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1. Introduction 
 
The European Biodiversity Observation Network (EBONE) is a European contribution on 
terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity 
Observation Network. EBONE’s aims are to develop a system of biodiversity observation at 
regional, national and European levels by assessing existing approaches in terms of their 
validity and applicability starting in Europe, then expanding to regions in Africa. The objective 
of EBONE is to deliver: 

1. A sound scientific basis for the production of statistical estimates of stock and change 
of key indicators; 

2. The development of a system for estimating past changes and forecasting and testing 
policy options and management strategies for threatened ecosystems and species; 

3. A proposal for a cost-effective biodiversity monitoring system.  
 

There is a consensus that Earth Observation (EO) has a role to play in monitoring 
biodiversity. With its capacity to observe detailed spatial patterns and variability across 
large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial 
and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when 
considering the emerging networks of in-situ observations, the prospect of enhancing the 
quality of the information whilst reducing cost through integration is compelling. This report 
gives a realistic assessment of the role of EO in biodiversity monitoring and the options for 
integrating in-situ observations with EO within the context of the EBONE concept (cfr. 
EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building 
on this assessment, the report then presents a series of recommendations on the best 
options for using EO in an effective, consistent and sustainable biodiversity monitoring 
scheme. 
 
The issues that we faced were many:  

1. Integration can be interpreted in different ways. One possible interpretation is: the 
combined use of independent data sets to deliver a different but improved data set; 
another is: the use of one data set to complement another dataset.  

2. The targeted improvement will vary with stakeholder group: some will seek for more 
efficiency, others for more reliable estimates (accuracy and/or precision); others for 
more detail in space and/or time or more of everything. 

3. Integration requires a link between the datasets (EO and in-situ). The strength of the 
link between reflected electromagnetic radiation and the habitats and their 
biodiversity observed in-situ is function of many variables, for example:  the spatial 
scale of the observations; timing of the observations; the adopted nomenclature for 
classification; the complexity of the landscape in terms of composition, spatial 
structure and the physical environment; the habitat and land cover types under 
consideration. 

4. The type of the EO data available varies (function of e.g. budget, size and location of 
region, cloudiness, national and/or international investment in airborne campaigns or 
space technology) which determines its capability to deliver the required output. 

EO and in-situ could be combined in different ways, depending on the type of integration we 
wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy 
(i.e. the reduction in error of our indicator estimate calculated for an environmental zone). 
Furthermore, EO would also provide the spatial patterns for correlated in-situ data. 
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EBONE in its initial development, focused on three main indicators covering:  

(i) the extent and change of habitats of European interest in the context of a general 
habitat assessment;  

(ii) abundance and distribution of selected species (birds, butterflies and plants); and  
(iii) fragmentation of natural and semi-natural areas. 

 
For habitat extent, we decided that it did not matter how in-situ was integrated with EO as 
long as we could demonstrate that acceptable accuracies could be achieved and the 
precision could consistently be improved. The nomenclature used to map habitats in-situ was 
the General Habitat Classification. We considered the following options where the EO and in-
situ play different roles:  
 using in-situ samples to re-calibrate a habitat map independently derived from EO; 
 improving the accuracy of in-situ sampled habitat statistics, by post-stratification with 

correlated EO data; 
 using in-situ samples to train the classification of EO data into habitat types where the EO 

data delivers full coverage or a larger number of samples. 
For some of the above cases we also considered the impact that the sampling strategy 
employed to deliver the samples would have on the accuracy and precision achieved.  

Restricted access to European wide species data prevented work on the indicator 
‘abundance and distribution of species’. 
 
With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived 
measures of habitat patterns that are meaningful to sampled in-situ observations. 
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Earth Observation
Short, mid, long – wave
Active, passive sensing

• Value
• Spectral Signature
• Time-series of values
• Pattern

Quantitative:
Structural metric, NPP

Thematic:
Cover x, Habitat x, 
Hotspot of change

Quantitative:
LAI, Surface temperature, 
Surface height, soil moisture,
Phenology metric  

2. Habitat extent - The link between in-situ observations 
and Earth observation. 

2.1. Mapping according to a habitat classification system 
EO instruments record reflected, scattered or emitted electromagnetic signals which vary in 
function of the physical and chemical properties of the viewed surface type. Two types of 
information can be derived from EO data (Figure 1): quantitative estimates of physical or 
chemical properties (i.e. a map of for example soil moisture, surface temperature or canopy 
cover) or a map of thematic classes representing areas with similar reflected, scattered or 
emitted electromagnetic signals, texture, patterns or shapes. EO derived products of land 
cover, habitats and species (flora) belong to the second category. 
 

Figure 1: Schematic illustrating the difference between the quantitative 
and thematic measures derived from Earth Observation. 

 
The observation and recording of land cover, habitats and species require classification 
systems. Their design results from a compromise between scope of use, level of detail and 
spatial application. EO introduces not only full area and frequent coverage, but also a new 
and unique set of classification parameters, such as, reflectance, texture, height or patterns. 
The degree in which a relationship can be established between electromagnetic signals and 
the thematic classes (e.g. physiognomic, floristic or ecological) required by the biodiversity 
monitoring community, will determine the usefulness of the EO derived thematic maps. 
However, depending on the role EO is being assigned the strength of this relationship 
needed for a successful outcome will vary (see section 3). 

The quality and detail achieved when mapping land cover using EO is primarily limited by the 
manner in which the electromagnetic radiation interacts with the physical and chemical 
properties of the land surface. In other words, if habitat classes of interest respond similarly 
across the whole spectrum in terms of visible and near-infrared reflectance, thermal 
emission, and microwave scattering, separating these into distinct classes on a map using 
EO is not feasible. By adopting an EO based perspective of habitats it is possible to predict 
the EO mapping success for classes of existing habitat nomenclatures (Medcalf et al. 2011). 
For example, in the case of grassland types, spectral variability is expected to be influenced 
by, amongst others, the ratio of living plant material to dead plant material; the proportion of 
plants with horizontal leaves as opposed to upright leaves; the productivity of the vegetation; 
the wetness of the vegetation and underlying soil; and the density and height of the sward. 
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This general knowledge can be used to develop a framework, such as that of Mark Crick, for 
assessing the mapping potential of a habitat class by EO (Tables 1 and 2).  
 

Table 1: The Crick Framework describing the options for mapping habitats as a tiered 
system (Source: Medcalf et al. 2011). VHR = Very High Resolution. 

 
 

Table 2: The Crick Framework applied to 2 Nomenclatures: total number of 
classes detectable per mapping option (Source: Medcalf et al. 2011) 

 
 
 
A similar framework could be used to design a more ‘EO friendly’ habitat nomenclature. 
The work of Paradella et al. (1994) suggested that physiognomy may be the most important 
attribute which influences the EO response of vegetation. Jakubauskas et al. (2002), Moody 
and Johnson (2001) and Hill et al. (submitted) used time series of EO, exploiting differences 
in phenology to successfully map crop types, vegetation types or tree species. 

The BioHab General Habitat Categories (GHC) classification system, adopted by EBONE for 
in-situ monitoring, is based on 21 or 34 plant life forms (Bunce et al. 2008), their % covers 
within a mapping element and a number of optional qualifiers (life form, environmental and 
management). The use of plant life forms enables the recording of habitats with comparable 
structures within contrasting bio-geographical zones. Based on the hypothesis that habitat 
structure is related to the environment, the GHC are also expected to correspond to phyto-
sociological classes at high level. This makes the classification system not only applicable 
throughout the world, but also more amenable to EO’s sensitivity to vegetation physiognomy 
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and cover. A set of EBONE test cases provide an insight into the EO mapping accuracies 
that could be achieved when using the GHC and further confirm the existence of a tier 
system as described in the Crick Framework (see section 2.3). 
When continental or global consistency in EO methodology is imposed, the variety of EO 
data types and approaches available is greatly reduced. As a result, the current global, 
continental and national land cover maps produced from EO have been limited to reporting 
the extent of major vegetation types or ‘broad habitats’ at pixel sizes ranging from 1km to 
25m with total number of vegetation classes ranges between 7 and 36 (Table 3). An 
investigation carried out by UNEP-WCMC found that although these land cover maps are a 
useful resource for indicating the distribution of broad habitats, they are inadequate for 
detailed biodiversity or habitat monitoring by land managers (Strand et al. 2007). The main 
reason is that the class number and type and the spatial detail of these products do not come 
anywhere near the thematic and spatial detail produced from a classification system such as 
the GHC (minimum mapping unit of 400m2; total of 160 GHC with the average of classes 
found ranging substantially between zones), the UK BAP priority habitats (51 classes) or 
European Annex I habitats (75 classes). Reducing the spatial extent of a land cover map, is 
likely to enable more spatially and/or thematically detailed analysis, as relatively more 
resources can be made available for the task at hand (i.e. cost/km2).   
A mapping effort of special relevance for European level monitoring is the recently started 
GIO project (GMES Initial Operations), which will produce pan-European data sets. The 
exact definitions are not determined yet, but the current plans for the forest part is to produce 
20m pixel raster data sets with canopy coverage and forest type, based on data from IRS 
LISS3 and SPOT, complemented with data from RapidEye and AWIFS for improved 
phenology data. 
 
Table 3: The spatial and thematic detail provided by the global, international and national land cover 
maps derived from Earth observation. 

Land cover map 
 

Pixel size or  
* MMU2 

No Classes 
Total 

No Classes 
Vegetation 

+ Arable 
IGBP (Loveland and Belward, 1997) 
GLC2000 (Bartholome and Belward, 2005) 
MOD12Q1 PFT (Friedl et al., 2002) 
GLOBCOVER (Arino et al., 2005) 

1 km 
1 km 
1 km 

300 m 

17 
22 
11 
22 

10+2 
15+3 
5+2 

10+4 
Land cover map of South America (Eva et al., 2004) 
CORINE Land Cover level 3, Europe 
Vegetation cover map of India (Kumar Joshi et al., 2004)  
USGS National land cover, US (USGS, 2010) 
National Land Cover Database, US (Homer et al., 2007) 
Land Cover map of UK (Fuller et al., 2005) 
The Netherlands (Thunnissen and deWit, 2000) 
GSD Land cover map, Sweden (Engberg, 2005) 
Land Cover of Catalonia, Spain (http://www.creaf.uab.es/mcsc) 

1km 
250,000 m2 * 

188 m  
30 m 
30 m 
25 m 
25 m 
25 m 

500 m2 * 

31 
44 
35 
43 
20 
23 
39 
57 
61 

21+4 
14+11 
20+2 
36+1 
11+2 
13+1 
19+9 

na 
15+11 

 

One way of testing the suitability of the thematic and spatial information provided by EO 
derived land cover maps is through correspondence matrices (see D5.1) calculated from co-
registering the in-situ habitat sample observations with the EO land cover map. 
Correspondence matrices are a standard method for assessing mapping accuracy. However, 
by assessing the clusters of one-to-one, one-to-many and many-to-many relationships within 
the matrix, this same information can be used to interpret patterns of correspondence or 
lack-off between in-situ habitat and EO land cover classes, helping to understand what 

                                                
2 MMU: minimum mapping unit 

http://www.creaf.uab.es/mcsc
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makes certain EO derived land cover maps more suitable than others for integration with in-
situ habitat observations. The preferred outcome would be a near perfect match which would 
show high correspondence values between individual or small groups of classes, shown as 
example A of the idealised correspondence tables (Figure 2). The worst case scenario is 
shown in example B, where there is no clear pattern of correspondence. The reality will be 
somewhere in between (example C; Source: Deliverable 5.1) and will be function of a variety 
of factors: 
 the strength of the match between the habitat class definitions implemented in the field 

and the EO-based habitat classes (i.e. the degree in which a relationship can be 
established between electromagnetic signals and the thematic classes identified in the 
field); 

 mismatches introduced by a less than perfect spatial co-registration of the two layers;   
 mismatches associated to differences in spatial scale between the two layers; and finally 
 mismatches caused by an element of miss-classification in either or both of the layers 

(classification errors of EO imagery could be caused by, for example, the use of an 
unsuitable classification algorithm, or unsuitable or incomplete training sites). 

 

 
Example C: correspondence table between in-situ habitat and 

EO land cover map layer for 1km2 sample 
 

 
Figure 2: Tables demonstrating how correspondence can help reveal how 
well the class definitions and classification methods of two products (EO and 
in-situ) match up. 

 
EBONE looked into this further by exploring the correspondence between the following in-
situ and EO derived layers (Deliverable D5.1): 
 the UK 2000 in-situ countryside survey samples (591 1km2 in-situ samples) and the UK 

land cover map 2000 (25m grid cell resolution) both of which show the same habitat 
classes. 

 the UK 2000 in-situ countryside survey samples (591 1km2 in-situ samples) translated to 
GHC (Metzger et al, 2005) compared with the CORINE Land Cover 2000 classes (100m 
grid cell resolution). 

 

 Land Cover Map UK for 1km2 sample 

Broad Habitat (CS1998) 
for 1km2 sample    

Dwarf 
Shrub 
Heath 

Fen, 
Marsh, 
Swamp 

Bog Acid 
Grassland Bracken 

Bog (shrub) 57 15 87 13 57 
Bog (grass/shrub) 31 79 0 20 4 
Bog (grass/herb) 3 5 0 8 15 
Inland Rock (Semi natural) 0 0 0 3 13 
Coniferous Woodland 8 0 13 0 0 
Acid Grassland 1 1 0 57 11 
 

Example A: Example B:

A B C D E A B C D E 

1 0 3826 0 0 0 1 630 630 630 630 630

2 0 4832 0 0 0 2 630 630 630 630 630

3 0 0 0 557 26 3 630 630 630 630 630

4 0 0 0 1195 752 4 630 630 630 630 630

5 0 0 7599 0 0 5 630 630 630 630 630

6 5328 0 0 0 0 6 630 630 630 630 630

7 0 0 445 0 0 7 630 630 630 630 630

8 667 0 0 0 0 8 630 630 630 630 630

Idealised correspondence tables
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The main findings were that fewer and more generic thematic classes result in higher 
correspondences, whilst increased discrepancies in spatial scale between in-situ and EO 
derived habitats maps (i.e. using a low spatial resolution and generalised EO map) will 
reduce the correspondences that can be achieved.  

2.2. Introducing physical environmental variables 
Physical environmental variables defining site conditions in detail (e.g. climate, topography, 
soil type and condition) can to some extent determine the types of habitats present and in 
some cases, their condition. This is often referred to as ecological modelling. There is 
evidence that adding environmental variables to the classification of EO imagery improves 
accuracy and precision. For example, in the UK Land cover map, a soil map was used to 
separate spectrally similar grassland habitat classes. The USGS national cover map 
achieves 43 classes (Table 1) by introducing data on elevation and climate. EBONE 
achieved promising results when implementing a decision tree to predict the location of two 
Annex I habitat types across Europe using a combination of the existing EO derived 
European land cover map (CORINE land cover), altitude and soils data and a bioclimatic 
zonation (Annex-1).   Still, the predictive power of environmental variables is expected to 
decrease where the landscape has had a long history of human intervention or land 
management. Also, the spatial detail and quality of the environmental data used will heavily 
influence the detail and quality of the ensuing habitat map. Currently, these spatially detailed 
(1-10m resolutions) environmental data often do not exist.  
In the future, some of these environmental variables could become available. A recently 
launched satellite pair will soon (2014) deliver a 12 m global digital elevation model 
(http://www.infoterra.de/tandem-x_dem) from SAR data. Surface height models or elevation 
models, derived from airborne LiDAR data, are for an increasing number of countries, 
available at 1 to 5m resolutions. But other operational satellite EO products, such as, rainfall, 
relative soil moisture and land surface temperature are currently delivering at unsuitable 
spatial resolutions of 5 degrees, 0.5 degrees to 1km and 1km respectively. Technical 
bottlenecks need resolving before the acquisition of higher spatial resolution observations of 
such type of data will become possible. The alternative could be the use of regional land 
surface atmosphere interaction models to predict environmental variables such as soil 
moisture and land surface temperature. The quality and the spatial detail of their outputs are 
determined by (i) the quality and detail of the climate variables used to drive the models and 
(ii) the quality and suitability of the models. GEO-BON is taking the lead in developing 
Essential Biodiversity Variables which are required to track future changes in biodiversity. 
The definition of the EBVs should catalyze the efforts of the EO industry and academics to 
deliver data that is relevant and useful for monitoring biodiversity.  
When available at coarser spatial resolutions, physical environmental variables can form the 
basis for environmental stratifications (WP3). As demonstrated by work carried out under the 
EU funded project BIOPRESS (Table 4), introducing such an environmental stratification 
greatly reduces the one to many relationships between EO Land Cover classes and in-situ 
habitat classes and so refines the thematic links between the two mapping systems.   

  

http://www.infoterra.de/tandem-x_dem
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Table 4: Example showing the importance of using an environmental classification to reduce the 
number of habitat classes in relation with an EO-based class: a global (Moss & Davies, 2002) versus 
regional approach for the CLC 3.2.2 ‘Moors and Heathland’ and the corresponding EUNIS classes. The 
regional approach used quantitative correspondence data produced from Natura2000 sites located 
within BIOPRESS transect samples (See Biopress45 report). As a result not all EUNIS habitat classes 
that were linked to CLC 3.2.2  by Moss and Davies (2002) were found. Still, although not representative 
for the whole area of Europe it demonstrates the potential of a regional approach, (%) is percentage of 
quantified links (area correspondences), that are attributed to the EUNIS habitat type.  

EO-based Class Corresponding EUNIS habitats 
CLC 3.2.2 without a regional approach (From 
Moss & Davies, 2002) 

B1.5, B1.6, B2.5, B2.6, , B3.3, E5.3, F2.2, F2.3, F2.4, F3.1, 
F3.2, F4.1, F4.2, F4.3, F5.2, F5.4, F6.7, F6.8, F9.1, F9.2, 
F9.3, G5.6, G5.7 

CLC 3.2.2  
with a regional 
approach 

Atlantic 
F4.2 Wet heath (49%) 
F7.4 Hedgehog heath (27%) 
F2.2 Alpine and subalpine heath (11%) 

Continental 
F3.1 Temperate thicket and scrub (54%) 
F2.2 Alpine and subalpine heath (18%) 
F9.1 Riverine scrub (9%) 

Alpine 
F2.2 Alpine and subalpine heath (75%) 
F2.3 Subalpine and oroboreal bush communities (10%) 
F2.4 Pinus mugo scrub (9%) 

Mediterranean 

F5.1 Arborescent mattoral (36%) 
F7.4 Hedgehog heath (31%) 
Minor: F3.2 Mediterraneo-montane thickets, F2.2 Alpine and 
subalpine heath, F3.1 Temperate thicket and scrub , F6.7 
Mediterranean gypsum scrub, F9.3 Southern riparian thickets. 

 

2.3. EO mapping of GHC, summary of test cases 
The test cases looked into five EO data options for mapping the GHC (Table 5).  

 Lidar (Airborne; 26 - 0.45 pts /m2; digital elevation and surface height model, signal 
intensity derived from NIR signal; single date); 

 Hyperspectral (Airborne; 5 m pixel; 127 bands covering the visible, NIR and SWIR; 
single date);  

 Thematic Mapper (Satellite; 25 - 30 m pixel; 7 spectral bands covering the visible, 
NIR and SWIR; single date); 

 Spot Image (Satellite; 10 m and 20 m pixel; 4 spectral bands covering visible, NIR 
and SWIR; single date); 

 MODIS (Satellite; 0.25 – 1 km pixel; Vegetation index derived from visible and NIR 
spectrum; time-series).  

 
Almost all test cases had a similar setup: the 1km2 field samples, surveyed following the 
protocols described in the GHC handbook (D4.3), were used to train and validate the 
mapping success. Different EO data types were tested in different environmental zones. The 
choice of EO data was determined by the availability of the data to the EBONE team.  
 

Table 5: overview of test case locations and EO data used 

Country MODIS 
series TM SPOT 

Image 
Hyper- 

spectral Lidar 

The Netherlands  X  X X 
Estonia  X   X 
Sweden   X  X 
Slovakia X     

Spain  X  X  
Europe  X     

Israel X X   X 
South Africa   X   
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Although the test cases do not represent a comprehensive assessment of all possible EO 
data for all possible landscapes and habitats, they provide a reasonable evaluation of how 
well certain EO data types could deliver the General Habitat Categories. The data types 
which are missing in this analysis are radar and thermal imagery. 

LiDAR – airborne (Annex-2, 3, 4) 
LiDAR (Light Detection and Ranging) is an active remote sensing system sending light 
pulses in the NIR.  The time for the pulses to return back to the LiDAR sensor is used to 
calculate the distance to a target. The LiDAR sensor also records signal intensity. Four test 
cases investigated the LiDAR’s potential (Table 5 of Annex-2). The general consensus is that 
LiDAR will reliably separate LPH, MPH, TPH, FPH, and GPH of the ‘trees and shrubs’ GHCs 
(Table 6).  As a matter of fact, using LiDAR produces more accurate estimates of height and 
of the % cover of height classes than those acquired through field surveying (Annex-2). The 
LiDAR height information was also shown to improve the GHC mapping accuracies achieved 
with multi-spectral imagery (Annex-3).  
 
Table 6: The GHC under the heading ‘Trees and Shrubs’ are separated using height thresholds 
DCH SCH LPH MPH TPH FPH GPH 
Dwarf 
Chamaephytes, 
dwarf shrubs 

Shrubby 
Chamaephytes, 
under shrubs 

Low 
Phanerophytes, 
low shrubs 

Mid 
Phanerophytes, 
mid shrubs 

Tall 
Phanerophytes, 
tall shrubs 

Forest 
Phanerophytes, 
trees 

Mega Forest 
Phanerophytes, 
trees 

<0.05m 0.05-0.30m 0.30-0.60m 0.60-2.00m 2.00-5.00m 5.00-40.00m >40.00m 
 
 
The vertical accuracy of current LiDAR systems varies with ground surface condition and 
canopy density but is generally below 10 cm (Annex-4), so relying on LiDAR to identify and 
separating life forms with height ranges around and below 10 cm (i.e. DCH and SCH) is not 
advisable. Further separation of the TRS GHC based on their qualifiers DEC, EVR, CON, 
NLE, SUM was not tested. Separating DEC, EVR and SUM should be possible with multi-
spectral imagery provided the timing of the EO data was chosen correctly or multi-date 
imagery was used (Boyd and Danson, 2005). Identifying CON and NLE may prove more 
difficult (Yang et al., 2007). One area not evaluated by EBONE but demonstrated in other 
studies, is the use of LiDAR to deliver indicators of vegetation structure and woody habitat 
condition which have been successfully used to predict bird species richness in grasslands 
and forests (see review in Annex-2). 

Hyperspectral – airborne (Annex-5) 
Hyperspectral sensors are passive systems which record the surface reflectance in 
continuous and very narrow spectral bands (~3 a 18 nm) across the visible, near- and mid-
infrared spectrum (from ~ 450 nm to ~2400 nm). Hyperspectral observations make it possible 
to detect most of the absorption features found in the spectra of vegetation (Ustin et al. 
2004). This is in contrast to multi-spectral observations (for example, Thematic Mapper or 
MODIS, Spot Image) where a limited number of discrete spectral bands are recorded, 
focussing around main absorption features. 

The HyMap (Hyperspectral Mapper) airborne sensor used in the EBONE test cases (The 
Netherlands and Spain) recorded reflectances in 126 spectral bands from 450 nm to 2480 
nm at a spatial resolution of 5 m. The standard method for using hyperspectral data is to use 
spectral signature matching procedures using typical reflectance spectra of the ‘pure end-
member’ to determine the composition of both homogeneous or heterogeneous (i.e. mixed) 
pixels. Hyperspectral imagery is particularly suited for an end-member based classification 
as the many narrow spectral bands increase the likelyhood of finding features in the spectral 
signature which are unique to the end-members of interest which in the case of EBONE are 
the life forms defining the GHCs.   
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The manner in which the GHCs are being mapped, i.e. parcels are being assigned % 
coverages of life forms, makes the GHC nomenclature potentially very suitable for end-
member classifications and spectral unmixing approaches. The critical requirement is that 
the plant life forms present in the mapping area (maximum 34, but generally fewer) have 
distinct spectra. Experimental and modeling studies (Gates et al.,1965; Thomas et al., 1971; 
Ross, 1981; Goel, 1988; Myneni et al., 1989; Wessman, 1990; Walter-Shea and Norman, 
1991; Curran et al., 1992; Jacquemoud et al., 1992, Gitelson and Merzlyak 1997, Peñuelas 
et al. 1997, Asner et al., 1998) have amply demonstrated that vegetation reflectance is 
mainly a function of tissue optical properties (leaf, woody stem, and standing litter), canopy 
structure (e.g., leaf and stem area, leaf and stem orientation, and clumping), soil reflectance 
and viewing geometry, where the tissue optical properties are function of biochemicals, water 
content and intra-cellular structure and soil reflectance is function of soil moisture, roughness 
and texture, organic matter content, and mineralogical composition.  Figure 3 shows the 
outcome of a study by Asner (1998), evaluating the contribution of each of these factors 
relative to all the other factors for a series of grassland, shrubland, and woodland sites in 
Colorado, New Mexico, Texas and the Cerrado region of Brazil. It shows that most of the 
reflectance variability is explained by one or two dominant factors and that these vary with 
cover type. The potential for a successful GHC life form separation using reflectance values 
will depend on whether the life form definition includes traits (e.g. vegetation height, leaf 
area, leaf clumping) which are directly or indirectly related to the most contributing factors.  

The review by Ustin et al (2004) highlights the unique value of airborne hyperspectral data. 
Its capability of detecting very narrow absorption bands which are indicative of, for example, 
canopy water content and specific canopy biochemicals enables it to be used for a wide 
range of applications at local level, including detailed habitat and vegetation species 
mapping. However it is clear from the examples provided that what is achievable is very 
much specific to the site and its conditions.  

The conclusions from the EBONE test case in The Netherlands confirms the above (Annex-
5). The success of the GHC classification is dependent on the life forms being spectrally 
distinct and their spectral signature ranges (variance) showing low overlap. Overall site 
mapping successes achieved ranged from 64% to 78%. The accuracies achieved for specific 
life forms varied substantially.  Better classification results could be obtained by combining 
hyperspectral imagery with LiDAR data which would deliver the height based life forms at 
high accuracy. Because of the manner in which the GHC classes are defined, achieving a 
GHC map requires, depending on the spatial resolution of the imagery, either the unmixing of 
image pixels to % coverages of life forms, or imposed parcel outlines for which % coverages 
of life forms are calculated and translated to GHC. In the latter case, determining the parcel 
boundaries will have to be the first step to classification. This aspect is discussed further 
under heading 4.    

The conclusions from the EBONE test case in Spain mainly highlighted the importance of 
increasing the spatial detail whilst maintaining the spectral range: the 4 m airborne HyMap 
imagery delivered more spatially detailed and consequently thematically more accurate 
(evaluated visually) GHC maps than the 30m Thematic Mapper image. 
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Figure 3: Diagram showing the relative contribution of the main structural vegetation 
parameters to the variability in reflectance across the spectrum of a hyperspectral sensor  for 
a grassland (A), shrubland (B) and woodland(C) site. (Source : Asner 1998). LAD = leaf angle 
distribution; LAI = Leaf area index; LitterAD= litter angle distribution; LitterAI = litter area 
index; SAD= Woody stem angle distribution; SAI= Woody stem area index; leaf litter and stem 
reflectance and transmittance are determined by their optical and biochemical properties. 
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Thematic Mapper  – satellite (Annex-6, 7, 8) 
The Thematic Mapper, and variants (e.g. SPOT-image; Linear Imaging Self-scanning Sensor 
– LISS; Advanced Spaceborne Thermal Emission and Reflection Radiometer – ASTER; and 
the planned sensor on Sentinel-2) are satellite borne passive sensors which record the 
surface reflectance in 4 a 7 discrete and broad spectral bands (~ 50 nm a 200 nm) across 
the visible, near- and mid-infrared spectrum (from ~ 450 nm to ~2600 nm) at a spatial 
resolution ranging from 10m to 30m. It is widely known that multi-spectral information will 
separate vegetated from non-vegetated areas. This data is also generally good at 
differentiating coniferous from broadleaved vegetation and arable and grasslands from 
woody vegetation provided the timing of the EO data is such that it enhances the spectral 
differences. Many national and continental land cover maps are based on this type of 
imagery (e.g. US, The Netherlands, Sweden, UK, Europe - see Table 1). The capability of 
delivering the GHC was tested through test cases in Estonia, Spain and Israel.  
 
The general conclusion is that this type of imagery contains many mixed pixels which 
impacts on the mapping accuracies especially when the landscape is complex and 
heterogeneous.  Pan-sharpening the TM imagery with higher spatial resolution imagery helps 
resolve this problem to some extend (e.g. Spain and Israel). In the case of Estonia where the 
test sites were located in an arable landscape with many large fields the accuracies achieved 
varied from 75% to almost 100% (Annex-6). For the Mediterranean sites in Israel the 
overall classification accuracies were between 30% and 60%, after merging some of the 
GHC classes. Among classes, trees (including maquis) were mapped well (accuracies 
between 60% and 90%), whereas the success in mapping the shrubs and herbaceous 
classes was lower (Annex-8). The classifications of the test sites in Spain delivered 
disappointingly low correspondences with the in-situ data (no quantitative data available) 
(Annex-7).   For both Spain and Israel it was clear that the classification success was 
dependent on the timing of the image acquisition coinciding with the dry or rainy season. 

MODIS – satellite (deliverable D5.2, Annex-2) 
MODIS, and variants (SPOT VEGETATION, MERIS, AVHRR) are satellite borne passive 
sensors which revisit the same spot every day and record the surface reflectance in discrete 
and broad spectral bands (~ 10 nm a  30nm) across the visible, near- and mid-infrared 
spectrum (from ~ 450 nm to ~2600 nm) at a spatial resolution ranging from 250 m to 1000 m. 
Their main feature is the provision of time-series of daily vegetation indices data which opens 
up the potential to exploit the information to capture habitat leaf phenology (Figure 4). The 
main disadvantage of such data is the reduced spatial resolution which means that often a 
single pixel represents a mixture of land cover.  

Four EBONE test cases investigated the use of time-series of data. The first case focussed 
on grassland GHCs in Slovakia, the second on forest GHCs in Austria and Slovakia, the third 
on two Annex I habitats and the final on Israel in general. Both the forest, grassland and 
Annex I habitat test cases found that the variability in phenology behaviour between and 
within GHC classes is too great to enable an effective separation of classes using 
phenometrices (i.e. metrices describing the phenological signal such as growing season 
length and amplitude). The spatial scale of the observations (250 m – 1 km), which results in 
many mixed pixels, is one of the confounding factors. The other factor is that phenology is 
only a secondary attribute in the GHC classification system, as illustrated by Figure 5 
(Annex-8). Still, the grassland case study demonstrated the value of phenology information 
for separating grassland types and monitoring their condition, provided that the location of 
the grasslands is known a priori. Increasing the spatial resolution of time-series of vegetation 
indices to match the spatial scale of grassland or woodland patches would substantially 
reduce the occurrence of mixed pixels and bring about this potential.   
 



EBONE –WP5: Assessing the role of EO in biodiversity monitoring 
 

26.4.2012  EBONE-D5.5-2.0 16  

 
Figure 4: Schematic illustrating how time-series of vegetation indices (VI) 
can capture vegetation leaf phenology. The example 1200km x 1200km 
MODIS image (left)  shows the Altiplano grasslands, lowland savannas 
and tropical forests of  parts of Bolivia and Peru. 

 

 
 

 
Figure 5: Representation of percent coverage of phenology classes 
(bare soil, seasonal and perennial vegetation) for each of the four 
combined EBONE GHC categories in Ramat Ha'Nadiv, Israel 
(herbaceous, shrubs, high bushes, and trees) (Source: Annex-8). 

 
 

2.4. Landscape complexity 
When the EO mapping performance of habitats is assessed and the spectral detectability of 
a particular habitat is discussed, the environmental context of the study area is often only 
briefly mentioned. Nevertheless, it is important to understand how the spectral properties of 
the area surrounding a habitat influence the detectability of that habitat. Andrew and Ustin 
(2008) suggested that EO mapping successes are influenced by site complexity. This was 
tested as part of the HyMap case study in The Netherlands (Annex-5). The general finding 
was that mapping success decreases with an increase in Biological Complexity (i.e. species 
richness as measured through the Simpson’s diversity and Shannon diversity indices). The 
EBONE test case involved 4 sites so the results are indicative only. The work of Andrew and 
Ustin (2008) also demonstrated an inverse relationship between the Spectral Complexity and 
mapping success.  
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High spatial resolution (centimeter to meter resolution) can result in high within patch spectral 
variability which, as is the case in the work of Andrew and Ustin (2008), can be treated as a 
source of mapping error. Others, however, have used it as a source of information and have 
suggested that, spectral complexity could be linked to biodiversity. It is based on the spectral 
variation hypothesis, i.e., spatial variation, expressed as a standard deviation of reflectance, 
is likely to be correlated with spatial variation of the environment, which in turn is likely to be 
correlated with plant species richness (Palmer et al. 2002). Oldeland et al. (2010) tested this 
hypothesis in a savanna ecosystem with positive results, while Schmidtein and Sassin 
(2004), working in Alpine meadows, found that although heterogeneous reflectances were 
always a sign of heterogeneous species composition, homogeneous reflectances did not 
always indicate a homogeneous plant species composition. In the tropics Asner et al. (2011) 
have developed the concept of spectranomics where spectral diversity is being linked to the 
chemical diversity of the tropical forest canopy which in turn is linked to plant trait diversity. 
Considerable uncertainty remains about the utility of these approaches for biodiversity 
monitoring, and, given their potential, further research is needed to determine whether the 
main factors that contribute to spectral heterogeneity could also be indicators of biodiversity.  

3. Habitat extent - Methods for integrating in-situ and EO 
Using a strict interpretation, the idea of integrating in-situ with EO data is that the 
combination of the two data set types will deliver information which is more accurate or 
precise than either of the two data sets used independently. A more relaxed interpretation of 
integration is the use of one type of data to improve the accuracy or precision of the 
information of the other data, or alternatively to make the collection of the other data more 
efficient. 

We considered the following options where the EO and in-situ play different roles:  
 using in-situ samples to re-calibrate a habitat map independently derived from EO; this is 

referred to as ’inter-calibration’; 
 using an independent but less accurate EO layer characterising the general spatial 

variability in cover to post-stratify the in-situ samples; 
 using in-situ samples to train the classification of EO data into habitat types where the EO 

data delivers full coverage or a larger number of samples. 

3.1. Inter-calibration of EO and in-situ monitoring 
Inter-calibration refers to an integration approach developed for the UK (Fuller et al. 1998; 
Hill and Smith, 2004). Inter-calibration uses correspondence matrices (Lillesand and Kiefer, 
1994) that are created to calculate the classification accuracy of EO derived land cover 
maps. For each 1 km square Countryside survey 2000 field data (CS2000)  a 
correspondence matrix was produced with the land cover map 2000 (LCM2000).  
Correspondence matrices were averaged within strata (the ITE Land Classes) to produce 
stratum specific calibration matrices.  These calibration matrices are then used to adjust the 
stock estimates per 1 km square produced by LCM2000 for each stratum (Figure 6). 
Although this approaches reduced the original spatial resolution of the land cover map from 
25 m to 1 km, Fuller et al. (1998) and Hill and Smith (2004) found that, at national level, the 
habitat statistics produced from the calibrated land cover map closely matched those 
extrapolated from the field samples. Confidence intervals for adjusted stock were produced 
using a Monte-Carlo bootstrapping procedure and it was concluded in Fuller et al. (1998) that 
in most cases the calibrated results produced more precise stock estimates than either the 
LCM2000 or CS2000 alone. However, a closer assessment of the publication and report 
showed no clear evidence that the revised stock estimates were closer to the truth. 
Moreover, the report inter-calibration increased the uncertainty of national stock for 16 of 19 
land cover types.  In their own conclusions Hill and Smith (2004) did acknowledge that their 
work posed more questions than answers.  They identified weaknesses in both the FS and 
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EO approaches to stock estimation and made nine recommendations about how to conduct 
future surveys, so that the integration of FS and EO approaches could lead to improved 
estimates of stock.  The main points have been condensed to a shorter list below: 
 Timing of surveys: Due to the dynamic nature of some of the habitats (for example 

agricultural and coastal) the time difference between products should be minimised. 
 Spatial resolution of products: The minimal mappable units (MMUs) of products should 

be normalised (most likely to the largest) prior to any correspondence analysis to prevent 
features that could not exist at the coarser MMU being seen as error. 

