed CO2 to enter the cartridge 155 

and subsequently be adsorbed onto the molecular sieve. Prior to use, the samplers were 156 

prepared by heating (500 oC) the molecular sieve under vacuum (see Hardie et al., 2005) and 157 

filled with high-purity N2. Before and after sampling a plastic clip was also placed across the 158 

Tygon tubing at the inlet of the sampler to prevent ingress of atmospheric CO2 . 159 

 160 

For deployment at the field site the sampler was protected inside a length of polystyrene pipe, 161 

and attached to a steel ‘cradle’ using cable ties. Posts were driven into the stream banks (to 162 

avoid disturbance to the stream bed) to which a length of PVC pipe (110 mm inner diameter x 163 

500 mm length) was secured, such that it was permanently submerged in the water, parallel to 164 

stream flow, and located just above the stream bed to allow free flow of water around the 165 

passive sampling system. The pipe was used to house the cartridge containing the passive 166 

sampler during sampling, ensuring that the sampler was consistently held at the same location 167 

and to provide protection from possible damage during high flow periods. Stream water was 168 

free to pass unhindered through the pipe which remained open at both ends (Fig. 1).  169 

 170 

Prior to sampling, the cradle containing the passive sampler was submerged in the stream, the 171 

clip at the inlet removed, and the cradle inserted into the pipe with the inlet of the sampler 172 

pointing upstream. The samplers were left for between 27 and 83 days to accumulate CO2, 173 
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and then retrieved by first sealing the inlet with a clip before removal from the stream, and 174 

returning to the NERC Radiocarbon Facility for processing. A total of nine samples were 175 

collected over a complete year from 28 May 2010 to 2 June 2011, with a hiatus (14 Dec 2010 176 

to 18 January, 2011) when no sampling occurred.  Although the reliability of the passive 177 

samplers had previously been demonstrated on several earlier occasions (Garnett et al., 2009; 178 

Garnett and Hardie, 2009; Garnett and Hartley, 2010), we performed a further test by 179 

deploying an additional second passive sampler simultaneously with the final two from the 180 

annual series; reliability of the samplers would be supported if the isotope concentration of 181 

the CO2 from the additional sampler was equal to the average of that from the two shorter-182 

term samplers. 183 

 184 

2.3. Measurement of volume of CO2 recovered and its carbon isotope (δ13C and 14C) content 185 

Sample CO2 was recovered from the molecular sieve in the passive samplers by heating (500 186 

oC) followed by cryogenic purification (see Hardie et al., 2005). The total volume of CO2 187 

recovered was measured in a calibrated volume using a pressure transducer, and the CO2 188 

divided into aliquots for 13C and 14C measurement. δ13C (13C isotope enrichment relative to 189 

the Vienna PDB standard) was determined using isotope ratio mass spectrometry (VG 190 

Optima, Micromass, UK) at the NERC Radiocarbon Facility. The aliquot of CO2 for 14C 191 

analysis was graphitised using Fe/Zn reduction (Slota et al., 1987) and measured by 192 

accelerator mass spectrometry (AMS) at the Scottish Universities Environmental Research 193 

Centre (East Kilbride, UK). 14C concentrations were determined relative to the oxalic acid 194 

international radiocarbon standard and normalised to a δ13C of -25 ‰ (using the δ13C values 195 

of the recovered CO2) to account for mass dependent fractionation effects (Stuiver and 196 

Polach, 1977). Radiocarbon results are expressed as %modern and conventional radiocarbon 197 

age (years BP, where 0 BP = AD 1950). By convention measurement uncertainties for isotope 198 

results are expressed as standard deviations (Stuiver and Polach, 1977). Previous tests have 199 

quantified a small isotopic fractionation that occurs during passive trapping (Garnett et al., 200 

2009; Garnett and Hardie, 2009) and therefore a correction (+4 ‰) was applied when 201 
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interpreting the δ13C results; since the 14C values are by definition normalised to δ13C of -25 202 

