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Abstract 

Fish play a key role in the trophic dynamics of lakes. With climate warming, complex 

changes in fish assemblage structure may be expected owing to direct effects of temperature 

and indirect effects operating through eutrophication, water level changes, stratification and 

salinisation. We reviewed published and new long-term (10-100 years) fish data series from 

24 European lakes (area: 0.04-5648 km
2
; mean depth: 1-177m; a north-south gradient from 
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Sweden to Spain). Along with an annual temperature increase of about 0.15-0.3 °C per decade 

profound changes have occurred in either fish assemblage composition, body size and/or age 

structure during recent decades and a shift towards higher dominance of eurythermal species. 

These shifts have occurred despite a reduction in nutrient loading in many of the lakes that 

should have benefited the larger-sized individuals and the fish species typically inhabiting 

cold-water, low-nutrient lakes. The cold-stenothermic Arctic charr has been particularly 

affected and its abundance has decreased in the majority of the lakes where its presence was 

recorded. The harvest of cool-stenothermal trout has decreased substantially in two southern 

lakes. Vendace, whitefish and smelt show a different response depending on lake depth and 

latitude. Perch has apparently been stimulated in the north, with stronger year classes in warm 

years, but its abundance has declined in the southern Lake Maggiore, Italy. Where introduced, 

roach seems to take advantage of the higher temperature after years of low population 

densities. Eurythermal species such as common bream, pike-perch and/or shad are apparently 

on the increase in several of the lakes. The response of fish to the warming has been 

surprisingly strong and fast in recent decades, making them ideal sentinels for detecting and 

documenting climate-induced modifications of freshwater ecosystems. 
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Introduction 

Climate change is acknowledged to be one of the principal threats to biodiversity (IPCC, 

2007), with many of its effects being related specifically to global warming (Root et al., 

2003). There are two types of thermal shifts to which populations have to respond: geographic 

shifts of isotherms over time and temporal shifts in the seasonal development of temperatures 

(Burrows et al., 2011). The consequences of global warming for biodiversity and 

biogeography are relatively well documented in terrestrial and marine ecosystems and 

encompass range shifts along latitudinal and altitudinal thermal gradients or increasing 

frequencies of temporal mismatch between predator and prey population dynamics (Parmesan 

& Yohe, 2003; Perry et al., 2005; Durant et al., 2007). An even more pronounced response to 

global warming is expected for freshwater ecosystems, in part because geographic range shifts 

compensating for higher temperatures are prevented when habitats and ecosystems are 

effectively spatially isolated as is the case for many lakes (Hickling et al., 2006; Heino et al., 

2009).  

 

Aquatic animals will be differentially affected by warming depending on their body size and 

thermal biology (Olalla-Tárraga, 2011). Freshwater fish are directly affected by changes in 

temperature. As ectotherms, fish cannot thermoregulate physiologically, but only 

behaviourally by moving to areas with appropriate temperatures. Therefore, if they are able to 

do so, the population ranges of cold-stenothermal species (e.g. Arctic charr, Salvelinus 

alpinus) will likely shift towards higher latitudes or altitudes, while such species may become 

locally extinct at the warmest edge of their current distribution ranges (Lappalainen & 

Lehtonen, 1997; Wrona et al., 2006; Graham & Harrod, 2009). In contrast, eurythermal 

species exhibiting wide thermal tolerance (e.g. common carp, Cyprinus carpio) may be able 
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to cope with the new thermal regimes and so experience no loss and potentially even an 

increase in thermal habitat (Lappalainen & Lehtonen, 1997). By contrast, tropical species 

typically experience mean temperatures that are close to their physiological optima, and even 

a small increase in temperature may thus put them at high risk of extinction (Tewksbury et al., 

2008). Many fish species are also adapted to low oxygen concentrations, specifically at either 

low or high temperatures (Holopainen et al., 1997; Soares et al., 2006). When temperature 

increases, oxygen may drop to critical levels as warm water holds less oxygen and the 

respiration rates increase. Global warming may therefore create novel fish assemblages by 

effectively favouring species which have responded to range shifts in addition to those already 

locally present within their native range, thereby potentially increasing competition for space 

and food. As fish species richness is currently higher in warmer climates (Griffiths, 1997; 

Amarasinghe & Welcomme, 2002; Zhao et al., 2006; Meerhoff et al., 2007a; Teixeira-de 

Mello et al., 2009), richness may increase in present-day cold lakes in a future warmer 

climate, depending on local conditions, original assemblages and physical barriers to 

colonisation. 

In addition to effects on fish assemblage composition, life history traits will also be affected by 

warmer temperatures. Cross-comparisons of fish populations in similar systems in South America and 

Europe (Teixeira-de Mello et al., 2009) and within Europe have shown that lower-latitude fish species 

are often not only individually smaller (Griffiths, 1997; Jeppesen et al., 2010a), but also grow faster, 

mature earlier, have shorter life spans and allocate less energy to reproduction (measured as the 

gonadosomatic index) than species at higher latitudes (Blanck & Lamouroux, 2007). Similar patterns 

were found in a very comprehensive study of North American fishes (Mims et al., 2010). Such 

changes are evident within species along a latitudinal gradient in numerous studies (Mills, 1988; 
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Venne & Magnan, 1989; Malmquist, 2004; Blanck & Lammouroux, 2007; Lappalainen et al., 2008). 

The general pattern also seems to be common for fishes in marine habitats (Vila-Gispert et al., 2002). 

 

In a recent review, Jeppesen et al. (2010a) showed that climate warming will probably 

generate changes in lake fish assemblage structure, life history traits, feeding modes, habitat 

use and winter survival. Their conclusions were mainly based on space-for-time-substitution 

studies comparing lake fish assemblages and cross-latitude experiments from different climate 

zones and, thus, different mean temperatures. The strength of this approach is that the fish 

assemblages per se have had time to evolve and adapt to the climate in which they live, but a 

potential weakness is that they may not yet have reached a mature state. This is especially true 

in the cold regions where speciation is currently occurring, for instance among the dominant 

species there: Arctic charr, three-spined stickleback (Gasterosteus aculeatus) and whitefish 

(Coregonus spp.) (Robinson & Schluter, 2000; Snorrason & Skúlason, 2004; Klemetsen, 

2010; Hudson et al., 2011). Moreover, regional biogeographical constraints are not taken into 

account. Current patterns in species richness and assemblage composition of fish are strongly 

influenced by past glaciations, their present distance from the refuges available during these 

periods, and the dispersal barriers that appeared following deglaciation, such as the mountains 

of Europe (Griffiths, 2006; Abell et al., 2008; Volta et al., 2011). Finally, although the 

differences in life history traits between populations at varying latitudes may reflect long-term 

evolution, they do not indicate how local populations might respond to accelerated climate 

warming at decadal to centurial scales. Rapid microevolution of life history traits, for example 

survival and aspects of individual performance (e.g. age at reproduction and number of 

offspring), was recorded for the freshwater cladoceran Simocephalus by Van Doorslaer et al. 

(2007), suggesting that populations may buffer changes in community structure and persist 
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locally under the conditions of the predicted climate warming. Such a response, however, has 

not yet been demonstrated for fishes. 

 

An obvious alternative, or complementary method, to space-for-time comparisons is to 

analyse time series from a given lake or region under the influence of climate variability and 

recent climate change. This approach has been successfully used to demonstrate strong 

responses of lake ecosystems to warming over the last 30-50 years (Straile et al., 2003; 

Blenckner et al., 2007; Adrian et al., 2009). However, in the great majority of the case studies 

summarised so far, the response of lake fish assemblages to changes in temperature and 

thermal stratification has been neglected. Analyses of long-term data from fish assemblages 

(as well as other biotic communities) in lakes are frequently hampered by the combined 

effects of increases in nutrient load and (for fish specifically) fisheries intensity which have 

occurred over recent decades in different regions of the globe, not least in Europe (Thomas et 

al., 2009; Anneville et al., 2009). With respect to fish in European lakes, eutrophication 

generates a dominance shift from salmonids to percids and then from percids to cyprinids 

(Hartmann, 1977; Persson et al., 1991; Jeppesen et al., 2000), and particularly to low-oxygen-

tolerant cyprinids in stratified lakes (Mehner et al., 2005).  

 

In the present review, we focus on the response of fish assemblages to climate change and climate 

variability by discussing trends in long-term data series from 24 European shallow and deep lakes 

(Table 1). Lakes that had >9 years of paired data on at least one fish metric and one climate metric 

were included. European lakes constitute an appropriate and tractable sample of the world‟s lakes 

since many of them have been monitored more intensively and for a longer period of time than have 

most lakes elsewhere. Where possible, we seek to disentangle the effects of climate from those of 

other anthropogenic factors such as local changes in nutrient loading and fisheries. Overall, we argue 
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that lake fish assemblages are sensitive to even subtle changes in temperatures, making them ideal 

sentinels for detecting and documenting climate-induced modifications of freshwater ecosystems. 

 

Materials and Methods 

 

We aim to extract patterns of change by analysing specific case studies at different locations 

and, thus, different climates within Europe. For the majority of the studies, the methods used 

are described in detail in published papers to which we refer. Accordingly, we give below 

only a brief overview of the lake characteristics, methods and add specific information when 

unpublished data are used, with lakes ordered by decreasing latitude. Some basic information 

on location, morphometry and physical and chemical variables is given in Table 1, Fig.1 and 

Figs. 2A-13A.  

 

Lake Elliðavatn, Iceland  

Lake Elliðavatn is a small, clear water oligo-mesotrophic shallow lake within the metropolitan 

area of the capital city Reykjavík. The lake is largely (~ 50%) fed by cold (3-6 °C) subsurface 

spring water with a high natural pH (≥ 7.5 all year round and pH 9.0-10.0 for several weeks in 

July-August) due to neo-volcanic bedrock in the catchment area (270 km
2
). The lake and its 

inlet rivers have been subjected to various impacts following urbanisation in the catchment 

area, including damming of the outlet river Elliðaár in 1924-25 and regulation of the water 

levels (ca.~0.4 m), phytoplankton biomass is low (chlorophyll (chl) a: 1.7–2.8 µg l
-1

, annual 

mean in the last decade) and the water clarity and abundance of submerged macrophytes are 

high (Thórðarson, 2003; Malmquist et al., 2009, 2010).  
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The fish assemblage consists of a few species, dominated by Arctic charr and brown trout 

(Salmo trutta). Charr spawn primarily within the lake and trout mainly in the tributaries. 

Three-spined stickleback are also abundant in the lake, while Atlantic salmon (Salmo salar) 

and European eel (Anguilla anguilla) are less common. 

 

The lake has one of the best long-term data series in Iceland on the relationship between 

climate warming and freshwater fish (Malmquist et al., 2009). The published fish data cover 

the period 1974-2006, but in the present paper we use annual data from 1987-2010 based on a 

common sampling protocol described by Malmquist et al. (2009). The fish data were 

extracted from annual reports published by the Institute of Freshwater Fisheries, Iceland 

(Antonsson & Árnason, 2011). In short, sampling was conducted in late September/early 

October with two gill-net series, each comprising 10 nets with different mesh sizes (16.5-60, 

mm, knot to knot). In 1993, a 12.0 mm mesh sized net was added to the net series. Nets were 

set overnight (~12 hrs) in one of two main basins of the lake.  

 

Data on lake temperature were provided by the Icelandic Meteorological Institute and 

temperature has been measured at the lake outlet since August 1988 (1-4 records h
-1

). 

Nutrients, including total phosphorus (TP), were measured in 2001-2002 in a few samples (n 

= 18) taken at ~0.4 m depth in both basins (Thórðarson, 2003). 

 

Lake Valkea-Kotinen, Finland  

Lake Valkea-Kotinen is a small, mesotrophic shallow brown-water lake located in a small headwater 

catchment (0.3 km
2
) in a remote protected forest area in southern Finland, only affected by pollution 

from airborne sources (for details see Ukonmaanaho et al., 1998). Steep thermal and oxygen 
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stratification is typical for the lake, resulting in a 2-m thick warm and oxygenated epilimnion and a 

cold and anoxic hypolimnion during the growing season (Forsius et al., 2010).  

 

Perch (Perca fluviatilis) and pike (Esox lucius) are the only fish species present in the lake. 

The size and structure of the perch population have been monitored since 1991 (Rask et al., 

1998). Annual abundance estimates were obtained from 2 weeks of continuous marking and 

recapturing without fish removal (modified Schnabel estimate, Krebs, 1989). The fish were 

caught in wire traps with a 1 cm
2
 mesh retaining perch > 8 cm in length, which corresponds to 

> 2 years in age. The fish were subsequently measured to record total length, after which they 

were fin-clipped and released. Samples for age determination were taken after the mark-

recapturing, with opercular bones being used to determine age and to back-calculate growth 

(Raitaniemi et al., 1988). 

 

Regular monitoring of water quality and hydrobiology has been carried out since 1990 

(Keskitalo et al., 1998; Rask et al., 1998).  