 Thematic differences:  Thematic differences between products should be avoided. 
 Rarity:  Rarity and patch structure should be considering.  Classes with limited extent 

compared to the largest MMU should be avoided. 
 Knowledge Base Enhancements and Validation:  The use of additional spatial data is 

necessary in order to disable calibrations that worsen the results and also for validation.  
Care should be taken to select datasets with suitable thematic and spatial specifications, 
temporal similarity and appropriate uncertainty information. 

It is worth noting that the work of Hill and Smith was delivered as a contract report and was 
never subjected to peer review. Inter-calibration was not tested in EBONE. Future work 
should consider evaluating this option rigorously.  
 
 

 
 

Figure 6: Diagram illustrating inter-calibration as implemented by Fuller et al (1998) 
 

3.2. Post stratification (Deliverable 5.4) 
When only statistics and not wall-to-wall maps describing the spatial pattern of different 
habitats or categories are needed, the combined use of EO data and data from sample-
based inventories can provide accurate area estimates for various categories. Almost 
unbiased area estimates of habitats or classes can, for example, be obtained by combining 
EO data and in-situ data using post-stratification. The main requirement is that there is a 
reasonably correlation between the classes of the EO map and the and the in-situ 
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determined categories to be finally estimated, but the EO-derived classes do not need to be 
the same as the in-situ derived classes. Previous work has shown that post-stratification, 
where satellite images or classified satellite images are used for stratifying existing sample 
based forest inventories, improves the accuracy of estimated forest characteristics 
(McRoberts et. al., 2002 and 2006; Nilsson et al., 2003 and 2009). Similarly, CORINE land 
cover data was used to post-stratify in-situ data from the LUCAS sample based land 
inventory to improve the accuracy of area estimates for various coastal land cover classes 
(Galego and Bamps, 2008).  

EBONE tested this approach for one of the nine environmental strata of Sweden combining 
the comprehensive NILS inventory data  (NILS; http://nils.slu.se/) with the EO derived 
Swedish GSD land cover map (Engberg, 2005). The results obtained in this study also show 
an increase in precision when using classified satellite images for post-stratification, further 
confirming that post-stratification is an easy and straight forward method that can be used to 
derive improved area statistics for habitats. One important advantage of using products like 
the GSD Land Cover map or the CLC2000 map for the stratification is that they already exist. 
The increase in precision obtained using post-stratification also means that estimates of the 
area covered by different habitat classes can be presented for smaller areas than possible 
from estimates based on a sparse sample of in-situ data alone, without any reduction in 
precision.  

An important future research task is to test if the use of other EO derived map products can 
improve the estimation accuracy for selected habitats and whether similar results can be 
achieved in other landscapes (e.g. Mediterranean). In particular the usefulness for post 
stratification of the upcoming GMES pan-European map layers should be evaluated. Also the 
more specialised follow-on products derived from these pan-European data sets could be of 
relevance for post-stratification. It will also be of interest to investigate how the gain in 
efficiency for post-stratified estimates (RE) is affected by the number of in-situ observations 
used.  
 

3.3. Training the classification of EO imagery using in-situ 
samples 

The most relaxed definition for integration is to use the in-situ field samples to train and 
validate the classification of the EO data into habitat types. The EO data could either deliver 
full coverage or a larger number of samples. 

Traditionally, the collection of training data for any EO classification algorithm would focus on 
identifying spectrally homogeneous areas of the cover classes of interest, ensuring that the 
within and between class spectral variability is represented. To avoid unclassified areas in 
the imagery it is important to ensure that the full range of spectral signatures found in the 
imagery have been identified and allocated to a cover class. Unsupervised image 
classifications are often used as a tool to explore the spectral information content of an 
image and help guide the field work. Field work is organised to capture and confirm the cover 
identity of the spectral classes observed on the imagery as effectively as possible. A 
sampling strategy designed to train and validate an image classification will not only have to 
take into account the spatial distribution of the cover classes of interest, but also the within 
class spectral variability found across the imagery. Consequently a sampling strategy 
designed for EO image training, classification and validation is unlikely to suit the purpose of 
delivering unbiased and precise estimates of habitat extend and vice versa. The EBONE 
team investigated this when assessing the use of TM imagery in Estonia (Annex-6) and 
Spain (Annex-7) and found that ‘Single central monitoring square can be non-representative 
for surrounding squares’; ‘Supervised classifications of satellite imagery are only possible 
when targeted training samples have been collected in the field’; and ‘unsupervised image 
classification was useful to examine the spectral variation in the image, within field mapped 

http://nils.slu.se/
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GHC areas and to locate those areas for which the supervised classifier did not have a like 
training area in the monitoring square.’  

3.4. Sampling strategies (Deliverable 5.4) 
‘Going in-situ’ is the only way to collect detailed information on the flora and fauna present. 
Also in-situ land cover or habitat observations, when benefiting from a well designed field 
survey approach and protocol, have the advantage of providing high thematic and spatial 
detail. In-situ work is intensive and costly and is therefore limited in the area it can cover and 
the revisit frequency. One question EBONE looked at, using a statistical simulation 
experiment, was whether using EO to increase the number of samples to increase precision, 
is a viable option. This option only makes sense if EO can be made to deliver local habitat 
maps at an acceptable accuracy using a variety of more expensive and sophisticated EO 
data (high spatial, spectral and temporal resolution imagery, Lidar), an option which would be 
a very expensive proposition if acquired at national or continental scale to deliver a wall to 
wall coverage, but potentially cheaper than field work if limited to sample areas.     
 
The take home messages from this work are that:  
 the effect that EO sample has on precision or bias will depend crucially on differences in 

user (omission) and producer (commission) accuracy (WP8 provides further details about 
the statistical procedure to estimate precision and bias);  

 unbiased estimates are obtained when user accuracy (omission) = producer accuracy 
(commission); 

 it is possible to correct for possible systematic bias if and only if the EO sample and the 
in-situ sample partly overlap so that user and producer accuracy can be estimated. This 
overlap, however, should be sufficiently large to ensure that user and producer accuracy 
themselves can be estimated precisely and without bias. In this respect, it is also crucial 
that the overlapping part of both samples is a spatially balanced, random sample to avoid 
bias.  

The figures 7 and 8 below (Source D5.4) illustrate how the bias and precision of habitat area 
estimates are affected by the habitat mapping (producers and users) accuracy achieved with 
EO. 
 

When exploring for a cost-effective monitoring design, the problem that needs solving is how 
to achieve a good balance between the output quality of the design and the available 
monetary budget (or alternatively, the constraint could be formulated in terms of time).The 
effectiveness can often be related to statistical concepts, such as the margin of error or the 
sampling variance. Which measure for effectiveness will be most useful will depend on the 
question at hand. For estimation of a mean or a total, higher effectiveness is related to a 
narrower confidence interval. For trend detection, the effectiveness will depend on the power 
to detect a trend, and so this will depend on the magnitude of the trend that needs to be 
detected. For a given sample size, we can thus assess effectiveness.  
 
Establishing relative differences in cost between in-situ sampling and EO is the other 
essential ingredient. However, although estimates of the cost associated with field work were 
available (through the EBONE pilot studies) those associated with the EO work were lacking. 
This situation is not uncommon and for it to improve it is important that we all actively 
encourage the documentation and reporting of costs associated to EO mapping activities and 
field work. 
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Figure 7: Relative bias as a function of user and producer accuracy. The heading above each panel 
gives user accuracy and producer accuracy respectively. The lower right panel corresponds with 
the situation where in-situ samples and Earth observation samples give identical results (i.e. 100% 
accuracy; for comparison purposes only). The sample size is equal to 10000. 
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Figure 8: Relative margin of error as a function of user and producer accuracy. The heading above 
each panel gives user accuracy and producer accuracy respectively. The lower right panel 
corresponds with the situation where in-situ samples and Earth observation samples give identical 
results (i.e. 100% accuracy; for comparison purposes only). Sample size used was 10000. 
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4. Habitat extent - The impact of spatial and thematic 
detail on change detection (Annex-9) 

 
The level of spatial and thematic detail at which habitats are being mapped and monitored is 
expected to have a direct impact on the resulting change statistics that can be obtained. 
Through a test case in Slovakia, EBONE tried to quantify the impact of reduced spatial detail 
(i.e. spatial generalisation) and thematic detail on the resulting estimates of habitat extent 
and changes in habitat extent. For this study EBONE used the land cover and habitat data 
obtained for eight test sites at three spatial scales (25 ha, 0.5 ha, 0.04 ha) and two different 
nomenclatures (the CORINE Land Cover nomenclature and the General Habitat Categories) 
(see Figure 9). To study change EBONE looked at the time period between 1949 and 2011. 
During this period substantial land cover and land use changes occurred in Slovakia, 
enabling us to highlight differences in statistics that would have been less evident if a shorter 
period was examined.  
 

 
 

CLC, 25 ha    CLC, 0.5 ha    GHC, 0.04 ha 

 

Figure 9: Habitat information obtained for site 8 (Malacky) when implementing the Corine Land Cover 
nomenclature at a 25 ha MMU, a 0.5 ha MMU and when implementing the General habitat categories 
nomenclature at a 0.04 ha MMU. 

 
As expected, an increase in thematic and spatial detail leads to the identification of a larger 
number of classes and polygons which in turn leads to the detection of a larger number of 
changes (Table 7). Using a different nomenclature will also lead to the detection of different 
types of changes which when interpreted into, for example, land cover or land use change 
processes can result in different conclusions (Figure 10). Generally when EO is used to 
produce full coverage maps at continental and global scales both the spatial and thematic 
detail of the resulting product is greatly reduced (see Table 3 in Section 2.1). The results 
from this exercise emphasises the importance of a common denominator to establish a link 
between the EO and in-situ derived estimates of extent and trend.  This common 
denominator could be (1) the habitat nomenclature; (2) the spatial scale (i.e. the minimum 
mapping unit); or (3) both. Lengyel et al. (2008) go even further listing, amongst others, the 
following criteria as key for a successful integration between EO and in-situ:  

• comparable areas and spatial scales used in each scheme, 
• compatibility of habitat nomenclatures, compatible depth of habitat nomenclature 

hierarchy, exhaustiveness of field mapping, 
• comparable thematic precision, 
• comparable monitoring/mapping accuracy. 
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It is clear that the success rate of achieving the same habitat classification with EO as 
delivered through in-situ will vary in space and time. At the other hand, the minimum 
mapping unit which can be achieved through EO is determined by the technical specification 
of the sensor used and current technology is capable of delivering meter resolution multi-
spectral imagery from which we can reliably deliver the universal top level thematic classes 
(i.e. not vegetated; non-woody vegetation; woody vegetation; crops; and water). On that 
basis the logical and most practical conclusion would be to aim for EO mapping products 
which match the spatial scale of the in-situ observations (for GHC: 0.04 ha MMU) and are 
linked thematically through the top level classes of the habitat classification system (for GHC: 
Urban, Crops, Sparsely Vegetated, Vegetated Herbaceous, Vegetated Tree or Shrub).  
 
 

Table 7: Summary of change statistics (1949-2011) as detected by CLC, 0.5 ha and GHC, 0.04 ha 
for eight 1km2 test sites in Slovakia 

Site 
No of change types Changed area (%) 

CLC, 0.5 ha GHC, 0.04 ha Difference CLC, 0.5 ha GHC, 0.04 ha Difference 

1 Klin 7 27 20 93.07 47.99 45.08 

2 Gôtovany 11 33 22 74.87 37.43 37.44 

3. Lipt. Teplička 6 27 21 74.85 48.79 26.06 

4. Tisovec 6 57 51 65.19 62.96 2.23 

5. Tachty 22 51 29 73.54 63.32 10.22 

6. Súdovce 24 82 58 79.03 61.21 17.82 

7. Oponice 24 67 43 54.78 63.83 -9.05 

8. Malacky 8 54 46 66.92 59.36 7.56 

Average 13.5 49,75 36.25 72.78 55.61 17.17 

 
 
 

 
 

Figure 10: The land cover and use change (1949-2011) processes derived from maps 
interpreted at different spatial scales using different nomenclatures for eight 1km2 test sites 
in Slovakia.  
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5. Habitat extent - EO in support of the field work 
The GHC system is based on determining the composition of individual plant life forms for 
habitat mapping units with a minimum area of 400 m2. In the field, the identification of these 
habitat mapping units is a major challenge especially when the transitions between mapping 
units are gradual. BIOHAB’s protocol strongly recommends the use aerial photography to 
identify and manually digitise habitat mapping units which can then be subsequently labelled 
in the field (Figure 9).  This approach reduces the time spent in the field and ensures a more 
accurate spatial delineation of the habitat units. Forest managers and nature conservation 
agencies are well aware of the value of aerial photography and have for some time now fully 
incorporated aerial photo interpretation into their operational field surveying activities (for 
example, UK Country Side Survey (Barr et al., 1993)).   
 

 
Figure 9: Example of the manual digitisation of 
an aerial photo for a 1km2 sample prior to the 
field survey. 

 
Manual digitisation benefits from the human ability to recognise spatial patterns and, in some 
cases, the local knowledge of the interpreter. The main disadvantage is the subjective nature 
of manual interpretation which impacts on the consistency of the interpretation in space and 
time. Steps can be taken to reduce this impact, such as, provide clear and complete 
interpretation rules which have been thoroughly tried and tested; train and regularly re-train 
the interpreters and; use people who are familiar with the local or regional landscape.  Still 
quantifying consistency remains difficult and manual digitisation takes time.  

The general consensus among the EBONE team was that automated image segmentation of 
the aerial photographs would reduce the time spent digitising mapping units and ensure 
consistency. This was not tested within the project.  Image segmentation is the process of 
partitioning a digital image into parcels or segments which contain neighbouring pixels that 
are similar in terms of reflectance value (colour, intensity) or texture. The main potential 
problem with image segmentation is that the underlying algorithms require user defined input 
parameters which prescribe ‘when to stop adding to or growing the segment’ and 
subsequently determine the number and size of the resulting segments.  Optimising these 
input parameters is an iterative and interactive process which will be partly function of the 
landscape.  Figure 11, taken from Gerard et al. (2003) illustrates this issue, showing how the 
choice of 2 input parameters can drastically change the number (and size) of resulting 
segments.  
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Figure 11:  Variation in number of segments produced for a 700 km x 700 
km area from a 1 km resolution NDSWIR SPOT-VEGETATION image by the 
CAESAR MUM image segmentation procedure as a function of the input 
parameters “threshold” and “number of looks.” (Source: Gerard et al 
2003). 

 
 
Nevertheless the advantage of being able to quickly produce digitisations based on relatively 
consistent clustering rules which are repeatable and easy to document, are likely to outweigh 
this problem. Another advantage is that such an approach can easily be implemented on 
multiple layers of imagery, enabling a segmentation based on a combination of, for example, 
spectral reflectance, height information and image texture. Figure 12 shows the results of a 
small EBONE study that explored how the segmentation of combined LiDAR and aerial 
photography could be used to deliver habitat mapping units for field surveying (see Annex-3). 
The potential of image segmentation is clearly demonstrated, however a more thorough 
study involving a range of test cases which represent a variety of landscape types is required 
to establish if image segmentation is not only more cost effective but also more consistent 
and precise than manual interpretation.  
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Figure 12: The habitat mapping units created through (a) segmentation of 
combined LiDAR and aerial photo data; (b) manual interpretation of the aerial 
photo and (c) an overlay of both approaches (from Annex-3). 

 
 

6. Habitat - pattern related measures (Deliverable D5.3)  
Landscape ecology is based on the premise that there are strong links between patterns, 
functions and processes and a number of studies have explored the utility of spatial metrics 
in landscape analysis since the 1980s. As a result, the number of pattern related indices has 
proliferated. Nowadays, the potential (non-expert) user, either from landscape planning or 
environmental local, regional or national agencies or from international agencies, who is 
looking for one measure of pattern, is left alone in front of this plethora of indices. The test 
case in EBONE was an attempt to respond to this need of guidelines and standardization to 
measure pattern. It also investigated how to deliver pattern measures which provide context 
for the in-situ field observations. 

The EBONE test case focussed on the customisation, integration and automation of 
available and well selected pattern models. Its final aim was to derive a system of 
standardised ecologically meaningful characterisation of pattern.  

The example GHC of interest was arbitrarily decided to be forest phanerophyte. The three 
models considered (GUIDOS/MSPA, Landscape mosaic and connectivity models) were 
revisited to present new indices characterising morphology, interface mosaic context and 
connectivity. User information requirements were assumed to be about  
 the landscape share of anthropogenic versus more natural habitats;  
 the availability of interior habitat and connecting linear features;  
 the presence of isolated features;  
 the mosaic interface context at edges; and  
 the habitat connectivity at landscape level.  
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The models were successfully applied to the available EO based land cover maps and the 
sixty 1km 2  field samples available in the EBONE project.  The samples represented areas in 
France, Austria and Sweden. Each field sample was easily and quickly characterised in a 
standardised manner for the forest GHC. The methods could easily be applied to other focal 
GHC provided that the habitat is accurately identify in the field and using EO.  The sample 
based results showed a high level of within stratum variability across all three types of 
indices (morphology, interface mosaic context and connectivity). 

Due to insufficient sample size (1km2) and sample population for certain environmental 
zones, a proper multi-scale and multi-source data assessment could not be done and only an 
illustration of the scale dependency of the results was provided over few samples (Figure13). 
Connectivity analyses were implemented using 25km x 25km analysis units providing macro-
connectivity information context to the available habitat samples, which in turn were 
characterized by their micro-connectivity level. 

Quantifying spatial pattern is not an end in itself, rather it should be the first step to 
understanding ecological processes. Spatial pattern analysis is of limited value if not used to 
explain structural changes in landscapes and predict how they influence ecological 
processes (Li and Wu, 2004). It should also be kept in mind that spatial indices are 
influenced by the image material used and the processing carried out to deliver the input 
habitat maps. The spatial and temporal dimensions as well as field recording of ecological 
condition of habitats should be integrated in monitoring programs to increase our 
understanding of pattern-process relationship. This standardised pattern characterisation will 
probably facilitate such studies (which are too often restricted to basic patch area measures 
such as in Krauss et al, 2010) and the comparison of pattern processes across regions. 

 
 

 
Figure 13. Macro and micro connectivity information (RPC) in Austria case study. Macro-
connectivity is derived from the analysis of 25km x 25km units. Micro-connectivity is 
available for each 1km2 sample (circles shade according to their RPC values) 
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7. Conclusions and recommendations 
A measure of the biodiversity indicator ‘Habitat extent’ could be delivered in two formats: as 
sample-based estimates for a region, country or zone or as a wall to wall map showing the 
distribution and extent of the habitats. In-situ observations will deliver the former whilst EO 
based observations are expected to deliver the latter. General expectations are that a 
combination of the traditional in-situ surveys and EO-derived land cover/habitat products 
could deliver better maps and/or estimates more efficiently. 
 
When considering wall to wall habitat mapping, it has become clear that, at the moment, 
even with the various types of EO data and EO mapping techniques currently available, the 
level of thematic and spatial detail required for habitat and biodiversity monitoring cannot be 
achieved for all the habitat types of interest. When considering EO, one should always bear 
in mind that the quality and detail achieved when mapping land cover or habitats using EO is 
primarily limited by the manner in which the electromagnetic radiation interacts with the 
physical and chemical properties of the land surface and the manner in which the 
electromagnetic radiation is being recorded (spatial resolution, spectral range and resolution, 
temporal resolution, active or passive system). Still, the upcoming GMES pan-European data 
layers should be evaluated with respect to their contribution to habitat mapping, including 
their potential for producing area statistics through post-stratification. 
 
The EO mapping success of habitats varies with landscape and habitat type, so although a 
detailed wall to wall coverage showing the distribution of all habitat types of interest may not 
be possible, EO can produce good quality distribution maps of selected habitats. Adopting an 
EO based perspective of habitats (e.g. Crick Framework) to predict the EO mapping success 
of the habitat classes at the start of a mapping project, would not only help direct the effort 
towards the mappable habitats but also help manage stakeholder expectations.  
 
Introducing physical environmental variables to improve EO mapping success is widely 
accepted as the way forward. An environmental stratification will increase the thematic link 
between EO land cover and in-situ habitat nomenclatures. However, the spatial resolution of 
the data and models, that deliver most of these environmental variables, needs to drastically 
increase for these variables to directly improve the EO mapping of habitats. A thorough 
review to establish in which circumstances the added environmental information is likely to 
make a significant difference in habitat mapping is still required.  
 
When considering the combination of the traditional in-situ surveys and EO-derived land 
cover/habitat products, a couple of potential options were identified. 
 
 One option was using in-situ samples to re-calibrate a habitat map independently derived 

from EO (’inter-calibration’). Here a good thematic match between the habitat classes 
observed in-situ and those mapped through EO and limiting the difference in spatial 
resolution (minimum mappable unit) between the in-situ and EO products appeared to be 
important. A thorough testing of this option across a variety of landscapes is 
recommended.   

 
 The most promising option was to use an independent but less accurate EO layer to 

post-stratify the in-situ samples. This option delivers a more precise sample-based 
estimates without requiring a good thematic match between the in-situ and EO layer or a 
very accurate EO land cover map. The next steps would be to test this option further 
across a variety of landscapes using a range of in-situ sample sizes. 

 
 Using the in-situ samples to train the classification of EO data, initially appeared to be an 

attractive proposition, however it became clear that a sampling strategy designed for EO 
image training, classification and validation is unlikely to suit the purpose of delivering 
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unbiased and precise estimates of habitat extend and vice versa. An unsupervised 
classification of the EO imagery will quickly help establish whether the planned in-situ 
sampling strategy is representing the spectral range found in the imagery. 

 
 Using EO to increase the number of in-situ samples to increase precision, is a viable 

option only if the EO sample and the in-situ sample partly overlap so that omission error, 
commission error and bias can be estimated. It is also crucial that the overlapping part of 
both samples is a spatially balanced, random sample to avoid bias. Finally, the best 
results (i.e. no bias and enhanced precision) will be achieved when omission and 
commission errors are kept the same or if the omission error is slightly larger than the 
commission error. 

 
There is a critical need to accurately document costs associated to field surveying and, more 
urgently, the EO mapping effort. Without this information it is not possible to assess the cost-
effectiveness of the options considered. Related to this is the need for the monitoring 
community and their stakeholders to agree on the minimum acceptable levels of accuracy 
and precision required for the indicator ‘extent and change of habitats’.  
 
The level of spatial and thematic detail at which habitats are being mapped and monitored 
has a direct impact on the resulting change statistics that can be obtained. If the discrepancy 
between EO and in-situ is too great, the task of reconciling or consolidating change statistics 
from both sources may become insurmountable.  For a successful integration of EO and in-
situ observations, the impact of spatial and thematic generalisation has to be either 
quantified or minimised. One option would be to develop a hierarchical habitat classification 
system where the cover classes that are easily and accurately mapped through EO form the 
top level (generic) of  the habitat classification system (e.g. GHC:  Urban, Crops, Sparsely 
Vegetated, Vegetated Herbaceous, Vegetated Tree or Shrub). These are further subdivided 
through an environmental stratification and the in-situ samples surveyed at the more detailed 
sublevels. The GHC or FAO LCCS are very well suited for such an approach. To avoid 
issues of spatial generalisation, the EO layer is delivered at a spatial resolution matching the 
minimum mapping unit of the in-situ habitat mapping. The issue of spatial mismatches 
between parcel delineation from EO and in-situ observations at sample level is still 
outstanding. Further work to develop and test the viability of this option is recommended. 
 
High spatial resolution EO imagery (aerial photography, hyperspectral airborne imagery and 
LiDAR) can be used very effectively to delineate parcel boundaries prior to the surveying of 
the in-situ sample. A thorough study involving a range of test cases which represent a variety 
of landscape and habitat types is required to establish whether automated approaches to 
delineate the parcels are more cost effective, consistent and precise than manual 
interpretation.  
 
In terms of the future requirements from Earth Observation for habitat monitoring, the 
following general recommendation can be drawn from the EBONE experience.  
 
 EBONE has clearly demonstrated the great potential LiDAR holds. The main limitations 

are the costs associated to building up national and continental coverages and making 
the data available and affordable to the user communities.  
 

 The biodiversity community works at meter spatial resolutions and requires multi-
temporal coverage and spectral information in the NIR and SWIR to differentiate habitats 
and monitor their change. In addition the provision of time-series of very high spatial 
resolution (1 m – 10 m) physical environmental variables such as soil moisture and 
surface temperature combined with high spatial resolution topography would greatly 
enhance habitat mapping and the monitoring of their condition. The only current option 
available is multispectral airborne data. However, it is nearly impossible to achieve 
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successful and affordable single year multi-temporal airborne campaigns for large areas. 
Sentinel-2 will deliver 10 m visible-NIR and 20 m SWIR at best every 5 days. These 
specifications are expected to improve the spatial scale of current regional, national and 
international land cover mapping activities and will undoubtedly make these more 
suitable for habitat mapping and monitoring. Still the spatial resolution provided falls short 
of what is required to ensure a workable integration between in-situ and EO habitat 
observations. The next generation satellite-sensor setups should aim towards the 
provision of time-series of affordable meter resolution spaceborne multi-spectral imagery.  
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1. INTRODUCTION 
 
For many reasons, amongst others the design of ecological networks and monitoring the 
status of habitats, there is  need for information about the ‘wall-to-wall“ spatial distribution of 
habitats and species in Europe, both inside and outside protected areas. For example, to 
determine the spatial cohesion of habitat networks for viable populations in the landscape 
(Opdam et al., 2003, 2006) it is necessary to obtain information about the exact extent and 
spatial distributions of habitats. Information about the spatial distribution of species is being 
collected by many international organisations (e.g. Birdlife International). However, there are 
currently no pan-European habitat maps available. In response to this need, we present a 
methodology for the assessment and mapping of the distribution of habitats at pan-European 
scales. 
 
A first step is to develop a refinement of land cover information into relevant ecological 
classes, as demonstrated in Figure 1. A second step is the integration with in-situ data, e.g. 
vegetation releves. These releves can not only be used to validate the modelled habitat 
maps based on the refinement of land cover information, but could also be exploited to 
calibrate the in-stu data with existing environmental layers to find new knowledge rules (inter-
caibration). A last step is to enhace to spatial identification of European habitats based on 
their phenology using time-series of satellite imagery. 
   
The ecological refinement concerns the land cover information as produced by for example 
CORINE and GLOBCOVER or GLOBCORINE. The developed methodology is a follow-up 
from former experiences (Mücher et al., 2009). Land cover information next to environmental 
data sets play a crucial role in this methodology. Since it became clear that in-situ 
information is often crucial next to information derived from remotely sensed information 
(Mücher, 2009) much effort was put in the collection of vegetation relevés across Europe. 
The land cover refinements will focus especially on the forest and grassland ecosystems, 
since they are under serious decline as reported by organisations like the European 
Environment Agency (EEA) and European Topic Centre Biological Diversity (ETC/BD). At 
first a selection of interesting vegetation types and related Annex I habitat types (European 
Commission, 2007) was made, which could be modelled in terms of their probability in actual 
distribution across Europe.  
 
Chapter 1 is a general introduction. Chapter 2 treats the slection of vegetation types and 
habitats. Chapter 3 concerns the in-situ data. Chapter 4 deals with the knowledge rules to 
identify the selected habitats spatially across Europe. Chapter 5 provides the results and 
shows the correspondence with the independent in-situ data. Chapter 6 concerns the tree 
classification experiment for the intercalibration of in-situ data from SynBioSys with the 
spatial environmental data sets. Chapter 7 focusses on the analysis of MODIS time series to 
enhace to spatial identification of European habitats based on their phenology.   
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2. SELECTION OF HABITAT TYPES  
 
The following sections will discuss the selection of  Annex I habitat types and related 
vegetation types, since it is impossible to implement the methodology for all Annex I habitat 
types in this study. 
. 

2.1. Habitat and vegetation typology 
 
The use of the Natura 2000 habitat types seems to be logical since the European policies on 
nature and biodiversity conservation are stronlgly linked to the Habitat Directive. However, 
the Annex I of the Habitat directive is not a hierarchical system and cannot be applied at 
various scales. Since aggregation and disaggregation of land cover, habitats and vegetation 
types is a strong requirement for the EBONE project, we suggest to use the European 
vegetation classification next to the Annex I of the Habitat Directive. The European 
vegetation classification is a hierarchical unifying system for habitats in Europe (Rodwell at 
al., 2002). It  consists of  930 alliances, grouped into 237 alliances and 80 classes. In most 
cases the alliances can be linked to General Habitat Categories (Bunce et al. 2011), EUNIS 
and Annex I types. On the basis of the European classification of vegetation types (Rodwell 
at al., 2002), and as implemented in SynBioSys Europe with a serious collection of 
vegetation releves across Eirope, see www.synbiosys.alterra.nl/synbiosyseu/  (Schaminée et al., 
2007), and a set of well-defined criteria, a preliminary set of 18 vegetation types have been 
selected. This will be discussed in the next sections. Chapter 3 will discuss more the 
vegetation releves. 
 
 
The criteria for the selecting of vegetation types have been defined as follows by us: 

 Sensitive to climatic change  
o salt marsh vegetation along the coast;  
o snow bed vegetation and tall forbs vegetation in alpine and sub alpine regions 
o bog vegetation 

 Sensitivity to land use change 
o Grassland and heath types in sub alpine and alpine regions 
o Mediterranean shrub vegetation  

 Availability of computerized plot observation data. 
 
Three tables will be presented. One with the selected vegetation types (called Alliances in 
the hierarchical system of the European vegetation classification, see Rodwell et al., 2002). 
For each type there is a short description and an indication of their sensitivity. The higher 
order level (Class) to which the selected types belong is mentioned each time above. The 
second table presents a list of potential species for each of the vegetation types. This list is 
created by linking the vegetation types to Natura 2000 habitat types and to extract the 
species listed for the habitat types. 
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Table 1 Prelimanary list  of 15 selected vegetation types (plant communities), according to the European Vegetation Classification. 
The types in grey represent the orders or alliances. 

Code Scientific name Description Sensivity 
25 Oxycocco-

Sphagnetea 
Ombrotrophic bog and wet heathland 
vegetation of acid oligotrophic peats 

  

25A01 Ericion tetralicis Wet heath and bog vegetation on 
drying deeper peats or winter-
waterlogged peaty intergrades 
(Atlantic and sub-atlantic distribution) 

Representative of 
heathlands and susceptible 
to changes in ground water 
levels and land use. 

25C02 Ledo-Pinion Pine-dominated swampy woodlands 
(East-European distribution) 

Representative of 
heathlands and susceptible 
to changes in ground water 
levels and land use. 

26 Molinio-
Arrhenatheretea 

Anthropogenic pastures and meadows 
on deeper, more or less fertile soils in 
lowland regions 

  

26I03 Triseto-
Polygonion 
bistortae 

Meadows of well-drained, relatively 
fertile mineral soils in low-input 
agricultural systems of montane 
regions 

Very sensitive to changes in 
agricultural practice. 

28 Festuco-Brometea Steppes, rocky steppes and sandy 
grasslands of the sub-continental 
temperate and sub-boreal regions 

  

28F05 Festucion 
valesiacae 

Sub-continental closed fescue 
pastures and swards of central 
Europe 

Sensitive to changes in 
agricultural practice. 

42 Mulgedio-
Aconitetea 

Scrub and tall-herb vegetation at high 
altitudes, moistened and fertilised by 
percolating water 

  

42A01 Adenostylion 
alliariae 

Tall-herb communities of central 
European mountains 

Sensitive to climate change 
and maybe land use. 

43 Salicetea 
herbaceae 

Vegetation of long-lasting snow-beds 
and slopes irrigated by melt waters 

  

43A04 Salicion 
herbaceae 

Dwarf-willow and moss dominated 
communities of snow-beds on lime-
poor soils and rocks 

Wide spread at high altitudes 
in the Alps and southern 
Norway, progressively lower 
in the North of Norway. 
Distribution can be 
accurately estimated and is 
very sensitive to climatic 
change 

44 Elyno-Seslerietea Alpine and sub-alpine calcareous 
grasslands 

  

44D08  Seslerion 
albicantis 

Alpine and sub-alpine calcareous 
blue-grass swards 

In the mountains this is one 
of highest grazed pastures 
susceptible to declining 
grazing pressure. 

46 Juncetea trifidi Pastures, rush-heaths and fjell-field on 
lime-poor soils above the forest belt in 
alpine and sub-alpine zones 
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46A04 Caricion 
curvulae 

Alpine acid swards of the Alps and 
eastern and southern Carpathians 

Sensitive to climate change, 
likely to be colonized by 
trees and shrubs (possibily 
by Pinus mugo and 
Juniperus species) 

46A08 Juncion trifidi Rush-heaths of Scandinavia, the Alps 
and the western Carpathians 

Sensitive to climate change, 
likely to be colonized by 
trees and shrubs (possibily 
by Pinus mugo and 
Juniperus species) 

46B05 Nardion strictae Dense chionophilous grassy swards of 
the subalpine and alpine belts of the 
Alps, Carpathians and northern 
Apennines 

Sensitive to land use 

59 Querco-Fagetea Mixed broadleaved woodland of more 
temperate climates in central and 
western Europe 

 

59B05 Cephalanthero-
Fagion 

Thermophilous beech forests mostly 
on limestone 

Sensitive to climate change 

62 Loiseleurio-
Vaccinietea 

Arctic-boreal and (sub)alpine dwarf-
shrub heathlands 

  

62A02 Loiseleurio-
Diapension 

Arctic-boreal chionophilous tundra 
scrub 

Sensitive to change in 
climate (snow cover  and 
temperature). Not affected 
by agricultaral activities 

62A05 Rhododendro-
Vaccinion 

Subalpine chionophilous wind-swept 
dwarf shrub heath of the Alps and 
Carpathians 

Alpine low scrub mainly 
sensitive to grazing pressure 

63 Erico-Pinetea Calcareous relict montane pine woods 
of the Balkans, the Alps and 
Carpathians 

  

63A01 Erico-Pinion 
sylvestris 

Relict open pine woods of the Alps, 
Carpathians and northern Dinarides 

Will probably expand due to 
climatic change and/or 
abandoment. 

66 Vaccinio-Piceetea Coniferous forest communities, and 
related heaths, of more acidic soils 

  

66B01 Pinion mugo Subalpine silicicolous krummholz of 
mountains of central and 
southwestern Europe 

Might expand due to 
changes in climate and 
agricultural abandonment 

 
 
Finally, it lead to the selection of 14 Annex I habitat types (see Table 2), for which European 
distribution maps were produced. 
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Table 2 Table of selected Natura 2000 habitat types and their relation to vegetation types, according to the European Vegetation 
Classification. 