‰ they are unaffected by this fractionation effect. 203 

 204 

Rate of CO2 trapping on passive samplers should be directly proportional to the CO2 205 

concentration of the environment being sampled as in the following equation based on Fick’s 206 

Law (Bertoni et al., 2004): 207 

 208 

Ci = (Qi x L ) / ( S x t x Di )    (1) 209 

 210 

where Ci represents the CO2 concentration of the atmosphere being sampled, Qi the volume 211 

of CO2 trapped during time t, Di is the diffusion coefficient of CO2 in air, and L and S are the 212 

length and cross-sectional area of the sampling probe (between mid points of inlet and 213 

molecular sieve). We used Equation 1 to determine the concentration of dissolved CO2 in the 214 

Black Burn during the periods of sample collection, based on the recovered volumes of CO2 215 

from passive samplers and their known exposure times. 216 

 217 

3. Results 218 

3.1  Variability in discharge, temperature and CO2 concentrations 219 

Mean discharge from the Black Burn was 54 L s-1 and ranged from 3 L s-1 to 1400 L s-1 over 220 

the course of the sampling year (Fig. 2). Due to equipment failure there were two periods 221 

when discharge was not recorded. Mean air temperature was 8.0oC and ranged from -12.0 to 222 

24.1oC (Fig. 2). Concentrations of dissolved CO2 in the stream (Fig. 3) determined from 223 

weekly spot sampling ranged from 1301 to 7745 ppmv with a mean of 3570 ppmv. These 224 

values represent a range in epCO2 (ep is defined as excess partial pressure e.g. pCO2 225 

water/pCO2 atmosphere) from ~3 to 20. 226 

 227 

3.2 Volume and rate of CO2 trapped on passive samplers 228 
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The volume of CO2 recovered from the passive samplers (Table 1) ranged from 5.3 ml (27 229 

and 45 day sampling periods) up to 22.4 ml (83 day sampling period), and was highly 230 

positively correlated (r2 = 0.788; p < 0.001) with exposure time. The CO2 trap rate (volume of 231 

CO2 recovered divided by number of sampling days) ranged from 0.118 to 0.299 ml day-1, 232 

with highest rates occurring during summer and lowest during mid-winter, coinciding with 233 

the highest and lowest CO2 concentrations, respectively. Using Fick’s law (Equation 1) the 234 

estimated average CO2 concentration in the Black Burn, based on the trap rates of the passive 235 

sampler, was 3336 ± 229 (SE) ppmv and therefore similar to the mean value derived from 236 

spot sampling (3570 ± 225 (SE) ppmv). Throughout the sampling year there was good 237 

agreement between the values of dissolved CO2 concentration determined from weekly spot 238 

sampling and those calculated from the molecular sieve trap rate (Fig. 3) with an overall 239 

significant positive correlation (r2 = 0.672, p < 0.01). 240 

 241 

3.3 Carbon isotope (δ13C and 14C) concentration of dissolved carbon dioxide 242 

All passive samplers provided sufficient CO2 for both 14C and δ13C measurement. 243 

Radiocarbon concentration of the dissolved CO2 ranged from 86.01 to 91.57 %modern 244 

(equivalent to 707 to 1210 years BP; Table 1). There was a trend of increasing 14C 245 

concentration in CO2 from the start of the sampling period (May 2010) to peak levels in 246 

samples collected between September and December 2010. Subsequently, the 14C content of 247 

dissolved CO2 decreased to that at the start of the time series (Table 1). 248 

 249 

Radiocarbon concentration of the dissolved CO2 was compared to mean discharge rates 250 