 

Eleven forest lakes, Sweden  

The 11 lakes are situated at low to mid altitudes (35-268 m a.s.l.) and vary in area and depth. 

The lakes range from oligo- to mesotrophic and total organic carbon (TOC) varies from 4-11 

mg l
-1

.  

 

Total fish species richness per lake was 4-8, and a total of 14 fish species was observed at 

least once in one lake (Holmgren, 2009). The following species were caught each year: perch 

and roach (Rutilus rutilus) (all lakes), ruffe (Gymnocephalus cernuus) (6 lakes), rudd 

(Scardinius erythrophthalmus) (3 lakes), vendace (Coregonus albula) (3 lakes), whitefish (3 
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lakes), smelt (Osmerus eperlanus) (2 lakes), bleak (Alburnus alburnus, 2 lakes) and common 

bream (Abramis brama) (1 lake). 

 

Fish were monitored annually in July or August using multi-mesh gill nets (CEN, 2005; 

Holmgren, 1999). To ensure a set of lakes with similar fish assemblages, only circum-neutral 

lakes (annual mean pH > 6) inhabited by perch, roach and pike were included. Age of perch 

was determined using operculum bones and sagittal otoliths, and length was, after the first 

year, back-calculated according to Holmgren & Appelberg (2001). Mean length at 0
+
 was 

used as a measure of first year growth for each of the perch cohorts hatched in 1993-2009.  

 

Water temperature during the first growth season has been expressed as annual mean values at 

1-1.5 m depth during May-September. Concentrations of TP, TOC and sulphate are means of 

7-8 samples per lake and year, sampled at 0.5 m depth at a mid-lake station. 

 

Lake Säkylän Pyhäjärvi, Finland  

Säkylän Pyhäjärvi is a large, polymictic, meso-eutrophic shallow lake with a hydraulic 

retention time of about 4-5 years. The catchment area is 615 km
2 
(including the lake surface). 

Two incoming rivers with a strong agricultural nutrient load impact account for more than 

70% of the annual TP load. The lake is located in the boreal temperate zone (cold climate 

type) and is, on average, ice covered for 141 days. 

 

The fish assemblage consists of 18 species, dominated by perch, ruffe, roach and vendace. 

The most important commercial catch species is vendace, which is the main planktivore in the 

lake (Sarvala et al., 1998). The annual harvest rate approaches the total production of 

vendace. In addition to this self-supporting biomanipulation, a restoration project has 
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subsidised the harvest of commercially unwanted fish since 1995. The fishing was especially 

intensive in 2002-2004 and apparently resulted in improved water quality (Ventelä et al., 

2007). 

 

Data on fish assemblage composition were obtained from extensive test fishing with gill nets 

in 1984 (non-standard series) and in 2000, 2004, 2006 and 2009 (Nordic gill nets; CEN, 

2005), as well as from catch samples and surveys (Sarvala et al., 1998; Ventelä et al., 2011 

and unpublished). The majority of the annual fish catch is taken in winter by seining through 

holes in the ice. In addition, fyke nets are applied by professional fishermen in the open-water 

season. Samples for vendace and whitefish have been collected since 1971 and the winter 

seine catch of all species has been sampled from 1989-2011. Subsamples of each species for 

individual weight and length and age determination were obtained from the fishermen‟s 

catches; at least thirty 0
+
 vendace individuals were measured each time. Daily seine catch 

records for vendace (age 0
+
 and older fish separately) were obtained for the winters 1980-

2011 from each seine crew and/or the most important wholesale fish agent. For most years, 

the 0
+
 year class size of vendace in autumn could then be calculated from the decrease in 

catch per unit effort (CPUE) during winter (Helminen et al., 1993). For other years, year class 

size was estimated utilising the strong density dependence of first-summer growth of vendace. 

 

The water chemistry and hydrology of the lake have been monitored since the 1960s, and in 

1980 monitoring was extended to cover biotic components such as phyto- and zooplankton 

(Ventelä et al., 2007, 2011), chl a and nutrients. Ice data for 1958-2010 were recorded by 

local observers and the Finnish Environment Institute‟s Oiva data service 

(www.ymparisto.fi/oiva); which also provided water temperature and water quality data.  
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Lake Peipsi, Estonia/Russia  

Lake Peipsi, situated on the Estonian/Russian border, is large, eutrophic, polymictic and 

shallow with a hydraulic retention time of about 2 years. TP is higher in the southern parts of 

the lake due to higher and increasing P loading from the catchment (Kangur & Möls, 2008).  

The lake is inhabited by 37 fish species (Kangur et al., 2008). Lake (dwarf) smelt (Osmerus eperlanus 

eperlanus m. spirinchus), vendace and pike-perch (Sander lucioperca) have been the main 

commercial species in the lake at different times.  

 

Commercial fisheries statistics for the lake, collected from fishermen by the state authorities 

(former Soviet Union, Russian and Estonian), were available for the periods 1931-1940 

and 1950-2010. Fish data come from a variety of fishing gears used during different time 

periods and localities. The basic fishing gear used represents local modifications of fence 

traps for smelt and perch as well as gill nets for pikeperch, pike and bream. Bottom 

seining is used mostly for pikeperch and perch. A limited experimental trawling data set 

was used to control the reliability of commercial fishery statistics. Test trawling was carried 

out in central and northern parts of the lake in autumn 1986 and 1998-2010. Methods of test 

trawling are described in detail by Kangur et al. (2003).  

 

Surface water temperature data were available for the period 1924-2010, mainly from the 

Mustvee weather station (58
°
50´N, 26

°
57´E). The data were collected by the Estonian 

Institute of Hydrology and Meteorology. Basic water quality parameters have been recorded 

as far back as the 1950s, and regular biota monitoring has been conducted since 1962. 

Although most studies since 1992 have been made in the Estonian part of the lake, joint 

Estonian-Russian expeditions over the whole lake have been arranged regularly since 2001 

(Kangur & Möls, 2008). 
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Lake Vänern and Lake Vättern, Sweden 

Lakes Vänern and Vättern are oligotrophic, large and deep lakes. Both were affected by 

eutrophication in the 1960s and 1970s, but following improved water treatment facilities TP 

has declined substantially and is currently close to the historical reference levels (Renberg et 

al., 2003). However, eutrophication is still observed locally, in enclosed inlets and archipelago 

areas. 

 

Lake Vänern holds 38 and Lake Vättern 31 fish species. In both lakes, the fish assemblages 

are markedly influenced by fisheries. Traditionally, the most important species for the 

fisheries have been whitefish, Arctic charr and vendace in Lake Vättern and vendace, 

whitefish and pike-perch in Lake Vänern (Degerman et al., 2001). In recent years, the 

introduced signal crayfish (Pacifastacus leniusculus) has become the main target species for 

the fisheries in Lake Vättern and an important complementary species in Lake Vänern. 

Salmonids are stocked in both lakes, enhancing the predation on pelagic prey fish such as 

smelt and vendace, while Lake Vänern also has a significant fishery on vendace. 

 

Statistics on commercial fisheries catches have been recorded since 1914 in both lakes. In 

Lake Vänern, however, no statistics are available for the period 1924-1961. Long-term data 

from hydroacoustic surveys combined with mid-water trawling have been used to detect 

trends in the recruitment of the key pelagic fish in both lakes. Survey data on Lake Vättern are 

available for 1988-2009 and from 1995-2009 on Lake Vänern. Details on survey design and 

apportionment methods are given in Nyberg et al. (2001) and Axenrot (2010 a,b). In addition 

to hydroacoustics, the benthic fish assemblages have also been monitored using multi-mesh 

gillnets in Lake Vättern. Such monitoring has been carried out in late summer for 21 years 

during the period 1973-2010 (A. Sandström et al., unpublished data).  
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Available data on ice coverage in Lake Vättern span from 1881 to 2010 and daily water 

temperature measurements (at 5 m depth) exist from 1955 to 2010 (source: Lake Vättern 

Water Society). In Lake Vänern, ice coverage data for the period 1995-2009 were obtained 

from a sheltered basin (Brandsfjorden) and for the lake as a whole. Unfortunately, daily water 

temperature measurements were not available other than for a limited number of years. 

Instead, in this paper we used air temperature measurements from two weather stations 

situated close to Lake Vänern and water temperature recordings measured at 5 m depth in 

May, June, August and October.  

 

Density (ind. ha
-1

) of 0
+
 smelt and vendace obtained from hydroacoustic surveys and relative 

year class strength of vendace obtained from age determinations of trawl catches were used as 

response variables. A large set of predictor variables was used: adult fish densities (obtained 

from hydroacoustic surveys, ind. ha
-1

), fisheries yield (obtained from Swedish official catch 

statistics, tonnes), air and water temperatures (annual mean, monthly mean and monthly sum 

above 10 °C) and ice coverage (presence/absence of ice, number of days with ice, Julian day 

of ice-break in spring), TOC, as well as annual mean TP concentrations and annual mean chl 

a concentrations, both measured at the surface layers (0-10 m). 

 

Lake Søbygaard, Denmark  

Lake Søbygård is small, shallow, hypertrophic and polymictic. The lake has suffered from 

extremely high external nutrient loading which was, however, substantially reduced since 

1982 (Jeppesen et al., 1998). 

 

The lake hosts 8 fish species, but the fish assemblage is overwhelmingly dominated by roach 

and perch with the piscivorous pike-perch and pike also present. Annual gill net surveys were 
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conducted from 1989 to 2010 (except 1998) between 15 August and 15 September every year 

(except for 1988 when it was undertaken in November) to include 0
+
 fish in the catches. The 

lake was divided into six sections and in each section three multi-mesh size gill nets (14 

different mesh sizes ranging from 6.25 to 75 mm) were set overnight. One gill net was set 

perpendicular to the shoreline, another parallel to and about 25 m from the shoreline, and the 

third about half the distance from the centre of the lake (more details in Jeppesen et al., 1998).  

 

Water samples were collected fortnightly or more often with a Patalas sampler at a mid-lake 

station at 0.5 m and 1.5 m depth and analysed according to standard methods. 

 

Windermere, U.K.  

Windermere is a large, relatively deep and meso-eutrophic lake comprising elongated north 

and south basins with a combined surface area of 14.8 km
2
, which makes it England‟s largest 

natural lake. Its catchment is dominated by unimproved pasture, although nutrient loadings 

from sewage treatment works to the lake have been significant. 

 

The present fish assemblage of ´the lake consists of 16 species, although only seven are of 

numerical importance, i.e. Arctic charr, Atlantic salmon, brown trout, European eel, perch, 

pike and roach. The latter and some other cyprinid species are known to have been 

introduced, probably by anglers as live bait during angling for pike (Winfield et al., 2010a, 

2011). The lake has not been influenced by any significant removal fisheries for many 

decades (Le Cren, 2001). 

 

The major fish populations of the north and south basins of the lake have been monitored and 

researched at individual and population levels from the early 1940s, in association with short-
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lived removal fisheries and other large-scale population manipulations (Le Cren, 2001). 

Methodologies have included independent gill nets targeted at Arctic charr (Winfield et al., 

2008a) and pike (Winfield et al., 2008b; Paxton et al., 2009), together with traps targeted at 

perch (Paxton et al., 2004) since the early 1940s, the examination of effectively recreational 

angling for Arctic charr since the mid-1960s (Winfield et al., 2008a), the use of monthly 

hydroacoustic surveys for the total open-water fish assemblage since the early 1990s 

(Winfield et al., 2008a), and the use of survey gill nets at 5-year intervals since 1995 targeted 

at developing the roach component of the fish assemblage (Winfield et al., 2008b). With the 

exception of the survey gill netting, all of this biological sampling has been undertaken 

annually over approximately 6-week periods each year.  

 

These fish studies have been accompanied by more frequent, typically weekly or fortnightly, 

monitoring of the lake‟s abiotic and biotic features including water temperature and TP 

(Winfield et al., 2008a).  

 

Lake Stechlin, Germany  

Lake Stechlin is dimictic, large, deep and oligo-mesotrophic and is situated ca. 120 km north 

of Berlin, Germany.  

 

Eleven fish species with reproducing populations have been observed (Anwand et al., 2003); 

the pelagic habitat below the thermocline is dominated by common vendace and the smaller, 

lake-endemic Fontane cisco (Coregonus fontanae). Peak spawning activity of vendace in the 

lake occurs around 20 December. Vendace has a cold-water thermal window characterised by 

a metabolic optimum around 7-9 °C (Ohlberger et al., 2008a, 2008b). The spring-spawning 

Fontane cisco (spawning period between late April and early July) has a lower thermal 
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window with an optimum at about 4-5 °C (Ohlberger et al., 2008a, 2008b). Other fish species 

occur in low densities primarily in the littoral and epipelagic habitats. 