Nr. Natura 
2000 
code 

Natura 2000 description Code  Vegetation type 

1 4060 Alpine and Boreal heaths 62A02 Loiseleurio-Diapension 

   62A05 Rhododendro-Vaccinion 

   63A01 Erico-Pinion sylvestris 

2 4070 Bushes with Pinus mugo and Rhododendron 
hirsutum (Mugo-Rhododendretum hirsuti) 

66B01 Pinion mugo 

   25C02 Ledo-Pinion 

3 6150 Siliceous alpine and boreal grasslands 46A04 Caricion curvulae 

   46A08 Juncion trifidi 

   46B05 Nardion strictae 

4 6170 Alpine and subalpine calcareous grasslands 44D08 Seslerion albicantis 

5 6210 Semi-natural dry grasslands and scrubland facies 
on calcareous substrates(Festuco-Brometalia) ( * 
important orchid sites) 

28C02 Bromion erecti 

6 6230 Species-rich Nardus grasslands, on siliceous 
substrates in mountain areas (and submountain 
areas, in Continental Europe) 

46A04 Caricion curvulae 

7 6240 Sub-pannonic steppic grasslands 28F Festucetalia valesiacae 

8 6250 Pannonic loess steppic grasslands 28E Festucetalia vaginatae 

9 7110 Active raised bogs 25A01 Ericion tetralicis 

10 7130 Blanket bogs ( * if active bog) 25A01 Ericion tetralicis 

11 9150 Medio-European limestone beech forests of the 
Cephalanthero-Fagion 

59B05 Cephalanthero-Fagion 

12 9410 Acidophilous Picea forests of the montane to 
alpine levels (Vaccinio-Piceetea) 

66C01 Dicrano-Pinion 

13 9420 Alpine Larix decidua and/or Pinus cembra forests   

14 9510 Southern Apennine Abies alba 66A01 Abieti-Piceion 
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3. VEGETATION RELEVÉS 
 
To perform the various analyses within EBONE the availability of in situ vegetation data (plot 
observations or relevés) is highly required. It is estimated that throughout Europe there are 
more than one million computerized plot observations stored in numerous local databases. 
Most of these observations are available in so-called Turboveg databases. Turboveg 
( , 2011) is a software package that was developed in The 
Netherlands for the processing of plot observations. It’s an easy-to-use data base 
management system and provides methods for input, import, selection, and export of plot 
data. In 1994, Turboveg was accepted as the standard computer package for the European 
Vegetation Survey. Currently it has been installed in most European countries with more than 
a thousand users. 
 
For the EBONE project in-situ vegetation data (stored in Turboveg databases) have been 
obtained through the  network of SynBioSys Europa (Schaminée et al., 2007). In Table 3 an 
overview is given of all the collected vegetation releves. Unfortunately, there are still a lot of 
EU countries for which we did not succeed yet to obtain vegetation plot data, although we 
know that they exist.  
 
Table 3 Overview of collected vegetation releves in the various countries 

Country Contact person # of releves Selected Long/Lat Precision Vegetation types Remarks
Netherlands stephan.hennekens@wur.nl 420,000 890 yes point & 5x5 km All requested delivered
Britain 28,536 2,900 yes 100x100m All requested delivered
Germany dengler@uni-lueneburg.de Data expected soon
Belgium Heidi.DEMOLDER@inbo.be 856 856 yes point Acid+Basic graslands
Austria wolfgang.willner@vinca.at 917 4,300 yes 35km2 All requested delivered
Tjech republic chytry@sci.muni.cz 5,985 8,762 yes point All requested delivered
Slovakia jozef.sibik@savba.sk 17,910 15,003 yes point All requested delivered
Bulgaria iva@bio.bas.bg 137 137 yes point Acid+Basic graslands
Slovenia urban@zrc-sazu.si 0 0 no Approached, but no geo referenced data available
Frankrijk brisse.henry@orange.fr 0 0 Databank Sophie, H. Brisse is contacted, but no response.
Spain idoia.biurrun@ehu.es 190 190 yes 10x10km Acid+Basic graslands

mcaceres@ub.edu 1900 No yet approached
Roemenia popanamaria19@yahoo.com 2000 yes 500 * 500 m All types
Switserland niklaus.zimmermann@wsl.ch 14,900 14,900 yes mostly 10x10m All grassland types
Poland 0 0 Approached, but no response so far
Estonia 0 0 ?
Latvia 0 0 ?
Lithuania 0 0 ?
Italy 0 0 ?
Hungary bdz@botanika.hu 0 0 Approached, but no response so far
Norway Nigel.Yoccoz@ib.uit.no 0 0 Approached, but no response so far
Sweden 0 0 ?
Denmark 0 0 ?

493,331 47,938  
 
The vegetation releves were classified into the relevant vegetation classes of Table 2, which 
are related to the specific Annex I habitat types of interest, using the TurboVeg software and 
additional specific criteria are mentioned in Annex I. 
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Figure 1 Locations of the selected vegetation releves in relation to the specific Habitat Directive Annex I habitat types. 
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4. DATA SOURCES TO ESTABLISH KNOWLEDGE RULES  
 
Much effort was made on the establishment of the knowledge rules for the relationship 
between CORINE land cover classes  (CEC, 1994; Bossard et al., 2000; Büttner et al., 2004) 
and the Annex 1 Habitats (European Commission, 2007), The knowledge rules were largly 
based on the ecological knowledge of Dr R.G.H. Bunce who was responsible for this specific 
part in the report.   
 
 
 

Habitat Map

Land cover

Indicator species
Site conditions

Habitat Map

….

Decision rules

 
 
Figure 2 Flowchart of the methodological approach  (Mücher et al 2009) to identify the spatial distribution of European Habitats. 

 
A first formal relation between the Annex I habitats and CORINE land cover (CEC, 1994; 
Bossard et al, 2000; Büttner et al, 2004) was made in the PEENHAB project (Mücher et al., 
2004, Mücher et al., 2009). The relationship between CORINE land cover (CLC) and Natura 
2000 habitats is now being improved per biogeographic region (Metzger et al., 2005) So the 
EBONE knowledge rules provides now additional information about the mapping rules, the 
indicator species, the relationship to the General Habitat Categories (Bunce et al., 2011), the 
field identification and its occurence, direct threats to the habitat, its relation to climate 
change, and the distribution of Annex I sites over th environmenetal zones.  
 
In the following section the sources of information are listed that have been used in preparing 
the current document. 
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4.1. Sources of documentation 
 
The following data sources hhave been used to establish the knowledge rules for habitat 
modelling: 
 
1. Interpretation Manual of European Union Habitats 
2. EUNIS website (http://eunis.eea.europa.eu/index.jsp)  
3. Tables of Annex 1 habitats by Biogeographic regions 
4. CORINE land cover technical report 
5. PEENHAB report (Mücher et al., 2005) 
6. Consultation with Doug Evans (ETC/BD) and some local experts 
  
Evans (2006) describes in detail how the Annex 1 Habitats were constructed. The 
Interpretation manual of European Union Habitats is a living document. Evans also indicates 
that the names are much more difficult to change than their descriptions. The present 
document is a scientific amplification and interpretation of those descriptions, and will 
subsequently be discussed.  
 
The Annex 1 and its Priority Habitats are determined by an ongoing series of meetings held 
under the auspices of the EU. There has been no intention to complete a land cover key for 
the Annex I habitat types with total coverage of the land surface of Europe nor to provide a 
hierarchy for the classes. Because Annex 1 is legally binding it is essential that in the long 
term the habitats must be mapped in a consistent and reproducible way.  
 
The descriptions in the Interpretation manual of European Habitats varies a lot in level of 
detail, from three pages for species rich Nardus grasslands, to three lines for Castanea 
sativa forests (but even in the former case there is no definition as to the number of species 
as a threshold for the class). Although some habitats are point features e.g.Tufa springs, it is 
unlikely that small patches of other habitats would be considered  as valid records of that 
habitat. As Evans (2006) has pointed out the majority of Annex 1 habitats are based on  
vegetation associations with the principal exceptions of the landscape units,  of which there 
are about 20. The response of many countries has been to use broad  interpretations of the 
Annex 1 descriptions e.g. in north-west Spain acidophilous beech forests (9120) are included 
in the biogeographic information submitted on Natura 2000 sites although the region is not 
mentioned as containing 9120 in the Annex I descriptions. Doug Evans has emphasized that 
the Annex I descriptions are not exhaustive as to their regional distributions. Furthermore it is 
recognized that the biogeographic references in the habitat names do not preclude that 
habitat from occurring outside that region. 
 
In other cases, as in the Netherlands, closely linked associations have been added to the 
Annex I habitats present in Natura 2000 sites. The implications of this process are that a 
given list of habitats from different countries may not involve the same range of 
characteristics. The only way to determine the actual situation is to take stratified random 
samples of Annex I habitats in different Environmental Zones and actually record in the field 
what is present. Highly managed habitats e.g. species rich fallow and cropland, are not 
included in Annex I although they may be present in habitat complexes such as Machair. 
Many red data book species are present in such habitats and will therefore not be included 
under the current Annex I list. Similarly agricultural land which is in the process of being 
abandoned is not included because the main objective of Annex 1 is to : “identify 
undisturbed/semi-natural habitats for protection”. The Annex 1 habitats are not hierarchical 
but such a structure is currently being prepared for the expert system in EBONE. Habitats 
may occur at several spatial levels, e.g. points, linear features, patches, and landscapes. The 
implication of these comments is that the majority of lowland agricultural landscapes do not  
have Annex 1 habitats present, hence there is a need to identify residual biodiversity in such 

http://eunis.eea.europa.eu/index.jsp
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areas by using other habitat categories (e.g. Bunce et al., 2011). Including linear and point 
elements.  
 
There are many possibilities for refinement of the relationships identified in the present 
document, especially by consulting the available literature, e.g. on tree lines and the range of 
altitudes occupied by different vegetation associations. Many of the terms used in Annex 1 
are not defined which leads to differences in interpretation. For example, Fennoscandia may 
include the Baltic coast of Germany or not, whereas concepts like alpine and montane are 
notoriously difficult to define. Evans (2006) states that the names of Annex 1 Habitats can 
only be altered by a decision from the Council of Ministers, whereas the descriptions can be 
changed by agreement of the Habitats Committee. The present document is only concerned 
with the interpretation of those descriptions. 
 

4.2. CORINE land cover manual  
The English text contains many words e.g. briars and hortillonage that are not in general use 
in the ecological literature. Some terms e.g. heathland are incorrectly used and some 
species e.g. Ostrya carpinifolia do not belong to the land covers concerned. The English 
names of some species are also given the wrong Latin names e.g. briars are given as Rubus 
species. Some of the descriptions are very general so that it is difficult to know what is 
included. The text in the present document includes commentaries on the manual and is 
designed to support the interpretation given as well as to help future users because the 
assumptions are described eg that briars probably  do no mean Rosa spp which are only 
rarely seen as a dominant member of scrub habitats, whereas Rubus is widespread in this 
role throughout Europe.Their information has been included in the present report. As with 
Annex 1 of the Habitat Directive the only way to obtain more reliable quantitative data is to 
visit actual locations or use extant data like vegetation releves. For example the boundaries 
between raised bog and blanket bogs is clear in well developed situations and in many 
regions, but in Ireland and Scotland there are many overlaps and further confusion with 
valley bogs which do not fit into either of the other two categories. The interpretation of some 
classes means that a given Annex 1 habitat may appear in different places but with different 
rules being used to identify it. Some land cover types may have a wide range of biodiversity 
linked to them e.g vineyards and olive groves so that local rules could be developed to define 
potential biodiversity mote accurately. Thus in mountain foothills and on shallow soils in the 
Gredos mountains the vinyards are rich whereas in much of Andalucia they are intensively 
managed.  
 

4.3. Annex I habitat description 
 
Each of the Annex I habitats has the following description fields in this document: 
 
1. Mapping rules: these mapping rules are constructed from the information provided in the 
Interpretation manual of European habitats on where the habitat occurs. This information is 
supplemented by field experience of prof. R.G.H. Bunce and by discussions with 
phytosociologists in the EBONE project. Consultation was also be held with Doug Evans of 
the European Environment Agency Topic Centre on Biological Diversity in Paris to further 
check the descriptions. 
 
2. Indicator species: the indicator species are in most cases a subset of the Annex I plant 
species. A subset has been made since the selected species are the most characteristic and 
stable species present within the habitat. 
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3. GHC. The General Habitat Classes (GHC) are defined within the EBONE project (Bunce 
et al., 2011). The basis of the General Habitat Categories is the classification of plant Life 
forms produced by the Danish botanist Raunkiaer early in the 20th Century. These Life forms 
e.g. annuals or trees. They are based on the scientific hypothesis that habitat structure is 
related to the environment. The General Habitat Categories cover the Pan-European region 
(except Turkey) with 160 GHC’s derived from 16 plant life forms and 18 non-life forms  
(Bunce et al., 2011). The Codes for the General Habitat Categories are in this document: 
LHE = leafy hemicryptophytes(herbs), CHE = caespitose hemicryptophytes (grasses), SUC = 
succulents, THE = therophytes (annuals), HEL =helophytes (marsh plants) CRY = mosses, 
liverworts and lichens, DCH = espaliers below 5cm, SCH=dwarf scrub 5-30cm, LPH = low 
scrub,30-60cm, MPH = mid scrub 60cm-2.0 m, TPH = tall scrub2m-5m., FPH = forest over 5 
m, CON = conifer, DEC = deciduous, EVR = evergreen, NLE = non leafy evergreen, SPI = 
spiny/summer deciduous 
 
4. Field identification: comments on the probable ease of identification of the habitat in the 
field. 
 
5. Occurrence: three categories are used: rare, where the habitat is present in isolated 
patches, usually small, common, where it is distributed widely but does not cover large areas 
in the landscape and abundant where it is not only widespread but is also dominant. These 
are qualified where necessary. 
 
6. Direct threats: based on the knowledge of the vegetation and literature . The information 
could also be supplemented later by other experts. 
 
7. Potential impacts of climate change: based on knowledge of the vegetation, literature 
and the change in Environmental Zones described by Metzger et al. (2005). 
 
8. Vegetation succession due to abandonment: conversion of the present composition 
into plant lifeform categories followed by an interpretation of likely successional changes 
together with possible timescales. 
 
9. Distribution. This is the distribution of the specific habitat over the various Environmental 
Zones (Metzger et al., 2005). The codes, based on the EBONE handbook ( Bunce et al 
2011)  are as follows for the Environmental Zones:  
ALS = Alpine South, BOR = Boreal, NEM = Nemoral, ATN = Atlantic North, ATC = Atlantic 
Central, ALS = Alpine South, PAN = Pannonian, CON = Continental, LUS = Lusitanean, 
MDM- Mediterranean Mountains, MDN = Mediterranean North, MDS = Mediterranean South 
 
Distribution (sites) has been obtained directly from the Natura 2000 database intersected 
with the Environmental Zones. Distribution (Bunce) is based on expert knowledge from Bob 
Bunce. Besides, note that the code CLC refers to the CORINE land cover class. Annex I is 
standing for the Annex I of the Habitat Directive.   
 
For the selected habitats the knowledge rules are given in the sections below. For all other 
habitat types, the knowledge rules are given in Annex II. 
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5. SPATIAL MODELLING OF EUROPEAN HABITATS 
 
The following sections will give the results of the habitat distribution modelling for each 
specific habitat type.  All models were implemented within ARCGIS 9.3 model builder. An 
example of such a model is given below. All resulting habitat distribution maps have a spatial 
resolution of 100 meters.  Since this spatial resolution can hardly be visualised in this 
document for entire Europe, the results are also highlighted for specific details of the 
European habitat distribution maps.  

 
Figure 3 Example of the constructed ditribution model for Annex I habitat type H6170 "Alpine and subalpine calcareous 
grasslands" made with the modelbuilder in ARCGIS 9.2. In the blue boxes the input data sets are mentioned, in the orange boxes 
the knowledge rules are implemented. Intermediate results are probability 1 based on actual land cover information and abiotic 
conditions, probability 2 is based on information from the potential natural vegetation map confronted with actual land cover 
information. H6170gr is the final result as an ARCGIS grid file for Annex I habitat type 617.  
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The following sections demonstrate the results of the spatial modelling exercises for the 14 
selected Annex I habitat types and provides alao inside to the established knowledge rules. 
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5.1. Alpine and Boreal heaths (H4060) 
 
Annex I description 
Alpine and Boreal heaths 
Natura 2000 habitat type code 4060 
Palearctic habitat code ( and Corine Biotopes) 31.4 
Priority habitat: No 
Parent: Temperate heath and Scrub (4000) 
 
Description 
Small, dwarf or prostrate shrub formations of the alpine and subalpine zones of the 
mountains of Eurasia dominated by ericaceous species, [Dryas octopetala], dwarf junipers, 
brooms or greenweeds; [Dryas] heaths of the British Isles and Scandinavia.  
 
Sub-types : 
 31.41 - Alpine dwarf ericoid wind heaths. Loiseleurio-Vaccinion. Very low, single-stratum, carpets of trailing 

azalea, Loiseleuria procumbens, prostate Vaccinium spp. or other prostate ericoid shrublets, accompanied by 
lichen, of high windswept, mostly snowfree, localities in the alpine belt of the high mountains of the Alpine 
system. 

 31.42 - Acidocline alpenrose heaths. Rhododendro-Vaccinion. Rhododendron spp.-dominated heaths of acid 
podsols in the Alps, the Pyrenees, the Dinarids, the Carpathians, the Balkan Range, the Pontic Range, the 
Caucasus and the Himalayan system, often with Vaccinium spp., sometimes with dwarf pines. 

 31.43 - Mountain dwarf juniper scrub. Juniperion nanae, Pino-Juniperion sabinae p., Pino-Cytision purgantis 
p.Usually dense formations of prostrate junipers of the higher levels of southern Palaearctic mountains. 

 31.44 - High mountain Empetrum-Vaccinium heaths. Empetro-Vaccinietum uliginosi.Dwarf heaths dominated 
by Empetrum hermaphroditum, Vaccinium uliginosum, with Arctostaphylos alpina, Vaccinium myrtillus, 
Vaccinium vitis-idaea and lycopodes (Huperzia selago, Diphasiastrum alpinum), mosses (Barbilophozia 
lycopodioides, Hylocomium splendens, Pleurozium schreberi, Rhythidiadelphus triquetrus) and lichens 
(Cetraria islandica, Cladonia arbuscula, Cladonia rangiferina, Cladonia stellaris, Cladonia gracilis, Peltigera 
aphthosa) of the sub-alpine belt of the Alps, the Carpathians, the Pyrenees, the Central Massif, the Jura, the 
Northern Apennines, characteristic of relatively windswept, snow-free stations, in frost-exposuresituations 
that are, however, less extreme than those prevailing where communities of 31.41dominate. Unlike the 
formations of 31.41, those of 31.44 are clearly two-layered. 

 31.45 - Boreo-alpine heaths Alpine heaths of the highlands and islands of Scotland, alpine and lowland 
boreal heaths of Iceland, alpine heaths of boreal mountains, in particular of the mountains of Scandinavia, of 
the Urals, of the mountains of Siberia, alpine heaths of Far Eastern mountains at, or just south of, the limits of 
the boreal zone, with Juniperus nana, Loiseleuria procumbens, Empetrum hermaphroditum, Arctostaphylos 
uva-ursi, Arctostaphylos alpina and elements of Alpine flora. 

 31.46 - Bruckenthalia heaths: only outside the European Union. 
 31.47 - Alpide bearberry heaths. Mugo-Rhodoretum hirsuti p., Juniperion nanae p., i.a.Interpretation Manual - 

EUR25 Page 44 Mats of Arctostaphylos uva-ursi or Arctostaphylos alpina of the alpine, sub-alpine and 
locally, montane, belts of the Alps, the Pyrenees, the northern and central Apennines, the Dinarids, the 
Carpathians, the Balkan Range, the Rhodopides (south to the Slavianka-Orvilos, the Menikion, the Pangeon, 
the Falakron and the Rhodopi), the Moeso-Macedonian mountains (including Athos), the Pelagonides (south 
to the Greek Macedonian border ranges Tzena, Pinovon and Kajmakchalan) and Olympus, in the Thessalian 
mountains, mostly on calcareous substrates. 

 31.48 - Hairy alpenrose-erica heaths. Mugo-Rhodoretum hirsuti p. Forest substitution heaths, treeline fringe 
formations and alpine heaths or mats of calcareous soils in the Alps and the Dinarides, with Rhododendron 
hirsutum, Rhododendron intermedium, Rhodothamnus chamaecistus and Erica herbacea, often 
accompanied by Clematis alpina, Daphne striata, Daphne mezereum, Globularia cordifolia, Arctostaphylos 
uva-ursi. Rhododendron hirsutum and, mostly in the Austrian Alps, Erica herbacea are the most frequent 
dominants; other shrubs can locally play that role. Arctostaphylos spp.-dominated facies have, however, 
been included in 31.47. 

 31.49 - Mountain Dwarf heaths formed by mats of the woody Dryas octopetala in high Palaearctic mountains, 
in boreal regions and in isolated Atlantic coastal outposts. 

 31.4A - High mountain dwarf bilberry heaths Vaccinium-dominated dwarf heaths of the sub-alpine belt of 
southern mountains, in particular, of the northern and central Apennines, the Balkan Range, the Helenides, 
the Pontic Range and the Caucasus, with Vaccinium myrtillus, Vaccinium uliginosum s.l., Vaccinium vitis-
idaea and, locally, Empetrum nigrum. They are richer in grassland species than the communities of 31.44 
and often take the appearance of alpine grassland with dwarf shrubs. Vaccinium myrtillus also plays a much 
more dominant role, in lieu of Vaccinium uliginosum and Empetrum hermaphroditum. 
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 31.4B - High mountain greenweed heaths Low Genista spp. or Chamaecytisus spp. heaths of the sub-alpine, 
low alpine or montane belts of high southern nemoral mountains, in particular of the southern Alps, the 
Apennines, the Dinarides, the southern Carpathians, the Balkan Range, the Moeso-Macedonian mountains, 
the Pelagonides, the northern Pindus, the Rhodopides, the Thessalian mountains. 

 
Plants 
31.41 - Loiseleuria procumbens, Vaccinium spp.; 31.42 - Rhododendron ferrugineum; 31.44 - 
Empetrum hermaphroditum, Vaccinium uliginosum; 31.45 - Juniperus nana, Loiseleuria 
procumbens, Empetrum hermaphroditum, Arctostaphylos uva-ursi, Arctostaphylos alpina; in 
Fennoscandia also Betula nana, Cassiope tetragona, Cornus suecica, Juniperus communis, 
Phyllodoce caerulea, Vaccinium myrtillus and Cladonia alpestris; 31.47 - Arctostaphylos uva-
ursi, Arctostaphylos alpina; 31.48 - Rhododendron hirsutum, Rhododendron intermedium, 
Rhodothamnus chamaecistus and Erica herbacea; 31.49 - Dryas octopetala; 31.4A - 
Vaccinium myrtillus, Vaccinium uliginosum s.l., Vaccinium vitis-idaea; 31.4B - Genista 
radiata, G. holopetala, G. hassertiana, Chamaecytisus eriocarpus, C. absinthioides. 
 
Geographic distribution 
Austria, Finland, France, Germany, Greece, Ireland, Italy, Portugal, Spain, Sweden, United 
Kingdom. Sub-type distribution: 31.41 alpine belt of the high mountains of the Alpine system; 
31.42 the Alps, the Pyrenees, the Dinarids, the Carpathians, the Balkan Range, the Pontic 
Range, the Caucasus and the Himalayan system; 31.43 the higher levels of southern 
Palaearctic mountains; 31.44 the sub-alpine belt of the Alps, the Carpathians, the Pyrenees, 
the Central Massif, the Jura, the Northern Apennines; 31.45 Scotland, Iceland, boreal 
mountains, in particular of the mountains of Scandinavia, of the Urals, of the mountains of 
Siberia, Far Eastern mountains at, or just south of, the limits of the boreal zone; 31.47 alpine, 
sub-alpine and locally, montane, belts of the Alps, the Pyrenees, the northern and central 
Apennines, the Dinarids, the Carpathians, the Balkan Range, the Rhodopides (south to the 
Slavianka-Orvilos, the Menikion, the Pangeon, the Falakron and the Rhodopi), the Moeso-
Macedonian mountains (including Athos), the Pelagonides (south to the Greek Macedonian 
border ranges Tzena, Pinovon and Kajmakchalan) and Olympus, in the Thessalian 
mountains, mostly on calcareous substrates; 31.48 the Alps and the Dinarides; 31.49 high 
Palaearctic mountains, in boreal regions and in isolated Atlantic coastal outposts; 31.4A the 
sub-alpine belt of southern mountains, in particular, of the northern and central Apennines, 
the Balkan Range, the Helenides, the Pontic Range and the Caucasus; 31.4B the sub-alpine, 
low alpine or montane belts of high southern nemoral mountains, in particular of the southern 
Alps, the Apennines, the Dinarides, the southern Carpathians, the Balkan Range, the Moeso-
Macedonian mountains, the Pelagonides, the northern Pindus, the Rhodopides, the 
Thessalian mountains; 
 
http://eunis.eea.europa.eu/habitats-factsheet.jsp?tab=0&idHabitat=10087  
 
EBONE rules 

CLC: 322 - Moors and heath lands 
Annex I: 4060 - Alpine and Boreal heaths 
  
Mapping 
rules: 

Alpine North / Boreal over 800m , Atlantic North over 900 m small patches on exposed coastal 
areas in the north), Alpine South over 1800 m. 
No soils as highly variable, although skeletal soils eg rankers predominate. 

Indicator 
species: - 

GHC: - SCH/EVR but locally DCH/EVR/DEC + Moist acid soils + upto 30% bare ground/rocks + key 
indicators. Also LPH/CON MPH/EVR 

Field 
identification: 

Although highly variable because this class has a well recognisable landscape context and 
consistent life form structure it will probably be readily identified. 

Occurrence: -Occurs in large areas in the centre of its range – small patches on edge 

http://eunis.eea.europa.eu/habitats-factsheet.jsp?tab=0&idHabitat=10087
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Direct 
threats: 

At low altitudes overgrazing locally although in some areas grazing may have halted scrub invasion. 
decline in grazing can therefore lead to quite rapid changes. Reindeer grazing can cause erosion in 
Scandinavia. 

Climate 
change: 

The increased temperatures likely in many of these mountains will favour scrub expansion at lower 
levels as shown by Kienast. However the class may well be able to move higher except where it is 
caused by extreme exposure. 

Succession: Colonisation: status Shrubby chamaephytes or L PH or even Mid phanerophytes in some situations. 
May remain as Shrubby chamaephytes in extreme situations and especially in the Scandinavian 
mountains at mid altitudes Low phanerophytes to Mid phanerophytes 10 and Tall phanerophytes 15 
at low altitudes Low phanerophytes to Mid phanerophytes 10 Tall phanerophytes 15 possibly Forest 
phanerophytes 20. 
 . 

Distribution 
(sites): 

ALN BOR nem ATN ALS CON ATC pan LUS MDM mdn mds 

Distribution 
(Bunce): 

ALN BOR nem atn ALS CON atc pan lus mdm mdn mds 

 
 
 

 
 
 Photo 1 H4060 Alpine and boreal heath in Mountains Sweden (photo Bob Bunce, 2005). 
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RESULT H4060 ALPINE AND BOREAL HEATHS  
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5.2. Bushes with Pinus mugo and Rhododendron hirsutum 
(H4070) 

 
Annex I description   
Bushes with Pinus mugo and Rhododendron hirsutum (Mugo-Rhododendretum 
hirsuti) 
Natura 2000 habitat type code 4070 
Palearctic habitat code ( and Corine Biotopes) 31.5  
Priority habitat: Yes 
Parent: Temperate heath and Scrub (4000) 
 
Description 
Pinus mugo formations usually with Rhododendron spp. of the dry eastern inner Alps, the 
northern and southeastern outer Alps, the southwestern Alps and the Swiss Jura, the eastern 
greater Hercynian ranges, the Carpathians, the Apennines, the Dinarides and the 
neighbouring Pelagonides, the Pirin, the Rila and the Balkan Range. 
 
Plants 
Pinus mugo, Rhododendron hirsutum, R. ferrugineum. Rhodothamnus chamaecistus 
 
Geographic distribution 
Alps (Austria, France, Germany, Italy) and Apennines 
 
http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10088  
 
 
EBONE rules 
CLC: 322 - Moors and heath lands 

Annex I: 4070 - Bushes with Pinus mugo and Rhododendron hirsutum (Mugo-Rhododendretum 
hirsuti) 

  
Mapping rules: Alpine South over 1800 m plus distribution of Pinus mugo. 
Indicator species: Pinus mugo, Rhodendendron chamaecistus, Rhodondendron hirsutum. 
GHC: -MPH/EVR/CON + moist acid soils + montane situation + indicators 
Field identification: :straightforward if a minimal cover of 30% is assumed. 
Occurrence: -often in large units but loccaly in small patches 
Direct threats: Burning and clearance for grazing. 
Climate change: Likely to expand upwards with higher temperatures. 
Succession: Colonisation: climax in most cases. 

 . 
Distribution (sites): aln bor nem atn ALS CON atc pan lus MDM mdn mds 
Distribution 
(Bunce): 

aln bor nem atn ALS con atc pan lus mdm mdn mds 

 

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10088
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Photo 2 H4070 - Bushes with Rhododendron hirsutum (Mugo-Rhododendretum hirsuti) on Schneeberg, Austria (Photo Thomas 
Wrbka) 

 
Photo 3 H4070 - Bushes with Pinus mugo (Mugo-Rhododendretum hirsuti) on Schneeberg, Austria (Photo Thomas Wrbka) 
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RESULT H4070 BUSHES WITH PINUS MUGO AND RHOD. HIRSUTUM  
 

 



ANNEX-1 
Annex 1-EBONE Task 513 Report Mucher version-3 

25.4.2012  26  



ANNEX-1 
Annex 1-EBONE Task 513 Report Mucher version-3 

25.4.2012  27  

 

5.3.  Siliceous alpine and boreal grasslands (H6150) 
 
Annex I Description 
Siliceous alpine and boreal grasslands 
Natura 2000 habitat type code  6150 
Palearctic habitat code ( and Corine Biotopes)  36.32 (36.11, 36.32, 36.34) 
Priority Habitat: No 
Parent: Natural grasslands (6100) 
 
Description 
 
Boreo-alpine formations of the higher summits of mountains in the Alps and Scandanavia 
with outliers elsewhere such as the Tatra, with Juncus trifidus, Carex bigelowii, mosses and 
lichens. Also included are associated snowbed communities. 
 
Plants 
Juncus trifidus, Carex bigelowii, Cassiope tetragona. 
 
Geographic distribution 
Boreo-alpine formations of the higher summits of the boreal mountains of northern Finland 
and Sweden, of Scotland, northern England and northern Wales, with [Juncus trifidus, Carex 
bigelowii], mosses and lichens. 
 
Austria (Alpine), Czech Republic (Continental), Germany (Alpine, Continental),  
Finland (Alpine, Boreal), France (Alpine), Italy (Alpine), Poland (Alpine), Sweden (Alpine, 
Boreal), Slovenia (Alpine), Slovakia (Alpine), United Kingdom (Atlantic) 
 
http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10115  
 
 
EBONE rules 
CLC: 321 - Natural grasslands (incl. Pastures) 
Annex I: 6150 - Siliceous alpine and boreal grasslands 
  
Mapping rules: Acid rocks / soils. 

Look at adjacency of 332 and 333. 
Alpine South over 1500m./  Alpine north/Boreal over 700m, Atlantic North over 900m  

Indicator 
species: Juncus trifidus, Carex bigelowii. 

GHC: -CHE/CRY + some dwarf chamaephytes + shallow acidic soils + mud bare rock + indicator 
species 

Field 
identification: Needs instructions to separate from related vegetation, but readily identifiable 

Occurrence: -Except in Atlantic North occurs in large units above the critical altitude 
Direct threats: -Overgrazing 
Climate 
change: Will allow tree / shrub growth to higher altitudes. 

Succession: Colonisation. 
Status: Ceaspitose hemicryptophytes / Cryptogames –Dwarf chamaephytes 5-10 years Shrubby 
chamaephytes 5-10 years maybe to Low phanerophytes5-10 years. 

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10115
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 . 
Distribution (s) ALN BOR nem ATN ALS CON atc pan lus mdm mdn mds 
Distribution  ALN BOR nem ATN ALS CON atc pan lus mdm mdn mds 

 
Photo 4 H6150: Alpine Carex curvula turf on siliceous parent material; Mannlibode (ca. 2400 m) south of Reckingen, 
Oberwallis/Switzerland (Photo U. Bohn). 
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RESULT H6150 SILICEOUS ALPINE AND BOREAL GRASSLANDS 
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5.4. H6170 Alpine and subalpine calcareous grasslands 
 
Annex I description 
Alpine and subalpine calcareous grasslands 
Natura 2000 habitat type code 6170   
Palearctic habitat code ( and Corine Biotopes)  36.41 -> 36.45 
Priority habitat: No 
Parent: Natural grasslands (6100) 
 
Description 
Alpine and subalpine grasslands of base-rich soils, with Dryas octopetala, Gentiana nivalis, 
Gentiana campestris, Alchemilla hoppeana, Alchemilla conjuncta, Alchemilla flabellata, 
Anthyllisvulneraria, Astragalus alpinus, Aster alpinus, Draba aizoides, Globularia nudicaulis, 
Helianthemum nummularium ssp. grandiflorum, Helianthemum oelandicum ssp. alpestre, 
Pulsatilla alpina ssp.alpina, Phyteuma orbiculare, Astrantia major, Polygala alpestris (36.41 
to 36.43) of mountain ranges such as the Alps, Pyrenees, Carpathians and Scandinavia. 
Also included are the grasslands of the subalpine (oro-Mediterranean) and alpine levels of 
the highest mountains of Corsica (36.37), and the Mesophile, closed, short turfs of the 
subalpine and alpine levels of the southern and central Apennines, developed locally above 
treeline, on calcareous substrates (36.38). Can also include associated snowpatch 
communities (e.g. Arabidion coeruleae). 
 
Sub-types : 
 36.41 - Closed calciphile alpine grasslands Mesophile, mostly closed, vigorous, often grazed or mowed, 

grasslands on deep soils of the subalpine and lower alpine levels of the Alps, the Pyrenees, the mountains of 
the Balkan peninsula, and, locally, of the Apennines and the Jura. 

 36.42 - Wind edge naked-rush swards Meso-xerophile, relatively closed and unsculptured swards of 
Kobresia myosuroides (Elynamyosuroides) forming on deep, fine soils of protruding ridges and edges 
exposed to strong winds in the alpine and nival levels of the Alps, the Carpathians, the Pyrenees, the 
Cantabrian Mountains, Scandinavian mountains and, very locally, the Abruzzi and the mountains of the 
Balkan peninsula, with Oxytropis jacquinii (Oxytropis montana), Oxytropis pyrenaica, Oxytropis carinthiaca, 
Oxytropis foucaudii, Oxytropis halleri, Antennaria carpatica, Dryas octopetala, Draba carinthiaca, Draba 
siliquosa, Draba fladnizensis, Draba aizoides, Gentiana tenella, Erigeron uniflorus, Dianthus glacialis, 
Dianthus monspessulanus ssp. sternbergii, Potentilla nivea, Saussurea alpina, Geranium argenteum, 
Sesleria sphaerocephala, Carex atrata, Carex brevicollis, Carex foetida, Carex capillaris, Carex nigra, Carex 
curvula ssp. rosae and Carex rupestris. Scandinavian Kobresia grasslands with Carex ruprestis are included. 

 36.43 - Calciphilous stepped and garland grasslands Interpretation Manual - EUR25 Page 59 Xero-
thermophile, open, sculptured, stepped or garland grasslands of the Alps, the Carpathians, the Pyrenees, the 
mountains of the Balkan peninsula and the Mediterranean mountains, with very local outposts in the Jura. 

 36.44 - Alpine heavy metal communities: included in habitat 6130 'Calaminarian grasslands (Violetalia 
calaminariae)', 

 36.37 - Oro-Corsican grasslands Grasslands of the subalpine (oro-Mediterranean) and alpine levels of the 
highest mountains of Corsica. 

 36.38 - Oro-Apennine closed grasslands Mesophile, closed, short turfs of the subalpine and alpine levels of 
the southern and central Apennines, developed locally above treeline, on calcareous substrates. 