(averaged over the sampling period for each sampler). Due to two gaps in the discharge data, 251 

only results for eight of the ten samplers could be reliably compared (Fig. 4). There was a 252 

positive correlation between discharge and 14C concentration of the dissolved CO2 (r2 = 0.766, 253 

p < 0.01). However, one sample (collected 9 September 2010 to 6 October 2010) appeared to 254 

be an outlier, and when removed the correlation between discharge and 14C content of CO2 255 

considerably improved (r2 = 0.965, p < 0.001). There was no significant correlation between 256 
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the 14C results and air temperature. In contrast to the 14C data, δ13C varied relatively little 257 

during the course of the sampling year (range -24.2 to -23.0 ‰) and was not significantly 258 

correlated with any other measured variables (Table 1). 259 

 260 

The means of the 14C and δ13C values for the two samples collected consecutively between 4 261 

March 2011 to 21 April 2011 and 21 April 2011 to 2 June 2011 were within measurement 262 

uncertainty (2 σ) of the results for the replicate sampler that was exposed during the same 263 

sampling period (4 March 2011 to 2 June 2011). 264 

 265 

4. Discussion 266 

4.1 Reliability of the passive sampler for collecting dissolved CO2 for 14C analysis. 267 

Passive samplers have been used reliably to trap CO2 for monitoring purposes, for example to 268 

provide time-weighted averages for atmospheric CO2 concentrations (e.g. Bertoni et al., 269 

2004). The sampler used in the present study has previously been shown to perform reliably 270 

for sampling and subsequent carbon isotope analysis of CO2 recovered from a range of 271 

environments (Garnett et al., 2009; Garnett and Hardie, 2009; Garnett and Hartley, 2010); the 272 

many tests performed in these studies included comparison of replicate field samples and 273 

verification using isotopic standards under controlled laboratory conditions. Indeed, given that 274 

the layers of peatlands beneath the water table have moisture contents of typically > 90 %, the 275 

tests performed by Garnett and Hardie (2009) have already shown the reliability of the 276 

samplers under similar conditions to this study. We therefore mainly rely on the detailed 277 

method testing carried out by Garnett and Hardie (2009) and others (Garnett et al., 2009; 278 

Garnett and Hartley, 2010), that have demonstrated the reliability of the samplers. However, 279 

the results from the present study also provide additional evidence for the reliability of the 280 

passive sampling method for recovering samples of streamwater dissolved CO2 for carbon 281 

isotope analysis. 282 

 283 
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Firstly, the dissolved CO2 concentration determined from the rate of CO2 trapping in passive 284 

samplers was remarkably similar to the mean of independently determined values from spot 285 

samples (Fig. 3). This is despite the fact that the spot samples were collected at an average 286 

frequency of one per week, whereas the passive samplers were sampling continuously. It is 287 

possible that the frequency of the spot sampling collection meant that periods of high 288 

discharge (Fig. 2) were under-represented, and therefore average CO2 concentration of the 289 

spot samples would be slightly biased towards periods of lower flow. Dinsmore and Billett 290 

(2008) previously found a strong negative curvilinear relationship between discharge and 291 

dissolved CO2 concentration ~ 20 m downstream of the current study site (using in-situ CO2 292 

sensors with 30 min time resolution). This could explain why a slightly lower annual average 293 

for CO2 concentration was calculated using the passive samplers compared to the spot 294 

sampling approach. Indeed, discharge during the sampling year on the days when spot 295 

samples were collected was on average 50.28 L s-1, compared to 53.98 L s-1 from the 296 

continuous logger; thus over the sampling year the mean discharge was 7.37 % greater than 297 

when spot samples were collected. If we decrease the mean CO2 concentration for the spot 298 

samples by the same percentage difference to account for the spot sampling bias to low flows 299 

(i.e. assuming a negative linear relationship over this small range), the CO2 concentration of 300 

the spot samples becomes 3307 ppm, remarkably similar to the CO2 concentration calculated 301 

from the passive samplers (3336 ppm). 302 

 303 

The strong correlation between the CO2 concentrations derived from spot samples compared 304 

to passive samplers shows that the rate of CO2 trapping was related to the CO2 concentration 305 

of the environment being sampled. This is fundamentally important for the collection of 306 

representative samples. The rate of CO2 trapping in the samplers appears to have been 307 

unaffected by the length of exposure time, since the latter varied considerably (from 27 to 83 308 

days) throughout the sampling year. This indicates that the sampling capacity of the passive 309 

samplers was not exceeded (Garnett et al. (2009) found that the capacity of the sieves was at 310 

least 100 ml CO2). It should however be noted that in the replicated samples at the end of the 311 
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annual series, that the summed volume (19.7 ml) recovered from the two short-period samples 312 