 

Densities (ind. (1000 m
-3

)) of pelagic fish split into 0
+
 and older coregonids were estimated by 

annual hydroacoustic surveys conducted during night-time in June between 2000 and 2010 

(2004 and 2007 missing). Additional stratified pelagic trawl sampling has been conducted 

annually in June since 2005, thus providing density estimates for juvenile and adult 

coregonids of both co-existing species. These spatially-explicit analyses were required 

because 0
+
 coregonids perform a habitat shift from the littoral to pelagic areas after their first 

weeks of life, and juvenile and adult coregonids undergo diel vertical migration in the lake. 

The methodology is described in detail in Mehner et al. (2011). 

 

Monthly temperature means were obtained for each water strata, and the index of North-

Atlantic Oscillation (NAO) was recorded during winter (January until March). The fish 

densities were also correlated with epilimnetic and hypolimnetic zooplankton densities (ind. l
-

1
).  

 

Lake Constance, Austria/Germany/Switzerland  

Lake Constance, the second largest peri-alpine lake in Europe, is situated at the northern 

fringe of the European Alps and consists of two basins: Deep Upper Lake Constance 

(hereafter ULC) and Lower Lake Constance, which is smaller and more shallow (Table 1). 

ULC was originally oligotrophic, but has undergone pronounced eutrophication during the 

20
th
 century. TP during winter mixing peaked at >80 µg l

-1
 around 1980 (Güde et al., 1998). 

As a result of a drastically reduced P input, the lake became oligotrophic by the beginning of 
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the 21
st
 century and average chl a of the upper 20 m declined from 4.2 µg l

-1
 in the 1980s to 

2.3 µg l
-1

 in the 2000s.   

 

Twenty-nine species occur in the lake (Eckmann & Rösch, 1998) of which only a few are of 

commercial interest and exploited intensively: two forms of lake whitefish, an inshore and a 

pelagic spawning form (> 80% of the commercial harvests); perch, the second-most important 

species in this lake during eutrophication; European eel (regularly stocked); brown trout; pike; 

Arctic charr and pike-perch. Bycatch of cyprinid species has little commercial value. 

 

ULC is shared by Austria, Germany and Switzerland, and the fisheries have been managed 

jointly by a commission of the bordering countries since 1893 (International Commission for 

the Fisheries Management of ULC). An uninterrupted record of commercial catches from 

UCL since 1910 is available based on monthly catch anonymous reports from all fishermen 

(Eckmann & Rösch, 1998). Drifting and bottom-set gill nets are the main fishing gear used. 

Biological data on coregonids have been collected biweekly or monthly since the early 1960s 

through regular test catches by research institutes and management agencies. Biological data 

on perch have been collected monthly since the early 1970s by fishery wardens, while the 

biology and population dynamics of other species are studied infrequently. Age, growth and 

virtual year class strength of coregonids and perch are published in yearly reports by the 

mentioned commission. Juvenile and small-sized fish in the shallow littoral area have been 

monitored at regular intervals since 1997 (cf. Reyjol et al., 2005).  

 

A regular monthly sampling of basic limnological data has been carried out since the early 

1960s on behalf of the International Commission for the Protection of Lake Constance 

(IGKB, 2004).  
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Lake Geneva, France/Switzerland  

Lake Geneva forms the border between France and Switzerland at the north of the French 

Alps and is a large, deep and eutrophic lake, though water transparency is high (between 5 to 

12 m) depending on season. Temperatures at the surface rarely exceed 22 °C in summer and 

never fall below 4 °C in winter. The lake is monomictic and is never covered by ice. The lake 

went through a eutrophication phase from 1960 to the mid-1970s, where TP increased from 

20 to 90 g l
-1

, followed by a long recovery period. This oligotrophication changed the 

structure of algae communities and the depth of maximum of production (Anneville et al., 

2002). 

 

The fish assemblage consists of 23 species, mainly composed of salmonids including 

whitefish and Arctic charr, with some brown trout, together accounting for 50% of the total 

catch by weight. Pike and perch are also caught (40%). Burbot (Lota lota) and some 

cyprinids, of which roach is the major species, are also present and constitute the remaining 

10%. The total fish yield in the lake is >15 kg ha
-1 

yr
-1

.  

 

The commercial fishery traditionally uses gill nets to catch the seven most important fishery 

species: whitefish, Arctic charr, brown trout, perch, burbot, pike and roach. Data on 

commercial and recreational catches have been available from official catch statistics since 

1960. An International Commission for the Protection of Lake Geneva Waters (CIPEL, in 

French abbreviation, www.cipel.org) has since 1962 managed surveys of the lake and 

publishes an annual report. As from 1986, fishermen have declared the weight of their catches 

daily instead of monthly as before (Gerdeaux, 1988). Total catches yield a good estimate of 

stock abundance (Caranhac & Gerdeaux, 1998). Furthermore, whitefish and Arctic charr are 
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regularly caught by fishermen during winter in order to provide eggs for hatchery use. The 

ages of these fish are determined and the catch is expressed as CPUE.  

 

A regular fortnightly sampling has been carried out since the early 1960s on behalf of CIPEL. 

All the classical physical and chemical parameters are measured on a vertical profile: 

temperature, oxygen, phosphorus, and nitrogen concentrations. Daily surface temperatures 

have been recorded in a littoral location of the lake since 1951.  

 

Lake Maggiore, Italy/Switzerland  

Lake Maggiore is a large warm-monomictic, oligo-mesotrophic pre-alpine lake (Table 1), 

situated in north-western Italy. From being naturally oligotrophic (Marchetto et al., 2004), the 

lake has undergone eutrophication since the mid-1960s, followed by a recovery period since 

the mid-1970s (Mosello & Ruggiu, 1985; Salmaso et al., 2007). 

 

At present, 32 fish species, of which only 20 are native, inhabit the lake. As in other large 

south alpine lakes, commercial fishing was traditionally targeted towards cold water species 

such as coregonids (Coregonus lavaretus and C. macrophthalmus) and trout (migratory 

brown trout and marble trout (Salmo trutta marmoratus)). Alborella (Alburnus arborella) and 

perch were also frequently caught. Commercial fishery data (total annual catch of each 

species) are registered by commercial fishermen and collected by the Swiss-Italian 

Commission for the Fishery (CISPP in Italian abbreviation) since 1979. 

 

An International Commission for the Protection of Italian-Swiss Waters (CIPAIS in Italian 

abbreviation, www.CIPAIS.org) manages the survey of limnological, meteorological and 
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hydrological parameters of the lake and its catchment. Additional data are directly obtained 

from the CNR-Institute of Ecosystem Study. 

 

Lake Albufera, Spain  

Lake Albufera is the largest Spanish coastal lake and is located in the Natural Park of the 

Albufera. It is shallow, polymictic, hypertrophic and oligohaline (salinity: 1-2‰). The water 

level is regulated by sluice gates and the hydrological cycle of the lake is related to seasonal 

rainfall and rice cultivation in the areas surrounding the lake. The annual lake water turnover 

varies between 5.5 and 9.5 y
-1

. The lake has been hypertrophic since the 1970s and 

cyanobacteria dominate throughout the year, except for sporadic periods (few days or weeks) 

of clear water in recent years following external nutrient loading reduction (Villena & Romo, 

2003; Romo et al., 2005). Since 2002, the abundance of potentially toxic cyanobacteria 

(Microcystis aeruginosa and Cylindrospermopsis raciborski) has increased (Romo et al., 

2008) with microcystins being detected even in the tissue of the main exploited fish species 

(Romo et al., 2011).  

 

The fish assemblage is dominated by omnivorous species (Blanco et al., 2003). The 

composition of the fish assemblage was determined from annual commercial captures from 

1950 to 2007 recorded by local fishermen using similar traditional methods, mainly gill (30 

mm mesh size) and fyke nets, and during summer 2000 and spring 2002 using fyke nets and 

multiple (14) mesh-sized gill nets (6.5-75 mm). About 300 tonnes (150 kg ha
-1

)
 
of mugilids 

(mainly golden and thinlip mullet, Liza spp and flathead mullet, Mugil cephalus) are 

harvested annually (Blanco et al., 2003; Blanco & Romo, 2006).  
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Water was analysed using standard methods (APHA, 1992), determining TP from the upper 

50 cm of the water column. Data on air temperature and rain were recorded at a nearby 

weather station. 

 

Trends in the case studies 

 

Lake Elliðavatn: strong decline in abundance and increase in size of Arctic charr  

During 1989-2010, June-September mean water temperature has risen significantly (Fig. 1, 

linear regression, R
2
 = 0.54, F1,20 = 23.17, p < 0.001) in line with an increasing air 

temperature in the catchment area (Malmquist et al., 2009). Lake temperature has increased in 

all months except October-December, with the most profound warming occurring in late 

winter/early spring and summer. For April, the average increase in daily mean temperature 

between 1989 and 2010 was 2.9 °C (R
2
 = 0.38, F1,653 = 108.8, p < 0.001), 2.6 °C for July (R

2
 

= 0.37, F1,680 = 108.3, p < 0.001) and 1.5 °C for September (R
2
 = 0.19, F1,680 = 25.4, p < 

0.001).  

 

For the past 20 years, the Arctic charr population in the lake has undergone a major reduction 

coinciding with the warming of the lake (Fig. 1). Catch per unit effort of charr during 1987-

2010 has declined significantly (R
2
 = 0.71, F1,22= 54.42, p < 0.001) and for the past 10 years it 

has been only about 25% of the level seen more than 20 years before (Malmquist et al., 2009). 

In contrast, the population of brown trout, which is more heat-tolerant than charr (Elliott & 

Elliott 2010), has remained largely unchanged (p = 0.627), albeit it shows some interannual 

fluctuations. The observed decline in density of adult charr, which has also been observed for 

juvenile fish (Antonsson & Árnason, 2011), is attributed to the increasing water temperatures, 
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with ≥ 14 °C extending over 1-2 months and up to 18-21 °C for a week or two as observed in, 

for instance, 2003, 2007 and 2010. This is far above the upper thermal optimum for the 

growth of adult charr, reported at ~12.0 °C, with negative effects at 14.0 °C (Jobling, 1983; 

Lyytikäinen et al., 2002). The thermal optimum is even lower for egg development and 

growth of charr fry (Jobling, 1983).  

 

The thermal problems that charr is facing may be linked not only directly to reproduction, 

metabolism and growth, but also indirectly to susceptibility to thermally linked diseases, such 

as proliferative kidney disease (PKD) (Sterud et al., 2007). In October 2008, PKD was 

detected for the first time in Iceland in Arctic charr from this lake (Kristmundsson et al., 

2010). Since then, PKD has been observed in both charr and brown trout in Lake Elliðavatn, 

as well as in four other shallow lakes (Kristmundsson et al., 2011). In all cases, Arctic charr, 

but not brown trout, have shown a high prevalence of PKD (up to 100%) often accompanied 

by severe pathological signs, especially in 1-2 year charr. The fact that PKD infections affect 

young charr most severely indicates that high mortality of young fish may be an important 

cause for the population decline in Arctic charr, although further studies are needed to draw 

firm conclusions. 

 

Along with the changes in abundance, the mean length (fork length) of 3
+
 year charr has 

increased significantly during 1988-2010 (R
2
 = 0.54, F1,21 = 24.48, p < 0.001). For the 5-year 

period 1988-1992, the mean length of 3
+
 year charr was 22.8 cm (± 0.52) as compared to 28.3 

cm (± 0.70) for the period 2006-2010. Brown trout showed no differences in mean length 

between periods. For both charr and brown trout, the somatic condition (Fulton‟s condition 

factor) was in general high (> 1.10) and did not vary significantly over the period 1988-2005 

(charr, p> 0.4; trout, p> 0.7). Moreover, stomach analyses did not indicate any food shortage 
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or consistent changes in dietary composition by the fish, and data on potential food resources, 

though sparse, do not suggest any consistent decline of macroinvertebrates or changes in the 

resource base for the fish.  

 

Lake Valkea-Kotinen: reduction in the growth of perch following an increase in organic 

load  

During the 20-year monitoring period, epilimnetic temperature (Fig. 2A), TOC (Fig. 2B), water 

colour, pH and alkalinity have increased significantly, while sulphate and base cations decreased, 

mainly as a result of lower sulphur deposition (Futter et al., 2009). Chl a declined (Fig. 2A), but 

no significant changes in concentrations of TP and TN were observed in either precipitation or 

runoff (Vuorenmaa & Horppila, 2011). Climatic drivers have been suggested to contribute 

remarkably to variation in hydrology and, consequently, in TOC fluxes from catchments to 

surface waters (Futter et al., 2009; Arvola et al., 2010).  

 

Density of perch with a total length > 8 cm varied between 660 and 3300 fish ha
-1
 along the 20-

year period. Irregular fluctuations occurred due to variations in year class strength. No significant 

relationships between population density and year class strength with temperature or TP or Chl a 

were recorded. Thus, the variation in abundance of perch seems to result from the population 

dynamics typical for this percid in this lake type, where large cannibalistic perch prevent 

recruitment of 0
+
 perch until the density of large individuals is small enough to enable the 

development of a new strong year class (Persson et al., 2000).  