 
Plants 
36.41 to 36.43 - Dryas octopetala, Gentiana nivalis, Gentiana campestris, Alchemilla 
hoppeana, Alchemilla conjuncta, Alchemilla flabellata, Anthyllis vulneraria, Astragalus 
alpinus,Aster alpinus, Draba aizoides, Globularia nudicaulis, Helianthemum nummularium 
ssp.grandiflorum, Helianthemum oelandicum ssp. alpestre, Pulsatilla alpina ssp. alpina, 
Phyteumaorbiculare, Astrantia major, Polygala alpestris; 36.37 - Plantago subulata ssp. 
insularis, Saginapilifera, Armeria multiceps, Paronychia polygonifolia, Bellardiochloa 
violacea, Phleum brachysrachyum, Geum montanum, Sibbaldia procumbens, Veronica 
alpina; 36.38 - Festucaviolacea ssp. macrathera, Trifolium thalii. 
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Geographic distribution 
Austria (Alpine), Germany (Alpine), Spain (Alpine, Atlantic, Mediterranean) 
France (Alpine, Continental, Mediterranean), Greece (Mediterranean) 
Italy (Alpine, Continental, Mediterranean), Poland (Alpine), Sweden (Alpine) 
Slovenia (Alpine), Slovakia (Alpine), United Kingdom (Atlantic) 
 
http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10117  
 
 
 
EBONE rules 
CLC: 321 - Natural grasslands (incl. Pastures) 
Annex I: 6170 - Alpine and subalpine calcareous grasslands 
  
Mapping 
rules: 

Calcareous soils / rocks probably mainly skeletal but also deeper soils given in the description. 
Alpine North / Boreal over 700m, Atlantic North over 800m, Lusitanian / Mediterranean mountains 
over 2000m, Alpine South / Continental over1000m. 

Indicator 
species: Dryas octopetala, Gentiana nivalis, Draba aizoides. 

GHC: -CHE/LHE + moist calcareous soils + open ground upto 3-% + montane situations + indicator 
species 

Field 
identification: Contains many vegetation classes and experience probably needed for exact allocation. 

Occurrence: -occurs in large units in the centre of its distributions – small patches towards the edge 
Direct threats: Decline or cessation in grazing. Rate of change determines rate of development. 
Climate 
change: 

May move higher but threatened at lower levels by increased tree / shrub growth., and limited by 
the distribution of calcareous soils/rocks 

Succession: Colonisation. 
Status: Ceaspitose hemicryptophytes / Leafy hemicryptophytes to Ceaspitose hemicryptophytes if 
not grazed Shrubby chamaephytes 5-10 Low phanerophytes 5-10 Tall phanerophytes 5-10 but 
only with climate change otherwise only Low phanerophytes. 
 . 

Distribution 
(sites): 

ALN bor nem ATN ALS CON atc pan LUS MDM MDN MDS 

Distribution 
(Bunce): 

ALN BOR nem ATN ALS CON atc pan lus mdm mdn mds 

 
 
 

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10117
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Photo 5 H6170 Alpine acalcareous grasslands at Ötscher Mountains, Austria (Photo Thomas Wrbka) 

 
 

 
Photo 6 Photo 6 H6170 Alpine acalcareous grassland with Dryas octopetala and Anthyllis vulneraria at Ötscher Mountains, 
Austria (Photo Thomas Wrbka). 
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RESULT H6170 ALPINE AND SUBALPINE CALCAREOUS GRASSLANDS 
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5.5. H6210 Semi-natural dry grasslands and scrubland facies on 
calcareous substrates (Festuco-Brometalia) ( * important 
orchid sites) 

 
Annex I Description 
Semi-natural dry grasslands and scrubland facies on calcareous substrates  
(Festuco-Brometalia) , ( * important orchid sites) 

Natura 2000 habitat type code  6210 
Palearctic habitat code ( and Corine Biotopes)  34.31 -> 34.34 
Priority habitat: Yes 
Parent: Semi-natural dry grasslands and scrubland facies (6200) 
 
Description 
Dry to semi-dry calcareous grasslands of the Festuco-Brometea. This habitat is formed on 
the one hand by steppic or subcontinental grasslands (Festucetalia valesiacae) and, on the 
other, by the grasslands of more oceanic and sub-Mediterranean regions (Brometalia erecti); 
in the latter case, a distinction is made between primary Xerobromion grasslands and 
secondary (semi-natural) Mesobromion grasslands with Bromus erectus; the latter are 
characterised by their rich orchid flora. Abandonment results in thermophile scrub with an 
intermediate stage of thermophile fringe vegetation (Trifolio-Geranietea). Interpretation 
Manual - EUR25 Page 61.  
Important orchid sites should be interpreted as sites that are important on the basis of one or 
more of the following three criteria: 
(a) the site hosts a rich suite of orchid species 
(b) the site hosts an important population of at least one orchid species considered not very 
common on the national territory 
(c) the site hosts one or several orchid species considered to be rare, very rare or 
exceptional on the national territory. 
 
Plants 
Mesobromion - Anthyllis vulneraria, Arabis hirsuta, Brachypodium pinnatum, Bromus 
inermis,Campanula glomerata, Carex caryophyllea, Carlina vulgaris, Centaurea scabiosa, 
Dianthus carthusianorum, Eryngium campestre, Koeleria pyramidata, Leontodon hispidus, 
Medicago sativa ssp. falcata, Ophrys apifera, O. insectifera, Orchis mascula, O. militaris, O. 
morio, O. purpurea, O. ustulata, O. mascula, Polygala comosa, Primula veris, Sanguisorba 
minor, Scabiosa columbaria,Veronica prostrata, V. teucrium. Xerobromion - Bromus erectus, 
Fumana procumbens, Globularia elongata, Hippocrepis comosa. Festucetalia valesiacae: 
Adonis vernalis, Euphorbia seguierana,Festuca valesiaca, Silene otites, Stipa capillata, S. 
joannis. 
 
Geographic distribution 
Austria (Alpine Continental), Belgium (Atlantic Continental), Czech Republic (Continental 
Pannonian), Germany (Alpine Atlantic Continental), Denmark (Atlantic Continental), Estonia 
(Boreal), Spain (Alpine Atlantic Mediterranean), Finland (Boreal), France (Alpine 
Atlantic Continental Mediterranean), Greece (Mediterranean), Hungary (Pannonian), Ireland 
(Atlantic), Italy (Alpine Continental Mediterranean), Lithuania (Boreal), Luxembourg 
(Continental), Latvia (Boreal) 
Netherlands (Atlantic), Poland (Alpine Continental), Portugal (Mediterranean),  
Sweden (Alpine Boreal Continental), Slovenia (Alpine), Slovenia (Continental) 
Slovakia (Alpine), Slovakia (Pannonian), United Kingdom (Atlantic) 
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http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10120  
 
EBONE rules 
 
CLC: 321 - Natural grasslands (incl. Pastures) 

Annex I: 6210 - Semi-natural dry grasslands and scrubland facies on calcareous substrates(Festuco-
Brometalia) ( * important orchid sites) 

  
Mapping 
rules: 

Calcareous soils. 
Boreal / Nemoral Below 200m Atlantic North below 300m All Atlantic Central Continental / Alpine 
South below 700m Mediterranean mountains below1400m. 

Indicator 
species: 

Arabis hirsuta, Dianthus carthusianorum, Ophrys apifera, Orchis mascula, Bromus erecta, Adonis 
vernalis. 

GHC: -LHE/CHE + dry calcareous soils + indication 
Field 
identification: 

Difficult as many vegetation associations are included-instructions as to local conditions therefore 
needed for regional surveyors. Also a definition of important orchid sites is required. 

Occurrence: -Could be large patches locally but often fragmented 
Direct threats: Decline in grazing. 
Climate 
change: 

Could expand into mesic grasslands on south facing slopes but rate likely to be slow because of 
closed swards. 

Succession: Colonisation. 
Status: Ceaspitose hemicryptophytes / Leafy hemicryptophytes to Ceaspitose hemicryptophytes 5 
without grazing Shrubby chamaephytes 10 Low phanerophytes 5 Mid phanerophytes 5 Tall 
phanerophytes 10 Forest phanerophytes 10. 
 . 

Distribution 
(sites): 

aln BOR NEM ATN ALS CON ATC PAN LUS MDM MDN mds 

Distribution 
(Bunce): 

aln BOR NEM ATN als CON ATC PAN LUS MDM mdn mds 

 

 
Photo 7 H6210: Chalk grassland in South Limburg (Gerendal, The Netherlands) with Orhis purpurea and Orchis militaris 
(C.A.J. Kreuth) 

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10120


ANNEX-1 
Annex 1-EBONE Task 513 Report Mucher version-3 

25.4.2012  37  

 

 
Photo 8 H6210 Orchid rich calcareous grassland on slope of Wrakeler berg, South-Limburg, the Netherlands (Photo Sander 
Mucher). 

 
 

 
Photo 9 6210: Chalk grassland in South Limburg (Wrakelberg, The Netherlands) with several thousand of individuals of 
Gymnadenia conopsea (J.H.J. Schaminée) 
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Photo 10 H6210. Calcareous grassland in a groundwater protection area in South Limburg, the Netherlands (Photo Sander 
Mucher) 
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RESULT H6210 SEMI-NATURAL DRY GRASSLANDS AND SCRUBLAND FACIES ON 
CALCAREOUS SUBSTRATES  
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5.6.  Species-rich Nardus grasslands, on siliceous substrates in 
(sub) mountain areas (H6230) 

 
Annex I description 
Species-rich Nardus grasslands, on siliceous substrates in mountain areas (and 
submountain areas, in Continental Europe) 
Natura 2000 habitat type code  6230 
Palearctic habitat code ( and Corine Biotopes)  35.1 
Priority Habitat: Yes 
Parent: Semi-natural dry grasslands and scrubland facies (6200) 
 
Description 
Closed, dry or mesophile, perennial Nardus grasslands occupying siliceous soils in Atlantic or 
sub-Atlantic or boreal lowland, hill and montane regions. Vegetation highly varied, but the variation is 
characterised by continuity. Nardetalia: 35.1-Violo-Nardion (Nardo-Galion saxatilis, Violion 

caninae); 36.31- Nardion. Species-rich sites should be intrepreted as sites with are remarkable for a 
high number of species. In general, the habitats which have become irreversibly degraded through 
overgrazing should be excluded. 
 
Plants 
Antennaria dioica, Arnica montana, Campanula barbata, Carex ericetorum, C. pallescens, C. 

panicea, Festuca ovina, Galium saxatile, Gentiana pneumonanthe, Hypericum maculatum, 

Hypochoeris maculata, Lathyrus montanus, Leontodon helveticus, Leucorchis albida, Meum 

athamanticum, Nardus stricta, Pedicularis sylvatica, Platanthera bifolia, Polygala vulgaris, Potentill 

aaurea, P. erecta, Veronica officinalis, Viola canina. 
 
Geographic distribution 
Alps, Pyrenees, Apennines, Jura, Hercynian ranges, Netherlands, British Isles, Iberia peninsula, 
Luxembourg, Finland, Sweden. 
 
Entire EU 
 
http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10122  
 
 
EBONE rules 
CLC: 321 - Natural grasslands (incl. Pastures) 

Annex I: 6230 - Species-rich Nardus grasslands, on siliceous substrates in mountain areas (and 
submountain areas, in Continental Europe) 

  
Mapping 
rules: 

Making rules for this class is difficult because it depends on interpretation of the term species rich. 
If it is assumed that the extensive generally species poor Nardus grasslands of the Atlantic zone 
are included then it is widespread. More species rich grasslands with Nardus are rare in GB but 
are rather common at quite high elevations in the Alps. The comment in the text suggests that 
irreversibly degraded grasslands should be excluded which probably means many of those in GB. 
The rules below cover the whole range but mean that very different frequencies are likely to be 
involved. 
Siliceous soils / rocks Alpine North / Boreal below 700m Nemoral / Atlantic Central all altitudes 
Atlantic North below 900 m, Continental / Alpine South / Pannonian over 700 m but under 2000m, 
Lusitanian over 1000 m, Mediterranean mountains over 1500 m. 

Indicator 
species: Antennaria dioica, Galium saxatile. 

GHC: -CHE/LHE + moist neutral/acidic soils + Nardus + wide range of speceis 
Field Depends on the definition of species rich but the associations are well defined. 

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10122
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identification: 
Occurrence: -often occurs in large units in the centre of its range, smaller patches elsewhere 
Direct 
threats: Mostly maintained by grazing but some of the higher sites may be above the tree line. 

Climate 
change: 

The class covers a high of altitude so probably robust although tree / shrub colonization at higher 
levels would be favoured if grazing declines. The proportion of montane species may also decline 
as more competitive species are likely to expand. 

Succession: Colonisation: status Ceaspitose hemicryptophytes / Leafy hemicryptophytes- Nardus will expand 
with less grazing and will therefore change to Ceaspitose hemicryptophytes , further development 
depends on altitude, low altitudes will end up as Forest phanerophytes ,mid Tall phanerophytes 
high Shrubby chamaephytes. 
 . 

Distribution 
(sites): 

ALN BOR NEM ATN ALS CON ATC pan LUS MDM MDN mds 

Distribution 
(Bunce): 

ALN BOR NEM ATN ALS CON ATC PAN LUS mdm mdn mds 

 
 
 
 

 
Photo 11 H6230 Species rich Nardus grassland on silicious substrate in the mountain area of Jauerling, Austria (Photo Thomas 
Wrbka). 
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Photo 12 H6230 Species rich Nardus grassland on silicious substrate in the mountain area of Yspertal, Austria (Photo Thomas 
Wrbka) 
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RESULT H6230 SPECIES-RICH NARDUS GRASSLANDS ON SILICEOUS SUBSTRATES 
IN MOUNTAIN AREAS  
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5.7. H6240. Sub-pannonic steppic grasslands 
 
Annex I description 
Sub-pannonic steppic grasslands 
Natura 2000 habitat type code  6240 
Palearctic habitat code ( and Corine Biotopes)  34.315 
Priority habitat: Yes 
Parent: Semi-natural dry grasslands and scrubland facies (6200) 
 
Description 
Steppic grasslands, dominated by tussock-grasses, chamaephytes and perennials of the 
alliance Festucion vallesiacae and related syntaxa. These xerotherme communities are 
developed on southern exposed slopes with AC-soils on rocky substrate and on clay-sandy 
sedimentation layers enriched with gravels. They are partially of natural, partially of 
anthropogenic origin. 
 
Plants 
Festuca vallesiaca, Allium flavum, Gagea pusilla, Hesperis tristis, Iris pumila, Ranunculus 
illyricus, Teucrium chamaedrys, Medicago minima, Globularia cordifolia, Helianthemum 
canum, Poabadensis, Scorzonera austriaca, Potentilla arenaria, Seseli hippomarathrum, 
Alyssum alyssoides,Artemisia austriaca, Chrysopogon gryllus, Astragalus austriacus, A. 
excapus, A. onobrychis, Oxytropis pilosa, Daphne cneorum, Iris humilis ssp. arenaria, Carex 
humilis, Festuca rupicola, Stipa capillata, S.joannis, Botriochloa ischaemum. 
 
Geographic distribution 
Austria (most important sites: south slopes of the Leitha mountains, Hainburger mountains, 
mountains of the Waschberg range). 
 
Austria (Alpine, Continental), Czech Republic (Continental, Pannonian) 
Germany (Atlantic, Continental), France (Alpine, Mediterranean), Hungary (Pannonian), Italy 
(Alpine, Continental), Slovakia (Alpine, Pannonian) 
 
http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10123  
 
 
 
EBONE rules 
CLC: 321 - Natural grasslands (incl. Pastures) 
Annex I: 6240 - Sub-pannonic steppic grasslands 
  
Mapping rules: Pannonian and eastern Continental classes below 500 m clays / sands / gravels. 

South facing. 
Indicator 
species: Alyssum alyssoides, Astragalus austriacus, Iris humilis ssp. Arenaria, Stipa capillata. 

GHC: -CHE/LHE + xeric soils + variable soil structure + species + expert judgement 
Field 
identification: Straightforward because detailed description of a restricted vegetation type included. 

Occurrence: -probably in small fragmented patches 
Direct threats: Some are more or less climax others depend on grazing but probably mostly the former so limited 

threats except for fertilization. 
Climate Could expand under the likely drier conditions but adjacent land may be cultivated so expansion 

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10123
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change: unlikely. 
Succession: Colonization: status: probably Ceaspitose hemicryptophytes / Leafy hemicryptophytes with a 

representation of Shrubby chamaephytes which may expand without any management but 
otherwise stable. 
 . 

Distribution 
(sites): 

aln bor nem atn ALS CON atc PAN lus mdm mdn mds 

Distribution 
(Bunce): 

aln bor nem atn als CON atc PAN lus mdm mdn mds 
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RESULTS H6240 SUB-PANNONIC STEPPIC GRASSLANDS  
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5.8. H6250. Pannonic loess steppic grasslands 
 
Annex I description 
Pannonic loess steppic grasslands 
Natura 2000 habitat type code  6250 
Palearctic habitat code ( and Corine Biotopes)  34.91 
Priority habitat: Yes 
Parent: Semi-natural dry grasslands and scrubland facies (6200) 
 
Description 
Grassland communities rich in perennial grasses and herbs on loess deposits. Originally 
covering large areas, nowadays restricted to specific land forms like loess ridges formed by 
fluviatile erosion and accumulation. 
 
Plants 
Artyemisia pontica, Astragalus vesicarius, A. austriacus, A. onobrychis, Crambe tataria, 
Nonea pulla, Salvia nemorosa, Ornithogalum pannonicum, Agropyron pectinatum, Phlomis 
tuberosa, Bromus inermis, Festuca rupicola, Falcaria vulgaris, Peucedanum alsaticum, 
Elymus hispidus, Chamaecytisussupinus, Achillea pannonica.. 
 
Geographic distribution 
Austria  (Alpine), Austria (Continental), Czech Republic (Pannonian), Hungary (Pannonian), 
Slovakia (Pannonian) 
 
http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10124  
 
 
EBONE rules 
CLC: 321 - Natural grasslands (incl. Pastures) 
Annex I: 6250 - Pannonic loess steppic grasslands 
  
Mapping rules: Pannonian below 500 m. 

Loess soils. 
Indicator 
species: Artemesia pontica, Ornithogalum pannonicum, Achillea pannonica. 

GHC: -CHE/LHE + xeric loess soils + critical species + expert knowledge 
Field 
identification: As 6240. 

Occurrence: -Small fragmented units 
Direct threats: Information on management needs to be checked. 
Climate 
change: Could expand into other grasslands but likely to be slow because of surrounding cultivated land. 

Succession: Colonisation: status Ceaspitose hemicryptophytes / Leafy hemicryptophytes may be susceptible 
to expansion of Shrubby chamaephytes and Low phanerophytes and eventually Mid 
phanerophytes but restricted by xeric conditions. 
 . 

Distribution 
(sites): 

aln bor nem atn als con atc PAN lus mdm mdn mds 

Distribution 
(Bunce): 

aln bor nem atn als con atc PAN lus mdm mdn mds 

 

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10124
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Photo 13 H6250: Transcaucasian steppe landscape  in hilly country east of Tbilisi near the David Gareji monastery/Georgia (U. 
Bohn). 
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RESULT H6250 PANNONIC LOESS STEPPIC GRASSLANDS  
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5.9. H7110. Active raised bogs 
 
Annex I Description 
Active raised bogs 
Natura 2000 habitat type code  7110 
Palearctic habitat code ( and Corine Biotopes)  51.1 
Piority Habitat: Yes 
Parent: Sphagnum acid bogs (7100) 
 
Description 
Acid bogs, ombrotrophic, poor in mineral nutrients, sustained mainly by rainwater, with a 
water level generally higher than the surrounding water table, with perennial vegetation 
dominated by colourful Sphagna hummocks allowing for the growth of the bog (Erico-
Sphagnetalia magellanici, Scheuchzerietalia palustris p., Utricularietalia intermedio-minoris 
p., Caricetalia fuscae p.). The term "active" must be taken to mean still supporting a 
significant area of vegetation that is normally peat forming, but bogs where active peat 
formation is temporarily at a standstill, such as after a fire or during a natural climatic cycle 
e.g., a period of drought, are also included. 
 
Plants 
Erico-Sphagnetalia magellanici- Andromeda polifolia, Carex pauciflora, Cladonia spp., 
Drosera rotundifolia, Eriophorum vaginatum, Odontoschisma sphagni, Sphagnum 
magellanicum, S.imbricatum, S. fuscum, Vaccinium oxycoccos; in the Boreal region also 
Betula nana, Chamaedaphne calyculata, Calluna vulgaris, Ledum palustre and Sphagnum 
angustifolium. Scheuchzerietalia palustris p., Utricularietalia intermedio-minoris p., 
Caricetalia fuscae p.- Carex fusca, C. limosa,Drosera anglica, D. intermedia, Eriophorum 
gracile, Rhynchospora alba, R. fusca, Scheuchzeria palustris, Utricularia intermedia, U. 
minor, U. ochroleuca; in the Boreal region also Sphagnum balticum and S. majus. 
 
Geographic distribution 
Austria, Belgium, Denmark, Finland, France, Germany, Italy, Ireland, Netherlands, Spain 
(Pyrenees and Cantabrian mountains), Sweden, United Kingdom. 
 
EU27 
 
http://eunis.eea.europa.eu/habitats-factsheet.jsp?tab=0&idHabitat=10142  
 
 
 
EBONE rules 
CLC: 412 - Peat bogs 
Annex I: 7110 - Active raised bogs 
  
Mapping 
rules: Atlantic Central / Atlantic North / Boreal / Nemoral below 300m. 

Indicator 
species: Andromeda polifolia, Vaccinium oxycoccos, Drosera anglica, Drosera intermedia. 

GHC: Complexes of Cryptogames / Aquatic / Dwarf chamaephytes / Ceaspitose hemicryptophytes 
qualified with bog. 

Field 
identification: Difficult to separate from 7120 – Sphagnum dominated areas indicate quality habitat. 

http://eunis.eea.europa.eu/habitats-factsheet.jsp?tab=0&idHabitat=10142
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Occurrence: Usually in discrete units but in the Atlantic zones difficult to separate from other bogs. 
Direct 
threats: Drainage, peat cutting. 

Climate 
change: Increases the rate of drying out and colonization by scrub and loss of Sphagnum species. 

Succession: Colonization by Low phanerophytes / Mid phanerophytes and eventually Tall phanerophytes. 
drying out and destruction of the bog surface. 
 . 

Distribution 
(sites): 

aln BOR NEM ATN ALS CON ATC pan LUS MDM mdn mds 

Distribution 
(Bunce): 

aln bor nem atn als con atc pan lus mdm mdn mds 

 
 

 
Photo 14 Active raised bogs at Endla, Estonia (Photo Mucher). 
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RESULT H7110. ACTIVE RAISED BOGS  
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5.10. H7130  Blanket bogs ( * if active bog) 
 
  
Annex I Desciption 
Blanket bogs ( * if active bog) 
Natura 2000 habitat type code  7130 
Palearctic habitat code ( and Corine Biotopes)  52.1 & 52.2 
Priority Habitat: Yes 
Parent: Sphagnum acid bogs (7100) 
 
Description 
Extensive bog communities or landscapes on flat or sloping ground with poor surface 
drainage, in oceanic climates with heavy rainfall, characteristic of western and northern 
Britain and Ireland. In spite of some lateral water flow, blanket bogs are mostly ombrotrophic. 
They often cover extensive areas with local topographic features supporting distinct 
communities [Erico-Sphagnetalia magellanici: Pleurozio purpureae-Ericetum tetralicis, 
Vaccinio-Ericetum tetralicis p.; Scheuchzerietalia palustris p., Utricularietalia intermedio-
minoris p., Caricetalia fuscae p.]. Sphagna play an important role in all of them but the 
cyperaceous component is greater than in raised bogs. The term "active" must be taken to 
mean still supporting a significant area of vegetation that is normally peat forming. 
 
Sub-types in the British Isles 
52.1 – HyperAtlantic blanket bogs of the western coastlands of Ireland, western Scotland and its islands, 
Cumbria, Northern Wales ; bogs locally dominated by sphagna (Sphagnum auriculatum, Interpretation Manual - 
EUR25 Page 74  S. magellanicum, S. compactum, S. papillosum, S. nemoreum, S. rubellum, S. tenellum, S. 
subnitens), or, particularly in parts of western Ireland, mucilaginous algal deposits (Zygogonium). 
52.2 – Blanket bogs of high ground, hills and mountains in Scotland, Ireland, Western England and Wales. 
 
Plants 
52.1- Calluna vulgaris, Campylopus atrovirens, Carex panicea, Drosera rotundifolia, Erica 
tetralix, Eriophorum vaginatum, Molinia caerulea, Myrica gale, Narthecium ossifragum, 
Pedicularis sylvatica, Pinguicula lusitanica, Pleurozia purpurea, Polygala serpyllifolia, 
Potentilla erecta,Racomitrium languginosum, Rhynchospora alba, Schoenus nigricans, 
Scirpus cespitosus, Sphagnum pulchrum, S. strictum, S. compactum, S. auriculatum. 52.2 - 
Calluna vulgaris, Diplophyllum albicans,Drosera rotundifolia, Empetrum nigrum, Erica tetralix, 
Eriophorum vaginatum, Mylia taylorii,Narthecium ossifragum, Rubus chamaemorus, Scirpus 
cespitosus, Vaccinium myrtillis. 
 
Geographic distribution 
Austria  (Alpine), Estonia (Boreal), Spain (Atlantic), Spain (Mediterranean), France (Atlantic), 
Greece (Mediterranean), Ireland (Atlantic), Italy (Alpine), Italy (Continental), Portugal 
(Macaronesian), Sweden (Alpine), United Kingdom (Atlantic) 
 
http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10144  
 
 
 
EBONE rules 
CLC: 412 - Peat bogs 
Annex I: 7130 - Blanket bogs ( * if active bog) 
  
Mapping rules: Atlantic Central / Atlantic North above 300m. 

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10144
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Indicator 
species: Drosera rotundifolia, Eriophorum vaginatum, Empetrum nigrum, Rubus chamaemorus. 

GHC: Leafy hemicryptophytes, but usually with under 30% Low phanerophytes / Evergreen. 
Field 
identification: 

Several key species enable identification notably Rubus chamaemorus and Eriophorum 
vaginatum. 

Occurrence: Large units where present. 
Direct threats: Overgrazing and conversion to agriculture; drainage. 
Climate change: Will lead to drying out and colonization by grasses. 
Succession: At low altitudes could be colonized by Low phanerophytes / Mid phanerophytes but only if 

climate change reduces the water saturation. 
 . 

Distribution 
(sites): 

aln bor nem ATN als con ATC pan LUS mdm mdn mds 

Distribution 
(Bunce): 

aln bor nem atn als con atc pan lus mdm mdn mds 

 

 
Photo 15 Lowland blanket bogs, Conemera, Ireland. 

(source: http://144.41.253.33/lacope/gallery/gallery/albums/connemara/Lowland_blanket_bogs_and_lakes.jpg)  
 

http://144.41.253.33/lacope/gallery/gallery/albums/connemara/Lowland_blanket_bogs_and_lakes.jpg
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Photo 16 H7130: Irish lowland blanket bog (S5) with Molinia caerulea, Myrica gale, Schoenus nigricans and Calluna vulgaris, 
Nephin Mountain behind with dry heath and scree; Owenboy, Co. Mayo/western Ireland (N. Lockhart). 

  

 
Photo 17 H7130: Extensive Irish blanket bogs of the lowlands, with numerous bog pools; Owenduff Valley, Co. Mayo/Ireland 
(J. Cross). 
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RESULTS H7130. BLANKET BOGS  
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5.11. H9150. Medio-European limestone beech forests of the 
Cephalanthero-Fagion 

  
Annex I Description 
Medio-European limestone beech forests of the Cephalanthero-Fagion 
Natura 2000 habitat type code  9150 
Palearctic habitat code ( and Corine Biotopes)  41.16 
Priority Habitat: No 
Parent: Forestst of Temperate Europe (9100) 
 
Description 
Xero-thermophile Fagus sylvatica forests developed on calcareous, often superficial, soils, 
usually of steep slopes, of the medio-European and Atlantic domaines of Western Europe 
and of central and northern Central Europe, with a generally abundant herb and shrub 
undergrowth, characterized by sedges (Carex digitata, Carex flacca, Carex montana, Carex 
alba), grasses (Sesleria albicans, Brachypodium pinnatum), orchids (Cephalanthera spp., 
Neottia nidus-avis, Epipactis leptochila, Epipactis microphylla) and thermophile species, 
transgressive of the Quercetalia pubescentipetraeae. The bush-layer includes several 
calcicolous species (Ligustrum vulgare, Berberis vulgaris) and Buxus sempervirens can 
dominate. 
 
Sub-types : 
 41.161 - Middle European dry-slope limestone beech forests 

Middle European sedge and orchid beech woods of slopes with reduced water availability. 
 41.162 - North-western Iberian xerophile beech woods 

Fagus sylvatica forests of relatively low precipitation zones of the southern ranges of the Pais 
Vasco and of superficially dry calcareous soils of the Cordillera Cantabrica, with Brachypodiumpinnatum ssp. 
rupestre, Sesleria argentea ssp. hispanica, Carex brevicollis, Carex ornithopoda, Interpretation Manual - EUR25 
Page 98 
Carex sempervirens, Carex caudata, Cephalanthera damasonium, C. longifolia, Epipactis 
helleborine, Epipactis microphylla, Neottia nidus-avis. 
 
 
Plants 
Fagus sylvatica, Carex digitata, C. flacca, C. montana, C. alba, Sesleria albicans, 
Brachypodium pinnatum, Cephalanthera spp., Neottia nidus-avis, Epipactis leptochila, 
Epipactis microphylla, Buxus sempervirens. 
 
 
Geographic distribution 
EU27 (minus the Netherlands and Portugal) 
 
http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10189  
 
 
 
EBONE rules 
CLC: 311 - Broad-leaved forest 
Annex I: 9150 - Medio-European limestone beech forests of the Cephalanthero-Fagion 
  
Mapping rules: Atlant. Central all Alpine South / Continental 400-1200 + Calcareous soils + Fagus. 
Indicator Fagus sylvatica, Carex digita, Cephalantera spp., Neotttia nidus-avis. 

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10189
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species: 
GHC: Forest phanerophytes / Winter deciduous + Fagus over 70% + shallow dry calcareous soils + 

steep slopes + ground flora species. 
Field 
identification: A well defined category but grades into 9130. 

Occurrence: Widespread in large patches but often replaced by Picea abies in the Alps. 
Direct threats: Felling with deeper soils conversion to conifer. 
Climate change: Thermophilic species will be favoured. 
Succession: Climax. 
Distribution 
(sites): 

aln bor nem ATN ALS CON ATC PAN LUS MDM MDN mds 

Distribution 
(Bunce): 

aln bor nem atn ALS con ATC PAN lus mdm mdn mds 

 
 

 
Photo 18 Medio-European limestone beech forest on a slope above the Ticha orlice river, Ceskomoravska-mezihori hills, Eastern 
Bohemia, Czech Republic (photo Pavel Kovar). 
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RESULT H9150 MEDIO-EUROPEAN LIMESTONE BEECH FORESTS 
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5.12. H9410. Acidophilous Picea forests of the montane to alpine 
levels (Vaccinio-Piceetea) 

  
Annex I description 
Acidophilous Picea forests of the montane to alpine levels (Vaccinio-Piceetea) 
Natura 2000 habitat type code  9410 
Palearctic habitat code ( and Corine Biotopes)  42.21 -> 42.23 (42.25) 
Priority Habitat: No 
Parent: Temperate Mountainous Coniferous Forests (9400)  
 
Description 
Sub-alpine and alpine conifer forests (dominated by Picea abies and Picea orientalis). 
Sub-types: 
 42.21 - Alpine and Carpathian sub-alpine spruce forests. Piceetum subalpinum.Picea abies forests of the 

lower sub-alpine level, and of anomalous stations in the montane level, of the outer, intermediate and inner 
Alps; in the latter, they are often in continuity with the montane spruce forests of 42.22. The spruces are often 
stunted or columnar; they areaccompanied by an undergrowth of decidedly sub-alpine affinities. Picea abies 
forests of thelower sub-alpine level of the Carpathians. 

 42.22 - Inner range montane spruce forests. Piceetum montanum. Picea abies forests of the montane level of 
the inner Alps, characteristic of regions climatically unfavourable to both beech and fir. Analogous Picea 
abies forests of the montane and collinear levels of the inner basin of the Slovakian Carpathians subjected to 
a climate of high continentality.  

 42.23 - Hercynian sub-alpine spruce forests Sub-alpine Picea abies forests of high Hercynian ranges 21. 
 42.25 - Peri-Alpine spruce forests Spontaneous Picea abies formations occupying outlying altitudinal or 

edaphic enclaves within the range of more predominant vegetation types of the montane levels of the outer 
Alps, the Carpathians, the Dinarides, the Jura, the Hercynian ranges, the subalpine levels of the Jura, the 
western Hercynian ranges and the Dinarides 

 
Plants 
Picea abies, Vaccinium spp. 
 
Geographic distribution 
Austria  (Alpine, Continental), Czech Republic (Continental) Germany (Alpine, Continental), 
France (Alpine, Continental), Greece (Mediterranean), Italy (Alpine, Continental, 
Mediterranean), Poland (Alpine, Continental), Slovenia (Alpine), Slovakia (Alpine) 
 
Weblink: http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10228  
 
EBONE rules 
CLC: 312 - Coniferous forest 
Annex I: 9410 - Acidophilous Picea forests of the montane to alpine levels (Vaccinio-Piceetea) 
  
Mapping rules: Alpine South / Continental 800 m-1700 m ?. Mediterranean Mountains but north of Pyreneees 

only 
Indicator 
species: Picea abies, and rarely,  Picea orientalis. 

GHC: - Forest phanerophytes/conifer over 70% + moist acid soils + key species 
Field 
identification: 

Well defined species patterns but depends whether converted Fagus/and/or plantation forests 
are included. 

Occurrence: Extensive forests often artificially pure spruce from forest practice. Also many converted Fagus 
forests. 

Direct threats: Felling 
Climate change: Could threaten spruce dominance by encouraging disease at lower altitudes 

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10228
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Succession:  Climax but structure will change with age 
Distribution (s): aln bor nem atn ALS CON atc pan lus MDM mdn mds 
Distribution (B): aln bor nem atn ALS CON atc pan lus mdm mdn mds 

 
Photo 19 Vysoké Tatry, Štrbské pleso,  at  1400 m. Asociácia: Vaccinio myrtilli-Piceetum, zväz: Piceion excelsae, trieda: 
Vaccinio-Piceetea with Vaccinium myrtillus (Photo: Jaroslav Košťál, 14.6.2006)  

Source: http://www.sbs.sav.sk/atlas/admin/img/Vaccinio%20myrtilli-Picetum.JPG  

http://www.sbs.sav.sk/atlas/admin/img/Vaccinio%20myrtilli-Picetum.JPG
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RESULT H9410 ACIDOPHILOUS PICEA FORESTS OF THE MONTANE TO ALPINE 
LEVELS  
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5.13. H9420. Alpine Larix decidua and/or Pinus cembra forests 
  
Annex I Description 
Alpine Larix decidua and/or Pinus cembra forests 
Natura 2000 habitat type code  9420 
Palearctic habitat code ( and Corine Biotopes)  42.31 & 42.32 
Priority Habitat: No 
Parent: Temperate Mountainous Coniferous Forests (9400) 
 
Description 
Forests of the sub-alpine and sometimes montane levels, dominated by Larix decidua or 
Pinus 
cembra; the two species may form either pure or mixed stands, and may be associated with 
Piceaabies or Pinus uncinata. 
 