(4 March to 21 April 2011, and 21 April to 2 June 2011) was slightly less than the volume 313 

(22.4 ml) recovered from the single sampler that was exposed for the entire period (4 March 314 

to 2 June 2011). Previous tests of the passive sampler have generally shown closer agreement 315 

in the volumes of CO2 recovered from replicate samplers (e.g. Garnett et al., 2009). Clearly, 316 

we can discount the possibility that the longer-term sampler was trapping CO2 less efficiently 317 

due to it becoming saturated with either CO2 or H2O, since this sampler had the greater CO2 318 

volume. While we aimed to place replicate samplers as close to each other as possible in the 319 

stream, there may have been slight differences in the concentration of CO2 at the locations 320 

where these samplers were deployed (using Equation 1 we calculate that a difference of ~ 460 321 

ppm (i.e. < 14 %) in streamwater CO2 concentration would explain the different volumes 322 

recovered). Alternatively, part of the discrepancy could be due to small differences in the 323 

dimensions of passive samplers, for example, a difference in the distance between the gas 324 

inlet and molecular sieve of just 1 cm would have resulted in a difference in the volume of 325 

CO2 trapped in the 83 day sample of ~ 1 ml. Clearly, if the passive samplers are to be used to 326 

more accurately quantify CO2 concentrations in streamwater further investigation of this 327 

discrepancy is required. However, it should be reiterated that the main purpose of this study 328 

was to measure δ13C and 14C and not CO2 concentration, and that these were unaffected by the 329 

above mentioned issues. It is also important to note that when carbon isotope values for these 330 

replicate samples were combined, both the 13C and 14C values from the short period samplers 331 

were within measurement uncertainty (2 σ) of the results for the long period sample, 332 

supporting the earlier studies that demonstrated the reliability of the samplers for isotopic 333 

determinations. 334 

 335 

4.2 Carbon isotope (14C and δ13C) composition of dissolved CO2. 336 

We found very little variation in the δ13C of streamwater dissolved CO2 collected in the 337 

passive samplers over the course of the sampling year, and no clear temporal pattern or 338 

significant correlations with variables such as flow or temperature. After correction of the 339 
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results for fractionation during passive trapping (see Methods), δ13C ranged from -20.2 to -340 

19.0 ‰. This range of values is similar to earlier measurements of evaded CO2 from the Black 341 

Burn collected using a floating chamber; Billett et al. (2006) reported values of ~ -21.6 to - 342 

21.0 ‰ and Billett et al. (2007) values of -26.5 to -18.3 ‰. The lack of a clear pattern in the 343 

annual series or correlations with other variables means that alone, the series of δ13C values is 344 

of limited use in unravelling the carbon dynamics at this site, other than to say that the values 345 

themselves could result from a mixture of sources, including dissolved CO2 from shallow or 346 

deep peat, and with potentially a small contribution from a weathering source. The lack of 347 

variation in the values over the 12 month period may suggest that hydrological flow paths 348 

within the catchment are delivering CO2 to the stream from a source area/areas with a 349 

consistent δ13C value. Alternatively, the results may partly reflect the time-integrated 350 

sampling method, which in some situations could be a disadvantage of the technique. 351 