 

As is typical for small forest lakes of the boreal region, perch grew slowly (Rask, 1983) and 

reached a mean total length of 15 cm after 4-7 years. The growth of perch during the first year 

declined during the monitoring period (Fig. 2B). There was no significant relationship between 
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the 0
+
 growth and the relative year class strength of the population (p>0.1) as the latter fluctuated 

irregularly, suggesting that the first summer growth of perch was not density dependent. Multiple 

regression on log-transformed data showed that the length of 0
+
 perch was strongly negatively 

correlated with TOC (Fig. 2D) and more weakly with TP (R
2
 = 0.71, F2,18 = 22.44, p< 0.001), 

while temperature and Chl a did not contribute significantly (p>0.2) (Fig. 2C). 

 

Deterioration of underwater light conditions due to increased TOC seems the main reason for the 

declining growth of perch, as it is a visually oriented fish species and active only in daylight. 

These observations are consistent with recent field and experimental studies on the effects of 

light conditions on the interactions and feeding efficiency of perch (Estlander, 2011; Estlander et 

al., 2010). In addition, the growth of perch may also have been affected by a decrease in the 

overall productivity of the food web, as suggested by the decreasing trend in chl a (Fig. 2A). 

This might be ascribed to an increased organic carbon load resulting in a higher proportion of 

bacterial production compared to autotrophic algal production (Ask et al., 2009; Karlsson et 

al., 2009), likely leading to a limited availability of fatty acids essential for zooplankton and 

fish (Brett et al., 2009). Although the changes in TOC and effects on perch in Lake Valkea-

Kotinen may so far largely be attributed to reduced acidification (Vuorenmaa, 2004), the results 

indicate that a predicted increase in the organic load to lakes from catchments due to climate 

change (Tranvik et al., 2009; Forsius et al., 2010), and subsequent changes in transparency, 

may directly affect the fish size structure in small boreal lakes.  

 

Swedish forest lakes: increasing first year growth of perch? 

During the study period, sulphate concentrations decreased significantly as in other Swedish 

lakes (Fölster et al., 2005), reflecting a long-term decrease in airborne acidifying deposition. 

TP tended to decrease and surface water temperature to increase. TOC generally increased, as 
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recorded for dissolved organic carbon across eastern North America and northern and central 

Europe since 1990 (Monteith et al., 2007).  

 

During 1993-2009, the water temperature varied in a more or less synchronised fashion 

among lakes, with relatively warmer growth seasons in 1994, 1997, 1999, 2002 and 2006 

(Fig. 3A). Monotonic increases or decreases in fish abundance and/or biomass were 

previously reported for some of the species in some of the 11 lakes (Holmgren, 2009, and 

summarised in Table 2). A positive effect of temperature on the first year growth of perch 

could be observed for the set of lakes included and from the overall relationship based on data 

from all years (Fig. 3C). The year-to-year variation in length of 0
+
 perch followed a similar 

pattern in the lakes, peaking in the warm years of 1997, 2002 and 2006 (Fig. 3B). 0
+
 perch 

were shortest in the northernmost lakes (mean length = 61mm), albeit these fish were 

relatively long considering the lower temperature of their environment. In other lakes at 

similar latitudes (58-64 °N), the mean length of perch is often less than 55 mm after its first 

year of life (Heibo et al., 2005).  

 

Prolonged day length during summer might to some extent compensate for the lower 

temperature in these lakes. Residuals in the length-temperature relationship differed 

significantly between lakes (one-way ANOVA, p<0.001) (Fig. 3D). The largest negative 

residuals (i.e. a growth lower than expected) were found in two of the smallest, but rather 

deep lakes with pelagic populations of vendace. The largest positive residuals were found in 

one of the largest lakes, and also the most shallow one, with no or weak thermal stratification 

in summer.  
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In contrast to Lake Valkea-Kotinen, however, this 11-lakes study shows no evidence that a 

negative effect of increasing TOC levels overrules the positive effect of increasing 

temperature on the growth of 0
+
 perch.  

 

Lake Säkylän Pyhäjärvi: major decline in vendace  

The maximum summer water temperature increased highly significantly during 1962-2010 

(Fig. 4A; 0.9 ºC per decade; adjusted R
2
 = 0.41, F1,47 = 34.75, p<0.001). Spring temperatures 

have not increased correspondingly, as seen from May temperature records that show no 

significant change over years (temperature vs. year in 1968-2010:  p>0.18).  

 

During the last hundred years, no consistent directional changes at the level of the whole fish 

assemblage attributable to climate change were observed (Sarvala et al., 1998). Catches of all 

species fluctuated considerably during 1989-2009. For most species, a linear trend was non-

significant (p=0.21-0.71, explained variance: 0.7-7.7%), but whitefish exhibited a significant 

declining trend with time (R
2
 = 0.48, F1,20 = 18.59, p<0.001). For vendace, there was a 

significant decline in year-class size during the period 1971-2010 (adjusted R
2
 = 0.20, F1,38 = 

10.57, p<0.003), related to increasing annual maximum temperatures (linear regression of 

log10-transformed variables: adjusted R
2
 = 0.18, F1,38 = 9.82, p<0.004), but not to summer 

mean temperature ( p> 0.51). In multiple linear regressions including either TP or chl a of 

May-September, the temperature effect on vendace year-class size remained significant, while 

none of the trophic state variables was significant (period 1980-2010, log10-transformed 

variables, temperature and phosphorus  (R
2 
=0.21, F2,28=3.77, p<0.04) or chl a (R

2 
=0.22, 

F2,28=3.86, p<0.04). In all species, the signs of the slopes were consistent with postulated 

climate warming effects: positive slopes for the warmer-water species perch, roach and ruffe, 

and negative slopes for the colder-water species vendace, whitefish and smelt, although the 
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whitefish decline may rather be related to food web interactions (e.g. competition with 

vendace, egg predation by the introduced signal crayfish) (Sarvala et al., 1998). The observed 

change towards smaller fish in the contemporary fish assemblage is likely mostly attributable 

to intensified fishery and species introductions (e.g. whitefish, vendace) (Sarvala et al., 1998). 

In addition, erratic stock fluctuations in individual species influence the size distributions. 

Strong year class variations are typical for many northern fish species (e.g. Townsend, 1989).  

 

In spite of large inter-annual fluctuations, vendace year class strength in the lake declined 

significantly from 1971 to 2010 (with pronounced lows in 1990-1991, through 1993-1998 and 

again in 2003 and 2009-2010) (Fig. 4B). During the same period, there was a significant 

increase in the body size of one-summer- and two-summer-old vendace. 

 

The timing of ice break and the following temperature development are key factors affecting 

the year class variation in vendace (Helminen & Sarvala, 1994)..Ice-out triggers the hatching 

of vendace larvae highly vulnerable to predation from 8 to about 15 mm total length. A longer 

early larval period results in higher larval mortality (Helminen et al., 1997). The critical 

period for their survival is 2-4 weeks after the ice break, when the temperature should be high 

enough to enable rapid growth of the larvae (Helminen & Sarvala, 1994). For example, in 

1989 and 1990, the early ice break in the lake led to an unusually early hatching of vendace 

larvae. In 1989, temperature increased quickly and larval mortality remained moderate. In 

1990, in contrast, a much slower warming of the water after the very early ice break resulted 

in high mortality of vendace larvae (Helminen et al., 1997). With climate change, ice-out 

occurs earlier (Ventelä et al., 2011), but spring temperature has not increased 

correspondingly, creating increasingly unfavourable conditions for vendace larvae survival. 

Moreover, triggered by the more frequent warmer summers, strong year classes of perch 
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(Böhling et al., 1991; Sarvala & Helminen, 1996) have appeared more often in the 1990s and 

2000s than in the 1970s or 1980s (Sarvala & Helminen, 1996 and unpublished), increasing 

predation on vendace, and we may expect this trend to continue. 

 

The commercial fishery in the lake is mainly based on winter seining through the ice. Usually, 

70-90% of each year class of vendace is harvested during its first winter, leading to negligible 

intra-specific competition among the remaining vendace. High winter temperatures (e.g. 

2007-2008), result in short periods of ice cover and a short winter fishing season (Ventelä et 

al., 2011), augmenting the food competition between the young-of-the-year and adult fish and 

leading to poor recruitment (as in 2008 and 2009). Because the lake is mostly unstratified in 

summer, vendace do not have any cold-water refuge in the deeper water layers. Further 

increasing summer temperatures may thus lead to rising mortality and reduced recruitment.   

 

 

Lake Peipsi: major changes from cold-water to warm-water species  

The start of the ice-covered period, ice-off dates and the water temperature in the open water 

period have been highly variable in recent years in Lake Peipsi and the mean temperature 

(open water period) has increased 0.17°C per decade (R
2
=0.22, F1,86=23.97; p<0.001) since 

1924. Furthermore, extraordinarily hot summers with temperatures exceeding 20°C for long 

periods (up to 110 days in 2002) have apparently become more frequent (Fig. 5A).  

 

Since the 1930s, remarkable changes have occurred in the composition of the fish stock and 

the total harvest by commercial fishermen. The log-transformed total catch and catch of smelt 

have decreased substantially since 1930 (R
2
=0,37, F1,69=41,38; p<0.0001 and R

2
=0,22, 

F1,66=19,04; p<0.0001, respectively) (Fig. 5C). The decline in total catch coincided, though 

(

b
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weakly, with an increase in TP (R
2
=0,28, F1,22=8.86; p<0.008), but not with summer mean 

temperature (p>0.1). At the turn of the 1980/1990 decades, a sharp decline in the vendace 

population coincided with a major increase in pike-perch abundance (Kangur et al., 2007b). 

The major decline of the vendace population has been attributed to sequential extreme 

weather events in summer and winter (Kangur et al., unpublished data). Winters (without 

permanent ice) influence the reproduction success of autumn spawning fishes (vendace, 

burbot, peipsi whitefish (Coregonus lavaretus maraenoides Poljakow)). During warm 

summers, vendace face not only high water temperature, but also low oxygen concentrations 

and predation pressure by the abundant pike-perch. Concurrently with the decline in Lake 

Peipsi, vendace also declined in some Finnish lakes (e.g., Lake Pyhäjärvi and Lake 

Puulavesi), suggesting a relationship with climatic factors common to the whole region 

(Sarvala et al., 1998; Marjomäki & Huolila, 2001; Marjomäki et al., 2004).  

 

The fish assemblage has shifted from cold-adapted species living in an oligotrophic 

environment towards more warm-adapted and eutrophication-tolerant species: the abundances 

of smelt, vendace, peipsi whitefish and burbot have declined, while the abundances of pike-

perch and common bream have increased (Kangur et al., 2007b).  

 

Eutrophication may have amplified the effect of temperature extremes. In hot summers with 

calm weather, cyanobacteria blooming and fish kills have co-occurred during the past decades 

(Kangur et al., 2005).. Using regression analysis, Kangur et al. (2007a) found a strong 

negative effect of high water temperature (≥ 20ºC) on the abundance of the smelt population 

with a lag of 1 and 2 years. In recent years, smelt abundance has declined to a historically 

low level and, accordingly, since 2007 smelt have not occurred in the commercial catches 
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(Fig. 5C). Recent data from trawl samples confirm the low abundance (Kangur et al., 

unpublished data).  

 

Lake Vänern and Lake Vättern: strongest temperature effect in the more nutrient-rich 

of the two lakes 

In Lake Vättern, the water temperature (at 5 m depth) increased significantly during the period 1955-

2010 (Fig. 6A, B; R
2
=0.50, F1, 55=54.7, p<0.001), most pronouncedly during the last 10-year period. 

The main change was an increase in autumn and early winter temperatures, while there was no clear 

trend in ice-on dates during 1881-2010 ( p>0.9) or presence/absence of ice-cover (p>0.9). Also in 

Lake Vänern there was a significant increase (R
2
=0.55, F1, 27 = 32.77, p <0.001) in water temperature 

(mean temperature May, June, August and September at 5 m). Comparable long-term data on ice 

cover from Lake Vänern are not available.  

 

There are several marked changes in the commercial catch for the key fish species in both 

lakes. Analysis of time trends in commercial fish catches is, however, notoriously difficult 

and trends may not necessarily reflect true stock sizes. Despite the substantial decrease from 

approximately 1000 commercial and around 1800 semi-commercial fishermen in the early 

1920s to about 100 commercial fishermen today, there is no trend in total catch over time 

(p>0.6). The catch is kept around 750 tonnes (mean = 747± SD = 186) due to a continuous 

development of the individual effort and effectiveness of each fisherman. We identified two 

important trends for the target species of the fishery in these two lakes that are likely related 

to recent climate change. First, in Lake Vänern the catches of pike-perch, although highly 

variable, have increased over time (R
2
= 0.17, F1,58 = 11.47, p<0.001). Second, in Lake Vättern 

the catches of Arctic charr, the traditionally most important species, have declined steadily 

from the mid-1950s and onwards, negatively correlated with an increase in mean temperature 
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(R
2
=0,36, F1,54=30.88; p=0.001). A similar negative trend has also been observed in a multi-

mesh gill-net monitoring programme (A. Sandström et al., unpublished data). Even though 

there has been a recent positive response of this population to a series of new and stricter 

fisheries regulations, there is a clear long-term decline in Arctic charr that appears to be 

related to a warming climate. 

