nerc.ac.uk

Carbon isotope evidence for recent climate-related enhancement of CO2 assimilation and peat accumulation rates in Antarctica

Royles, Jessica ORCID: https://orcid.org/0000-0003-0489-6863; Ogée, Jérôme; Wingate, Lisa; Hodgson, Dominic A. ORCID: https://orcid.org/0000-0002-3841-3746; Convey, Peter ORCID: https://orcid.org/0000-0001-8497-9903; Griffiths, Howard. 2012 Carbon isotope evidence for recent climate-related enhancement of CO2 assimilation and peat accumulation rates in Antarctica. Global Change Biology, 18 (10). 3112-3124. https://doi.org/10.1111/j.1365-2486.2012.02750.x

Full text not available from this repository. (Request a copy)

Abstract/Summary

Signy Island, maritime Antarctic, lies within the region of the Southern Hemisphere that is currently experiencing the most rapid rates of environmental change. In this study, peat cores up to 2 m in depth from four moss banks on Signy Island were used to reconstruct changes in moss growth and climatic characteristics over the late Holocene. Measurements included radiocarbon dating (to determine peat accumulation rates) and stable carbon isotope composition of moss cellulose (to estimate photosynthetic limitation by CO 2 supply and model CO 2 assimilation rate). For at least one intensively 14C-dated Chorisodontium aciphyllum moss peat bank, the vertical accumulation rate of peat was 3.9 mm yr−1 over the last 30 years. Before the industrial revolution, rates of peat accumulation in all cores were much lower, at around 0.6–1 mm yr−1. Carbon-13 discrimination (Δ), corrected for background and anthropogenic source inputs, was used to develop a predictive model for CO 2 assimilation. Between 1680 and 1900, there had been a gradual increase in Δ, and hence assimilation rate. Since 1800, assimilation has also been stimulated by the changes in atmospheric CO 2 concentration, but a recent decline in Δ (over the past 50–100 years) can perhaps be attributed to documented changes in temperature and/or precipitation. The overall increase in CO 2 assimilation rate (13C proxy) and enhanced C accumulation (14C proxy) are consistent with warmer and wetter conditions currently generating higher growth rates than at any time in the past three millennia, with the decline in Δ perhaps compensated by a longer growing season.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1111/j.1365-2486.2012.02750.x
Programmes: BAS Programmes > Polar Science for Planet Earth (2009 - ) > Chemistry and Past Climate
BAS Programmes > Polar Science for Planet Earth (2009 - ) > Ecosystems
ISSN: 1354-1013
Additional Keywords: carbon-13, Chorisodontium aciphyllum, discrimination, Maritime Antarctic, radiocarbon dating, Signy Island, peat bank
Date made live: 04 May 2012 07:48 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/17902

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...