Although our results clearly indicate that no seasonal pattern in δ13C existed, we cannot rule 352 

out the possibility that significant variability such as that observed by Billett et al. (2007) 353 

exists across shorter time scales i.e. at a diurnal level or in response to short term storm 354 

events. But as long as prior consideration is given to the scale of variability being targeted, 355 

and the length of time over which integration occurs is adjusted to suit, the smoothing which 356 

occurs due to time integration is not necessarily a disadvantage.  357 

 358 

In contrast, the 14C values of dissolved CO2 collected from this peatland stream using the 359 

passive samplers showed a clear pattern over the course of the year and were strongly 360 

correlated with stream discharge (Fig. 4). The 14C age of the dissolved CO2 ranged from 1210 361 

to 707 years BP, and again was similar to the age of evaded CO2 collected from the Black 362 

Burn in previous studies. For example, Billett et al. (2006) reported 14C ages of 1454 to 852 363 

years BP for samples collected at two locations along the Black Burn on the same day, and 364 

Billett et al. (2007) gave an age range from 1127 years BP to modern (104.58 %modern) for 365 

samples collected at two sites along the Black Burn on four seasonal sampling occasions; of 366 

these two sites, the one nearest our sampling point had a range of 14C ages of 312 to 1127 367 
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years BP. These results broadly imply that the age of CO2 evaded at this site differs little from 368 

the streamwater dissolved CO2; this concurs with the results of Billett and Garnett (2010) who 369 

for the same site found similar 14C values for evaded CO2 and dissolved CO2 (derived from 370 

14C analysis of total streamwater DIC) when samples were collected concurrently (e.g. for site 371 

A10 on two separate occasions, evasion/DIC were respectively, 759/714 years BP, and 372 

940/890 years BP). 373 

 374 

The series of 14C measurements of dissolved CO2 shows a general pattern of increasing 14C 375 

concentrations from May, to greatest 14C-enrichment in the September samples, followed by a 376 

progressive decline and return to the lowest 14C levels the following May (Fig. 4). The 14C 377 

values imply that the dissolved CO2 in streamwater contains a greater proportion of younger 378 

carbon in autumn and early winter, compared to the rest of the year. An obvious source for 379 

younger carbon in peatlands is vegetation; CO2 with a contemporary 14C signal (~104.5 380 

%modern at the time of this study; Levin et al., 2008) is fixed through photosynthesis and 381 

released into the soil via plant respiration, root exudates or litter decomposition. However, it 382 

seems unlikely that plant activity or CO2 mineralised from recently deposited plant litter or 383 

surface peat can explain the pattern of 14CO2 in the streamwater in the annual series, since we 384 

would expect greatest plant activity and/or greatest decay of fresh litter/surface peat during 385 

the summer season when temperatures were highest; in fact the 14C results suggest greatest 386 

contributions from younger carbon much later (September-December). There could be a time 387 

delay between CO2 production and transfer to the stream as has been reported for DOC in 388 

peatland sites (Clark et al., 2005; Dawson et al. 2011). Regression analysis of CO2 389 

concentrations in soils and associated surface waters have found that introducing lag times of 390 

<1 day to 14 days improved the modelling of CO2 cycling in aquatic systems (Hope et al. 391 

2004; Dinsmore et al. 2009b).  However, to explain the pattern of our 14CO2 results the time 392 

delay would need to be much greater than this (and greater than the 4-6 weeks reported for 393 

DOC). It further seems unlikely that  a simple time delay can explain the pattern of 14CO2 394 

because there was no significant correlation between mean air temperature and %modern of 395 
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dissolved CO2 (which would be expected to correlate even with a time delay). 396 

 397 

Instead, a strong correlation was observed between the 14C content of the dissolved CO2 and 398 

stream discharge, such that there was a greater proportion of younger carbon in the dissolved 399 

CO2 during sampling periods when discharge was greatest (Fig. 4). Previous studies have 400 

shown using supporting geochemical measurements (e.g. Ca concentrations; Tipping et al., 401 