 

In both lakes the pelagic fish assemblage is dominated by vendace and smelt (Fig. 6C, D). 

Recruitment in L. Vättern was characterised by strong oscillations in vendace recruitment at 

8- or 4-year intervals. Vendace recruitment is known to fluctuate, often in cycles of 2-5 years 

(Hamrin & Persson, 1986; Helminen & Sarvala, 1994). The 1992 year class of vendace was 

extremely strong and dominated the population for seven years, making up more than 60% of 

the adult population even as late as 1998 and 1999. In this lake, smelt recruitment followed 

the same oscillation patterns as vendace (R
2
=0.65, F1,19=32.9, p<0.001) and was negatively 

correlated with water temperature in July (Fig. 6F; R
2
=0.32, F1,16=7.06, p<0.02) in years 

without vendace recruitment outbursts.  

 

In meso-oligotrophic Lake Vänern smelt recruitment correlated positively with the 

temperature in April (Fig. 6E; R
2
=0.83; F1,11=56.11, p<0.001). Long ice winters (in sheltered 

areas), where the ice lasted until the beginning of March or longer, yielded strong vendace 

recruitment in Lake Vänern (Fig. 6E; R
2
=0.40, F1,11= 8.03, p<0.02). A similar trend has been 

observed in Lake Mälaren located in Sweden at the same latitude (Nyberg et al., 2001). 

Variations in productivity (TP) did not contribute significantly in any of these analyses (data 

not shown). 
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There was no obvious synchrony in vendace recruitment patterns between the two lakes 

(p>0.4). In contrast to Lake Vänern, the patterns in Lake Vättern seemed largely regulated by 

the intrinsic dynamics of the vendace stock, possibly due to the fact that Lake Vättern is less 

productive, has no fishery on vendace and exhibits a lower predation rate from piscivores due 

to lower salmonid stocking levels (4-times higher per surface area in Lake Vänern). Our 

results indicate that climate forcing may influence both vendace and smelt recruitment 

although the effects may differ depending on the conditions in the specific lake. 

 

Lake Søbygaard: major reduction in the size of roach and perch  

The April and summer air temperature in the lake region have increased 1.2 and 0.5 ºC per 

decade, respectively (R
2
=0.39, F1,20=13.25, p<0.002 and R

2
=0.20, F1,20=4.99, p=0.04, 

respectively). 

 

Since 1989, total CPUE in terms of biomass has shown a declining trend in Lake Søbygaard, 

coinciding with a decrease in nutrient concentrations (Fig. 7A, B). A major change has 

occurred from roach dominance to dominance by a mixed assemblage of roach and perch. 

This is to be expected when lakes recover from eutrophication (Persson et al., 1991; Jeppesen 

et al., 2000). The fish assemblages respond surprisingly fast to improved lake water 

conditions during oligotrophication (Jeppesen et al., 2005).  

 

Although in theory oligotrophication leads to increased body size of cyprinids and perch 

(Jeppesen et al., 2000), we recorded the opposite pattern. We found a significant (linear 

regression, R
2
= 0.48, F1,19=17.9, p<0.001) reduction in the average size of roach, perch and 

rudd pooled together (Fig. 7C). This decline coincided with the change in April air 

temperatures (linear regression, R²=0.28, F1,19,=7.5, p<0.013) (Fig. 7C), and even more with 
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the average summer air temperature (April-September) (R
2
=0.32, F1,19=8.97, p<0.008) (Fig. 

7D). In a multiple regression including also phytoplankton chl a and TP, only temperature 

was retained in the final model, further emphasising the key role of temperature for the body 

size change. Concurrently, studies of numerous Danish lakes have shown an overall decrease 

in the body size of some cyprinids and particularly of perch in recent years when the lakes 

have become warmer, despite a general improvement of trophic state (Jeppesen et al., 2011).  

 

The results from the long-term study of Lake Søbygaard and from the less frequent samplings 

from numerous other Danish lakes indicate that despite a reduction in loading and a 

subsequent reduction in the total biomass of fish, fish density is increasing and the average 

body size is decreasing, with potentially strong cascading effects. This body size change 

might be a result of improved recruitment of fish due to higher temperatures in spring, but is 

likely also a result of increasing survival of young fish during winter due to a shorter ice cover 

period (see general discussion). 

 

Windermere: decrease in Arctic charr and increase in roach densities 

The water temperature has increased significantly in both basins of the lake, for example in 

the north basin by 0.26
o
C per decade since 1970 (N-basin: R

2
 = 0.23, F1,39 =11.34,  p<0.002, 

S-basin: R
2
 = 0.413, F1,39 = 9.81, p<0.004) (Fig. 8A), which has resulted in an increase in the 

duration and strength of stratification (Feuchtmayr et al., 2012). The lake has experienced 

some degree of eutrophication, although this has been much more marked for the south basin 

as illustrated by its long-term trend in TP which peaked in 1990, prior to the local introduction 

of tertiary stripping (Fig. 8B) and by the consistently lower dissolved oxygen availability 

(Jones et al., 2008).  
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Although the recruitment and thus population dynamics of perch are known to be strongly 

affected by water temperature (Paxton et al., 2004), no significant relationship between 

temperature and abundance was recorded for this lake (p>0.2) (Fig. 8C). Development of 

trophic level asynchrony amongst the plankton and fish of the lake has been recorded in 

recent years (Thackeray et al., 2010), in part by perch spawning earlier in the spring (Winfield 

et al., 2004). 

 

While no overall relationship between CPUE of pike and temperature was recorded (p>0.1), 

local recruitment and population dynamics of pike have also been found to be strongly 

influenced by water temperature (Paxton et al., 2009). In recent decades,  the abundance (Fig. 

8D) and individual condition (length/weight relationship) of pike have shown some 

remarkable changes (Winfield et al., 2008b; Langangen et al., 2011), coinciding with a 

change in the early winter (the only time of year for which long-term data are available) diet 

of pike, most notably with a decline in Arctic charr and an increase in roach (Winfield et al., 

2012a). 

 

Arctic charr abundance has recently declined in both the north and south basins (Fig. 8E), but 

particularly so in the more eutrophic south basin. In recent years, dissolved oxygen levels 

have approached the lower tolerance limits of this species and so have restricted its vertical 

distribution (Jones et al., 2008). Multiple regression on log-transformed data showed strong 

negative effect of temperature and positive effect of TP on CPUE of Arctic charr in the south 

basin (R
2
 = 0.29,  F2,36 = 34.75, p<0.002), while no relationships were found in the north basin 

(p>0.2). Arctic charr has also shown a shift in diet in recent years away from zooplanktivory 

towards benthivory (Corrigan et al., 2011), potentially as a consequence of inter-specific 

competition after the recent local increase in the abundance of roach (Fig. 8F), which is an 
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efficient open-water zooplanktivore (Winfield et al., 2008a). Arctic charr has recently shown 

a widespread decline elsewhere in the U.K. (Winfield et al., 2010b). 

Despite having been introduced to Windermere ca. 100 years ago (Watson, 1899), roach 

populations began to increase in the 1990s after a period of elevated water temperatures 

(Winfield et al., 2008a). This population increase thus took place against a background of 

decreasing eutrophication, suggesting that climate warming has been an over-riding factor. 

The current decrease in roach population (Fig. 8F) may be related to a relatively cool single 

year (2008). However, concerns remain about the potential competitive impacts of an elevated 

roach population on the lake‟s native fish assemblage, most notably on the Arctic charr. 

Common bream, likely also an introduced species, has also increased in abundance although it 

presently remains relatively rare (Winfield et al., 2011). 

 

The fish assemblage of Windermere has changed remarkably from its original salmonid-

percid-pike domination to one with a much greater component of cyprinids and higher total 

fish abundance in both basins of the lake (Fig. 8G). The decrease in abundance of Arctic charr 

appears to have been outweighed by a much greater relative increase in the abundance of 

roach, and a more detailed analysis of the extensive hydroacoustic data reveals that the overall 

increase in fish abundance has been driven primarily by an increase of small individuals in the 

surface waters of both basins. Abundance has significantly increased with temperature and 

decreased with TP in the more eutrophic south basin (R
2
 = 0.48, F2,18 =8.54, p<0.003), but not 

in the north basin.  

 

Lake Stechlin: no obvious climate effect on the fish assemblage 
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Annual average (p>0.06), spring (p>0.9) and summer (p>0.9) water temperatures have not 

varied systematically between 2000 and 2010 (Fig. 9A). Lake productivity did not change 

substantially since 2000 (Fig. 9A).  

The overall densities of pelagic coregonids, as estimated by hydroacoustics (log10 individuals 

(1000 m
-
³)), fluctuated about seven-fold between the years (Fig. 9B) and had a marginally 

positive relationship with average spring temperatures in March and April (Fig. 9C, adj. 

R²=0.31, F1,7=4.71, p=0.06). However, the response differed between pre-mature and mature 

fish and between the sympatric coregonid species (Mehner et al., 2011). Densities of the 0
+
 

coregonids (dominated by vendace) increased after warm winters, as indicated by positive 

correlations of fish densities in June with metalimnetic winter temperatures and the NAO 

index between January and March (Mehner et al., 2011). In contrast, densities of juveniles 

and adults were correlated with metalimnetic June temperatures, but an opposite response 

direction of the sympatric species was triggered by their discrete thermal windows. Densities 

of Fontane cisco increased in years with a warm June, whereas vendace densities declined in 

these warm years. This opposite response caused the species proportions to fluctuate within a 

bi-annual cycle.  

 

Besides, zooplankton abundances in hypolimnetic layers (the daytime habitat of coregonids 

where fish feed) of the previous summer were positively correlated with adult coregonid 

densities in the subsequent year. The depths occupied by both populations at night shifted 

towards less suitable water temperatures if densities of the competing species increased, 

suggesting interactive niche segregation. Temperature-driven inter- and intra-specific 

competition in the metalimnetic layer may cause a complex response of cold-water fish 

assemblages in lakes to annual temperature changes (Mehner et al., 2011). A generally higher 

vulnerability of cold-water fish species to warming could not be deduced from the time series 
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from this lake. However, the time series is relatively short and encompasses only the period 

since 2000 without pronounced warming trends. 

 

Lake Constance: warm-water fish benefit from a warmer epilimnion 

The average water temperature of the upper 20 m increased by 0.22°C per decade (adj. 

R
2
=0.35, F1,43=24.95, p<0.001) between 1965 and 2009.  

 

The drastic changes in lake productivity during the second half of the 20
th
 century (Fig. 10A) 

were the single most important factor influencing fishery yields from ULC. Annual 

commercial yields peaked during the 1970s at around 30 kg ha
-1

 and declined to almost pre-

eutrophication levels (17 kg ha
-1

) during the 2000s (Fig. 10B). The proportion of whitefish in 

commercial harvests was around 70% during the first half of the 20
th
 century, dropped to 

around 30% at the height of eutrophication and has increased again to around 80% in recent 

years (corresponding to 13 kg ha
-1

) (Fig. 10B). Commercial harvests of Arctic charr increased 

markedly in the 2000s to levels that have never been registered since the beginning of the 

official statistics in 1910 (Fig. 10C). This increase suggests that lake oligotrophication has 

improved the conditions for charr, counteracting the effect of increasing temperature. 

Additionally, every year charr are fished during spawning time and stripped, eggs are 

incubated in hatcheries, and larvae and juveniles are restocked into the lake.  

 

Multiple regressions on log-transformed data showed no effect of temperature and TP on the 

yield of coregonids (p>0.10), while the perch yield was significantly related to TP but not to 

temperature (adj. R²=0.45, F2,42=18.77, log temperature: p<0.001, log TP: p>0.6). Hence, an 

effect of the temperature increase during the last decades on the harvest of the two dominant 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

 41 

fish species could not be detected. Under enduring oligotrophic conditions, however, such an 

effect might materialize in the future. 

 

Year class strength of the pelagic spawning whitefish type did not show any significant trend 

from 1947 to 1998 (Straile et al., 2007), likely as a result of large year-to-year variations in 

year class strength (Trippel et al., 1991). However, whitefish year class strength was 

significantly correlated with the actual winter NAO index and that of the previous winter. 