Sub-types: 
 42.31 - Eastern Alpine siliceous larch and arolla forests. Larici-Cembretum. Sub-alpine Larix decidua, Pinus 

cembra, or Larix decidua-Pinus cembra forests of the eastern and central Alps, mostly of the inner ranges, 
usually on siliceous substrates, with an often species-poor undergrowth comprising Vaccinium myrtillus, 
Rhododendron ferrugineum, Calamagrostis villosa, Luzula albida. 

 42.32 - Eastern Alpine calcicolous larch and arolla forests. Laricetum, Larici-Cembretum Rhododendretosum 
hirsute. Sub-alpine and montane Larix decidua, Larix decidua - Picea abies, Pinus cembra or Larixdecidua-
Pinus cembra forests of the eastern and central Alps, mostly of the outer ranges, on calcareous substrates, 
with a usually species-rich undergrowth including Erica herbacea, Polygala chamaebuxus, Rhododendron 
hirsutum or Pinus mugo. 

 42.35 - Carpathian larch and arolla forests Uncommon Larix decidua or Pinus cembra formations of the 
Carpathians, each occurring as a single dominant, together as codominants, or mixed with Picea abies. 

 
Plants 
Larix decidua, Pinus cembra. 
 
Geographic distribution 
Austria  (Alpine), Germany (Alpine), France (Alpine), Italy (Alpine) 
Poland (Alpine), Slovakia (Alpine). 
 
http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10229  
 
EBONE rules 
CLC: 312 - Coniferous forest 
Annex I: 9420 - Alpine Larix decidua and/or Pinus cembra forests 
  
Mapping rules: Alpine South 1000-1700 m?. Mediterranean mountains over 100m but north of Pyrenees only 

plus  native distribution of 
Larix / P.cembra. 

Indicator 
species: Larix decidua, Pinus cembra, Vaccinium myrtillus. 

GHC: - Forest phanerophyte/Conifer over 70%/ + Larix or P.cembra but only native stands + moist acid 
soils + species indicators 

Field 
identification: Usually present as more or less pure stands so readily identifiable. 

Occurrence: Often present as altitudinal bands and relatively small patches. May be confused with deciduous 
forest in CLC and may be also below the minimum mappable unit. 

Direct threats: Felling and conversion to grazing land or spruce 
Climate Could exert pressure on tree health at lower altitudes but also increase altitude range 

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10229
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change: 
Succession:  Probaly climax but proportions of species may change with age. 
Distribution 
(sites): 

aln bor nem atn ALS con atc pan lus MDM mdn mds 

Distribution 
(Bunce): 

aln bor nem atn ALS con atc pan lus mdm mdn mds 

 
 

 
Photo 20 9420: Subalpine arolla pine (Pinus cembra) forest in the Alps at the forestline in combination with dwarf shrub 
communities (C19); Oberhauser Zirbenwald, Defereggen Valley, Eastern Tyrol/Austria (K. Zukrigl). 
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RESULT H9420. ALPINE LARIX DECIDUA AND/OR PINUS CEMBRA FORESTS 
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5.14. H9510. Southern Apennine Abies alba 
 
Annex I description 
Southern Apennine Abies alba 
Natura 2000 habitat type code  9510 
Palearctic habitat code ( and Corine Biotopes)   
Priority Habitat: Yes 
Parent: Mediterranean and Macaronesian mountainous coniferous forests (9500) 
 
Description 
Relict Abies alba woods associated with the beech forests of the Geranio versicolori-Fagion. 
 
Plants 
Abies alba. 
 
Geographic distribution 
Southern Apennines (Molise, Basilicata, Calabria) 
 
Italy (Alpine, Meditterranean)  
 
http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10232  
 
 
EBONE rules 
CLC: 312 - Coniferous forest 
Annex I: 9510 - Southern Apennine Abies alba 
  
Mapping rules: Mediterranean mountains southern Apennines only. Over 800m? 

Abies alba. 
Indicator species: Abies alba. 
GHC: - Forest phanerophytes/over70% conifer + Abies alba + further expert knowledge 

and indicators 
Field 
identification: 

Dependant on one species therefore clear cut. But problem will be gradients with 
Fagus forests 

Occurrence: No information. 
Direct threats: Probably felling 
Climate change: Could be threatened by increased summer drought 
Succession:  .likely to be climax 
Distribution 
(sites): 

aln bor nem atn als con atc pan lus mdm MDN mds 

Distribution 
(Bunce): 

aln bor nem atn als con atc pan lus mdm mdn mds 

 
 
 

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10232
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RESULT H9510. SOUTHERN APENNINE ABIES ALBA 
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6. INTERCALIBRATION OF IN-SITU DATA WITH 
ENVIRONMENTAL DATA  

 

6.1.  The decision tree experiment 
Decision trees are powerful tools for classification. However, how can we easily derive 
knowledge rules in an automated way from a certain number of environmental spatial data 
sets as an alternative method for spatial modelling of European habitats? Expert knowledge 
has been used in the former sections to build such rules. However, the construction of the 
decision rules might be time consuming, especially if you want to develop them for all Annex 
I habitat types. Moreover, the rules are in some cases arbitrary.  
 
A different approach could be more appropriate, where in-situ data for specific habitats are 
used directy in combination with the available environmental data sets to determine the 
decision rules in an more automatic way. Finally, in order to identify the spatial distribution of 
the specific habitats across Europe, based on the available environmental data sets 
(including remotely sensed derived land cover information and other parameters).  
 
In order to investigate this, a decision tree experiment was implemented for two Annex I 
habitats: 
- Alpine and Boreal Heaths (H4060) 
- Medio-European Limestone beech forests of the Cephalanthero-Fagion (H9150). 
 
For each of these habitats, there were vegetation releves (available as scattered sample 
points) over Austria, Czech Republic, Slovakia, Romania, see page 9-10. For H4060, there 
were even 435 sample points in Britain. To be exact, there were 1835 sample points for 
H4060 and 559 for H9150. All releves were given a unique sample number. For each of 
these points the soil map was sampled, by means of a spatial join. Value extraction was 
used to sample 3 environmental layers, namely climate, altitude, and Corine land cover. 
Examples of environmental zones (climate) are: Atlantic North, Continental, Boreal and 
Arctic. The land cover and altitude rasters both had a cell size of 100 * 100 meters, but the 
raster representing the environmental zones had a cell size of 1000 * 1000 meters. Thus a 
dataset with 2394  (1835+559) records was acquired with over 128 attributes, mostly derived 
from the soil map. 
 
Then a selection of the data was read into the software programme R – an environment for 
statistical computing and graphics. The following variables were selected as statistically 
significant data layers to fit a classification tree: 
 Altitude (RASTERVALU) 
 Biogeographic region (ECOREGION) 
 Land cover class (LANDCOVER) 
 Soil type acc. to the FAO85 classifications 
 Available water capacity of the top soil 
 Organic matter content of the top soil 
 Dominant parent material (MAT1) 
 Dominant surface textural class 
 Depth class of an obstacle to roots (ROO) 
 Dominant annual average soil water regime class of the soil profile. 

Apart from the first variable, all the others are nominal variables (cf tables 5 and 6). All 
records were used for training. The variables actually used in the tree construction were: 
LANDCOVER, RASTERVALU, ECOREGION, MAT1 and ROO. With a misclassification error 
rate of only 0.02887, a reasonable result was obtained. It means that on the basis of values 
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for the mentioned variables, one would predict correctly from which of the 2 habitats the 
sample was taken in approx. 97% of the cases. 
The output is given in table 4 below. The figures in red refer to the habitat: 1 refers to H9150 
and 2 refers to H4060. A picture of the tree was also obtained (figure 4). 
Subsequently we used the digital soil map and the various input rasters to determine for 
which of the grid cells the values conform to the found classification tree – in other words: 
which grid cells could possibly host one of the two habitats used in this experiment. The 
preliminary results were encouraging.  
 

Table 4 Experimental decision tree (cf tables 5 and 6 for code values). 

node), split, n, deviance, yval, (yprob) 

      * denotes terminal node 

 1) root 2355 2581.000 2 ( 0.237367 0.762633 )   

   2) as.factor(LANDCOVER): 2,3,8,12,18,20,21,23,25,29,41 598  621.000 1 ( 0.785953          

 0.214047 )   

     4) RASTERVALU < 1041 467  222.700 1 ( 0.935760 0.064240 )   

       8) as.factor(ECOREGION): 6,8,11 390   53.500 1 ( 0.987179 0.012821 ) * 

       9) as.factor(ECOREGION): 4,5 77   97.070 1 ( 0.675325 0.324675 )   

        18) as.factor(MAT1): 1,4,8,21 58   42.720 1 ( 0.879310 0.120690 ) * 

        19) as.factor(MAT1): 9,13,15,17,18,25,26,NA,NA 19    7.835 2 ( 0.052632 

       0.947368 ) * 

     5) RASTERVALU > 1041 131  147.900 2 ( 0.251908 0.748092 )   

      10) as.factor(MAT1): 4,13 64   88.660 1 ( 0.515625 0.484375 ) * 

      11) as.factor(MAT1): 8,15,16,18,21 67    0.000 2 ( 0.000000 1.000000 ) * 

   3) as.factor(LANDCOVER): 24,26,27,31,32,34,36 1757  704.300 2 ( 0.050655 

0.949345 )   

     6) as.factor(MAT1): 3,4,8,11,15,21,24,NA 334  360.700 2 ( 0.230539 0.769461 )   

      12) RASTERVALU < 945 63   17.740 1 ( 0.968254 0.031746 ) * 

      13) RASTERVALU > 945 271  121.600 2 ( 0.059041 0.940959 ) * 

     7) as.factor(MAT1): 1,2,5,9,13,16,17,18,19,20,22,23,25,26,NA,NA 1423  138.500 

2 (   0.008433 0.991567 )   

      14) as.factor(ROO): 2 137   81.360 2 ( 0.087591 0.912409 )   

        28) RASTERVALU < 1355.5 12   13.500 1 ( 0.750000 0.250000 ) * 

        29) RASTERVALU > 1355.5 125   28.310 2 ( 0.024000 0.976000 ) * 

      15) as.factor(ROO): 0,1,3,4 1286    0.000 2 ( 0.000000 1.000000 ) * 

 

 
Figure 4 Diagram of the descion tree 
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Table 5 The legend of the CORINE land cover. 

Class nr Class description 
1 continuous urban fabric 
2 discontinuous urban fabric 
3 industrial and commercial units 
4 road and rail networks and associated land 
5 port areas 
6 airports 
7 mineral extraction sites 
8 dump sites 
9 construction sites 

10 green urban areas 
11 port and leisure facilities 
12 non-irrigated arable land 
13 permanently irrigated land 
14 rice fields 
15 vineyards 
16 fruit trees and berry plantation 
17 olive groves 
18 pastures 
19 annual cops associated with permanent crops 
20 complex cultivation patterns 
21 land principally occupied by agriculture with significant natural vegetation 
22 agro-forestry areas 
23 broad-leaved forest 
24 coniferous forest 
25 mixed forest 
26 natural grasslands 
27 moors and heath lands 
28 sclerophyllous vegetation 
29 transitional woodland-scrub 
30 beaches, sand, dunes 
31 bare rocks 
32 sparsely vegetated areas 
33 burnt areas 
34 glaciers and perpetual snow 
35 inland marshes 
36 peat bogs 
37 salt marshes 
38 salines 
39 intertidal flats 
40 water courses 
41 water bodies 
42 coastal lagoons 
43 estuaries 
44 sea and ocean 

 

Table 6 The legend for the classification into environmental zones 

Class nr Class description 
1 Alpine North 
2 Boreal 
3 Nemoral 
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4 Atlantic North 
5 Alpine South 
6 Continental 
7 Altlantic Central 
8 Pannonian 
9 Lusitanian 
10 Anatolian 
11 Mediterranean Mountains 
12 Mediterranean North 
13 Mediterranean South 
14 Arctic 
15 Steppic 

 
The legend for the predominant mother material (MAT1) is: 

Class nr Class description 
10 Undifferentiated alluvial deposits (or glacial deposits) 
  11 River alluvium 
  12 Estuarine/Marine alluvium 
  13 Glaciofluvial deposits 
  14 Glaciofluvial drift 
  15 Colluvium 
20 Calcareous rocks 
  21 Limestone 
  22 Secondary chalk 
  23 Marl 
  24 Gypsum 
  25 Dolomite 
30 Clayey materials 
  31 Old clayey sedimentary deposits 
  32 Alluvial or glaciofluvial clay 
  33 Residual clay from calcareous rocks 
  34 Claystone, mudstone 
  35 Calcareous clay 
40 Sandy materials 
  41 Old sandy sedimentary deposits 
  42 Alluvial or glaciofluvial sands 
  43 Eolian sands 
  44 Coastal sands (Dune sands) 
  45 Sandstone 
50 Loamy materials 
  51 Residual loam 
  52 Eolian loam 
  53 Siltstone 
60 Detrital formations 
  61 Arkose  
  62 Breccia and Puddingstone 
  63 Flysch and Molasse 
  64 Ranas 
70 Crystalline rocks and migmatites 
  71 Acid crystalline rocks (and migmatites) 
  72 Non acid crystalline rocks (and migmatites) 
  73 Crystalline metamorphic rocks 
  74 Schists 
  75 Other metamorphic rocks 
80 Volcanic rocks 
  81 Acid volcanic rocks 
  82 Basic volcanic rocks 
  83 Volcanic slag 
90 Other rocks 
  91 Organic materials 
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The legend for the rooting depth (ROO) is: 

Class nr Class description 
0 No information 
1 No obstacle to roots between 0 and 80 cm 
2 Obstacle to roots between 60 and 80 cm depth 
3 Obstacle to roots between 40 and 60 cm depth 
4 Obstacle to roots between 20 and 40 cm depth 
5 Obstacle to roots between 0 and 80 cm depth 

 
The decision rules from the above tree were then applied to the whole European grid. First 
classifications were carried out for all the branch nodes, after which classifications were done 
for the terminal nodes or leaf nodes. The result of the latter steps is shown in figure 5 below. 
The leaf nodes pertaining to the beech forest habitat (9150) are shown in lilac colors and 
those pertaining to the heath habitat (4060) in green colors. 
 

 
Figure 5 Result of the decision tree classification experiment 

 
When compared with maps earlier obtained, see page 19 for H4060 and page 60 for H9150, 
the predicted habitats are is much too large.  It is obvious that the in-situ data have to be 
selected more carefully, especially in relation to the scale of the environmental data sets. It is 
obviously strange that areas with land covers such as “discontinuous urban fabric” and 
“industrial and commercial units” are indicated as potential host areas for the two selected 
habitats. This was based upon only 18 vegetation releves, and hence were wrongly selected.  
 
There is also a need to be more critical also about the biogeographic regions. This variable is 
important only in one part of the tree and at that point only 5 different biogeographic regions 
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are considered out of the 7 which occur in the data. In the whole of Europe up to 16 different 
biogeographic regions occur. In other words: the tree is based upon samples from more or 
less the same latitude in Europe where only few of the possible biogeographic regions occur, 
but it was applied to the whole of Europe.  
 
The conclusion is that it only makes sense to use decision trees for classifying when 
representative samples are included. And that sometimes it might be necessary to prune a 
decision tree before it is applied. 
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7. EO TIME-SERIES ANALYSIS TO IDENTIFY HABITATS  
 

7.1. Introduction 
 
As the objective here is to enhace the spatial distribution of European habitats based on their 
phenology. For this reason NDVI-time series have been analysed that could be processed 
for the whole of Europe. There is a demand for a high temporal resolution together with a 
spectral resolution that allows the calculation of the Normalized Difference Vegetation Index 
(NDVI). The best suitable sensor, concerning a high temporal resolution and adequate 
spectral and spatial  resolution, is MERIS (300m) or MODIS (250m). Since the latter is easy 
and freely downloadable, we used MODIS satellite data for our purpose. MODIS has a daily 
revisit time with a spatial resolution of 250 meter.  
 
MODIS satellite data 
 
The analysis is based upon multi-annual time series of MODIS images. MODIS has the 
highest resolution (250 m) of freely available remote sensing images with a daily revisit time. 
MODIS has an additional advantage, since it also provides composite images from the 16-
days-maximum-NDVI product (MOD13Q1). More precisely, this MODIS product is the NDVI 
16-Day L3 Global 250m. We used the version 5 MODIS product. Version-5 MODIS / Terra 
NDVI products have “Validated Stage 2“, meaning that accuracy has been assessed over a 
widely distributed set of locations and time periods via several ground-truth and validation 
efforts. Although there may be later improved versions, these data are ready for use in 
scientific publications. The 16-days-maximum-NDVI composite images have the advantage 
to exclude cloud affected data. Only when all 16 days in a composite are cloudy, the image is 
cloud affected. Unfortunately this is a regular occurrence in The Netherlands, so screening is 
necessary to filter out the cloud affected data. Additionally, the 16-day composites use a 
mask to filter out the large surfaces of open water, like sea and lakes. This mask is known to 
be inconsistent, which makes the results near the shoreline (within 15 km) unreliable. In spite 
of the shortcomings of the composite images, the 16-days-maximum-NDVI product also 
saves a large amount of time in pre-processing and provides annually 23 images which is 
sufficient to be used in time series analyses. Therefore the NDVI composite product has 
been downloaded and used during this research. 
 
HANTS algorithm 
 
The seasonal cycle of the NDVI can be approximated by a limited number of frequency 
components derived from a Fourier analyses. This principle is implemented in the HANTS 
algorithm (Harmonic Analysis of NDVI Time-Series) (Roerink et al., 2000) which employs an 
iterative routine to filter out poor NDVI estimates due to cloud cover or other disturbances 
from the NDVI cycle. In the current analyses only the zero (mean), first (annual cycle) and 
second (half-yearly cycle) frequency components of the Fourier analysis were used to 
describe the NDVI cycle. 
 
The HANTS algorithm was originally developed by Wout Verhoef from NLR (Netherlands 
Space Laboratorium) in the Netherlands. The idea behind the algorithm was to have a fast 
method for smoothing and reconstructing NDVI time-series at continental scales. For various 
purposes it was desirable to have a version of HANTS which was easy to use but with similar 
functionality. This has led to the implementation of HANTS using the remote sensing 
software package IDL-ENVI. 
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The basic concept behind the algorithm is that the vegetation development as indicated by 
the NDVI has a strong seasonal effect in most parts of the world (apart from the tropics) 
which can be described using a series of low frequency sine functions with different phases, 
frequencies and amplitudes. Cloud cover and other disturbing effects are usually more or 
less randomly occuring “spikes” in the NDVI time-series and can be considered as high 
frequency “noise”. The working of the HANTS algorithm is therefore based on a Fourier 
analysis.  
 
In contrast to the standard fast Fourier transform (FFT), the HANTS algorithm works in an 
iterative manner (see next figure). The algorithm starts in the upper left block with the raw 
NDVI time series. These are used as input in the FFT and the relevant frequencies (usually 
mean, annual and half-year signal) are selected from the fourier spectrum. The inverse FFT 
(iFFT) then transforms the spectrum back into a filtered NDVI time-series. Next, a 
comparison is made between the filtered NDVI time-series and the original NDVI time-series. 
The difference is calculated between the filtered and the original NDVI time-series. Any 
points in the original NDVI time-series that are below a user-defined treshold are considered 
‘cloudy’ and are replaced with the value of the filtered NDVI time-series. However, by 
replacing values in the NDVI time-series the average of the entire profile changes (becomes 
larger). Therefore a next iteration is needed and again the NDVI time-series is searched for 
possible cloud contaminated NDVI observations. This process continues until no new points 
are being found. 
 

 

NDVI

Time-series

Apply

FFT

Select
harmo-

nics

Apply

iFFT
Filtered

Time-series

Original NDVI

Time-series

Com-
pare

Any NDVI points below
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Up-
date
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 HANTS Filtered
NDVI Time-series

no

 
 
Figure 6 Iterative workflow of the HANTS algorithm. See text for explanation of the algorithm and acronyms.
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The use of time series analysis on remote sensing images offers great opportunities for year-to-
year monitoring of the earth surface. However, two serious drawbacks have to be dealt with, 
namely (i) time series analysis on remote sensing data produces huge amounts of data that 
needs to be processed and analysed and (ii) the presence of erroneous data, like cloud affected 
or missing pixels. The selected HANTS (Harmonic ANalysis of Time Series) algorithm (Roerink et 
al., 2000) deals with the latter mentioned drawbacks pretty well, and has three major benefits 
(Roerink & Danes, 2010): 

 Large data reduction. The method allows reducing the amount of data by a factor of 
at least 5 without loss of information. In the example in the Figure 7 the individual 
NDVI values from 36 decades (10 day periods) are reduced into 5 HANTS 
components (3 amplitude and 2 phase values). 

 Exclusion of deviant data exclusion. The method is able to exclude cloud affected and 
missing pixels in the analysis 

 Vegetation dynamics. Objective and quantitative characterisation of plant phenology. 
The time series of NDVI remote sensing images are described by the Fourier 
components (amplitude and phase) 

  
Because of its benefits, HANTS has been used successfully in various applications, such as 
cloud screening, removal and replacement (Roerink et al., 2000), land cover classification 
(Zhang et al., 2008), plant phenology characterisation (White et al., 2009) and climate 
variability assessment (Roerink et al., 2003). 
 
HANTS is a least squared curve fitting procedure, based on harmonic components (cosine-
functions), and considers only the most significant frequencies expected to be present in the 
time profiles. In an iterative process, input data values that have a large positive or negative 
deviation from the current estimated curve are excluded from the procedure. This process is 
repeated until the maximum error is acceptable or the number of remaining values becomes 
too small. The entire curve fitting procedure is controlled by 5 parameters, which have to be 
set at the beginning of each HANTS run: 

 Number Of Frequencies (NOF). A curve is described by mean of its average 
(frequency zero) and a number of cosine functions with different frequencies. By this 
control parameter the user defines how many cosine functions are used and what the 
frequency (time period) of each cosine function is. This results in 2 x NOF - 1 output 
parameters (an amplitude and phase value for each frequency), where NOF includes 
a frequency zero (time series average), which has no phase. 

 High/Low Suppression Flag (SF). This flag indicates whether high or low values 
(outliers) should be rejected during curve fitting. 

 Invalid Data Rejection Threshold (IDRT). In some cases one might know that digital 
numbers below or above a certain threshold should be considered invalid. 

 Fit Error Tolerance (FET). During curve fitting the absolute difference in the Hi/Lo 
direction of the remaining (i.e. not rejected) data values with respect to the current 
curve is determined after each iteration. The iteration stops when the difference of all 
remaining values becomes smaller than the FET. The FET value should not be set 
too low, as otherwise the fit might be based on too few values, which gives unreliable 
results. 

 Degree of OverDeterminedness (DOD). The number of valid observations must 
always be greater than or equal to the number of parameters that describe the curve 
(2 x NOF – 1). In order to get a more reliable fit the user can decide to use more data 
values than the necessary minimum. The minimum number of extra data values, 
which have to be used in the ultimate fit, is given by the DOD value. 
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Figure 7 Visualisation of the HANTS algorithm (after Roeirnk et al., 2000). 

The basic principle how HANTS works is visualised in Figure 7, where an original and 
HANTS reconstructed NDVI time series for a pixel of arable farming in Northern France are 
shown. The number of frequencies used by HANTS was set at 3: the average NDVI 
(frequency = 0), the yearly amplitude (frequency = 1) and the amplitude of 6 months 
(frequency = 2). The iteration stopped when 14 out of the 36 original NDVI values were 
rejected, i.e. classified as cloud affected data points. In this case, the remaining 22 values 
are allowed to have a maximum negative deviation from the curve of 0.05 NDVI units (=FET). 
The right graphs in Figure 7 shows the harmonic components of the 3 different frequencies, 
from which the cloud-free profile is reconstructed. Frequency zero (straight line) is 
represented only by amplitude and no off-set, while the other remaining frequencies (cosine 
functions) are defined by an amplitude and a phase value. 
 
Example HANTS Results 
 
HANTS has been apllied now on the MODIS 16-day maximum NDVI composites for the 
years 2001 & 2006. The curve fitting process is controlled by 5 control parameters, which 
have to be set at the beginning of each HANTS run (Roerink and Danes, 2010). In the 
framework of this study the control parameters are set at: 

 NOF = 3, where ; 
o Frequency 0: NDVI average 
o Frequency 1: Phase and amplitude of the annual cosine function 
o Frequency 2: Phase and amplitude of the six monthly cosine function 

 SF = Low; which means only low values (outliers) should be rejected during curve 
fitting, as they correspond to cloud affected data. 

 IDRT = 0; as missing data in the original NDVI composites have a value 0.  
 FET = 0.05; as the NDVI values ranges from 0 to 1, a FET of 0.05 means that 5% 

deviation from the fitted curve is tolerated. 
 DOD = 8; the maximum number of data points that may be rejected is 10 out of 23 

available values.  
 
Since this HANTS operation includes three frequencies, the output will consist out of five 
images: 
Image 1. The amplitude of frequency 0, which is the average NDVI value, or the average 

amount of vegetation over a year (frequency 0 has no phase as it is a constant 
value over the year, i.e. has no starting point) 

Image 2. The amplitude of frequency 1, which reflects the seasonal vegetation difference 
between summer and winter 
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Image 3. The phase of frequency 1, which describes when exactly the peak vegetation 
takes place. 

Image 4. The amplitude of frequency 2, which is the amplitude of the 6 months cosine 
function. As in most cases vegetation dynamics have only one growing season 
during a year, the six months amplitude has no physical meaning like the annual 
amplitude, but is necessary for a smooth curve fitting procedure. 

Image 5. The phase of frequency 2 which is phase of the 6 months cosine function; like the 
amplitude of the six months cosine function its physical meaning is limited, but is 
necessary for a smooth curve fitting procedure. 

 

 
Figure 8 False colour European composite image of the HANTS results of the year 2001, where red colour indicates the NDVI 
average, green colour indicates the amplitude of annual frequency, and the blue colour indicates the amplitude of the six months 
frequency contacts: matthijs.danes@wur.nl or gerbert.roerink@wur.nl) 
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7.2. Classifications 
 
Many land cover classes have a typical phenological cycle, as shown in the figure below. 
This is only partly true for habitat classes that are moreover most of the time extremely 
fragmented in their spatial distribution over Europe. The first classification experiments using 
MODIS time series at a 1km spatial resolution failed completely. In other words, these data 
are too coarse to spatially identify different habitats as described in the former sections.  
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Figure 9 Yearly profiles of original NDVI values and the HANTS fitted curve of typical land cover types in the Netherlands.  

 

The time-series analysis experiment performed here is based on MODIS 250 meter NDVI 
time series and aimed to explore the value of the HANTS results in helping to better define 
areas in which specific Natura 2000 habitats may occur.  
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7.3. Material 
The material used in these experiments are 1) HANTS results based on MODIS 250m 16 
days-maximum-NDVI time series for the year 2006; 2) Environmental zones (EnZ) (Metzger 
et al., 2005); 3) CORINE Land Cover 2006; 4) habitat information and 5) Natura2000 
database. 

Ad.1. The MODIS 250m 16 days-maximum-NDVI time series for the year 2006 were 
processed by the HANTS algorithm i.e a time series analysis of vegetation development by 
fourrier analysis (Roerink et al., 2000). The fitting process was controlled by 5 control 
parameters (see section 7.4). The amplitude and phase of the vegetation development is 
described by a cosines function. The amplitude and phase are recalculated into xy- 
coordinates which were used for the classification. 

Ad.2. The experiment focussed on the Alpine South (ALS) and Continental (CON) 
Environmental zones as for these zones sufficient in situ habitat measurements were 
available. 

Ad.3. The CORINE Land Cover (CLC 2006) dataset was used as ancillary data to define 
suitable training sets for the classification of the different habitats selected. 

Ad.4. In-situ data (vegetation releves) from countries (see section 3), results from habitat 
distribution modelling (section 5 and Mucher et al., 2009) were used to select training sets for 
classifying a specific habitat on the HANTS results. The classification focussed on H4060 
‘Alpine and Boreal heaths’ and H9150 ‘Medio-European limestone beech forest of the 
Cephalathero-Fagion’. 

Ad.5. The Natura2000 database was used in the assessment of the classification results. 

 

7.4. Methodology 
Classifications were made separately for each environmental zone as the vegetation 
development between zones is very different due to biophysical conditions. The HANTS 
results were classified with the Maximum Likelihood parametric rule based on a signature 
file. The signature file contained two groups of training sets: i) general land cover signatures 
and ii) specific signatures related to the selected habitats. For the specific habitat-training 
sites the in situ data (vegetation releves) were used in combination with the probability maps 
resulting from the habitat distribution modelling exercise (section 5) and the CORINE Land 
Cover database. The signatures were created by region growing in which seeding properties 
were adapted and more restricted for the specific habitat signatures (e.g. spectral euclidean 
distance was smaller/ narrow band width). Signatures for the habitats were compared and 
outliers were removed. The habitat classification was repeated several times with different 
number of training sets for a specific habitat. Finally, the ultimate classification was based on 
a limited number of signatures for that specific habitat (preferably the signature should be a 
pure endmember, but this is difficult to realise at a spatial resolution of 250 by 250 meters). 
Mainly training sites were used for areas that have a high probability that the specific habitat 
is present, located on the site where an in-situ measurement indicated the presence of the 
habitat and a ‘logical’ land cover type in the CORINE database. 
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7.5. Results 
The distribution of the habitats H4060 and H9150 were classified on basis of the HANTS 
results for the Alpine South and Continental Environmental zone. Figure 11 and 12 show the 
results for the Alpine South environmental zone for H4060 and H9150.  Comparing the 
classification results with the results from the habitat distribution modelling (probabilities) the 
habitat is more widely distributed and the presence of H9150 is largely overestimated. The 
contrary is the case for H4060. See also section 7.5.4. ‘Assessment of results’. 

 

 

Figure 11 The Alpine environmental zone (blue) with in red (high) and green (low)  probabilities that H4060 is present in this 

part of Austria. The yellow colour indicates the result of the HANTS classification. The classification result shows a limited 

presence of H4060 mainly distributed over areas with high and low probabilities.  
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Figure 12 The Alpine environmental zone (blue) with in red (high) and green (low) probabilities that H9150 is present in this 

part of Austria. The yellow colour indicates the result of the HANTS classification. The classification result shows an 

overestimation of H9150 that is distributed all over the environmental zone. The distribution is not restricted to areas with high 

and low probabilities.  

The results for the Continental zone are limited to the H9150 habitat, since there were no in 
situ H4060 habitat data available. The distribution of H9150 in the Continental zone shows 
an similar/intermediate position as in the Alpine south environmental zone: a large 
overestimation of H9150 and a scattered distribution all over the environmental zone (see 
Figure 13). The overestimation for H9150 in both environmental zones is, when comparing 
with CLC, partly due to the classification of mixed and coniferous forest as H9150. 
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Figure 13 The Continental environmental zone (black) with in red (high) and green (low) the probabilities that H9150 is present 

in this part of Germany. The yellow colour indicates the result of the HANTS classification. The classification result shows an 

overestimation of H9150 that is distributed all over the environmental zone. The distribution is not restricted to areas with high 

and low probabilities.  

 

7.6. Assessment of results 
Table 7 indicates the number of pixels (as percentage of the total number of pixels) that 
agree between the different probability classes and the classification results.  

For all three combinations (H4060-environmental zone ALS, H9150-environmental zone ALS 
and H9150-environmental zone CON) only small proportions of pixels are classified as 
H4060/H9150 and having low or high probability distributions. This is to be expected as the 
majority of pixels fall within the classes having no probability or within the classes not having 
that specific habitat. The table presents a possible overestimation of pixels classified as 
H9150 as the number of pixels falling in the probability class 0 is higher than the total number 
of pixels classified as not having that specific habitat (e.g. 86.0% versus 81.0% for the 
H9150/ALS combination). For H4060 this comparison may conclude that there is an 
underestimation of pixels classified as H4060 (93.0% versus 99.3%). 

In case of the H4060/ALS combination a relatively high percentage of “correctly” classified 
pixels of 92.8% (92.5 + 0.2 + 0.1%) compared to the other two combinations with 75.4% 
(71.2 + 3.3 + 0.9%) and 86.3% (85.6 + 0.5 + 0.2%) can be found. The H4060 classification 
agrees better with the probability mapping of the habitat distribution modelling results than for 
the other two combinations. 
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Table 7 A cross table of probability versus the classification results for the combinations H4060/ALS, H9150/ ALS and 

H9150/CON (areas as percentages of total number of pixels). Classification values 0 and 1 mean that the area is not classified 

respectively is classified having that specific habitat. Probability values 0, 2 and 3 mean that the specific habitat is probably not, 

with low respectively high probability present in the area based on the modelling in chapter 5. 

H4060/ALS 
 

Probability 
  

    0 2 3 Total 

Classification 0 92.5% 5.7% 1.1% 99.3% 

 
1 0.5% 0.2% 0.1% 0.7% 

    93.0% 5.9% 1.1% 100.0% 

      
H9150/ALS 

 
Probability 

  

  
0 2 3 Total 

Classification 0 71.2% 8.3% 1.5% 81.0% 

 
1 14.8% 3.3% 0.9% 19.0% 

    86.0% 11.6% 2.4% 100.0% 

      
H9150/CON 

 
Probability 

  
    0 2 3 Total 

Classification 0 85.6% 4.1% 1.2% 90.9% 

 
1 8.4% 0.5% 0.2% 9.1% 

    94.0% 4.7% 1.4% 100.0% 
 

Table 8 Number of Natura2000 sites with specific habitat for the specific habitat-environmental zone combinations that contain 

MODIS pixels classified as having that specific habitat. The Natura2000 sites are grouped according to the amount of pixels 

falling within the Natura2000 site. 

      
Number of pixel counts 

Habitat EnZ 

Total sites 
with specific 

habitat 

Number of 
site within 

EnZ   1-5 5-25 >25 Total 
4060 Als 157 91 

 
13 13 3 29 

9150 Als 47 10 
 

2 1 - 3 
9150 Con 47 9   1 1 7 9 

 

Of the 91 Natura2000 sites with H4060 falling in the environmental zone ALS, 29 sites match 
the H4060 classification (see Table 8). Only 3 sites contain more than 25 MODIS pixels 
classified as having H4060. The H9150/CON combination shows that all 9 Natura2000 sites 
with H9150 have also pixels classified as H9150. The majority of these sites even contain 
more than 25 pixels with that specific habitat. One important remark to be made is that the 
number of pixels classified as having a specific habitat that fall within a Natura2000 site 
depends on the area of the Natura2000 site. So it is difficult to make conclusions based on 
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the number of pixels falling within a site without weighting for the surface areas of the 
Natura2000 sites. 

Table 9 All Natura2000 sites for a specific habitat-environmental zone combination and the number of sites that contain 

MODIS pixels classified as having that specific habitat. The Natura2000 sites are grouped according to the amount of pixels 

falling within the Natura2000 site.  

    
Number of pixel  counts 

Habitat/EnZ 
Number of sites 

within EnZ   1-5 5-25 >25 Total 
H4060/ALS 1367   72 60 27 159 
H9150/ALS 1367 

 
222 283 531 1036 

H9150/CON 6375   1623 1291 1084 3998 

       The majority of all Natura2000 sites within the ALS and CON environmental zones contain 
pixels that are classified as having H9150 MODIS pixels (see Table 9). This suggest an 
overestimation of the H9150 classification in both environmental zones.  

Table 10 Error matrices between Natura2000 sites and the classification of HANTS phenology product. The number of 

Natura2000 polygons with or without MODIS pixels classified for a specific habitat/Environmental Zone combination 

(H4060/ALS, H9150/ALS and H9150/CON). 