2010) that streams draining peats can contain a significant groundwater signature. Given that 402 

groundwater that has passed through carbonate geology is likely to contain some ancient (14C-403 

dead) dissolved CO2, an explanation for the correlation between the 14C content of 404 

streamwater dissolved CO2 and discharge in our results, could be a change in the proportion 405 

of groundwater-derived CO2. Thin limestone bands, within a dominantly sandstone-shale 406 

sequence are known to occur beneath the peat and fluvioglacial drift in the Auchencorth Moss 407 

catchment (Dinsmore et al., 2010) and are a potential source of groundwater-derived CO2 to 408 

the stream system. If for example, streamwater had a constant groundwater component, but 409 

changes in discharge resulted from the incorporation of different levels of surface runoff or 410 

water from the surface layers of peat, then we would expect to find a positive correlation 411 

between discharge and the 14C content of the dissolved CO2. This is similar to what we have 412 

observed. However, given the known extremes in the δ13C values between a geological CO2 413 

source (~0 ‰) and an organic-derived (C3 plants) source (~ -30 to -25 ‰), we would expect 414 

based on mass balance to also find a correlation between streamwater δ13C and discharge. The 415 

fact that we do not see this relationship, and if anything, δ13C becomes more enriched at 416 

higher flows (converse to what would be expected), suggests that the pattern in 14C of 417 

dissolved CO2 is not a result of differences in the proportion of groundwater-derived CO2. We 418 

do not preclude a groundwater contribution to the streamwater at our site, but suggest that 419 

other processes are more likely to be responsible for the observed annual pattern in the 14C 420 

content of dissolved CO2. 421 

 422 
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It is well known that intact peatlands generally exhibit decreasing 14C-enrichment in the peat 423 

profile with depth which reflects the increasing age of deeper peat (e.g. Clymo and Bryant, 424 

2008). Studies have shown that in these peat profiles, large volumes of CO2 exist in horizons 425 

particularly below the water table, which usually refers to depths greater than 10-30 cm. 426 

Clymo and Bryant (2008) and others (Charman et al., 1999; Garnett and Hardie, 2009; Billett 427 

et al. in press b) have shown that the dissolved CO2 in peat profiles also increases in age with 428 

depth (although is typically younger than the surrounding peat). Studies of peatland 429 

hydrology have also shown that in periods of high precipitation and/or low evapo-430 

transpiration, water tables are usually within a few centimetres of the peat surface, but that 431 

during relative droughts can fall considerably. At the meteorological station on Auchencorth 432 

Moss ~ 400 m from our passive sampling site, average water table depth during the sampling 433 

year was 5 cm, and fell to a maximum depth of 37 cm in July 2010. Clymo and Bryant (2008) 434 

note that the hydraulic conductivity of peats is generally higher at the surface and declines 435 

with depth. Thus, during periods when discharge in streams draining peats is highest, it is 436 

likely that the water table across the catchment will be close to the peat surface, and since 437 

hydraulic conductivity is greatest in the surface peat, it is reasonable to expect that a 438 

proportionally greater amount of the stream discharge is represented by water that has passed 439 

through the surface layers. In contrast, during periods of relative drought, stream discharge is 440 

lower and water tables are set relatively deeper in the peat profile. Assuming that peatland 441 

water acquires CO2 with a 14C signature that reflects the depths in which it has moved 442 

through, then we would expect that during periods of high stream flow that the streamwater 443 

would contain a proportionally greater amount of water from nearer the peat surface or from 444 

overland flow. Since CO2 derived from the peat surface will be relatively 14C-enriched (and 445 

younger), we would expect a positive relationship between discharge and the 14C content of 446 

streamwater dissolved CO2, which we found. 447 

 448 

Although the above interpretation explains the observed positive correlation between 14C 449 

concentration in the dissolved CO2 and stream discharge, we found δ13CO2 was unrelated to 450 
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annual changes in stream discharge. Clymo and Bryant (2008), Steinmann et al. (2008) and 451 