Whitefish spawn in late November/early December in the pelagic zone, and the eggs sink to 

the lake bottom where they develop at the hypolimnetic temperature that was established 

during full mixing during the previous winter. A higher hypolimnetic temperature accelerates 

embryogenesis and enhances embryo survival. The larvae, on the other hand, experience the 

epilimnetic temperature that is influenced by the actual NAO index, whereby higher 

temperature furthers larval growth and reduces mortality. As the timing of hatching is 

uncoupled from the actual meteorological conditions (Straile et al., 2007), a mismatch 

between the larvae and their food might occur, but this has not been observed so far in ULC 

(Straile et al., 2007). Should climate change promote stronger whitefish year classes in the 

future, intraspecific competition for food will likely increase with a concomitant reduction of 

growth rates (cf. Thomas & Eckmann, 2007).  

 

So far, there is no strong evidence that cold-water fish in the lake are severely affected by 

climate change, not least because this deep lake always provides a cold-water refuge (cf. 

Thomas et al., 2010). Warm-water species, however, which now live under suboptimal 

conditions in the lake, will likely benefit from warming. Common carp, for example, which 

was introduced into Lake Constance in medieval times, clearly benefits from higher 

temperature. Commercial yields fluctuated around 2 t y
-1

 during the first half of the 20
th
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century and were as low as 1 t y
-1

 during the lake‟s eutrophic phase, but increased 

dramatically to >15 t y
-1

 in the mid-2000s (Fig. 10 D). This was a result of successful 

reproduction in early summer 2003, the warmest summer recorded since 1870, when the 

surface temperature surpassed 25°C. As the 2003 cohort was fished out, yields returned to the 

previous level. This example suggests that the population dynamics of fish species 

characteristic of eutrophic lakes may not primarily be controlled by food availability in 

oligotrophic peri-alpine lakes, but rather by temperature during the critical embryonic and 

larval periods.  

 

Lake Geneva: reduction in Arctic charr and increase in whitefish and roach 

The mean temperature of Lake Geneva has increased by 0.17°C per decade since 1986 (R
2
= 

0.53, F1,52 = 58.52, p<0.001) (Fig. 11A), affecting the development of lake stratification, 

which now starts one month earlier than 30 years ago. The de-stratification thus occurs later 

due to a very stable epilimnion. Also phenological events of phytoplankton and zooplankton, 

including the clear water phase, now take place one month earlier than 30 years ago 

(Anneville et al., 2002, 2004).   

 

The most important change in the fish assemblage over the past decades has been a major 

increase in commercial whitefish catches, positively correlated with mean temperature and 

negatively with TP (multiple regression on log-transformed data; R
2
= 0.90, F2,21 = 95.54, 

p<0.001), which during the last 10 years have increased 3-fold (from <100 to >300 tonnes) 

(Gerdeaux, 2004), reflecting an increase in the stock. The changes in the whitefish fishery are 

interpreted as the result of changes in lake trophic state following nutrient loading reduction 

and fishery management. However, climate change is likely also an important cause of 

variation (Anneville et al., 2009). Today, spawning of whitefish occurs two weeks later than 
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20 years ago, but the water temperature is warmer and the hatching time has not changed. The 

change in seasonal dynamics of primary production means that food for whitefish is available 

earlier in the year for the larvae hatched in February. The warming of the lake is thus 

favourable for whitefish recruitment (Fig 11B).  

 

In contrast, the warming of the lake seems to negatively impact the dynamics of Arctic charr,  

the catches being negatively related to both mean temperature and TP (multiple regression on 

log-transformed data: R
2
= 0.66, F2,21 = 11.47, p<0.001) (Fig. 11B) (see also Gerdeaux, 2011). 

The recruitment of Arctic charr was negatively correlated with deep water temperature (R
2
= 

0.55, F1,10 = 9.58, p<0.02). Perch, on the other hand, has not changed its spawning time, while 

roach spawns almost one month earlier (Gillet & Quetin, 2006; Gillet & Dubois, 2007). 

Therefore, the time interval between perch and roach spawning has decreased, and there is a 

mismatch between perch juveniles and roach larvae as a food resource. Warming thus seems 

to favour the dynamics of roach, which avoid predation from perch juveniles. We found no 

significant relationship between temperature and reported catches of pike and trout, while 

there was a significant positive relationship between P reduction and capture of pike (R
2
= 

0.83, F1,22 = 109.2, p<0.001) and a negative relationship for trout catches (R
2
= 0.69, F1,22 = 

48.58, p<0.001). 

 

Lake Maggiore: reduction in cold water species and increase in warm-water species  

Besides changes in trophic status, the effects of climate warming on Lake Maggiore have 

become particularly evident during recent decades (Ambrosetti & Barbanti, 1999) (Fig. 12A). 

From 1978 the water temperature rose significantly both in the hypolimnion (R
2
=0.49, 

F1,31=28.86, p<0.001) and the epilimnion (R
2
=0.33, F1,31=14.76, p<0.001) (Fig. 12B). 

Ambrosetti and colleagues (2006) have shown an increase of short and very intense rain 
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events coupled with long drought periods, and increased pollutant loads from the catchment 

(Galassi et al., 2006; Volta et al., 2009; Guilizzoni et al., 2012), due to changes in hydrology 

and precipitation regimes, have been also identified. Furthermore, an increase in the duration 

of the thermal stratification and stability of the water column was observed, probably 

triggering cyanobacteria blooms (Morabito, 2007).  

 

Since the 1980s, the total fishing yield has decreased significantly (R
2
=0.62, F 1.31=29.48, 

p<0.001) from ca. 45 kg ha
-1

 to the current 8 kg ha
-1

.(Fig 12B). Fish species contribution to 

the commercial catches has changed markedly, reflecting the changes in lake fish assemblages 

probably triggered by multiple stressors, such as the increased water temperature, changes in 

trophic state and the introduction of invasive non-native species (Volta & Jepsen, 2008; P. 

Volta unpublished data). Regression on log-transformed data showed that coregonid 

(R
2
=0.49, F1,31=28.22, p<0.001) and trout (R

2
=0.50, F1,31=30.39, p<0.001) harvests have 

decreased significantly (Fig. 12C), while bleak (R
2
=0.50, F1,15=17.05, p<0.001) has almost 

disappeared. In contrast, eurythermal species such as the native shad (Alosa agone) (R
2
=0.72, 

F1,27=69.80, p<0.001) and roach (R
2
=0.76, F1,14=40.42, p<0.001) recently appeared 

abundantly in the catches. Also, pike-perch has increased (R
2
=0.64, F1,14=23.04, p<0.001) 

reaching a comparable catch level as that of perch (Fig. 12C), which has itself declined 

substantially (R
2
=0.60, F1,31=45.03, p<0.001). Besides these primary commercial species, 

other tolerant and eurythermal non-native species, such as ruffe and wels catfish (Silurus 

glanis), now appear more constantly in the catches (P. Volta, pers. obs.). 

 

Multiple regressions on log-transformed data have shown that the changes registered in the 

catches of most of the fish species were often significantly correlated with TP at winter 

mixing, with Chl a concentration and with water temperature. For instance, the coregonids 
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harvest was positively correlated with Chl a and negatively with hypolimnetic temperature 

(R
2
=0.70, F5,26= 11.99, p<0.001), while trout was negatively correlated with hypolimnetic 

temperature (R
2
=0.77, F5,26=17.18, p<0.001). Also the perch catches were markedly 

negatively correlated with the hypolimnetic temperature (R
2
=0.77, F5,26=17.18, p<0.001), 

whilst bleak harvest was positively correlated with TP in the epilimnion (R
2
=0.76, F4.12=7.78, 

p=0.002) but not with temperature. On the contrary, the shad catches were positively 

correlated with the temperature in the epilimnion but negatively with Chl a (R
2
=0.90, 

F4,24=49.73, p<0.001), while the harvests of roach, pikeperch, and char did not show any 

significant relationship (p>0.05) with any of the variables tested. 

 

Lake Albufera: synergistic effects of eutrophication and climate warming 

The temperature in Lake Albufera has increased 0.34 
o
C per decade since 1950 (R

2
 = 0.63, 

F1,56 =97.50, p<0.001) (Fig 13A). 

 

Eutrophication (Fig. 13A), disappearance of macrophyte beds, introduction of exotic species 

and perhaps fish harvesting and climate warming have affected the fish species composition 

from 1950 to 2007. A remarkable reduction in fish species richness from about 23 to nine 

species was observed between 1950 and 2007, while there has been a noticeable increase in 

the presence and development of exotic species such as eastern mosquitofish (Gambusia 

holbrooki), pumpkinseed sunfish (Lepomis gibbosus) and common carp.  

 

Similarly to findings in subtropical lakes (Meerhoff et al., 2007a; Teixeira-de Mello et al., 

2009), submerged macrophyte beds are important for sustaining a high diversity of small-

sized fish species in Mediterranean lakes (Blanco et al., 2003). Some of the exotic species 

have replaced autochthonous species, especially those using submerged macrophyte beds, 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

 46 

such as Spanish cyprinodont (Aphanius iberus), Barbus bocagei, Chondrostoma arrigonis or 

Valencia cyprinodont (Valencia hispanica). Species well distributed in Europe, such as three-

spined stickleback, have also disappeared with the loss of submerged vegetation.  

 

Other species introduced in the early 1960s, such as pike, largemouth bass (Micropterus 

salmoides) and pike-perch, have not proliferated in the lake, probably due to rising water 

turbidity and lack of spawning habitat. Since the 1950s, mugilid captures have increased by 

75% (from 80 to 325 t y
-1

 ) (unrelated to temperature or Chl a, p>0.2) to the detriment of 

species such as eel (from 90 to 7.7 t y
-1

 ) (negatively related to temperature, but positively to 

Chl a: multiple regression on log-transformed data, R
2
= 0.84, F2,17 = 43.70, p<0.001) and 

European seabass (Dicentrarchus labrax) (from 30 to 0.1 t y
-1

) (negatively related to Chl a 

and positively to temperature: multiple regression on log-transformed data, R
2
= 0.54, F2,14 = 

8.00, p<0.005) (Fig. 13B). Such decrease may also be attributed to over-fishing of these 

valuable commercial species since the beginning of the 20
th

 century (Blanco & Romo, 2006). 

 

A main shift in the captured species was recorded in 1974 following an earlier change around 

1966 (Fig. 13B). The shift corresponds well with the doubling of the phytoplankton Chl a 

concentration observed in 1974 (mean: 53 μg l
-1

) and a major shift to a turbid state after a 

rapid loss of submerged macrophytes (Romo et al., 2005). The ratio of piscivorous fish 

(European seabass and eel) to total mugilids captured was nearly 1 during the macrophyte-

dominated state of Lake Albufera, but remained very low thereafter. Dense cover of 

macrophytes and the presence of some piscivorous species (such as European seabass) 

probably prevented massive mugilid entry from the sea and development in the lake before 

the 1970s.  
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Despite variations depending on the physiological optima of the different species, the direct 

effects of an increasing temperature may be small as eurythermal fishes dominate completely. 

However, warming may indirectly affect lake fish communities as longer water retention time 

leads to more frequent oxygen depletion as well as harmful cyanobacteria blooms (Romo et 

al., 2012). The long-term data series from the lake therefore indicates a combined effect of 

climate change and eutrophication favouring eurythermal, omnivorous and small-sized fish 

species suffering from variations in water levels, salinity and frequent fish kills during 

summer-autumn (Blanco et al., 2003), although effects of harvesting and invasion of exotic 

species have likely contributed to the changes. 

 

General discussion 

Leaving interactions aside, theoretical works based on temperature effects on individual 

metabolism predict an increase in species richness and a reduction in biomass, density, and 

mean body size with warming, particularly for ectotherms (Allen et al., 2002; Brown et al., 

2004). While the fish assemblages in most of the presented case studies have also been 

strongly influenced by stressors other than changes in climate, particularly changes in nutrient 

loading, commercial fish harvesting and species invasions, changes attributable to warming 

have emerged in recent decades in European lakes (summarised in Table 2).  

 

We found a clear trend towards higher importance of eurythermal species with warming in 

several of the lakes (Lake Peipsi, Windermere, Lake Geneva, Lake Maggiore and Lake 

Constance), as judged from fish harvests and surveys. Lake Maggiore seems the most striking 

example of such changes, although the evidence is provided by harvests that may themselves 

show a more drastic non-linear change than the fish populations. In this lake, a major shift 
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occurred in the harvest: cold-adapted species (trout and whitefish) declined and more 

eurythermal species (native shad, roach and pike-perch) increased substantially. Also ruffe 

and catfish appeared more often after a temperature increase. Harvest of pike-perch increased 

in Lake Peipsi and Lake Vänern, of common bream in Lake Peipsi and of carp in Lake 

Constance. These shifts to more eurythermal species occurred even though four of the five 

lakes experienced oligotrophication during the study period, which should have favoured the 

cold-adapted species in a slightly warmer climate due to improved oxygen conditions in the 

cold hypolimnion and less severe competition for food with the eurythermal species 

(Hartmann, 1977; Persson et al., 1991; Jeppesen et al., 2000). 