H4060/ALS     Natura2000 (N2K) 

  
present not present Total 

  present 29 130 159 
classification RS not present 62 1146 1208 
  Total 91 1276 1367 

     H9150/ALS     Natura2000 (N2K) 

  
present not present Total 

  present 3 1033 1036 
classification RS not present 7 324 331 
  Total 10 1357 1367 

     H9150/CON     Natura2000 (N2K) 

  
present not present Total 

  present 9 3989 3998 
classification RS not present 0 2377 2377 
  Total 9 6366 6375 

 

In Table 10 pivot tables are presented between the Natura2000 database and the remote 
sensing classification results for each habitat/environmental zone combination. The number 
of Natura2000 polygons with a specific habitat that has a match with pixels classified as 
having that specific habitat, but also the polygons without that specific habitat and not 
containing pixels classified as having that habitat are an indication of the quality of the 
classification. So the summation of the number of Natura2000 polygons on the axis 
present/present and not present/not present as percentage of the total number of polygons in 
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that specific Environmental Zone are an indication of the quality of the classification. The 
H4060/ALS classification with 86% showed up as best, while the H9150/ALS and 
H9150/CON classifications with 23.9% and 37.4% have relatively low levels of agreement 
between the reference data (Natura2000 sites) and the classification results. 

 

7.7. Discussion 
The assessment of the classification results suggests an overestimation of the H9150 
habitats in both environmental zones. An underestimation is present in the case of H4060, 
although there are indications that this classification is better than in the case of the H9150 
classifications. However, the classification of habitats on basis of satellite imagery needs 
improvement. The main limitation is the lack of more detailed (higher resolution) HANTS 
vegetation phenology product, next to to fact that many habitats do not have a unique 
phenology. The present spatial resolution of the times series analysis was 250 meter based 
on the MODIS satellite imagery, while most of the Natura 2000 habitats are still very 
fragmented at this scale. So for most habitats it will be impossible to find good training 
samples. Therefore, the resolution/scale of habitat observations and the classification results 
should be more in line with each other to make them comparable. Remote sensing imagery 
with higher spatial and/or spectral resolution would improve the possibilities of habitat 
classification with remote sensing. Next to the fragmented character of the habitats, also the 
agreement between temporal profiles of for example different forest habitats shows the 
limitations of the classification methodology.  

The quality of the classification results differ between habitats and between environmental 
zones. Generic classification parameters valid for all kinds of habitat-environmental zones 
combinations will be an utopia. Habitats differ in reflectance from each other and differ 
between environmental zones as the biophysical conditions and the phenology development 
is different. As a consequence the classification of habitats is partly subjective as it depends 
on the selection and delimitation of training sites. 
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Annex I Criteria used to classify the SynBioSys vegetation releves into the 
relevant Annex I habitat types for the various countries for which in-situ data 
were obtained. 
 
Vegetation type Britain Netherlands Belgium (Flanders) 
Basic grassland Comm. U1 - U21 vegetation class 15 -- 
Acid grasslands Comm. CG1 - CG14 vegetation alliance 19AA ph <= 4.4 
4070 Pinus mugo -- -- -- 
6150 Siliceous alpine and boreal 
grasslands 

Comm. U7,U8,U9 -- -- 

6170 Alpine and subalpine 
calcareous grasslands 

presence of Dryas octopetala -- -- 

9410 Acidophilous Picea forests of 
the montane to alpine levels 
(Vaccinio-Piceetea) 

-- -- -- 

9150 Medio-European limestone 
beech forests of the 
Cephalanthero-Fagion 

-- -- -- 

6240 Sub-pannonic steppic 
grasslands 

-- -- -- 

6250 Pannonic loess steppic 
grasslands 

-- -- -- 

9510 Southern Apennine Abies 
alba 

-- -- -- 

4060 Alpine and boreal heath Comm. H16, H17, H19, H20, 
H21, H22 

-- -- 

7110 Active raised bogs Comm. M18, M20 Selection on AnnexI 7110 -- 
7130 Blanket bog Comm. M17, M18, M19, M20 -- -- 
6210 Semi-natural dry grasslands 
and scrubland facies on calcareous 
substrates (Festuco-Brometalia) 

Brachypodium pinnatum 
>10% cover or Bromus 
erectus >10% cover 

Selection on AnnexI 6210 -- 

9420 Alpine Larix decidua and/or 
Pinus cembra forest 

-- -- -- 

6230 Species-rich Nardus 
grasslands 

Comm. U5, U7 AND one of 
the next 4 species: Gentiana 
pneumonanthe, Carex 
panicea, Carex ericetorum, 
Antennaria dioica 

Selection on AnnexI 6230 -- 

    
Vegetation type Austria Tjechia Slovakia 
Basic grassland                           predefined  Vegetation class 06 and 

10 
Acid grasslands field ACIDSOIL' = "X" predefined  Vegetation class 13 
4070 Pinus mugo preselected Pinus mugo > 75% cover Pinus mugo > 75% cover 
6150 Siliceous alpine and boreal 
grasslands 

Juncus trifidus > 5% cover or 
Carex bigelowii > 5% cover 

-- Juncus trifidus > 5% 
cover or Carex bigelowii 
> 5% cover 

6170 Alpine and subalpine 
calcareous grasslands 

Dryas octopetala -- Dryas octopetala and 
vegetation class 06 

9410 Acidophilous Picea forests of 
the montane to alpine levels 
(Vaccinio-Piceetea) 

--?? preselected preselected 

9150 Medio-European limestone 
beech forests of the 
Cephalanthero-Fagion 

preselected preselected Syntaxon 27BD10 

6240 Sub-pannonic steppic 
grasslands 

Stipa pennata > 10% cover preselected preselected 

6250 Pannonic loess steppic 
grasslands 

-- preselected -- 

9510 Southern Apennine Abies 
alba 

-- -- -- 

4060 Alpine and boreal heath Arctostaphyllos alpinus >20% 
cover or Rhododendron 
ferruginium >20% cover or 
Rhododendron hirsutum 
>20% cover 

preselected preselected 

7110 Active raised bogs Andromeda polifolia Andromeda polifolia Andromeda polifolia 
7130 Blanket bog -- -- -- 
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6210 Semi-natural dry grasslands 
and scrubland facies on calcareous 
substrates (Festuco-Brometalia) 

Brachypodium pinnatum 
>10% cover or Bromus 
erectus >10% cover 

Brachypodium pinnatum 
>10% cover or Bromus 
erectus >10% cover 

Brachypodium pinnatum 
>10% cover or Bromus 
erectus >10% cover 

9420 Alpine Larix decidua and/or 
Pinus cembra forest 

?? -- preselected 

6230 Species-rich Nardus 
grasslands 

Nardus stricta > 5% cover 
AND one of the next 4 
species: Gentiana 
pneumonanthe, Carex 
panicea, Carex ericetorum, 
Antennaria dioica 

Nardus stricta > 5% cover 
AND one of the next 4 
species: Gentiana 
pneumonanthe, Carex 
panicea, Carex ericetorum, 
Antennaria dioica 

Nardus stricta > 5% 
cover AND  

   one of the next 4 
species: Gentiana 
pneumonanthe, Carex 
panicea, Carex 
ericetorum, Antennaria 
dioica 

Vegetation type Switzerland Bulgaria Romania 
Basic grassland pH > = 7.0 field 

BASICROCK='limestone' 
?? 

Acid grasslands ph <= 4.4 and Nardus >= 
25% cover 

field BASICROCK='silicate' ?? 

4070 Pinus mugo -- -- Pinus mugo > 75% cover 
6150 Siliceous alpine and boreal 
grasslands 

Juncus trifidus > 5% cover -- Juncus trifidus > 5% 
cover 

6170 Alpine and subalpine 
calcareous grasslands 

Dryas octopetala and pH >= 
7.0 

-- Dryas octopetala > 5% 
cover 

9410 Acidophilous Picea forests of 
the montane to alpine levels 
(Vaccinio-Piceetea) 

-- -- Picea abies > 50% cover  

9150 Medio-European limestone 
beech forests of the 
Cephalanthero-Fagion 

-- -- Fagus sylvatica > 50% 
cover + Cephalanthera 
rubra 

6240 Sub-pannonic steppic 
grasslands 

-- -- preselected 

6250 Pannonic loess steppic 
grasslands 

-- -- -- 

9510 Southern Apennine Abies 
alba 

-- -- -- 

4060 Alpine and boreal heath -- -- -- 
7110 Active raised bogs -- -- -- 
7130 Blanket bog -- -- -- 
6210 Semi-natural dry grasslands 
and scrubland facies on calcareous 
substrates (Festuco-Brometalia) 

Brachypodium pinnatum 
>10% cover or Bromus 
erectus >10% cover 

-- -- 

9420 Alpine Larix decidua and/or 
Pinus cembra forest 

-- -- Pinus cembra > 20 cover 
or Larix decidua >20% 
cover 

6230 Species-rich Nardus 
grasslands 

Nardus stricta > 5% cover 
AND one of the next 4 
species: Gentiana 
pneumonanthe, Carex 
panicea, Carex ericetorum, 
Antennaria dioica 

-- Nardus stricta > 5% 
cover AND one  

   of the next 4 species: 
Gentiana 
pneumonanthe, Carex 
panicea, Carex 
ericetorum, Antennaria 
dioica 
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1. Introduction  
 
 

1.1 Background 
 
This study has been implemented within the framework of the EU- FP7 project EBONE 
“European Biodiversity Observation Network: a project to design and test a biodiversity 
observing system, integrated in time and space”  (Grant Agreement no: 212322). The key 
challenge is to develop a biodiversity observation system that is transmissible, cost effective 
and provides added value to the currently independent data sources of in situ data and EO. 
The key activities will involve the integration between EO with field measurements in a 
consistent and repeatable manner. Measuring and reliable reporting of trends and changes 
in biodiversity requires that data and indicators are collected and analysed in a standard and 
comparable way. This is valid for a national park, but also for larger areas such as the 
European Union. However, at present, all responsible authorities (over 100 national and 
regional agencies) have different approaches. Worldwide the problem is even greater 
because in different continents species and ecosystems differ. Therefore there is a need to 
develop a coherent system for data collection that can be used for assessments at the 
European and global scales. EBONE will deliver a European contribution to the development 
of a global biodiversity observation system that is spatially and topically prioritized.  In the 
GEOSS (Global Erath Observation System of Systems) 10 year implementation plan (GEO, 
20005) it is stated that GEOSS will unify many of the disparate biodiversity observing 
systems and create a platform to integrate biodiversity data with other types of information. 
Harmonisation of observations, real- or near real-time monitoring integration of information 
from in situ and space based observations will be advocated. GEO BON, the Group on Earth 
Observations Biodiversity Observation Network, is the biodiversity arm of the GEOSS. The 
GEO BON working group  (http://www.earthobservations.org/geobon_a.shtml) was initiated 
since the Earth’s biosphere is such a complex system that a comprehensive monitoring 
network for simultaneously tracking individual species and populations and monitoring trends 
in forests and other ecosystems has never been built and requires expertise from a wide 
amalgam of scientists, not working only in the field of  biology and climate research, but also 
in the field of Earth Observation (EO). To present a full picture of what is happening to 
biological diversity, this monitoring network would also need to integrate masses of biological 
information with data and forecasts on climate change, pollution and other threats to 
biodiversity. The lack of comprehensive information about the world’s biological resources 
continues to undermine the efforts of policymakers and managers to set priorities, elaborate 
strategies and assess the effectiveness of their actions. Fortunately, new EO technologies 
are improving the collection and analysis of biodiversity information. These increasingly 
sophisticated monitoring systems, which consist of satellite, air, land and ocean-based 
instruments, are being interlinked through the Group on Earth Observations (GEO) to form a 
Global Earth Observation System of Systems (GEOSS). EBONE is a partnership of sixteen 
universities and research institutes in Europe, Israel and South Africa.  
 
Background in methodological aspects of the EBONE project date back to the BIOHAB 
project. The Biohab project showed that the way forward was to measure habitat diversity as 
a proxy for biodiversity on the basis of plant life forms but also including information on 
environmental variation in humidity and trophic levels using a stratified random sampling 
system. Based on these lifeforms a total of 130 General Habitat Categories (GHCs) were 
defined, which is still being extended in the current project. The same categories can be 
applied to areal, linear and point features to assist recording and subsequent interpretation at 
the landscape level. The distribution and change of landscape ecological parameters, such 

http://www.earthobservations.org/geobon_a.shtml
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as connectivity and fragmentation, can then be derived and their significance interpreted. 
The accompanied monitoring system should consist of a baseline monitoring system 
combined with selected sites for intensive sampling in conservation sites (Natura 2000) and 
sites for long term intensive ecological monitoring an research (LTER) on the cause-effect 
relationships at the site level.  
 

 
 
Figure 1 Relations between different land and biodiversity observation levels. 
 
 
More information of the BIOHAB/EBONE methodology on habitat recording is given in 
Chapter 4. 
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1.2. Objectives 
 
 

 
 
The study for the Netherlands is implemented for a test site near Chaam, in the Southern 
part of the Netherlands in the Province Noord-Brabant, for which we obtained test data from 
FUGRO (largely responsible for AHN-2), see also Chapter 3.     
 
The objective is an integral part of WP5 ‘Inter-calibration of EO data with in situ observation’ 
of the EBONE project. WP 5 will involve the processing of remotely sensed images and their 
integration with habitat data linked to biodiversity indicators. Different EO efforts have aimed 
at characterising either the compositional, structural or functional 
aspect of the landscape using a wide range of approaches. WP5 will pursue these options in 
line with the overall objective of developing and testing the biodiversity observation system. 
More precisely, this study is part of Task 5.1.2: Regionally/local specific and independent EO 
approaches (existing projects and programmes, novel developments) for determining GHCs. 
For the Netherlands there is a good reason to focus on the use of LiDAR data since the 
Netherlands was covered for the first time in 2003 from wall to wall, with 1 height 
measurement per square meter, namely for the construction of a detailed and accurate 
national elevation model. However, for the construction of this elevation model the influence 
of the vegetation was removed. In that sense vegetation was considered as noise and the 
potentials for vegetation research in the Netherlands, still had to be discovered. In the 
meantime a second version is becoming available in the next years (2011/2012) with a even 
higher precision. The intention is to cover the Netherlands completely every 5 years and is 
largely financed by subscription of waterboards that need this information for their water 
management. Errors in height measurements can have dramatic consequences for the 
assessment of flooding risks.    
 
Alterra is not the only partner that is interested in the use of LiDAR. In Sweden there is 
already a longer tradition in the use of LiDAR, but especially related to their forests that have 
a wide extent and represent a large economic value. Sveriges Lantbruksuniversitet (SLU) 
runs two of the major environmental monitoring programmes in Sweden, the Swedish 
National Forest Inventory and NILS (National Inventory of Landscapes in Sweden). SLU will 
investigate the added value of LiDAR for habitat monitoring based on their experiences 
within their national programmes. Moreover, they plan to cover entire Sweden in the coming 
next ten years with LiDAR data. Other partners that will investigate the role that LiDAR data 
can play in their country for habitat monitoring are the Estonian University of Life Sciences 
(EMU) and Israel Nature and Parks Authority (INPA). The later is an Israeli government 
corporation associated with the Israel Ministry of Environment. Its role is to preserve and 
develop nature reserves and parks, protect wild plants, wild animals and other natural 
assets, safeguard the quality of the environment in open areas, maintain the aesthetic quality 
of Israel's landscapes, and provide visitor services in parks and nature reserves in Israel. 
Moreover, INPA was the first partner within EBONE that showed their preliminary results with 
LiDAR for habitat mapping according to the above mentioned methodology. However, their 
assessment was hampered by the availability of reliable field measurements on the 
vegetation objects.    
 
 

The objective of this study is: to what extent can we use LiDAR data to map and 
monitor plant life forms and General Habitat Categories according to 
BioHab/EBONE (Bunce et al. 2008) methodology ? 



EBONE-D5.1.2c-3.0-EBONE delivery report-Task 5.12 -A regional adative EO approach 
using LiDAR-Mucher et al 2010.doc 
 

2010 - EBONE-D5.1.2c-3.0 9

1.3 Contents of the report 
 
Chapter one is an introductory chapter and introduces the background of this study and 
highlights why we want to investigate the use of LiDAR data for habitat mapping and 
monitoring, with a special emphasis on plant life forms. Chapter 2 discusses the state of art 
on the application of LiDAR in vegetation research. It summarizes a short literature review. It 
also shows that the number of applications of LiDAR data is strongly ncreasing within the 
scientific community.  Chapter 3 describes the study area of Chaam, the LiDAR data used for 
this area, and the software tools that were avialable for the analysis of the LiDAR data.  
Chapter 4 describes the methodology and results of the study. It start with the used 
methodology for habitat mapping, and continues with the assessment of height 
measurements with LiDAR to identify the various plant life forms, and ends with the 
possibilities of semi-automatic classification of vegetation objects based on the combination 
of LiDAR and false-colour infrared aerial photographs. Chapter 5 presents the major 
conclusions and contains also a short discussion. Chapter 6 gives the references.      
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2. State of the art on LiDAR 
 
 
 

2.1. What is airborne LiDAR ? 
The use of airborne laser scanning dates back to the 70s. In 1980s, high performance 
airborne Light Detection And Ranging (LiDAR) systems were generated supported by the 
advent of Global Positioning Systems (Akay et al. 2008). However, their commercial 
development is traced back to the mid-1990s only. From the perspective of ecological 
research, LiDAR can be therefore considered as a relatively new technology (Carson et al. 
2004). Figure 2 presents the number of hits per year scored in scopus1 for the search “LiDAR 
AND vegetation” between 2000 and 2009. This figure shows a obvious increase of 
publications during the past decade translating the increase of scientific interest linked to this 
topic. 
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Figure 2 Number of hits per year for the search “LiDAR AND vegetation” in scopus (www.scopus.com).  
 
Airborne LiDAR is an active remote sensing technique that measures the properties of 
emitted scattered light to determine the 3D coordinates (x, y, z) and other properties of a 
distant target (St-Onge 2005; Mallet et al. 2009). To do so, the LiDAR instrument transmits 
light pulses out to a target and calculates the distance based on light which is 
reflected/scattered from the target back to the instrument. The time for light pulses to return 
back to the LiDAR sensor is used to calculate the distance to the target (Akay et al. 2008). 
LiDAR provides thus geometric data but also radiometric data, such as signal intensity, 
amplitude, and pulse angle (Hall et al. 2005; Evans et al. 2006). The laser measurements are 
combined with the aircraft’s position and altitude data - measured by a differential global 
positioning system (GPS) and an inertial navigation unit (INU) - identifying the position and 
elevation of each collected point (Wehr et al. 1999).The “xy” accuracy of the pulse center is 
typically 0.1–0.5 m, depending on the flying height. The accuracy in “z” is usually better than 
0.2 m. Values range from 0.2 m to 1.0 m for flying heights of 1–5 km (Korpela et al. 2009). 

                                                 
1 www.scopus.com 
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Considering those characteristics, airborne LiDAR offers the possibility to collect high 
horizontal and vertical resolution data, over larger spatial extents than could not be obtained 
by field survey (Bradbury et al. 2005). Thus, LiDAR , in contrast to optical remote sensing 
techniques, can be expected to bridge the gap in structural information at the landscape 
scale (Graf et al. 2009). 
 
The vertical distribution of surfaces can be recorded by either ‘full waveform’ or ‘discrete 
return’ devices which correspond respectively to large footprint, continuous-return LiDAR, or 
small-footprint, discrete-return LiDAR. They differ from each other with respect to the number 
of returns recorded for each emitted laser pulse and the footprint characteristics (Lim et al. 
2003). The footprint can be defined as the circular sampling illuminated area on the ground 
which increases in size with distance from the sensor. 
 

2.2. Discrete return 
Discrete return LiDAR are small-footprint systems that record one or several returns from 
laser pulses over small areas (Bergen et al. 2008). It typically allows for one (first or last), two 
(first and last), or a few returns to be recorded for each pulse during a flight (Lim et al. 2003), 
being then categorized as single or multiple-return systems. The distance and sometimes the 
intensity of each peak are recorded by this type of system (Wehr et al. 1999). Discrete point 
return systems typically operate at a very high spatial resolution, with the laser illuminating a 
very small spot (footprint is between 0.2 to 0.9 m), and record up to six points per laser pulse 
(Mallet et al. 2009). 
 

2.3. Full waveform 
Full waveform LiDAR are large-footprint systems that record the complete waveform of the 
backscattered energy over relatively large areas. Those systems sense and digitize the time-
varying intensity of the returned energy from each laser pulse, providing a record of the 
height distribution of the surfaces illuminated by the laser pulse over a large footprint 
diameter varying from 5 m to 70 m (Dubayah et al. 2000). Because each emitted laser pulse 
is aimed toward a different footprint location, aggregating the pulse-return signal records 
produces a 3D map of surface structure (Vierling et al. 2008). Full waveform LiDAR systems 
only exist as commercial systems since 2004 (Mallet et al. 2009). 
 
Over the past decade, LiDAR data have been increasingly used in ecological sciences, 
among other domains. In this study, we will focus on its applications in forestry, habitat 
monitoring and vegetation mapping. In this literature review, airborne LiDAR systems are 
presented but it is also important to mention that those systems can also be mounted on 
ground-based or spaceborne platforms. 
 

2.4. Application of LiDAR system in environmental sciences 
LiDAR was originally introduced to generate more accurate digital elevation models (DEMs) 
(Evans et al. 2006) but has recently become an effective tool for natural resources 
applications (Akay et al. 2008). The laser light emitted is reflected back to the sensor as it 
intercepts objects in its path, including vegetation elements and the ground (Dubayah et al. 
2000). In the process of creating a DEM, only reflections from the ground level are used, and 
reflections from vegetation are considered redundant. Recent studies with LiDAR data have 
explored the possibilities to use these redundant vegetation reflections as a new source of 
geospatial data that can provide fine-grained information about the 3-D physical structure of 
terrestrial and aquatic ecosystems (Geerling et al. 2007). This result can then be applied in 
forestry, ecological (habitat) mapping and vegetation monitoring (Hyde et al. 2005). 
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Forestry/Vegetation structure 

 
Vegetation vertical structure is defined as the bottom to top configuration of aboveground 
vegetation including for example, canopy cover, tree and canopy height, vegetation layers, 
and biomass or volume (Bergen et al. 2008). LiDAR remote sensing being capable of 
providing both horizontal and vertical information at high spatial resolutions and vertical 
accuracies, allows then forest attributes to be directly or indirectly retrieved from LiDAR data 
(Dubayah et al. 2000; Akay et al. 2008).  
Both discrete-return and full waveform devices have been used worldwide for characterizing 
forest structure (Lefsky et al. 2002; Lim et al. 2003). These technologies have successfully 
been used to retrieve tree height (Jan 2005; Wang et al. 2008; Rosette et al. 2009), above 
ground biomass and timber volumes (Means et al. 2000; Lefsky et al. 2002; Zimble et al. 
2003; Patenaude et al. 2004; Zhao et al. 2009) and tree properties (Roberts et al. 2005; 
Heurich et al. 2008) across various ecosystems such as temperate (Anderson et al. 2006) or 
tropical forest (Drake et al. 2002). The combination of airborne LiDAR data with other optical 
remote sensing data also shows promising results for the estimation of forest structural 
characteristics (Coops et al. 2004), often better that when LiDAR data were used alone 
(Hudak et al. 2002; Wulder et al. 2003). In some case the intensity recorded by the LiDAR 
sensors is also used to measure tree metrics and vegetation structure (Lovell et al. 2003; 
Hall et al. 2005; Evans et al. 2006; Weishampel et al. 2007). 
 
Those studies have demonstrated the ability of LiDAR techniques to measure vegetation 
height, and cover as well as more complex attributes of canopy structure. From those 
measurements, further analysis can be done related to the vegetation attributes and function. 
 
 
Habitat and vegetation monitoring 

 
Vegetation attributes and structure information generated from airborne LiDAR data have 
also applications beyond forestry and are of a great help for ecological functions 
understanding. Indeed those canopy metrics and structural data have been proven to be 
strong predictors of species richness for woodland birds in several studies (Vierling et al. 
2008; Mason et al. 2003; Hill et al. 2005), even in difficult terrain (Hyde et al. 2005). 
Furthermore, the correlation between LiDAR-derived estimates of vegetation structure 
important to birds have been demonstrated in areas ranging from grasslands to forests 
(Bradbury et al. 2005; Hinsley et al. 2006). LiDAR have been also demonstrated to be able to 
identify differently structured habitat units and to quantify variation in vegetation structure 
within those units (Bradbury et al. 2005). LiDAR can also provide indication about territories 
and breeding success of several types of birds species (Bergen et al. 2008). Graf et al. 
(2009) concluded their study on the great potential offered by LiDAR for effective habitat 
monitoring and management of endangered species. In Korpela et al. (2009) the result 
obtained using LiDAR for the mire habitat classification accuracy were considered as 
surpassing earlier results with optical data. Some studies also highlighted that the result of 
habitat analysis obtained with LiDAR may be enhanced when used in combination with 
spectral data (Bergen et al. 2007; Clawges et al. 2008; Hyde et al. 2006). 
 
In view of those results, LiDAR remote sensing shows considerable efficacy for habitat 
mapping/characterization and wildlife management in fine detail across broad areas. It may 
replace many labor-intensive, field-based measurements, and can characterize habitat in 
novel ways (Vierling et al. 2008) 
 
Considering monitoring applications, the repeatable and high absolute “xyz” accuracy is 
advantageous since changes can be detected at submeter scales and the same 
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measurement units can be monitored over time (Korpela et al. 2009). In that sense, LiDAR 
constitutes an efficient tool for short and long term monitoring of changes in surface structure 
and vegetation. For example, Wieshampel et al. (2007) used LiDAR measurements to 
monitor vegetation recovery after several disturbances. 

 
 

Vegetation mapping/classification 
 
Studies conducted in order to map vegetation using LiDAR showed that discrimination of 
some vegetation types was possible based on vegetation height and density (Geerling et al. 
2007; Geerling et al. 2009). Vegetation types that are similar in structure or with a relatively 
low vegetation structure are difficult to separate, but discrimination between bushes and 
trees is high. LiDAR appeared to succeeded well in characterizing tree species with the 
canopy height as the strongest explanatory variables in the vegetation classification (Korpela 
et al. 2009; Geerling et al. 2007). 
 
The integration of spectral information coming from optical remote sensing data and canopy 
height data generated from LiDAR into the classification has been demonstrated to produce 
an ecologically meaningful thematic product for a complex woodland environment (Hill et al. 
2005). 
 
In most of the ecological studies based on LiDAR techniques, the intensity/amplitude is rarely 
used as it must be calibrated and corrected first (Mallet et al. 2009), even if it appears as a 
potential important factor for feature extraction or land cover classification. Antonarakis et al. 
(2008) demonstrate that the combination of intensity and elevation data from LiDAR point 
clouds can be enough to classify multiple land types using object-based classification 
method. Other studies using intensity values were conducted and their results imply that the 
intensity of the laser return signal can be used for classification purposes (Lim et al. 2003; 
Brennan et al. 2006; Korpela et al. 2009).  
 

2.5. Difference between discrete-return and full waveform in 
ecological applications 
As presented previously, numerous studies confirmed discrete-return and full waveform 
LiDAR’s capacity to measure stand metrics and demonstrate that they can be an effective 
tool to remotely quantify vegetation structural attributes important to habitat mapping, 
monitoring and classification. 
 
Concerning discrete-return or full waveform LiDAR, the choice of one LiDAR system over the 
other should be made considering the objective of the study. A discrete-return instrument 
may be useful in representing canopy heights, but may not be able to detect subcanopy 
vegetation unless returns are available from laser pulses that penetrate through canopy 
gaps. A discrete-return LiDAR instrument, even one producing multiple returns, may be 
unable to detect understory vegetation in a closed canopy forest (Clawges et al. 2008). For 
vegetated environments, full waveform provides better description of the vertical structure of 
the vegetation (Lefsky et al. 2002). Then, for research where capturing the true vertical 
profile of the canopy is a critical measure, it is better to use full waveform LiDAR (Lim et al. 
2003), especially for studies related to biodiversity and habitat (Bergen et al. 2008). 
 
Small-footprint systems may not be optimal for forestry also due to the risk of missing tree 
tops. Large-footprint systems appears better for getting canopy height because the large 
footprint does not miss tree tops. It should be noted, however, that data from large-footprint 
systems are not generally suited to detection and measurement of individual trees and 
therefore, can not give a direct determination of relative stem density (Dubayah et al. 2000). 
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Even if full waveform return appears are the best LiDAR data source for ecological studied, 
most of the studies carried out until now and presented in this literature review are mainly 
based on discrete return laser scanners and have presented reliable estimates of canopy 
height and structural data, as well as satisfying results concerning habitat and land cover 
mapping. 
 

2.6. Limitations 
LiDAR is an accurate technology concerning vegetation analysis and mapping. However 
some important specifications and limitations should be quoted. First of all, the performance 
of LiDAR based method is directly affected by the resolution of the data (Akay et al. 2008). 
Secondly,  the laser wavelength used by the system largely determines the interaction with 
various surface types, thus dictates how the 3D structure of potential elements is recorded by 
the sensor (Vierling et al. 2008). Thirdly, the recorded values distributions in vegetation 
canopies can also be influenced by the size of the footprint. 
 
Concerning intensity value measurements, they are also influenced by the previously quoted 
parameters but also strongly influenced by differences in the surface moisture. This should 
be considered when interpreting the results as well as the fact that the site fertility may affect 
specific tree species intensity characteristics (Korpela et al. 2009). Moreover, the intensity of 
discret-return LiDAR is not affected only by the target backscatter reflectance but also by 
several characteristics linked to the sensor and its relation to the target (e.g the intentional 
and random power variation of the transmitted pulse, the electronic noise in the receiver, the 
surface geometry...) (Wehr et al. 1999). The structural diversity of the forests, such as the 
mixture of tree species and the presence of deadwood, can also be a factor influencing the 
measurements (Heurich et al. 2008). 
 
The accuracy of LiDAR measurements is highly dependent on terrain slope, surface 
roughness, and land cover. Thus an accurate estimation of the CHM requires a good-quality 
DEM (Jan 2005; Antonarakis et al. 2008). In that respect, topographic slope can cause the 
LiDAR ground return to spread, leading to inaccurate ground determination, and 
consequently, canopy heights. (Hyde et al. 2005).  
 
Even with calibrated data, retrieval of the reflectance of objects smaller than the footprint 
remains difficult. This constitutes a challenge for the use of LiDAR in vegetation classification 
and explains why the integration of other optical remote sensing sources is sought in many 
cases (Antonarakis et al. 2008) 
 

2.7. Conclusions 
Because airborne LiDAR captures high-resolution vertical and horizontal spatial data, it 
shows great potential for integration with ecological research (Lefsky et al. 2002). In contrast 
with other optical remote sensing techniques offering only a continuous coverage, it directly 
measures the physical attributes of vegetation canopy structure, highly correlated with the 
basic ecological functions of interest to sicentists. Moreover, LiDAR is less affected by 
shadows and occlusions, as well as less dependent on weather conditions (St-Onge 2005; 
Korpela et al. 2009).  
 
Concerning ecological research, LiDAR has proved to be an accurate and cost-effective way 
to rapidly obtain 3D data of objects over large scale areas (Patenaude et al. 2004). This 
explains why LiDAR is replacing passive remote sensing in many tasks, although data 
analysis still remain a challenge regardless of the method by which the 3D points were 
collected (Korpela et al. 2009). It is also important to keep in mind, as quoted in several 
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studies, that results obtained using LiDAR may be enhanced when used in combination with 
spectral data. 
 
In literature, airborne LiDAR systems are presented as a promising technology for the 
vegetation structure analysis. Lefsky (2002) even describe LiDAR as “an emerging remote 
sensing technology that directly measures the three-dimensional distribution of plants 
canopies, can accurately estimate vegetation structural attributes and should be of particular 
interest to forest, landscape, and global ecologist”. 
 

2.8. Future developments 
As explained previously, each LiDAR return is stored as a x,y,z coordinates and often tagged 
with auxiliary variables such as the intensity, scan-angle... So far, most of the LiDAR 
researches have focused on the use of LiDAR coordinates information while only few studies 
partially investigated the utility of LiDAR auxiliary variables. The results of the latter were 
satisfactory and thus show  opportunities to explore for further development and application 
of airborne LiDAR techniques. In some cases the use full-waveform laser scanners should 
also be considered as potential contribution to improve the estimations (Heurich et al. 2008). 
 
Most of the study quoted in this review stressed that the results obtained with airborne LiDAR 
are often improved when used in combination with other remote sensing products. Another 
possibility is the integration of airborne LiDAR data and terrestrial LiDAR data as shown in 
the study of Chasmer et al. (2005) which examines the ability of airborne and terrestrial 
LiDAR to map canopy structure. While canopy structure analysis using airborne LiDAR 
systems have been widely used, especially for forestry purposes, the combination of 
terrestrial and airborne LiDAR is rather unexplored and appears has a promising techniques 
for vegetation analysis and mapping.  
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3. Study area & materials 
 

3.1. Study area 
 
The study area is located near Chaam, not far from the Dutch-Belgium border in the Province 
of Noord-Brabant. The area is an agricultural area, mainly consisting of arable land and 
pastures, with a fair amount of linear landscape features such as hedges and lines of trees, 
and surrounded by forests and some remaining patches of heathland. One of the Natura 
2000 habitat types that you can find here is Annex I habitat type H6430 ‘Hydrophilous tall 
herb fringe communities of plains and of the montane to alpine levels’ and H4030 ‘European 
dry heaths’ and formerly H91D0 ‘Bog woodlands’. On the edge of the village of Chaam you 
will find also some greenhouses and a tree nursery. The study area has a size of 
approximately 3km by 3km for which we obtained LiDAR data provided by the company 
Fugro, who will be largely responsible for the Dutch LiDAR data for the second version of the 
Dutch elevation model (AHN-2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Location of the study area Chaam in the Southern part of the Netherlands. The aerial 
photograph below shows the study area in detail with the objects of interest.

3 km

3 km 
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Figure 4 Location of the objects of interest in the study area. Below you find a snaphot of all objects of 
interest. 
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Figure 5 Photo of the tree nursery in the village of Chaam The tree nursery is located with a box in figure 
4 in the southern part of the study area. 
 
 

3.2. Materials 
 

3.2.1. LiDAR 
 
LiDAR (Light Detection And Ranging) is a remote sensing system used to collect topographic 
data. A LiDAR uses a laser (emitter) to send a pulse of light to an object and a telescope 
(receiver) to measure the intensity scattered back (backscattered) to the LiDAR.  
 
Aircraft permits the collection of topographic information over a strip ~ 300 meters in width 
from 600 meter altitude. Also helicopters are being used for the collection of LiDAR data. 
Most laser systems can record several returns for each pulse. Multiple returns occur when 
the laser beam is only partially blocked. Part of the laser energy is reflected back to the 
sensor The remaining laser energy continues downward. In principle you can have up to 5 
returns per pulse, but more typically is 2-3 returns. By acquiring first- and last-pulse data 
simultaneously, it is possible to measure both tree heights and the topography of the ground. 
Normally, you have 1 -10 measurements per m2 or 10,000 – 100,000 measurements per ha. 
Most systems record the amount of energy reflected by target objects, such as intensity. 
Data delivered as XYZ points in a “data cloud”.   
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Figure 6 A schematic figure of an aircraft equipped with a LiDAR instrument that collects elevation 
information in so called data clouds with XYZ measurements.  
 
The precision or accuracy of LiDAR data has improved increasingly. For example, for the 
Netherlands, that was covered completely in 2003 for the first time for the construction of a 
precise national elevation model (AHN-1) had a precision of 15 centimeters with 1 
measurement per square meter.  The second version of national elevation model (AHN-2) is 
planned now for 2012 and will have a precision of approximately 5 centimeters with 10 
measurements per m2. An update is being planned every 5 years, mainly by subscription by 
the 26 Dutch waterboards, that need this information urgently for their water management. 
The Ministry of Waterworks pays approximately 50% of all costs (waterboards the other half).   
 
Some of the LiDAR Mythds are summarized by Fugro (/www.fugroearthdata.com) as: 

- Myth 1: More points are always better. Point spacing (the distance between points) 
and point density (the coverage of points within a given area) are critical 
considerations for any LiDAR mapping project. Factors that determine optimum point 
spacing include desired vertical accuracy, terrain, land cover, and the ultimate data 
application. For many applications, a lower point density is sufficient and can save 
time and costs by reducing acquisition time and data processing as well as potential 
data storage and handling difficulties. 