Garnett and Hardie (2009) have all shown that δ13C of dissolved CO2 in peat profiles varies 452 

considerably, with a trend of increasing 13C-enrichment with depth as a consequence of 453 

anaerobic decomposition. However, since the zone of water table fluctuation at this site and 454 

others (e.g. Tipping et al., 2010) is typically restricted to only a few 10’s of centimetres in the 455 

surface layers of the peat profile, the depth-related changes in δ13CO2 in the peat water are 456 

unlikely to be more than a few per mil. Therefore, we would not expect to observe a 457 

correlation between δ13C of streamwater-dissolved CO2 and discharge. 458 

 459 

Studies (e.g. Clymo and Bryant, 2008; Steinmann et al., 2008; Garnett and Hardie, 2009) have 460 

also shown that the concentration of dissolved CO2 in peats increases with depth. Therefore, if 461 

deeper layers are responsible for contributing proportionally more CO2 to stream flow during 462 

periods of low discharge, we would also expect that the CO2 concentration in the streamwater 463 

would be higher in periods of low flow. We indeed found this to be the case, with a strong 464 

negative correlation observed between discharge and CO2 concentration in streamwater (Fig. 465 

5); Dinsmore and Billett (2008) have previously reported a similar negative CO2 466 

concentration-discharge relationship for the study stream, Black Burn. 467 

 468 

If linear regression is applied to the stream discharge and 14CO2 results we obtain the equation 469 

y = 0.0607x + 85.607 (r2 = 0.766, p < 0.01), where y = 14C %modern  and x = discharge (Fig. 470 

6). Therefore, the intercept shows that when discharge is zero, the 14C content of the dissolved 471 

CO2 is 85.6 %modern (equivalent to ~ 1250 years BP). This may imply that there is a baseline 472 

source of CO2 to the stream, representing the age of the CO2 that enters the stream when 473 

contributions from younger surface layers are insignificant. At two other Scottish sites, CO2 474 

of approximately this age was found to occupy depths in the peat profile of 1 m (Garnett and 475 

Hardie, 2009) and 2 m (Clymo and Bryant, 2008), which may imply that much of the baseline 476 

flow of the Black Burn is derived from similar depths. However, water table depth at 477 

Auchencorth Moss only fell to a maximum depth of 37 cm below the surface during the 478 
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sampling year, a depth where presumably CO2 dissolved in the peat water would be much 479 

younger; this therefore suggests that even under baseflow conditions streamwater dissolved 480 

CO2 is likely to be derived from a range of depths (but with an average age of ~ 1250 years 481 

BP). The 14C content of the dissolved CO2 under baseflow conditions implied from the 482 

intercept also indicates that geological sources cannot represent a major component of the 483 

streamwater dissolved CO2 (otherwise we would have expected the 14C content of dissolved 484 

CO2 to be closer to 0 %modern). This is in contrast to the suggestion by Billett et al. (2007) 485 

that weathering of carbonate may provide a significant contribution to dissolved CO2 to the 486 

Black Burn. 487 

 488 

It was notable that the correlation between stream discharge and 14C content of dissolved CO2 489 

improved considerably after the removal of an outlier. While it would be wrong to draw 490 

substantial interpretations from a single data-point, it is perhaps worth commenting that for 491 

the sample collected between September to October the 14C content of the dissolved CO2 was 492 

considerably higher than expected based on the discharge values. Net ecosystem exchange 493 

measurements made using an eddy covariance system within the catchment show a strong 494 

seasonal cycle in vegetation productivity (Billett et al., 2004). The 14C outlier identified could 495 

therefore represent a flush of young carbon being released into the drainage water at the end 496 

of the growth period and perhaps merits further investigation.   497 

 498 

5. Conclusions 499 

The present study has demonstrated the value of a new passive sampling method for the 500 

collection of dissolved CO2 from streamwater. Our results support earlier tests used to 501 

validate and apply the method in the field environment (Garnett et al., 2009; Garnett and 502 