 

The cold-stenothermic Arctic charr has been particularly affected by warming, showing a 

clear decline in the majority of the lakes where its presence is recorded (4 out of 5, i.e. Lake 

Elliðavatn, Windermere, Lake Geneva, and Lake Vättern). Despite warming, a marked 

increase has occurred in the charr harvest of Lake Constance during the last 15 years, 

although here nutrient loading reduction and systematic stocking must have played a pivotal 

role in boosting the local production of this species. A recent study indicated pronounced 

negative long-term effects on Arctic charr growth in Scandinavian hydroelectric reservoirs 

(Milbrink et al., 2011). As illustrated by a review of charr population declines in the U.K. 

(Winfield et al., 2010b), the thermal problems faced by this species are expectedly more 

adverse in shallow than in deep lakes due to higher temperatures and lack of a cold 

hypolimnion refuge. In Iceland, charr appears also to suffer from the thermally-linked 

proliferative kidney disease (PKD) (Sterud et al., 2007), as is the case in Lake Elliðavatn 

(Kristmundsson et al., 2011). This highlights the importance of complex and potential 

synergetic effects of warming on fish, including both direct effects (e.g. on metabolism and 

growth) and indirect effects, such as diseases.  
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Other cold-water-adapted species, such as coregonids and smelt, have also responded to 

increasing temperatures, although with varying patterns. While commercial catches of 

whitefish have increased in Lake Geneva, perhaps reflecting an earlier increase in spring 

water temperature favouring recruitment (see also the whitefish in Lake Constance), whitefish 

harvest has declined substantially in Lake Maggiore, Lake Vättern and Lake Peipsi, and to 

some extent also in Lake Säkylän Pyhäjärvi. In the U.K. and Ireland, a decline in the 

coregonid pollan (Coregonus autumnalis) in recent decades has also been attributed to 

changes in temperature (Harrod et al., 2002). The population of brown trout, which is a more 

heat-tolerant species than Arctic charr (Elliott & Elliott, 2010), has remained largely 

unchanged in Lake Elliðavatn, but has decreased substantially in the warmer Lake Maggiore. 

 

We observed variable responses of vendace to warming, likely because temperature effects on 

vendace depend on the initial situation, as well as on the life stage relative to the seasonal timing of 

the changes. Except in Lake Vättern, where no correlation between the dynamics of vendace and 

climate parameters occurred but instead intra-specific competition seemed more important, negative 

effects of rising temperatures seemed substantial in most lakes. Although rapid warming of water after 

the hatching of larvae in spring generally enhances vendace survival (Helminen & Sarvala, 1994), late 

summer temperatures in the southernmost vendace lakes have occasionally risen so high as to increase 

particularly adult mortality. Adult vendace population has declined in the deep Lake Stechlin in warm 

summers (Mehner et al., 2011), and more drastic reductions have occurred in shallow Lake Peipsi 

after summer heat waves. Mild winters leading to early ice-off dates have been detrimental to vendace 

recruitment in Lake Säkylän Pyhäjärvi, Lake Peipsi, and Lake Vänern. In contrast, warming has 

apparently favoured vendace recruitment further north in subarctic Lake Inari (Finland) (Puro-
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Tahvanainen & Salonen, 2010). Vendace recruitment has been indirectly disturbed in Lake Säkylän 

Pyhäjärvi through climate-induced changes in winter fishing length and intensity (Ventelä et al., 

2011).An additional indirect climate effect is that the predation pressure from perch on young vendace 

has apparently increased with warmer summers in several lakes, particularly in the north. The U.K.‟s 

last surviving native population of vendace in Derwent Water, where the species is not exploited in a 

fishery, has shown a declining tendency over the last decade (Winfield et al., 2012b) which may be 

due in part to warming. 

 

The response of smelt also varied among lakes. While the recruitment of this species in deep 

northern Lake Vättern was negatively related with the water temperature in July, it increased 

with April temperature in Lake Vänern. This was similar to the opposite effects of 

winter/spring or summer temperatures on the recruitment and densities of vendace. In 

contrast, a drastic reduction in smelt occurred in shallow Lake Peipsi as judged from 

commercial harvest, the decline being particularly remarkable in years with heat waves.  

 

Perch and roach, which typically dominate northern European lakes (Mehner et al,, 2007), 

show an ambiguous pattern of response to warming. No obvious climate-induced changes 

could be traced for nutrient-poor northern Lake Vänern and Lake Vättern. Observations from 

11 Swedish forest lakes indicate, however, increased growth of 0
+
 perch in years with higher 

temperatures, potentially enhancing their winter survival. The harvest of perch has increased 

in Lake Peipsi and strong year-classes of this species have occurred more frequently in Lake 

Säkylän Pyhäjärvi and in Lake Søbygaard, although in the latter it may also be attributed to a 

major reduction in nutrient loading. Other studies have also found strong year classes of perch 

to be associated with warm summers (Böhling et al., 1991; Lappalainen et al., 1996; Sarvala 

& Helminen, 1996; Mehner et al., 1998; Paxton et al., 2004), and in Lake Pyhäselkä in north-
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eastern Finland perch density increased with increasing temperature from 1975 to 2005 

(Voutilainen & Huuskonen, 2010). The southern distribution limit of this species corresponds 

with the 31°C summer isotherm (Thorpe, 1977), the larvae growth optimum of 25-30 
o
C is 

higher than that for adults (18-27 
o
C), and gonadal development is most favourable at 

temperatures < 6 
o
C for prolonged periods (Graham & Harrod, 2009). The latter two factors, 

in particular, may explain why we observed stimulation of perch recruitment in the north and 

a major decline in perch harvest in southern Lake Maggiore. 

  

In our study, long-term data on roach were limited. The harvest of roach increased in Lake 

Maggiore (Volta & Jepsen, 2008) and roach abundance increased substantially in Windermere 

since the 1990s, despite varying in time since first introduction and indicating that this species 

has encountered a „window of opportunity‟ in recent years. The primary factor behind the 

increases of this non-native (to these lakes) cyprinid is probably the increase in water 

temperature, because roach is unlikely to have benefitted from the reduced nutrient loadings 

occurring during this period in both of the lakes.  

 

Higher winter survival, longer growing seasons and, for some species, higher year-class 

strengths in warm years can be expected to lead to higher proportions of small fish in the 

populations. Spawning occurs earlier at lower latitudes, as seen for important European 

species such as roach (Lappalainen & Tarkan, 2007) and perch (Tolonen et al., 2003). We 

found a major decline in the body size of roach and perch in Danish Lake Søbygaard. This 

increase in the proportion of small fish occurred despite an overall major reduction in nutrient 

levels following an external nutrient loading reduction, which according to monitoring data 

from numerous Danish lakes should have resulted in a lower proportion of small fish 

(Jeppesen et al., 2000). Moreover, an analysis of gill-net monitoring data on the age structure 
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of perch and roach from 50 Swedish lakes, covering a latitude gradient from 67 to 55
o
N, 

revealed that the proportion of perch < 10 cm and of age groups 1
+
 to 3

+
 of the total catch (by 

numbers) increased markedly with decreasing latitude (and increasing air temperature) 

(Jeppesen et al., 2010a). These findings concur with a meta-analysis of the effects of warming 

on the body size of ectothermic aquatic organisms, showing a significant increase in the 

proportion of small-sized species and organisms at warmer temperatures (Daufresne et al., 

2009). 

 

The fish assemblage is not only affected directly by the heating and changes in the thermal 

stability of the lakes. Numerous recent studies and reviews indicate that warming will 

exacerbate existing eutrophication problems (McKee et al., 2003; Feuchtmayr et al., 2009; 

Jeppesen et al., 2010b; Moss et al., 2011; Romo et al., 2012), and this will, in a self-

amplifying manner, likely further stimulate a shift to small-bodied fish and to dominance of 

eurythermal species, which typically tolerate low oxygen levels and high ammonia 

concentrations (see review in Graham & Harrod, 2009). In Northern and Central Europe, 

increased eutrophication is in part due to a higher external nutrient loading mediated by 

higher precipitation-induced nutrient runoff, but it is also a consequence of higher internal 

phosphorus loading and higher dominance of cyanobacteria in warm lakes (Mooij et al., 2007; 

Jeppesen et al., 2010b; Kosten et al., 2012; Romo et al., 2012), with detrimental effects 

mostly on adult fish (Romo et al., 2011). The effects of eutrophication are further reinforced 

by the warming-induced shifts in fish assemblages and size structure (Teixeira-de Mello et al., 

2009), and in many lakes higher winter survival due to reduced ice cover (Jackson et al., 

2007), leading to enhanced fish predation pressure on zooplankton (Meerhoff et al., 2007b; 

Balayla et al., 2010; Ruuhijärvi et al., 2010) and, as a result of this, lower grazing on 

phytoplankton (Meerhoff et al., 2012).   
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It is also to be expected that warming and enhanced precipitation in Central and Northern 

Europe induced by climate change will enhance the allochthonous carbon inflow to lakes and 

reduce carbon burial, leading to higher in-lake dissolved organic concentrations and often a 

higher humic content (Tranvik et al., 2009, Sobek et al., 2007). Succession towards higher 

bacterial production, together with light limitation, may result in lower overall production 

available to the higher trophic levels in certain lakes (Ask et al., 2009; Karlsson et al., 2009), 

as seemingly has occurred to perch in Lake Valkea-Kotinen. In the Mediterranean area, 

eutrophication may also intensify despite lower external nutrient loading, as nutrient 

concentrations rise due to higher evaporation and lower precipitation (Jeppesen et al., 2009, 

2011; Romo et al., 2012). As elsewhere, changes in fish size structure here will also 

exacerbate eutrophication symptoms. 

 

Therefore, we can expect an allied attack by eutrophication and warming in lakes in the future 

(Moss et al., 2011), and shifts in fish abundance, body size and composition will be reinforced 

and stimulated by this process. This implies that it will be more difficult to obtain the good 

ecological status required by the Water Framework Directive in European lakes facing 

climate warming and suggests that a way to counteract, at least in part, the effect of warming 

is to reduce the nutrient input to lakes even further than planned under the present-day climate 

and to regulate fisheries accordingly.    

 

Conclusions 

Although local variations occurred, we have revealed profound changes in either fish 

assemblage composition, biomass, abundance, body size and/or age structure of key species 
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during recent decades in a set of European freshwater lakes. Some patterns coincided with 

findings by other approaches (e.g. meta-analysis, Daufresne et al., 2009; space-for-time-

substitution, Jeppesen et al., 2010a,b; Meerhoff et al., 2012), although responses were species-

specific and not universal for our data set. The most obvious alterations encompass a decline 

in the abundance of cold-stenothermal species, in particular in shallow lakes, and an increase 

in the abundance of eurythermal species even in deep, stratified lakes. This development has 

occurred despite a reduction in nutrient loading in most of the case studies, supposedly 

favouring fish typically living in cold-water low-nutrient lakes and larger-sized individuals. 

The response of fishes to the warming during recent decades has therefore been surprisingly 

strong, making fish ideal sentinels for detecting and documenting climate-induced 

modifications of freshwater ecosystems.  
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Legends of figures  

 

Fig. 1. Lake Elliðavatn. Catch per unit effort (CPUE, average number of fish caught per net) 

of Arctic charr and brown trout together with June-September mean temperatures (modified 

from Malmquist et al., 2009; Antonsson & Árnason, 2011; IMO, 2011). 

 

Fig. 2. Lake Valkea-Kotinen. A: Annual mean total phosphorus concentration, chlorophyll a 

and water temperature (1 m depth). B: mean length of 0
+
 perch and annual mean 

concentration of total organic carbon (TOC, 1 m depth). C, D: Relationship between mean 

length of 0
+
 perch, water temperature and TOC. 

 

Fig. 3. Eleven Swedish forest lakes. A: Mean surface water temperature in May to September. 

B: Mean length of perch after the first year. C: Linear relationship between summer 

temperature and 0
+
 perch length, D: Lake-specific residual variation in the linear relationship 

between temperature and 0
+
 perch length. Lakes in D are ordered from south to north, and the 

same colour codes are used in all panels.  

 

Fig. 4. Lake Säkylän Pyhäjärvi. A: Mean total phosphorus, chlorophyll a (0-5 m; May-

September) and annual maximum water temperature. B: Year class size of vendace (in 

millions). 

 

Fig. 5. Lake Peipsi. A: Mean water temperature (WT) for days with temperature > 20°C from 1925 to 

2010. The occurrences of fish kills during the hottest summers are marked with asterisks. B: Mean 
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water temperature, total phosphorus and chlorophyll a for the ice-off period. C: Annual catches of 

smelt and total fish. 

 

A: Mean water temperature (WT) for days with temperature > 20
°
C from 1925 to 2010. The 

occurrences of fish kills during the hottest summers are marked with asterisks. B: Mean water 

temperature, total phosphorus and chlorophyll a for the ice-off period. C: Annual catches of 

smelt and total fish. 