- Myth 2: LiDAR can see through foliage. LiDAR does not “see through foliage.” 
However, some LiDAR points do reach the ground through openings in the tree 
canopy. As the LiDAR point density increases, so does the probability of obtaining 
returns from the ground.  

- Myth 3: LiDAR replaces traditional mapping techniques. LiDAR is a complement to, 
not a replacement for, traditional aerial mapping methodologies. For most uses, 
LiDAR intensity imagery is not a viable replacement for aerial photography, nor does 
LiDAR data provide an option for planimetric mapping. 

- Myth 4: LiDAR is an all-weather system. The target must reflect the near infrared 
portion of the electro-magnetic light spectrum for LiDAR to work. Data collection can 
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occur beneath the clouds and in some haze, but because water absorbs most near 
infrared light, it will not operate correctly during fog, rain, or snow. 

 
 

 
 
Figure 7 Planning schema AHN-2. Status at July 2009. 
 
Fugro Aerial Mapping BV is one of the companies that collects LiDAR data in the framework  
of the AHN-2 project. Alterra obtained a test data set from Fugro for the study area Chaam in 
2009. For this data set FUGRO used the FLI-MAP 400 system. This system is carried on 
board of a helicopter, integrated with high-resolution photo and video camera and a precise 
GPS system. The data was acquired during three days in 2009, March 13, 15 and 16, with a 
minimum point density of 10 points per m2 at three different scan angles: forward 30°, nadir, 
backward 30° . Additional important characteristics are the options for a 150.000 Hz of 
250.000 Hz scan  using Multiple Pulse in Air (MPiA) technology, and direct in line-scan 
attachment of RGB colours the laser measurements.  The absolute accuracy for a single 
point can be guaranteed  below 3 cm. An additional advantage is that data are delivered 
cclassified into ground points & non-ground points. 

Prices AHN-2  

A detailed overview of proces can be found at 
www.ahn.nl/bestellen/prijzen_ahn_2 . Commercial prices are about 28 
cent / ha). But for non-commercial the entire country (~ 35.0000 km2) 
can be obtained for € 1500,- !! 

http://www.ahn.nl/bestellen/prijzen_ahn_2
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3.2.2 Aerial photographs 
 
The aerial photo were false colour images and were required on the 8th of May 2008 by 
Eurosense B.V. with a 25 centimeter resolution. See Figure 4 for the aerial photographs over 
the study area. The aerial photographs are available for the whole of the Netherlands and 
are updated about every 2 to 3 years. 
 
 

3.2.3 Fieldwork 
 
Field work was done by Arjan Griffioen in December 2009 and Februari 2010. Field work was 
hampered in by severe winter conditions and caused some delays. All photographs in figure 
4 were taken on the 22nd of February 2010 when weather conditions were already slightly 
better. For objects with a height lower than 2.5 meter a measuring staff was used. For 
objects there were taller a laser distance meter was used. First the horizontal distance was 
measured, secondly the angle to the crown of e.g. tree was measured. The following formula 
was applied: 
 
 
Height = distance * TAN(RADIANS(angle) + height tripod 
 
 
Of all interesting vegetation objects in the study area photographs were taken (Figure 4) and 
height and width measurements were made (see Table 3). 
 
 
 

3.3. LiDAR software 
 

3.3.1. Fusion software 
 
FUSION/LDV is a free software developed by UDSA (United States Department of 
Agriculture) Forest Service Pacific Northwest Research Station in collaboration with the 
University of Washington and distributed by the USDA Forest Service Remote Sensing 
Applications Center (RSAC). The software is built to help researchers understand, explore, 
and analyze LiDAR data (McGaughey, 2010). LiDAR data sets are generally large and 
require extensive preprocessing before these can be used in GIS or image processing 
software. Fusion handles simple tasks such as extracting a sample of LiDAR returns for an 
area of interest and allows to view the data interactively. The program is primarily a viewing 
tool for LiDAR data, but also providing basic analysis functions designed to explore and 
extract information from LiDAR data. As it was developed to support the Forest Service in 
obtaining forest resource information, most of the functionalities of FUSION are forestry and 
vegetation monitoring oriented. 
 
The last version of the software, released in march 2010, consists of two main programs - 
FUSION and LDV (LiDAR data viewer) - and a collection of task-specific command line 
programs. The primary interface, provided by FUSION, consists of a graphical display 
window and a control window.  
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Figure 8 Snapshot of Fusion with a 3D view which shows the LiDAR points draped over by an aerial  
photograph. The area concerns a small part of the tree nursery in the Chaam area.  
 
 
The FUSION display showsall project data using a 2D display typical of geographic 
information systems. It supports a variety of data types and formats including shapefiles, 
raster images, digital terrain models, canopy surface models, and LiDAR return data. LDV 
provides the 3D visualization environment for the examination and measurement of spatially-
explicit data subsets. Command line programs provide specific analysis and data processing 
capabilities designed to make FUSION suitable for processing large LiDAR acquisitions 
(McGaughey, 2010). Fusion is based on non proprietary algorithms and methods that allow 
for user adjustments and the processes that are used are documented in publicly available 
literature. 
 
FUSION software has already been used in several studies. In Moskal et al. (2009), FUSION 
was used as a data preparation tool and to normalize the vegetation heights above a 
constant ground elevation. Quality assurance and quality control procedures on airborne 
LiDAR acquired for a nation-wide carbon inventory of planted forests were performed using 
some of the functionalities of FUSION (Stephens et al., 2008). The FUSION software was 
used to assess data, to determine first return density, to produce an intensity image of the 
area covered by the datasets, and to create a ground surface model. Finally, in Wezyk et al. 
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(2008), FUSION was used to calculate canopy metrics in order to describe selected canopy 
layer parameters of Scots pine stands.  

Canopy Height Model

Canopy closure and canopy density
• Percentage of return above or between certain height breaks

>0.05m >0.3m >0.6m >2m >5m>0.05m >0.3m >0.6m >2m >5m>0.05m >0.3m >0.6m >2m >5m
 

 
 

Canopy penetration
• The percentage of return that reaches                           

the surrounding of the surface

Intensity image

Metrics and surface statistics
• Several statistics measurements calculated by grid cell (Average,               

standard deviation, percentile…)
 

 
 
Figure 9 Example of outputs from FUSION 
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3.3.2. Commercial software packages 
Many commercial software packages that can handle LiDAR data are available. The main 
functionality offered by  these software packages is the processing of the LiDAR point data to 
produce an accurate terrain elevation model.  Table 1 lists several of these packages. 
 
Table 1 LiDAR processing software. 
Software Company Website 
MARS Merrik http://merrick.com/index.php/services/mars-software 
LP360 QCoherent http://qcoherent.com/ 
SCOP++ Inpho  http://www.inpho.de 
Quick Terrain 
modeler 

Applied 
imagery 

http://www.appliedimagery.com/ 
 

VG4D product 
suite 

Virtual 
geomatics 

http://www.virtualgeomatics.com/resources.html 
 

 
Software that also aims at the classification of features like buildings and trees is the LiDAR 
Analyst software made by Visual Learning Systems Inc. (website 
http://www.featureanalyst.com/lidar_analyst.htm). This software contains workflows for the 
automated extraction of buildings, single trees and forests form LiDAR point cloud data.  
 
There is also a development in more ‘traditional’ software that is used for image processing 
or geographic analysis like ArcGIS from ESRI, Ecognition from Definiens and Imagine from 
Erdas. All these companies are developing modules and functionality to make the processing 
of LiDAR point cloud data possible. The benefit of this development is that it can be used in 
cooperation with the already available tools for the processing of geographic data and 
therefore the user can benefit from existing expertise.  
 
 

http://merrick.com/index.php/services/mars-software
http://qcoherent.com/
http://www.inpho.de/
http://www.appliedimagery.com/
http://www.virtualgeomatics.com/resources.html
http://www.featureanalyst.com/lidar_analyst.htm
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4. Methodology & Results 
 
 
 
4.1. Methodology of habitat recording 
 
When recording habitats and biodiversity at the landscape level, the difficulty has always 
been in reconciling the observed complexity of points, lines and patches with recognisable 
categories that can be consistently and repeatedly recorded in the field and then converted 
into national and regional estimates. It is therefore necessary to link the detailed records to a 
strategic framework, as described by Sheail and Bunce (2003). Monitoring and surveillance 
also have to be integrated spatially and temporally with other data sources. Monitoring 
European habitats requires definitions that can be applied consistently in the field across 
Europe (Brandt et al., 2002). Habitats are defined as: ‘‘An element of the land surface that 
can be consistently defined spatially in the field in order to define the principal environments 
in which organisms live’’ (Bunce et al., 2005). Existing European habitat classifications have 
been based on species, geographical location, vegetation classes and environmental factors 
(e.g., the EUNIS system, Davies and Moss, 2002). Whilst these classifications have been 
successfully applied to produce general descriptions of the occurrence of classes in 
protected areas, they are not appropriate for monitoring, because definitions of many of the 
terms used; e.g., montane and sub-Mediterranean; are not provided. The present recording 
procedure therefore adopted plant life forms, as described by Raunkiaer (1934) as the basis 
of the habitat categories. It is widely recognized (e.g., Woodward and Rochefort, 1991) that, 
at a continental level, biomes need to be defined in terms of the physiognomy and life forms 
of the dominant species, because individual species are too limited to encompass widely 
dispersed geographical locations. Ecological behaviour of species can also vary within their 
distribution and vicarious species further preclude the use of individual species. A given 
species may also show plasticity, because of environmental and local factors such as 
grazing, so the overall height of the whole unit is used as a measure of its status at a given 
time. Further advantages of using life forms are that they provide direct links between in-situ 
data and dynamic global vegetation models (e.g., Sitch et al., 2003), but also with the 
patterns present on satellite images because of their relationship with vegetation structure. 
Plant life forms (Raunkiaer, 1934) are defined on the basis of the location of buds in the 
adverse season and separate grassland, shrub and forest species which can be used to 
develop rules for habitats that can be applied consistently in the field. Within the shrub and 
forest categories a further breakdown is made according to the way the leaves of the plants 
are retained in the adverse growth season. Raunkiaer demonstrated that the life form spectra 
in different regions were correlated with the main environmental gradient from the equator to 
the arctic: they are therefore widely used in global change modeling as indicators for 
projecting vegetation change (e.g., Sitch et al., 2003).  
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Table 2 Life forms for recording General Habitat Categories (GHCs), based on life forms as defined by 
Raunkiaer (1934). Adapated from Bunce et al., 2008. 

Herbaceous HER  

1. Submerged hydrophytes SHY Plants that grow beneath the water. This category includes marine 
species and floating species which over-winter below the surface.  

2. Emergent hydrophytes EHY Plants that grow in aquatic conditions with the main plant above 
water.  

3. Helophytes HEL Plants that plants that grow in waterlogged conditions.  
4. Leafy hemi-cryptophytes  LHE Broad leaved herbaceous species, sometimes termed forbs.  
5. Caespitose hemi-
cryptophytes  CHE Perennial monocotyledonous grasses and sedges.  

6. Therophytes  THE Annual plants that survive the unfavorable season as seeds.  
7. Succulent chamaephytes  SUC Plants with succulent leaves.  
8. Geophytes GEO Plants with buds below the soil surface.  

9. Cryptogams  CRY Non-saxicolous bryophytes and lichens, including aquatic 
bryophytes,  

10. Herbaceous chamaephytes  HCH Plants with non-succulent leaves and non-shrubby form.  
Shrubs and trees TRS  
11. Dwarf chamaephytes DCH Dwarf shrubs: below 0.05 m 
12. Shrubby chamaephytes  SCH Under shrubs: 0.05-0.3 m 
13. Low phanerophytes  LPH Low shrubs buds: 0.30-0.6 m.  
14. Mid phanerophytes  MPH Mid shrubs buds: 0.6-2.0 m  
15. Tall phanerophytes  TPH Tall shrubs buds: 2.0-5.0 m  
16. Forest phanerophytes  FPH Trees: over 5.0 m  
Leaf retention divisions 
Winter deciduous DEC  
Evergreen  EVR  
Coniferous  CON  
Non-leafy evergreen NLE  
Summer deciduous and/or 
spiny cushion  SPI  

 

Some explanatory notes in relation to these plant life forms are given below. 

Submerged hydrophytes (waterplants) - SHY 
Gramineae and Cyperaceae are included here if they are growing in aquatic conditions (see 
environmental qualifiers for definitions). Otherwise they are in Caespitose hemicryptophytes. 
 
Emergent hydrophytes (waterplants) - EHY 
     
Helophytes (marsh plants) - HEL 
Gramineae and Cyperaceae are included here if they are growing in waterlogged conditions 
(see environmental qualifiers for definitions). Otherwise they are in Caespitose 
hemicryptophytes. 
 
Leafy hemicryptophytes; leafy, rosette and biennial (tall broad leaved herbaceous species, 
sometimes termed forbs) - LHE 
This group includes biennial species as they play a similar role in vegetation. These 
categories include not only the tall herb vegetation traditionally registered in the category, but 
also ruderal (weed) vegetation and also clearing vegetation. 
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Caespitose Hemicryptophytes - caespitose most graminae and cyperaceae (grasses and 
sedges, herbs with buds at soil level)  - CHE 
 
Therophytes - THE 
They are the life forms which are adapted to survive unsuitable periods (e.g. summer drought 
periods or cold winters) in seed form. In northern situations there are often found on 
distinctive soils or rocky surfaces, but usually in small patches below the minimum mappable 
unit. They are also characteristic of highly disturbed situations. 
 
Geophytes- bulbs, root tubers, stem tubers or corms  - GEO 
Buds below soil surface. Vernal woodland geophytes are excluded, as they perrenate this 
way to flower before canopy closure. Geophytes are widespread especially in the 
Mediterranean, characteristic of very dry summers and are locally dominant. Many species 
never achieve the 30% cover and are minor elements of the vegetation. Gramineae, 
Cyperaceae and Juncaceae are excluded from this class, as explained in the introduction. 
 
Herbaceous chamaephytes including both succulent and cushion forms that have their buds 
above the ground surface - HCH 
Characteristic of severe environments – succulents are included here because they occur in 
small patches, although they could be included as a separate class if deserts are to be 
included subsequently. Carpobrotus edulis and Opuntia  are two exceptions but do not justify 
a separate life form category. 
 
Cryptogams (bryophytes & lichens) - CRY 
There are present usually with a high % of rock. Remember that areas over 70% rock is 
recorded as “sparsely vegetated”, usually in extreme environments although occasionally 
high cover also occur on degraded lowlands on sandy soils 
 
Dwarf ligneous chamaephytes (have  buds above the ground below 0.05m) - DCH  
Some of these plants are called espaliers (Spaliersträucher), e.g. Dryas octopetala. Others 
are espalier forms of ligneous chamaephytes, e.g. Betula nana, others dwarf forms of 
chamaephytes due to extreme environments , e.g. Vaccinium mytillus. 
 
Forest phanerophytes (>5m) - FPH 
These habitats are dominated by trees over 5m with > 30% cover. These are the forest 
species of Europe. The forest categories have been determined on the basis of their 
structure and adaptation to the environment. All pure categories are over 70% and the 
mixtures determined as all combinations with between 30-70% of either category. 
 
 
Further details and examples of the species in the 16 life forms are given in Bunce et al. 
(2005, 2008). Since plant lifeforms are strongly related to vegetation structure, and have 
strict height definitions, it provides a good opportunity for integration with LiDAR sensors that 
measure heights of objects with a high spatial resolution (provides x, y and z co-ordinates).  
See also next paragraph on the objectives of this study and chapter 2 that provides an 
overview of the application of LiDAR in vegetation science.   
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4.2. Height measurements LiDAR  
 
The VG4D viewer from the VG4D product suite was used to carry out the measurements on 
the objects in the LiDAR data. For this, a profile view of the object of interest was created 
and the object width and height was measured on screen using the interactive distance 
measure tool in the profile view window. 
  

 
 
Figure 10 Height and width measurements on a single tree in LiDAR point data. The low Z values are 
displayed in blue, shifting into green, yellow, orange and finally to red for relatively high values. 
 
Figure 10 gives an example of the measurement of a single tree object. In both views, the 
LiDAR points are displayed using a colour scheme that represents the height (Z-value), 
points.  The low Z values are displayed in blue, shifting into green, yellow, orange and finally 
to red for relatively high values. In the top view the tree crown is displayed by red dots and 
the shape of the tree crown is easy to recognize. In the profile (bottom) view both the stem 
and the tree crown can be recognized. One observation that can be made from both views is 
that the exact width and height is not easy to determine. A best approximation was made by 
measuring several extreme points and using the average value. 
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Ground measurement

Lidar measurements (3 D Vis.)

 
 
Figure 11 Visual comparison of a single tree (object 1) as seen in the field (left) and 3D view by LiDAR 
measurements. Red pole indicates the height measurement of the object in the field. Green dots are the 
LiDAR measurements.  
 
Compound objects like a hedgerow or a line of trees vary a lot in both width and height due 
to the differences in width an height of the single objects that are part of the compound 
object. Height and width of a compound object is estimated by averaging both minimum and 
maximum values. Table 3 shows the measurements for all selected objects. 

 
 
Figure 12 Visual comparison of a hedge and tree (object 23) as seen in the field (left) and 3D view by 
LiDAR measurements. Red pole indicates the height measurement of the object in the field. Brown dots 
are the LiDAR measurements. 
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Figure 13 Visual comparison of a fringe of reed (object 5) as seen in the field (left) and 3D view by LiDAR 
measurements. Red pole indicates the height measurement of the object in the field. Brown dots are the 
LiDAR measurements. 
 
Table 3 Field measurement on vegetation objects in the study area of Chaam in February 2010. 

LiDAR Fieldwork
Object of interest Height Width Height Width
Single tree 11.9 9.8 11.71 8
Hedge row with bush 4.4 2.5 - 5.3 5.20 2.5
Single tree 11.3 11.54 6
Hedge row 7 - 7.8 6.8 - 7.8 8.56 5
Fringe of reed 2.9 3.6 - 5 2.20 4
Solitary tree 11.1 7.8 12.53 8
Row of willows 6.7 - 7 2.0 - 3 9.34 2
Blackberry and reed 1.3 - 5 4.0 - 7 5.20 4
Blackberry, low vegetation 0.25 - 0.75 4
Single tree 17.2 9.0 - 12 19.53 10
Forest with pines and birch 16.4 - 20 17.45 -
Dould line of Oak trees 8.5 - 8.9 4.7 - 6.4 9.57 5
Line of trees and bushes 15.9 7.0 - 8 15.89 10
Oak trees in line 14.0 - 16 8 16.00 8
Rough wood at water fringe 0.6 0.6 - 2.5 0.75 2
Pitrus in ditch ruis 0.75 7
Hedge with hornbeam 1.2 0.3 - 0.5 1.10 35
Con. Forest with edge of dec. t10.5 11.10 36
Solitary tree 10.25 8.5 - 10.8 11.28 5
Blackberry, low vegetation 1.2 3.5 - 4 1.70 4
Hedgerow 3.6 - 4.2 4.1 - 5 4.45 4
Rough field 0 - 1.00 -
Hedge with conifers 1.6 0.6 1.50 0
Row with birch trees 10.6 4.2 11.75 3
Oak trees in line 11.4 5 - 8 12.82 6  
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If we take the maximum height from the LiDAR data we can calculate the regression 
statistics with the field measurements. The regression analysis shows a good correlation 
between the field measurements and the LiDAR measurements, with an adjusted R square 
of 0.95 (n = 24). For the width of objects there is more variance and is also more difficult to 
measure in the field, especially if objects are larger. For the regression analysis we took the 
average width measured by LiDAR against the field measurements. The result is an adjusted 
R square of 0.89 (n = 19), which still can be considered as good. This small study shows that 
measurements made by LiDAR are quite accurate, even if data are acquired in early spring 
when no leaves are present. The only vegetation that did not give any return form the LiDAR 
data was a field with Pitrus (Juncus effesus) . It is not clear yet why the Pitrus does not give 
any return, while a reed fringe (object 5) consisting of Phragmites communis gives consistent 
measurements. 
 

4.4. Preliminary results 
 
Preliminary results as shown in Figure 14, using a decision tree classifier based on 
information derived from the false-colour aerial photographs and LIDAR data using the 
FUSION software, show reasonable results, but also shows that object recognition of  habitat 
patches according to the BioHab/Ebone methodology needs an additional approach since 
the decision tree is implemented on a pixel-basis. were integrated. Integration of aerial 
photograph and LiDAR images is partly hampered by relief displacement in the aerial 
photographs at a detailed spatial level. More research is needed to explore all new 
possibilities with eCognition to be able to perform a good segmentation with LiDAR data 
(section 4.5). Moreover, the ground data were not always labelled correctly by Fugro for all 
LiDAR points. Dense and very low buxus trees (30 cm height) were labelled as ground level. 
It was decided to explore more the FUSION software to calculate a new canopy height model 
and to calculate derived characteristics  (height, density, etc.) at the pixel level. A decision 
tree (in our case using spatial modeller in ArcGIS) can then provide a good classifier to 
identify the individual plant life forms at the pixel level. The use of aerial photographs as an 
additional source of information is essential, especially to discriminate vegetation from non-
vegetated areas.    

Vegetation penetrationCanopy height modelAerial photograph Vegetation penetrationCanopy height modelAerial photograph

Life forms classificationNDVI Penetration thresholds

After using majority filter to 
reduce the “noise”

Life forms classificationNDVI Penetration thresholdsLife forms classificationNDVI Penetration thresholds

After using majority filter to 
reduce the “noise”  

Figure 14 An example a different layers calculated by FUSION software for the LiDAR data and layers 
derived from the false-colour aerial photographs that are integrated by a decision tree classifier to identify 
the individual plant life forms at a pixel level.
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Figure 15 Visual comparison of the aerial photograph and the identified plant life forms at the pixel level. 
Major problem is still to identify the proper mapping units used for the General Habitat Categories. 
 
Figure 14 and 15 show that the preliminary results from the decision tree classifier are quite 
satisfactory by integration of LiDAR data with false-colour aerial photographs. In fact, the 
above given example is a tree nursery and this area should be classified as urban (URB) 
according to the BIOHAB/EBONE methodology. By integration with topographic maps urban 
areas can be removed (see section 4.5). Moreover, the composition of individual plant life 
forms is determined normally for every habitat mapping unit with a minimum area of 400 m2. 
The identification of the proper habitat mapping units using semi-automatic procedures is 
now seen as a major challenge that needs more research.    
 
 

4.5. Segmentation and classification for an entire 1km2 sample 
 
Following the promising results obtained using a decision tree classifier to indentify plant life 
form at pixel level, more research has been performed now to develop a semi-automated 
procedure for the detection of the proper mapping units used for the General Habitat 
Categories (GHC). To do so, the pixel-based classification method presented above was 
applied on a larger study area (1x1km) and used as starting point for the habitat mapping 
unit identification. 
 
Pixel-based classification 
As explained in the previous example, a NDVI index computed from the aerial photographs is 
used to discriminate vegetated and artificial areas. This selection is completed integrating the  
Dutch topographic map (Top10 vector) to remove urban or crop elements. Concerning the 
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latter, not all the crops are filtered out. Some types of crops, like vineyards, are considered 
as relevant habitat categories.  

 
Figure 16 NDVI index mask (left) and Top10 vector mask (right) 
 
From the LiDAR data, a canopy height model is computed at 2m grid cell size. The NDVI 
mask, Top10 vector mask and the canopy height model are then integrated (mosaic). The 
classification rules are applied on the mosaic in order to produce 9 categories on a pixel 
basis :  

1. No vegetation (from the NDVI information) 
2. Crop field (from the top10 data) 
3. Other (from the top10 data) 
4. Tree nursery (from the top10 data) 
5. Canopy height between 0 and 10cm (from the canopy height model) 
6. Canopy height between 10 and 60cm (from the canopy height model) 
7. Canopy height between 60cm and 2m (from the canopy height model) 
8. Canopy height between 2 and 5 m (from the canopy height model) 
9. Canopy height higher than 5m (from the canopy height model) 

 
The tree classification output was smoothed using a majority filter with a kernel window of 3 
by 3 pixels. 

 
 
Figure 17 Canopy height mode (left) and pixel based classification output (right) 

Canopy height model

50m

0m
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Segmentation to identify habitat patches 
The pixel-based plant life form classification (smoothed result) can be used as the point of 
departure  to identify the habitat patches using segmentation techniques. To do so, a multi-
resolution segmentation and a spectral difference segmentation has been carried out using 
eCognition software of Definiens.  
 
First the multi-resolution segmentation is run using a scale factor of 15. The shape criteria is 
set really low (0.05) whereas the compactness criteria is relatively high (0.7). Then the 
spectral difference segmentation is carried out in two steps. First, the segmentation is 
applied to all the objects created during the multi-resolution segmentation using a maximum 
spectral difference set as 0.17. Then a second spectral difference based segmentation is 
performed only for the objects presenting a average value superior to 2.5 (see the value 
attributed to the pixel according to the classification described above) using a maximum 
spectral difference value of 0.5. The composition of the individual plant life forms is 
determined for every habitat patch with a minimum area of 400 m2. In order to meet to this 
requirement, a “cleaning” is done to dissolve all objects presenting an area smaller than this 
limit. A filtering is also performed based on the ratio width/length of the object to remove the 
small and long objects that can be generated by border effect. The width/length ratio used is 
set as superior or equal to 7. The produced objects are exported as shapefile (figure 18) and 
some zonal statistics are computed in order to give the percentage of each general habitat 
category present in each polygon as presented in table 4. 
 

 
Figure 18 Visualization of the habitat mapping units created during the segmentation. The number 
identifying the polygons are used in table 4. 
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Table 4 provides the composition of plant life forms for each habitat patch (see polygons in 
Figure 18). The plant life forms used in this classification are: 
- Plant life form lower than 10cm ( < 10cm) 
- Leafy hemicryptophytes and Caespitose hemicryptophytes (LHE /CHE) 
- Mid phanerophytes (MPH) 
- Tall phanerophytes (TPH) 
- Forest phanerophytes (FPH) 
 
The last column in table 4 indicates the corresponding Top10 vector class. “No vegetation”  
indicates it is a semi-natural areas according to the Top10 vector and that the NDVI index 
indicated that no vegetation was detected at this location.  
 
Table 4 Percentage of each general habitat category by habitat mapping units 

Object 
ID 

< 
10cm LHE/CHE MPH TPH FPH Top10 class/NDVI 

1 93.50 4.64 0.68 1.10 0.08 Grassland 
2 15.10 15.59 16.83 41.09 11.39 Forest 
3 79.90 19.08 0.66 0.30 0.06 Grassland 
4 46.22 24.64 13.67 13.67 1.80 Grassland 
5 92.95 3.36 0.57 1.48 1.64 Grassland 
6 88.71 8.02 1.15 1.26 0.86 Grassland 
7 15.25 11.05 15.03 24.61 34.05 Forest 
8 95.59 3.22 0.25 0.74 0.19 Grassland 
9 6.94 5.68 6.31 11.99 69.09 Forest 

10 60.70 20.05 13.82 4.61 0.81 No vegetation 
11 2.88 6.73 10.15 47.33 32.91 Forest 
12 51.08 24.46 9.27 8.68 6.51 Grassland 
13 97.60 1.80 0.00 0.04 0.56 Grassland 
14 12.93 52.72 14.29 0.68 19.39 Grassland 
15 92.68 4.39 0.51 0.39 2.04 Grassland 
16 68.38 18.79 4.00 4.00 4.82 Grassland 
17 17.35 6.02 11.33 35.93 29.38 Other 

18 22.41 26.14 22.41 15.98 13.07
Grassland + No 
vegetation 

19 91.96 1.36 1.47 2.72 2.49 Grassland 
20 20.03 5.86 15.80 22.34 35.97 Other 
21 4.25 1.30 2.24 3.54 88.66 Forest 
22 83.95 9.80 1.85 0.60 3.80 Crops 
23 92.12 5.19 1.04 1.59 0.06 Grassland 
24 11.16 21.17 17.71 25.92 24.05 Forest + Grassland 

25 19.32 30.11 23.30 18.18 9.09
Grassland + No 
vegetation 

26 93.02 1.92 0.32 1.12 3.61 Grassland 
27 11.04 5.60 8.48 17.92 56.96 Forest 
28 96.92 0.55 0.50 0.61 1.41 Grassland 
29 3.35 31.44 17.78 36.60 10.82 Forest 
30 13.11 45.08 16.39 23.77 1.64 Forest 
31 96.44 2.40 0.19 0.20 0.77 Grassland 
32 17.28 70.99 6.79 0.62 4.32 Grassland 
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33 15.12 1.58 3.84 8.35 71.11 Grassland 
34 15.67 11.00 12.33 16.33 44.67 Grassland 
35 9.90 6.25 1.56 5.21 77.08 Grassland 
36 58.33 23.53 3.59 0.40 14.16 Grassland 

37 42.88 44.33 12.50 0.29 0.00
Grassland + No 
vegetation 

38 19.23 15.44 20.03 31.32 13.98 Other 
39 27.55 7.87 16.44 36.81 11.34 Other 
40 23.35 17.60 21.14 18.44 19.47 Other 
41 16.89 10.14 0.68 0.00 72.30 Other 
42 77.70 17.08 2.04 2.12 1.06 Other 
43 24.62 51.92 23.08 0.00 0.38 Grassland 

44 50.19 37.07 4.63 1.54 6.56
Grassland + No 
vegetation 

45 96.00 3.63 0.23 0.01 0.13 Grassland 
46 1.65 5.41 6.82 18.21 67.92 Grassland + Other 
47 9.69 55.34 18.38 10.59 5.99 Grassland + Other 
48 52.56 35.88 7.87 3.70 0.00 Grassland 
49 5.85 4.81 3.24 18.61 67.49 Forest 
50 92.18 6.72 0.28 0.40 0.42 Grassland 
51 91.70 6.28 2.02 0.00 0.00 Grassland 
52 28.97 52.07 1.86 5.90 11.19 Crops 
53 13.30 3.94 0.99 2.46 79.31 Grassland 
54 16.74 24.90 18.62 17.36 22.38 Grassland 
55 89.59 9.62 0.43 0.12 0.24 Grassland 
56 43.61 49.18 5.57 1.31 0.33 Grassland 
57 9.03 32.15 16.28 10.26 32.28 Grassland 
58 86.59 9.48 0.58 0.50 2.85 Crops 
59 70.57 28.37 1.06 0.00 0.00 No vegetation 
60 21.43 73.81 4.76 0.00 0.00 Grassland 
61 18.36 60.33 18.69 0.00 2.62 No vegetation 
62 16.31 12.80 11.89 27.29 31.71 Other 
63 30.88 59.56 9.56 0.00 0.00 Grassland 
64 17.70 76.92 5.28 0.10 0.00 Grassland 
65 97.89 1.39 0.71 0.00 0.00 Grassland 
66 66.53 27.51 4.72 0.90 0.35 Crops 
67 22.29 37.25 18.17 20.61 1.68 Grassland 
68 44.94 29.40 24.55 0.62 0.49 Crops (Vineyard) 
69 34.55 37.05 9.09 13.64 5.68 Grassland 
70 85.50 13.47 0.26 0.40 0.37 Grassland 
71 14.22 11.93 2.52 27.75 43.58 Grassland 
72 87.38 10.64 1.09 0.28 0.62 Crops 
73 78.74 12.57 7.19 1.50 0.00 No vegetation 
74 39.23 13.05 9.12 22.79 15.82 Other 
75 70.96 16.54 8.09 1.10 3.31 No vegetation 
76 48.97 43.29 4.60 1.03 2.11 Grassland 
77 90.20 7.01 1.18 0.44 1.17 Grassland 
78 68.00 23.06 3.11 0.94 4.90 Grassland 
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79 25.69 38.19 2.08 9.72 24.31 Grassland 
80 6.07 4.05 0.40 0.00 89.47 Grassland 
81 8.04 15.73 41.61 16.78 17.83 Grassland 
82 7.11 4.06 2.03 2.03 84.77 Grassland 
83 24.57 31.11 23.65 6.89 13.78 Grassland 
84 30.55 44.66 23.43 0.56 0.80 Crops (Vineyard) 
85 77.40 7.76 3.51 3.75 7.58 Crops 
86 88.69 7.58 2.43 0.49 0.81 No vegetation 
87 26.46 9.12 9.42 39.94 15.06 Other 
88 81.73 6.62 7.33 3.00 1.32 Crops 

89 82.29 4.32 4.97 0.65 7.78
Grassland + No 
vegetation 

90 68.35 14.30 9.13 7.64 0.58 Tree nursery 
91 20.86 8.11 6.76 27.10 37.16 Other 
92 15.24 23.49 1.59 7.30 52.38 Other 
93 0.00 0.00 0.00 100.00 0.00 Other 
94 31.58 9.70 34.07 12.47 12.19 Other 
95 46.12 13.23 10.21 8.03 22.40 Other 
96 3.27 1.09 0.73 2.91 92.00 Forest 
97 54.37 25.86 9.32 4.75 5.70 Grassland + Forest 
98 59.86 20.59 4.62 8.14 6.78 Other 
99 79.02 10.26 1.86 7.46 1.40 Grassland 

100 59.27 3.02 4.09 29.53 4.09 Other 
101 98.70 0.75 0.37 0.09 0.09 Grassland 
102 43.03 0.62 4.95 17.34 34.06 Other 
103 86.02 13.89 0.00 0.00 0.08 Crops 
104 0.40 3.41 4.02 92.17 0.00 Other 
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4.6. Validation 
 
In order to validate the classification results for each habitat type a comparison was made 
with data obtained from the field according to the BIOHAB/EBONE methodology.  The 
habitat mapping in the field was performed by Bob Bunce and Sander Mücher on the 20th of 
June 2010 according to the EBONE habitat mapping protocols. 
 

   
 

 
 
Figure 19 Visual comparison of semi-automated (yellow) and field based manual (blue) delineation of the 
habitat patches. 
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When comparing the results in figure 19, the segmentation results of habitat patches are 
quite good when compared to the field based interpretation of habitat patches. 
 
The next validation step was to compare the composition of plant life forms for habitat patch 
(field based versus classification result). Table 5 shows the composition of the habitat patch 
(as identified in the field) versus the composition in plant life forms based on the semi-
automatic classification.  
 

 
Figure 20 Identification of the habitat mapping units defined during the field work. 
 