Hardie, 2009; Garnett and Hartley, 2010). A clear benefit of the method is that the recovered 503 

sample is composed of CO2 collected continuously throughout the sampling period, and 504 

therefore is not vulnerable to under-sampling short-term events such as floods, when most 505 

dissolved CO2 is transported at these sites (Dinsmore and Billett, 2008). While we chose to 506 
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deploy the method to investigate the time-series of dissolved CO2 in our study, the simplicity 507 

of the technique and minimal infrastructure requirements (e.g. it requires no external power) 508 

means that it could also be conveniently used, for example, to investigate changes in the 509 

isotopic composition of dissolved CO2 as it is transported from headwater source to sea (e.g. 510 

Dawson et al., 2009). 511 

 512 

The δ13C value of streamwater dissolved CO2 collected using the passive samplers varied only 513 

slightly over the study year, indicating relatively little change in the source of the CO2. 14C 514 

analysis of the CO2 confirmed the results of earlier studies at the site and demonstrated the 515 

release of old CO2 from this peatland stream. Unlike the δ13C results, the 14C values for 516 

dissolved CO2 showed a clear seasonal pattern, with the oldest CO2 being transported by the 517 

stream in spring/early summer. Based on the above observations, and a positive correlation 518 

between the 14C age of dissolved CO2 and discharge, we conclude that although total CO2 in 519 

this peatland stream is likely derived from a range of peat depths, shallower/younger peat 520 

layers contribute greater amounts of CO2 during periods of high discharge, as a result of a 521 

greater proportion of streamwater having passed through shallower peat. The method clearly 522 

has the potential to make a significant contribution to our understanding of CO2 sources and 523 

transport processes in a range of different soil-stream systems.  524 
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Figure Captions 646 

 647 

Fig. 1  Schematic diagram illustrating how the passive samplers were deployed in the Black 648 

Burn. 649 

 650 

Fig. 2  Discharge from the Black Burn and air temperature (measured ~ 400 m from the 651 

stream sampling point) over the course of the sampling year from May 2010 to June 2011. 652 

 653 

Fig. 3  Concentration of dissolved CO2 in the Black Burn from May 2010 to June 2011 654 

determined by i) continuous trapping using passive samplers and ii) spot sampling of stream 655 

water. CO2 concentration determined for the passive samplers based on the CO2 trap rate and 656 

Fick’s law (see text). Mean, min and max values for spot samples reflect the sampling periods 657 

of the associated passively collected sample. 658 

 659 

Fig. 4  Mean discharge (± SE) of the Black Burn and 14C content of dissolved CO2 (± 1 σ) 660 

over the sampling year from May 2010 to June 2011, showing increased 14C content of CO2 at 661 

times of greater discharge. Using all data points resulted in a positive correlation (r2 = 0.766; p 662 

< 0.01; n = 8) which improved considerably when the September 2010 sample was omitted (r2 663 

= 0.965; p < 0.001; n = 7). 664 

 665 

Fig. 5  Mean discharge of the Black Burn and CO2 concentration determined from spot 666 

samples (± SE). Mean values for both discharge and CO2 concentration reflect the sampling 667 

periods of the associated passively collected sample. There was a strong negative correlation 668 

between discharge and CO2 concentration (r2 = 0.855; p < 0.001; n=8; note 2nd y-axis is 669 

reversed). 670 

 671 
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Fig. 6  Radiocarbon concentration of dissolved CO2 (± 1 σ) versus mean discharge (± SE) of 672 

the Blackburn for samples collected over the sampling year from May 2010 to June 2011. 673 

Mean values for discharge reflect the sampling periods of the associated passively collected 674 

14CO2 sample. 675 
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Fig. 1 676 

 677 

 678 

 679 

 680 

 681 

 682 

 

Molecular sieve held in 
place by quartz wool 

Glass tubing

Tygon tubing with 
removable clip to seal 

Accurel PP v8/2 
HF tubing 

Polystyrene pipe and 
steel cradle for field 
deployment 

Handle larger than 
width of drainpipe to 
hold in place 

Section of drainpipe 
secured to stream bed 

Water flow direction  683 



 - 28 - 

Fig. 2 684 
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Fig. 3 690 
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Fig.4 696 
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Fig. 5 702 
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Fig. 6 708 
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