 

Fig. 6. Lake Vänern and Lake Vättern. A, B: Annual mean water temperature, chlorophyll a 

and total phosphorus (0-10 m). C, D: Annual variation in abundance (ind. ha
-1

) of young-of-

the-year smelt and vendace. E: relationship between abundance of young-of-the-year smelt 

and temperature in April and between abundance of young-of-the-year vendace and the date 

of ice break in the sheltered basin of Brandsfjorden in the south-eastern part of the lake. F: 

Relationship between abundance of young-of-the-year smelt and July water temperature (only 

years without strong pulses of vendace recruitment). Note that the year 2009 is an extreme 

outlier and was not included in the regression line. In 2009 smelt recruitment in Lake Vänern 

collapsed despite optimal temperature conditions. The reason for this collapse is under 

investigation. 

 

Fig. 7. Lake Søbygård. A: Summer mean total phosphorus and chlorophyll a. B: CPUE by 

weight of various key fish species. C, D: Mean per capita biomass of roach, rudd and perch 

(pooled together) and average air temperature in April and summer (Apr. 1 to Sept. 1). 

 

Fig. 8. Windermere. A: Annual mean surface water temperature in the north and south basins. 

B: Annual mean total phosphorus in the north and south basins. C-F: Annual abundance of 
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perch (fish trap
-1

 week
-1

), pike (fish net
-1

 day
-1

), Arctic charr (fish angler
-1

 hour
-1

), and roach 

(fish 100 m
2
 net

-1
 day

-1
), data are only available from 1995, 2000, 2005 and 2010). G: Annual 

abundance (fish ha
-1

) of all fish species as recorded by hydroacoustics.  

Fig. 9. Lake Stechlin. A: Annual mean concentrations of total phosphorus (µg l
-1

) and 

chlorophyll a (µg l
-1

), and annual mean and spring (March-April) temperatures (°C) measured 

at 2 m depth intervals from the surface to 20 m depth. B: Time series of spring (March-April) 

water temperatures and total density of pelagic coregonids (log10 ind. (1000 m
-3

)) as obtained

by hydroacoustics in June. C: Scatter plot and linear regression line of spring temperature and 

hydroacoustic fish densities in June. 

Fig. 10. Lake Constance. A: Total phosphorus concentration during winter mixing, yearly 

average temperature from 0-20 m depth, and yearly average chlorophyll a concentration from 

0-20 m. B, C, D: Commercial fish, Arctic charr and carp harvests (in tonnes), respectively, 

from Upper Lake Constance and total phosphorus during winter mixing. 

Fig. 11. Lake Geneva. A: Annual mean water temperature above the bottom at 309 m and 

annual mean total phosphorus concentration. B: Annual commercial harvest of key fish 

species (tonnes). 

Fig. 12. Lake Maggiore. A: Mean water temperature and total phosphorus at the spring 

overturn. B: Annual mean water temperature of the epilimnion (0-25 m depth) and 

hypolimnion (25-360 m depth). C: Annual commercial harvest (in tonnes) of the most 

important fish species as registered in the fishery statistics by CISPP. 
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Fig. 13. Lake Albufera. A: Annual means of temperature, chlorophyll a and total phosphorus. B: 

Annual commercial harvest of key fish species (in tonnes). Mullet (dash), Eel (full thick line) and 

European seabass (fill thin line). Mullet (dash), Eel (dark line) and European seabass (clear line). 

(Error in the graph to be changed in the final version). 
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Table 1. 

Information about lake locations, morphometry and fish data series 

Table 2.  

Summary of the suggested climate-induced changes in fish assemblage composition, 

abundance and size structure in the case studies based on data presented in this paper 

or in earlier cited studies. Lakes are ordered by decreasing latitude. For references see 

the case study descriptions. 
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Table 1 

Lake Country Position Altitude 

(m.a.s.l.

) 

Lake 

area 

(km2) 

Mean depth 

(m) 

Maximum 

depth (m) 

Mean total phosphorus  

in surface waters (µg P l
-1

)

Lake Elliðavatn, Iceland 64°05’ N, 

21°48’ W 

75 2.02 1.0 2.3 Mean 13 (Jan-Dec, 2000-2002) 

Maximum: 18 (2001) 

Lake Valkea-

Kotinen 

Finland 61
o
15’ N, 

25
o
04’ E

156 0.041 2.5 6 Mean 17 (Jan-Dec,1989-2009) 

Maximum 21  (in 2009) 

11 lakes Sweden 56-64 °N, 

12-18 °E 

35-268 0.18-

4.89 

4-14 9-42 Mean 5-12 (Feb-Oct 1993-2010) 

Maximum 12-16 (in different 

years) 

Lake Säkylän 

Pyhäjärvi 

Finland 61º0’N, 

22º15’E 

45 155 5.5 26 Mean 18 (May-Sep, 1980 -2011) 

Maximum 23 (in 2000) 

Lake Peipsi Estonia/ 

Russia 

57º8’N; 

27.5º’ E 

21 3555 7.1 15.5 Mean 42 (May-Sep, 1985-2010) 

Maximum: 78 (1992) 

Lake Vänern Sweden 58.5 44♣ 5648 27 106 Mean 6 (May-Sep, 1995-2010) 

Maximum 8 (in 1995) 

Lake Vättern Sweden 57.5 89 1939 40 126 Mean 5 (May-Sep, 1995-2010) 

Max 7 (in 1989) 

Lake Søbygaard Denmark 56
o
15’ N, 49 0.4 1 1.2 Mean 507 (May-Sep, 1989-2010) 
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Table 1 

Lake Country Position Altitude 

(m.a.s.l.

) 

Lake 

area 

(km2) 

Mean depth 

(m) 

Maximum 

depth (m) 

Mean total phosphorus  

in surface waters (µg P l
-1

)

9
o 
48’ E Maximum: 997 (1996) 

Windermere U.K. 54°22’N, 

2°56’W 

39 14.8 25 64 Mean  13   in North basin, 

21 in South basin (Jan-dec,1970-

2010) 

Maximum 17  in North Basin 

(1981), 

31 in South Basin (1990), 

Lake Stechlin Germany 53°10’N, 

13°02’E 

72 4.3 22.8 69 Mean 12 (Jan-Dec, 2000-2010) 

Maximum: 16 (2007) 

Lake Constance, 

Upper Lake 

Austria/Ge

rmany/Swit

zerland 

47°39’ N, 

9°18’ E 

395 473 101 254 Mean 36 (Winter mixing, 1951-

2010) 

Maximum: 87 (1979)  

Lake Geneva France/Sw

itzerland 

46°27’ N, 

6°32’ E 

372 582 153 309 Mean 42 (Jan –Dec,1986-2010) 

Maximum: 71 (1986) 

Lake Maggiore Italy/Switz

erland 

45°57'N, 

8°33'W 

193 212.5 177 377 Mean 13 (1979-2008) 

Maximum: 23 (1981) 

Lake Albufera Spain 39º20’N, 

0º21’W 

0 23.2 1.2 3 Mean 280 (Jan- Dec, 1988-2007) 

Maximum: 483 (1988) 
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Table 2 

Lake Latitude Cold 

deep 

water 

refuge 

Length of 

fish time 

series (years) 

Arctic charr Other cold-water 

species 

Perch/roach Warm-water species Fish body size 

Elliðavatn, Iceland 64°1’ N No 23 

(1987-2010) 

Major decrease in 

abundance. 

No change in brown trout 

abundance. 

- - Size (length) of (3+) charr 

increasing, condition factor 

remains the same. The same 

applies to brown trout 

Valkea-Kotinen, 

Finland 

61o15’N No 21 

(1989-2009) 

- - No temperature response 

of perch. 

- Size of 0+ perch decreasing. 

Eleven forest lakes, 

Sweden 

56-64° N Yes 17-18 

(1993-2010) 

- Decreasing or 

insignificant trends for 

burbot, smelt, vendace 

and whitefish 

Variable trends for both 

perch and roach. 

Increasing or insignificant trends 

in first year growth of perch. 

Säkylän Pyhäjärvi, 

Finland 

60º54’-

61º06’N 

No 40 

(1971-2010) 

Increased mortality and 

reduced recruitment of 

vendace. Declining 

whitefish catches. 

More frequent strong 

year classes of perch. 

not enough data 0+ and 1+ vendace size 

increasing, weaker year classes 

(lower 0+ abundance). 

Peipsi, 

Estonia/Russia 

57º5’-

59º0’N 

No 80 

(1931-2010) 

- Decreasing trends for 

smelt, vendace, peipsi 

Increasing catches of 

perch; catches of roach 

Abundance of pike-perch 

and bream has increased. 

Size of 0+ pike-perch in autumn 

has decreased due to collapse of 
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Lake Latitude Cold 

deep 

water 

refuge 

Length of 

fish time 

series (years) 

Arctic charr Other cold-water 

species 

Perch/roach Warm-water species Fish body size 

whitefish and burbot. 

Eutrophication amplifies 

the effect of temperature 

extremes. 

stable. smelt population (first prey fish). 

Vänern; Vättern, 

Sweden 

57-59° N Yes 16-23 

(1988-2010) 

Large population in 

Vättern. Long-time 

trend of decline 

(1973-2011). On a 

short-time scale 

increasing due to 

fisheries 

restrictions (2005-

2011). 

Smelt recruitment 

correlated negatively with 

water temperature in 

July, but positively with 

April temperature. 

Vendace recruitment 

more successful in years 

with long winters. Climate 

signals seem strongest in 

the more productive of 

the two lakes. 

Perch CPUE in fisheries 

stable in Vättern. In 

Vänern notable local 

variation in roach/perch 

ratios due to 

heterogeneous 

archipelago regions and 

pronounced gradients in 

productivity and 

bathymetry. 

Lack of detailed fisheries 

independent long-term 

data. Commercial catch 

of pike-perch in L. Vänern 

is increasing. 

Vättern: commercial fish densities 

(Arctic charr and trout) have 

increased due to fisheries 

restrictions. Decreasing mean size 

of vendace and whitefish. Vänern: 

no clear trend. In both lakes the 

size of YOY smelt and vendace is 

negatively influenced by adult 

vendace density. 

Søbygård, Denmark 56o15’ N No 22 - - - Size of roach and perch 
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Lake Latitude Cold 

deep 

water 

refuge 

Length of 

fish time 

series (years) 

Arctic charr Other cold-water 

species 

Perch/roach Warm-water species Fish body size 

(1989-2010) decreasing. 

Windermere, U.K. 54°22´N Yes 41 

(1970-2010) 

Major decline in 

abundance. 

Increasing roach 

abundance. Perch spawn 

earlier. 

Shift from a salmonid-

percid-pike dominated 

state to one with many 

more cyprinids. 

- 

Stechlin, 

Germany 

53°01´N Yes 11 

(2000-2010) 

- Increase in total 

coregonid density after 

warm winter and spring, 

density of ultra-cold 

stenothermal Fontane 

cisco increased in warm 

summers, density of cold-

stenothermal vendace 

decreased in warm 

summers. 

Present only in littoral 

and epilimnetic layers, 

dynamics not studied. 

- - 

Constance, 

Austria/Germany/ 

Switzerland 

47°39’ N Yes 101 

(1910-2010) 

Major increase in 

commercial 

catches, attributed 

to oligotrophication 

No clear effect of changes 

in coregonids related to 

climate warming, but a 

reduction in catches 

Perch yields decreasing 

with increasing 

oligotrophication. 

Major increases in 

commercial catches of 

common carp. 

- 
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Lake Latitude Cold 

deep  

water 

refuge 

Length of 

fish time 

series (years) 

Arctic charr Other cold-water 

species 

Perch/roach Warm-water species Fish body size 

and effective 

management. 

following nutrient loading 

reduction. 

 

 

Geneva, France/ 

Switzerland 

 

46º27’ N 

 

Yes 25 

(1986-2010) 

Decline in 

abundance is 

negatively 

correlated with the 

temperature in the 

deep water. 

Major increase in 

commercial whitefish 

catches: postponed 

spawning, but stable 

hatching time and 

thereby good match with 

zooplankton food. 

Roach spawn earlier , no 

change for  

perch. Roach juveniles 

grow as fast as perch and 

are no longer prey for  

perch juveniles that grow 

more slowly 

 

 

Return of bleak, but no 

accurate data.  

- 

Maggiore,  

Italy 

 

45°57'N Yes 32 

(1979-2010) 

- Major decline in 

commercial catches of 

coregonids, trout and 

bleak. 

Major decrease in 

commercial catches of 

perch and major increase 

in roach catches. 

 

 

 

Major increase in 

commercial catches of 

shad and pike-perch. 

- 
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Lake Latitude Cold 

deep 

water 

refuge 

Length of 

fish time 

series (years) 

Arctic charr Other cold-water 

species 

Perch/roach Warm-water species Fish body size 

Albufera, 

Spain 

39o20’N No 54 

(1950-2007) 

- No No Well adapted warm-

eurythermic species 

- 
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