 
 
 
 
 
 
 
 



Table 5 Comparison between semi-automated and field based plant life forms identification inside each habitat mapping unit  

 
FIELDWORK RESULTS 

 
SEMI-AUTOMATED CLASSIFICATION 

RESULTS 

ID GHC LF1 % LF2 % LF3 % LF4 % LF5 % LHE/CHE MPH TPH FPH Crop Aqua < 10cm LHE/CHE MPH TPH FPH 
1 LHE/CHE CHE 60 LHE 30 EHY 10         100           11.86 65.05 7.49 8.58 7.02 
2   0                             3.17 25.40 47.62 23.81 0.00 
3 ART   0                             20.99 8.26 6.95 27.63 36.16 
4     0                             8.16 8.16 8.16 0.00 75.51 
5 FPH/DEC FPH 0                       100     4.36 19.82 23.25 21.40 31.18 
6     0                             2.05 12.31 32.05 34.87 18.72 
7     0                             1.67 5.44 6.28 38.66 47.95 
8 CRO CRO 100                         100   85.67 12.03 1.20 0.06 1.05 
9     0                             6.50 4.07 5.69 41.46 42.28 

10 CHE CHE 70                 70           79.25 8.68 7.17 3.40 1.51 
11 FPH FPH 50 AQUA 30 SHY 20         20     50   30 2.94 25.00 42.65 26.47 2.94 
12     0                             0.00 0.00 23.08 15.38 61.54 
13 ART   0                             18.25 13.16 13.86 31.05 23.68 
14     0                             64.36 31.03 4.10 0.00 0.51 
15     0                             4.74 10.22 16.06 52.55 16.42 
16     0                             20.00 70.00 0.00 0.00 10.00 
17 CRO CRO 100                         100   83.21 10.77 1.26 0.54 4.22 
18 CHE/LHE CHE 60 LHE 40             100           82.79 0.75 1.12 2.83 12.51 
19     0                             16.53 7.12 3.86 14.23 58.26 
20 CHE CHE 50                 50           80.26 3.41 1.67 2.03 12.63 
21     0                             36.95 31.70 11.03 4.55 15.76 
22     0                             15.17 20.85 1.42 5.21 57.35 
23 CHE CHE 100                 100           83.83 13.18 1.66 0.36 0.97 
24 ART   0                             47.99 14.16 10.74 9.04 18.07 
25     0                             7.32 26.83 17.07 26.83 21.95 
26 CHE CHE 80 FPH 20             80     20     10.39 83.12 6.49 0.00 0.00 
27     0                             1.83 9.32 9.98 30.12 48.75 
28 CHE CHE 60 LHE 30 AQUA 10         90         10 49.82 49.11 1.07 0.00 0.00 
29 CHE CHE 70 LHE 30             100           74.52 13.35 3.49 2.18 6.46 
30 LHE CHE 100                 100           89.84 6.17 2.28 0.46 1.25 
31     0                             23.74 12.53 10.55 35.60 17.58 
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FIELDWORK RESULTS 

 
SEMI-AUTOMATED CLASSIFICATION 

RESULTS 

ID GHC LF1 % LF2 % LF3 % LF4 % LF5 % LHE/CHE MPH TPH FPH Crop Aqua < 10cm LHE/CHE MPH TPH FPH 
32     0                             57.33 37.73 4.20 0.08 0.66 
33 CRO   0                             82.14 6.90 6.45 3.18 1.33 
34     0                             47.39 40.93 5.79 2.90 2.99 
35 CHE CHE 0 THE               100           0.00 0.00 0.00 100.00 0.00 
36     0                             21.53 18.22 2.69 0.41 57.14 
37     0                             9.38 9.38 0.00 0.00 81.25 
38 CRO CRO 100                         100   70.02 14.99 8.35 6.39 0.25 
39 CHE CHE 80 FPH 20             80     20     14.67 60.00 20.00 3.11 2.22 
40     0                             29.87 70.13 0.00 0.00 0.00 
41     0                             0.40 1.98 1.98 10.71 84.92 
42     0                             19.35 15.26 20.23 31.22 13.94 
43     0                             46.79 14.72 12.08 10.94 15.47 
44 CHE CHE 70                 70           75.09 20.94 2.13 1.62 0.22 
45 CHE/LHE CHE 60 LHE 40             100           90.95 5.39 2.82 0.83 0.00 
46     0                             17.57 43.10 18.41 12.97 7.95 
47 CHE CHE 70                 70           90.03 8.59 0.40 0.31 0.67 
48 CHE CHE 80 LHE 20             100           90.50 2.18 0.16 0.96 6.20 
49 CHE CHE 100                 100           51.16 19.57 13.76 7.95 7.56 
50 SPA   0                             86.85 5.56 2.15 2.39 3.06 
51 CHE CHE 70 LHE 30             100           92.22 3.13 0.78 1.13 2.75 
52 CHE CHE 100                 100           92.08 4.62 0.64 0.05 2.61 
53 CHE CHE 70 LHE 30             100           92.29 4.02 0.76 1.56 1.37 
54 LHE CHE 100                 100           82.19 12.29 2.90 0.30 2.31 
55 LHE CHE 100                 100           93.33 1.92 0.47 0.42 3.87 
56 CHE CHE 70 LHE 30             100           66.14 8.81 3.93 3.09 18.03 
57 CHE CHE 70 LHE 30             100           70.89 13.62 4.52 2.37 8.59 
58 CHE CHE 0 THE                           68.94 18.21 1.23 4.25 7.37 
59 CHE CHE 0 THE                           79.73 10.68 1.92 7.40 0.27 
60 CHE CHE 100                 100           83.86 7.62 1.22 0.00 7.30 
61 CHE CHE 100                 100           85.82 8.85 2.45 0.39 2.49 
62 CHE CHE 100                 100           76.41 20.85 1.94 0.03 0.78 
63 CHE CHE 100                 100           87.72 10.65 1.17 0.14 0.33 
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FIELDWORK RESULTS 

 
SEMI-AUTOMATED CLASSIFICATION 

RESULTS 

ID GHC LF1 % LF2 % LF3 % LF4 % LF5 % LHE/CHE MPH TPH FPH Crop Aqua < 10cm LHE/CHE MPH TPH FPH 
64 CHE CHE 100                 100           81.43 13.99 4.09 0.36 0.13 
65 CHE CHE 70 LHE 30             100           91.92 5.28 0.49 0.66 1.65 
66 ART   0                             34.93 12.67 9.91 25.23 17.26 
67 CHE CHE 70 LHE 30             100           81.56 14.89 2.44 0.67 0.44 
68 CRO CRO 100                         100   84.41 12.61 0.70 0.00 2.28 
69 CRO CRO 100                         100   86.02 11.21 1.05 0.52 1.20 
70 ART   0                             45.69 2.30 5.46 40.23 6.32 
71 CHE CHE 100                 100           87.77 4.23 0.90 2.54 4.57 
72 ART   0                             48.75 15.03 14.36 8.93 12.94 
73 CRO   0                             68.33 10.26 17.73 2.90 0.78 
74     0                             86.33 13.51 0.00 0.00 0.15 
75 CRO   0                             62.07 13.42 6.35 17.56 0.60 
76 ART   0                             37.12 26.08 8.48 19.36 8.96 
77 LHE LHE 60 SPA 30 CHE 10         70       30   71.66 16.96 7.83 3.54 0.00 
78 LHE/CHE LHE 50 CHE 50             100           76.07 23.93 0.00 0.00 0.00 
79 WOC WOC 100 CHE 90             70 30         43.97 29.44 24.82 0.98 0.79 
80 WOC WOC 100 THE 70 SPA 30         40 30     30   78.46 20.04 1.42 0.03 0.05 
81 CRO CRO 100                         100   91.84 6.74 0.54 0.21 0.67 
82 CHE CHE 100                 100           78.78 20.28 0.85 0.03 0.06 
83     0                             84.21 13.79 1.20 0.29 0.51 
84 LHE CHE 100                 100           91.45 7.28 0.29 0.44 0.54 
85 CHE CHE 100                 100           5.19 34.70 10.66 25.96 23.50 
86 THE THE 100                 100           32.92 55.48 0.64 2.30 8.66 
87 CHE CHE 100                 100           81.61 9.57 0.65 0.11 8.06 
88 LHE CHE 100                 100           86.88 5.40 1.49 1.00 5.24 
89 LHE CHE 100                 100           89.35 6.77 3.12 0.77 0.00 
90 CRO CRO 100                 100           62.87 32.15 4.25 0.42 0.32 
91 CHE CHE 90 LHE 10             100           75.64 5.93 5.67 4.15 8.61 
92 WOC WOC 100 CHE 90             70 30         29.94 43.77 25.57 0.38 0.34 
93 LHE LHE 60 SPA 30 CHE 10         70       30   67.20 21.14 6.72 4.94 0.00 
94 TPH THP 40 FPH 20 AQUA 20 LHE 10 CHE 10 20   40 20   20 20.75 17.01 5.42 2.99 53.83 
95 CHE CHE 70                 70           48.21 23.83 11.08 3.51 13.36 
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FIELDWORK RESULTS 

 
SEMI-AUTOMATED CLASSIFICATION 

RESULTS 

ID GHC LF1 % LF2 % LF3 % LF4 % LF5 % LHE/CHE MPH TPH FPH Crop Aqua < 10cm LHE/CHE MPH TPH FPH 
96 CHE CHE 70                 70           77.20 21.74 0.96 0.00 0.10 
97 LHE LHE 90 CHE 10             100           87.16 11.83 0.19 0.75 0.06 
98 CHE CHE 70                 70           86.45 11.26 0.42 1.69 0.18 
99 CHE CHE 90 LHE 10             100           47.94 16.88 2.33 15.44 17.41 

100 CHE CHE 70                 70           78.49 13.33 0.41 2.61 5.15 
101 CHE CHE 70                 70           55.43 24.74 6.74 2.74 10.34 
102 CRO CRO 100                         100   96.10 3.43 0.16 0.00 0.31 
103 LHE CHE 100                 100           90.14 6.16 2.76 0.95 0.00 
104 CHE CHE 70 LHE 30             100           85.18 9.20 3.03 1.53 1.06 
105     0                             35.71 11.22 15.31 18.37 19.39 
106 CHE CHE 70 LHE 30             100           92.79 4.55 0.90 0.22 1.55 
107 ART   0                             44.33 7.83 7.76 27.40 12.69 
108 ART   0                             23.52 14.95 19.90 19.51 22.12 
109 ART/THE ART 50 TRE 50 GRA 20         20     50     29.23 6.12 10.30 16.73 37.63 
110 CHE CHE 90 LHE 10             100           78.35 9.80 0.26 3.32 8.27 
111     0                             9.66 24.24 3.60 13.26 49.24 
112 CHE CHE 70                 70           52.53 24.74 4.68 1.20 16.86 
113 FPH/DEC FPH/DEC 40 CHE 30 LHE 30         60     40     13.62 18.27 6.64 32.89 28.57 
114     0                             12.21 18.31 7.90 25.13 36.45 
115 CHE FPH 10 FPH 20 CHE 60 LHE 10     70     30     36.22 44.67 7.33 8.44 3.33 
116 CHE CHE 80 FPH 20             80     20     20.51 61.90 9.52 1.10 6.96 
117 LHE LHE 100                 100           6.73 50.48 23.08 13.46 6.25 
118 FPH/DEC   100   80                   100     0.23 3.00 3.34 29.40 64.05 
119 CHE CHE 100                 100           23.21 64.29 12.50 0.00 0.00 
120 CHE AQUA 30 CHE 50 LHE 20         70         30 58.17 28.24 10.84 2.44 0.31 
121 AQUA AQUA 60 SPA 20                     20 60 99.41 0.59 0.00 0.00 0.00 
122 CHE CHE 70                 70           85.11 12.28 0.89 1.72 0.00 

 
 



Figure 21 shows that most of the percentages of Leafy hemicryptophytes (LHE) and 
Caespitose hemicryptophytes (CHE) obtained using the semi-automated procedure are less 
than 20% different from the field observations (in between the red lines). 
 
The point circled in blue in the graph presents a large difference between the field measured 
value (100%) and the semi-automated predicted value (40%) for the combined class 
LHE/CHE. When looking at the specific habitat patch, it appears that some trees are present 
in the unit (from a vertical projection) that were not noticed in the field (classified as 100% 
LHE/CHE).  So in fact, the percentages obtained from the semi-automatic classification seem 
to be more realistic, than the percentages obtained in the field (diue to the missing of the 
vertical projection of the tree crowns). The table in figure 21 presents the classified or 
predicted (white) and observed (green) percentage of the different life forms for this particular 
unit. 
 
 

 
 

ID LHE/CHE_f LHE/CHE + < 10cm MPH_f MPH TPH_f TPH FPH_f FPH 
85 100 40 0 11 0 26 0 23 

 
Figure 21 Validation graphs for Leafy hemicryptophytes (LHE) and Caespitose hemicryptophytes (CHE) 
and details concerning an outstanding value. 
 
 
Figure 22 shows that most of the percentages of Mid phanerophytes (MPH) obtained using 
the semi-automated procedure are less than 10% different from the field observations. 
 
The point circled in yellow in the graph presents a larger difference between the field 
measured value (0%) and the semi-automated predicted value (24%) than the other points. 
The aerial photographs shows that the specific habitat patch is highly heterogeneous 
explaining the difference between predicted and measured value. Also here its seems that 
mistakes were made in the field to estimate the percentages of the different life forms. The 
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patch is quite large and the interpretation in the field was that this patch concerned only 
Forest (FPH). The table in figure 22 presents the classified or predicted (white) and observed 
(green) percentage of the different life forms for this particular unit. 
 
 

 
 
 

 
 
 

Figure 22 Validation graphs for Mid phanerophytes (MPH) and details concerning an outstanding value. 
 
 
 
 

Discussion 
 
To improve the semi-automatic identification of habitat patches, it would be interesting to 
exploit more the use of NDVI. In this study, NDVI is only used to differentiate vegetated and 
non-vegetated surfaces. As mentioned previously, the quality of the DEM (what is the ground 
layer) used to compute the canopy height model is also important and can have a large 
influence on the classification result. It would be also interesting to test the sensitivity of the 
general habitat classification result in relation to the pixel size and the methodology used to 
produce the canopy height model. Further, it would be interesting to analyze the influence of 
the result of the pixel based classification used as input for the segmentation on the object 
delineation. 
 
 
Notice also that in this study, the three input datasets - aerial photographs, topographic maps 
and LiDAR data - used for the pixel based classification originate from different years. 
Furthermore, the LiDAR data have been collected in early spring which is not the most 
suitable period for the general habitat identification aimed in this study. 
The roads should be also masked using the Top10 vector data to exclude it from the 
classification of the general habitat categories. 
 
 
 
 

ID LHE/CHE_f LHE/CHE + < 10cm MPH_f MPH TPH_f TPH FPH_f FPH 
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5. Conclusions 
 
LiDAR provides accurate height measurements on shrubs and trees. Even in early spring 
when the objects of interest still did not have any leaves. Early spring is the standard time for 
LiDAR measurements over the entire area of the Netherlands (primary interest is the update 
of the Dutch elevation model). Regression analysis between field measurements and LiDAR 
measurements of the height of various plant life forms showed an adjusted R square of 0.95. 
Unfortunately, not the whole range of plant life forms could be measured with LiDAR. Since 
the latest generation of LiDAR measurements have an accuracy of approximately 2 to 3 
centimeters, it is assumed that cryptogams and dwarf chamaephytes (below 5 cm) are 
difficult to measure with LiDAR.  In general, it has been demonstrated in this study that good 
characterization of 3d-vegetation objects is possible with LiDAR. But surprisingly, there were 
also problems with the identification of some specific vegetation types, such as fields with 
Juncus effusus (caespitosa hemicriptophytes). This vegetation type does not reflect any 
LiDAR measurements and is therefore invisible for LiDAR. Occasional data gaps occurred 
through “shadow effects”, but the use of different scan angles solves this problem. 
Combination of LiDAR with false-colour aerial photographs, both available for the whole of 
the Netherlands, provides a power tool with e.g. FUSION software and decision tree 
classifiers for the identification of plant life forms. Additional combination with topographic 
maps was needed to mask out urban environments for which the BIOHAB/EBONE does not 
distinguish plant life forms. Major challenge was to identify the proper habitat patches based 
on segmentation of the classification result, in order to translate the composition of the plabt 
life forms within the patch to a General Habitat Category (GHC). Comparison with a full field 
survey of the general habitat categories was essential. Segmentation and classification 
results are quite satisfactory based on the combined use of LiDAR, topographic maps and 
aerial photographs using segmentation as well as decision tree classifiers (using spatial 
modeller in ArcGis). It has been proofed, that in some cases estimates based on a semi-
automatic classification are better than the estimates made in the field. Moreover, semi-
automatic classification could save costs in the end. Major concern stays, that not all plant 
life forms can be identified on basis of remotely sensed information, in the first place due to 
the fact that acquisitions were made in early spring when most vegetation is still not present. 
A last remark is that the Centre of Geo-Information will obtain a ground LiDAR sensor later 
this year which makes the assessment of airborne LiDAR even more complete. Combination 
of LiDAR (height) measurements in combination with more species specific hyperspectral 
measurements are the way forward to identify General Habitat Categories from space. 
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Abstract 
We have investigated to which degree a combination of optical satellite data and LiDAR data can 
improve classification accuracy of the General Habitat Categories (GHC) used by the FP7 project 
European Biodiversity Observation Network (EBONE), compared to using satellite data alone. The study 
was carried out in Remningstorp, a forest dominated area in southern Sweden. The remote sensing data 
used for the study were (i) a SPOT 5 image from August 2009 and (ii) LiDAR data (26 points/m2) from 
September 2008. Ground truth samples were collected by interpretation of color infrared digital air 
photos from September 2009. Maximum likelihood and Random Forests classifications were made with 
satellite data and with a combination of satellite and LiDAR data. The classification scheme consisted of 
six forest classes, arable land and pasture land. The use of LiDAR data improved over-all accuracy with 
6% for maximum likelihood classification and 7% for Random Forests. The highest over-all accuracy was 
obtained with Random Forests, but on the expense of the smaller classes. 
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Introduction 
Automated satellite image classification is an established method for producing large area land cover 
maps. Examples of operational projects are the classification of the forest classes in the Swedish 
national version of the CORINE land cover data base, (Hagner and Reese, 2007); a state-wide land cover 
mapping of Wisconsin (Reese et al. 2002); LCMGB (Fuller et al. 1994); and MODIS Land Cover (Friedl et 
al. 2002), just to mention a few. The accuracy obtained for such products, based on 2-dimensional 
optical data only, is however limited. LiDAR data has proved useful in mapping of certain vegetation 
types such as mires (Genc et al. 2004, Korpela et al. 2009). Several studies also have shown the benefits 
of combining LiDAR data with different kinds of imagery for example for estimations of forest variables 
(Hudak et al. 2002, Hill and Thomson 2005, Hyde et al. 2006, Holmgren et al. 2008, Erdody and Moskal 
2010, Ke et al. 2010), and vegetation or habitat mapping in rangeland and coastal zones (Lee and Shan 
2003, Bork and Su 2007, Chust et al. 2008). 
 From the beginning of 2009, the Swedish National Land Survey (NLS) has been collecting laser 
scanner data for the whole country. Although the main purpose is the production of a new national 
digital elevation model (DEM), the nation-wide coverage of laser data could also be a resource for future 
vegetation mapping. SPOT images are freely available from the SACCESS data base, which is updated 
yearly with a dataset covering the entire country during the vegetation period  
(http://saccess.lantmateriet.se/map_viewer?map=29&maplevelindex=0). 

The aim of this study is to contribute to an initial understanding of the degree to which the 
addition of LIDAR data can improve GHC classification accuracies achieved using optical satellite 
(airborne) data alone1. The assessment was carried out for a forest dominated test area in southern 
Sweden.  

An earlier version of the work was presented as a poster at the International Conference in 
Landscape Ecology 2010 in Brno, Czech Republic and at the SilviLaser Conference 2010 in Freiburg, 
Germany (Nordkvist et al, 2010). Here the same datasets are used; the difference is the evaluation of 
the GHC classes as well as the test of the Random Forests algorithm.  

 
Material and methods 
 

Study area 
The Remningstorp estate is located in southern Sweden (lat. 58° 30' N, long. 13° 40' E). It is mainly 
covered by managed, hemiboreal forests dominated by Scots pine (Pinus Sylvestris), Norway spruce 
(Picea Abies) and birch (Betula spp). Figure 1 shows an orthophoto and a SPOT 5 image of the 1.0 km × 
1.5 km test site used in this study. 
 
  

                                                           
1
 The General Habitat Classification system is a habitat classification system where the vegetation is described 

using  physiognomic characteristics some of which (i.e. canopy height thresholds) are particularly suitable for being 
estimated by LiDAR. 

http://saccess.lantmateriet.se/map_viewer?map=29&maplevelindex=0
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Remote sensing data 
The optical satellite data used in this study was a SPOT 5 HRG XS scene from August 20, 2009. The pixel 
size is 10 m × 10 m for the green, red and near infrared bands, and 20 m × 20 m for the shortwave 
infrared band. The image was geo-rectified and co-registered to the Swedish grid system SWEREF 99, 
with an error of less than 0.5 pixels.  LiDAR data was acquired for the test area on September 4, 2008, 
using a TopEye MkII system carried by a helicopter. The wavelength was 1024 nm, the flying altitude 250 
m above ground and the average point density 26 m-2. First and last returns were recorded for each 
pulse. 
 
 

 
Figure 1. (a) Orthophoto and (b) SPOT 5 image of the test site at Remningstorp used in this study. 

Vegetation reference data 
The vegetation reference data (‘ground truth’) was collected through the interpretation of color infrared 
aerial photos. The photos were acquired by the national land survey at 1200 meters above average 
ground level in September 2009 using a Z/I DMC digital mapping camera. In total 999 circular sample 
plots with 10 meter radius were distributed on a regular 40m grid and photo interpreted in a digital 
photogrammetric work station. Plots falling within the forest, newly clear felled areas and agriculture 
masks according to the Swedish terrain map were used in the study. Plots that contained two or more 
classes were excluded, which left a set of 817 plots. The following data were registered per plot: mean 
basal area weighted tree height (m), tree species composition (percentage of canopy cover), diffuse 
canopy cover (percentage) and EBONE General Habitat Categories (GHC), 
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 (http://www.ebone.wur.nl/UK/Project+information+and+products/General+Habitat+Categories/). The 
GHC structure has three levels and an optional fourth level of Life Form qualifiers. The first level consists 
of six supercategories, and the higher levels are derived from definitions. A combination of two habitats 
can also be used as a GHC. Figure 2 shows the GHCs used in this study. Two classification schemes based 
on the GHC-classes are used (table 1). They are essentially the same, the only difference being that the 
agriculture class in scheme 1 is the combination of arable land and pasture land from scheme 2.  
 

Figure 2. The boxes below the dashed line shows the GHC classes used in this study. 
 

Processing of remote sensing data 
Height distributions of laser returns were used to create a raster covering the entire study area. First, 
the laser returns were classified as ground or vegetation returns using a progressive triangular irregular 
network densification (TIN) method (Axelsson 1999, 2000) implemented in the TerraScan software 
(Soininen 2004). A digital elevation model (DEM) was estimated by linear TIN interpolation with the 
laser returns classified as ground hits. The height value (dz) of a laser return was computed as the 
difference between the z-value of the laser return and the z-value of the DEM. A height threshold of  
10% of the maximum laser height and ≥ 1.0 m was applied in order to separate canopy returns from 
returns of ground, stones, and low vegetation. Several variables were extracted from laser data within 
each raster cell, based on the dz distribution of laser returns above the height threshold, and used to 
calculate raster cell values, one band for each derived variable. The variables were 10th percentile (h10), 
20th percentile (h20),…, 100th percentile (h100), and 95th percentile (h95). A vegetation-ratio (Vr) was 
calculated as the ratio between number of laser returns above the height threshold and total number of 
returns.  
  

http://www.ebone.wur.nl/UK/Project+information+and+products/General+Habitat+Categories/
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Table 1. Class definitions for classification schemes 1 and 2 

GHC Class Explanation Canopy 
cover 

(%) 

Tree 
height 

(m) 

Species composition (%) N° of 
plots 

scheme 
1 

N° of 
plots 

scheme 
2 

Coniferous Deciduous 

TRS/MPH Clear cut* 0-100 <2 0-100 0-100 83 83 
TRS/TPH Young 2-5 m 0-100 2-5 0-100 0-100 20 20 
TRS/FPH Plantation > 5 m 0-100 >5 0-100 0-100 59 59 
TRS/FPH/CON Coniferous ≥30 >5 ≥70 <30 318 318 
TRS/FPH/DEC Deciduous ≥30 >5 <30 ≥70 93 93 
TRS/FPH/DEC/CON Mixed ≥30 >5 <70 <70 42 42 
CUL/CRO Arable land <30 Any 0-100 0-100 - 28 
HER/LHE/CHE Pasture land <30 Any 0-100 0-100 - 174 
CUL/CRO + 
HER/LHE/CHE 

Arable and 
pasture land 

<30 Any 0-100 0-100 202 - 

*The plot should show traces of felling, e.g. stumps, machine tracks and debris. 
 

The LiDAR grid cells coincided with the pixels in the SPOT scenes, and each circular ground truth 
sample plot was centered over four adjacent pixels (figure 3). A training data set was generated by 
extracting the mean value of these four pixels or grid cells, which corresponds to a resampling of the 
data to 20 m × 20 m pixels. 
 

 

Figure 3. Schematic sketch of a circular sample plot (shaded), centered over four SPOT pixels/LiDAR grid 
cells. 

 
Two classification methods were tested: maximum likelihood (ML) and Random Forests (RF) 

(Breiman, 2001). The Minitab 15 statistical software was used for the ML classification, and accuracies 
were estimated by leave-one-out cross validation. Random Forests was run using the R statistical 
software version 2.12.0 (http://www.r-project.org/). With the RF method, an unbiased estimate of the 
test set error can be made internally, the so called out-of-bag (OOB) error estimate. For both methods, a 
first classification was made using the four SPOT bands. Then different combinations of height 
percentiles and/or vegetation ratio from the LiDAR data were used as additional “bands” with the ML 
method. A test with ML classification in two steps was also made. In the first step the plots were 
classified into two height classes, which were then treated separately and classified according to the 
schemes. RF classification was done using all available height percentiles and the vegetation ratio 
together with the satellite data. The number of trees used in each RF classification was 1000, and the 

http://www.r-project.org/
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number of variables tested at each split was 2 when only the SPOT bands were used and 5 when the 
LiDAR data were added. 

 
Results 
Over-all accuracies for the different classifications are shown in tables 2 and 3, together with producer’s 
accuracies for each class. When satellite and LiDAR data are used together, the over-all accuracy is 
improved with approximately 6% (ML) and 7% (RF) compared to using SPOT data only. This holds for 
both classification schemes. For scheme 1, ML classification using SPOT data gave an over-all accuracy of 
71.1%. When the height percentile 60 (h60) and the vegetation ratio (Vr) from the LiDAR data were 
added, the accuracy increased to 77.0%. Random Forests gave over-all accuracies of 77.2 % and 84.1 % 
for SPOT and SPOT+LiDAR, respectively. The same pattern was observed for scheme 2, but with a few 
percent lower accuracies: 67.8% and 73.7% with the ML method, and 75.5 % and 82.4 % with RF. The 
biggest improvement when adding laser data was less confusion between deciduous forest and 
plantations > 5 m, and between deciduous forest and young forest 2-5 m. Classification in two steps did 
not improve the result. The RF method gave higher over-all accuracies than ML, and very high accuracies 
for the largest classes: coniferous > 15 m and pasture land. This is, however, on the expense of the 
smaller classes, especially mixed and young forest. Attempts with weighting the classes only gave a small 
improvement (results not shown). 
 
Table 2. Producers and overall accuracies for scheme 1, obtained from leave one-our cross validation for 
the ML classfier and Out-of-bag  estimates in the case of Random Forest (RF) 

Method ML ML RF RF 
Bands† S1-S4 

(%) 
S1-

S4,h60,Vr 
S1-S4 S1-S4, all 

LiDAR 

Clear cut 65.1 69.9 67.5 80.7 
Young 2-5 m 40.0 55.0 10.0 30.0 
Plantation > 5 m 62.7 79.7 61.0 84.7 
Coniferous > 5 m 84.9 83.0 94.3 95.3 
Deciduous > 5 m 45.2 64.5 60.2 74.2 
Mixed > 5 m 38.1 33.3 11.9 9.52 
Arable and pasture land 76.2 86.6 87.1 93.1 
Over-all 71.1 77.0 77.2 84.1 

† S1-S4 are the four SPOT bands, h60 is the LiDAR height percentile 60, Vr is the vegetation ratio and 
all LiDAR means all available LiDAR features as described in the text. 
 
Table 3. Producers and overall accuracies for scheme 2, obtained from leave one-our cross validation for 
the ML classfier and Out-of-bag  estimates in the case of Random Forest (RF) 

Method ML ML RF RF 
Bands S1-S4 S1-S4,h70 S1-S4 S1-S4, all LiDAR 

Clear cut 55.4 73.5 72.3 81.9 
Young 2-5 m 40.0 50.0 10.0 30.0 
Plantation > 5 m 62.7 83.1 61.0 86.4 
Coniferous > 5 m 84.9 83.0 93.7 95.0 
Deciduous > 5 m 45.2 65.6 58.1 75.3 
Mixed > 5 m 38.1 40.5 16.7 11.9 
Arable land 71.4 78.6 46.4 57.1 
Pasture land 66.1 67.8 84.5 89.1 
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Over-all 67.8 73.7 75.5 82.4 

† S1-S4 are the four SPOT bands, h70 is the LiDAR height percentile 70, and all LiDAR means all available 
LiDAR features as described in the text. 
 
Discussion 
The main objective of this study was to investigate how and to which degree a vegetation classification 
using optical satellite data can be improved by integrating LiDAR data. It was found that the laser 
features giving the greatest improvement were h60 and h70, probably because they are more strongly 
correlated with the mean height than for example h100, which is sensitive to single emergent trees 
which are taller than the mean. The advantage of LiDAR data can be seen in the case of young forest, 
which often contains lots of birch before the pre-commercial thinning has been done. Several plots from 
this class were mistakenly classified as deciduous forest when only satellite data was used. When h60 or 
h70 was added, the young forest class with its low mean height was more easily separated from the 
taller deciduous class. In the previous study by Nordkvist et al. (2010), a slightly different classification 
scheme was used which divided the coniferous forest into two height classes: 5-15 m and > 15 m. The 
use of LiDAR data improved the accuracies from 51.3% to 74.3% and from 83.8% to 89.3% for these 
classes, mostly due to reduced confusion between the two of them. This results indicates that the three 
dimensional information in LiDAR data gives new possibilities to use height classes. 
 Among the error sources can be mentioned the aerial photo interpretation, since it is based on 
subjective estimations and the performance of the interpreter is likely to vary. This will affect the quality 
of the training data, and thus the classification. In an attempt to improve the accuracy in the estimation 
of canopy cover, the interpreter used a calibration software (Gallegos 2005). The maximum likelihood 
classification assumes normally distributed training data for each class, which is not always the case in 
our data set. The distance between sample plots is small, which may lead to auto-correlation in the 
training data set. 

Further studies will be performed using data from the national LiDAR dataset (approx. 0.5 
pulses/m2) to evaluate the potential of this method for forest mapping on a national scale. Mire classes, 
that were to rare in the Remningstorp test site, will then be included. One way to improve separation of 
the mixed forest class could be to use two satellite scenes over the same area, acquired under leaf on 
and leaf off conditions, respectively.  
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Abstract 
 
LiDAR technology is an important development in the field of remote sensing for delivering 
high detailed and accurate digital elevation models (DEM). As a result nationwide coverage is 
expected to be increasingly common across Europe. The purpose of the work presented was to 
findout if LiDAR can help improve the identification of GHC and whether different flight 
specifications such as altitude could affect the effectiveness of LiDAR in this role. More 
specifically we looked at how the penetration level of LiDAR affects the vertical accuracy of 
the DEM and subsequently derived height estimates. LiDAR data provides a bulk of points 
that can be used to form a 3D model of the environment. Different types of vegetation have 
different effects on the penetration rate of the laser beam. Asphalt road, crop fields, natural 
hayfields and different forest types were used in this study to see how well the laser beam can 
penetrate to ground level in different conditions. The lower dense vegetation had a 
considerable effect on the Z (height) component of LiDAR points. The vertical accuracy of 
the DEM derived from the 2400 m (flight altitude) national wide ALS (Airborne Laser 
Scanning) data and the 1300 m special flight data were similar. 2400 m data has lower point 
resolution, therefore less points under canopy. 
Also, the possibility to use LiDAR data in combination with aerial images and RGB values 
assigned to individual LiDAR points were studied. The combination of LiDAR and aerial 
image gave a better overview of the studied area and made linear objects visible, and 
therefore more easily recognizable.  
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1. Airborne Laser Scanning in Estonia 
 
The first ALS project in Estonia was carried out in 2004 when an Optech scanner was used to 
measure roads in North and North-East part of Estonia. In 2008 the Estonian Land Board 
(ELB) bought an airplane and Leica ALS50-II scanner. This started a new project of which its 
goal was to produce an elevation model for all of Estonia. The main task was to use this 
elevation model to correct aerial images. But ALS data can be used for other purposes as well 
(forestry, mapping flooded areas, mining etc). 
 

1.1. ALS50-II scanner 
 
The Leica ALS50-II scanner is a time-of-flight (TOF) based scanner. It means that it uses the 
time measurements between output and input laser pulse to calculate the distance from sensor 
to the object. The ALS50-II scanner can operate on altitudes from 200 m to 6000 m. The 
maximum scan rate is 90 Hz (scan lines per second), maximum pulse rate is 150 kHz (pulses 
per second). The ALS50-II scanner has an option to use multiple pulses in the air (MPiA). It 
means that the laser can shoot out the next pulse even though the previous pulse has not been 
returned yet. MPiA starts to operate at the altitude of 1200 m and it gives the users much more 
returns per square meter. The number of returns per pulse that the ALS50-II scanner can 
record is 4 (first, second, third and last) and the number of intensities is 3 (first, second, third). 
Maximum scan angle is 75° and it can record up to 300 GB of data. 
 

 
Fig. 2. ALS50-II scanner setup. 
 
The ALS50-II scanner has also an extra feature that previous versions did not have. It is called 
Automatic Gain Control (AGC). Its main purpose is to reduce ringing effect and therefore 
increase the number of points detected. But AGC has also an effect on intensity values and 
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therefore should be corrected (Vain et al., 2010 and Korpela et al,, 2010). This makes the use 
of intensity data a little bit complex, especially around water object where intensity could 
deviate a lot due to the AGC effect (Vain et al., 2010). 
 
 

1.2. National wide ALS measurements in Estonia 
 
The Estonian Land Board (ELB) is equipped with an ADS40 digital camera and an ALS50-II 
laser scanner that are mounted on a Cessna Grand Caravan 208B airplane. This combination 
of aerial camera and laser scanner provides aerial images simultaneously with laser points.  
 

 
Fig. 3. Aerial camera ADS40 and ALS50-II scanner mounted on airplane. 
 
The purpose of ALS measurements for ELB is to get digital elevation model for all of Estonia 
which can be used to correct aerial images. The main altitude is 2400 m above ground level 
that gives a 0.45 pts/m2 density and maximum point distance of 2.6 m. The laser footprint size 
on the ground is 54 cm and the accuracy of the height component is estimated by ELB to be 
from 0.07 to 0.12 cm. 
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Fig. 4. Coverage of ALS measurements in Estonia by ELB. 
 
Most of Estonia is or will be covered with ALS data acquired at 2400m altitude by the autumn 
2011. The city of Tallinn and the city of Pärnu are covered with 1500 m altitude data. For 
agricultural and forestry purposes a 3800 m altitude was used in South-Estonia. 
The data can be bought from ELB in ASCII format. 2400 m and 3800 m flights are classified 
into 3 classes:  

1) Unclassified; 
2) Ground; 
3) Noise. 

The 1500 m flights for cities are classified into 4 classes:  
1) Unclassified; 
2) Ground; 
3) Buildings; 
4) Noise. 

Unclassified points are those that are above the ground (e.g. vegetation). The ASCII format 
contains 6 columns: 

1) Class (e.g. ground); 
2) X; 
3) Y; 
4) Z; 
5) Intensity; 
6) Echo type. 
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The intensity value is recorded in 8-bit range (0 to 255) and describes the backscattering 
properties of the observed object. Echo type describes the return type (ALS50-II can record 
up to 4 returns from one pulse):  

 Only – only return from one pulse; 
 First – first return from one pulse (usually a tree top); 
 Intermediate – any intermediate return, but not the first or last return from one pulse 

(higher grass or middle points from the trees); 
 Last – last return of the pulse (ground or e.g. grass). 

 
2. Study aims 

 
The purpose of our bit of work was to study the vertical accuracy of laser points over different 
type of vegetation. Trees and especially lower vegetation has an influence on the vertical 
accuracy of laser points. Therefore, different vegetation types were chosen for this 
comparison. These different vegetation plots were measured with RTK GPS and total station 
and there results were compared with laser points from ALS. The results from this study give 
us a rough estimation of what kind of vertical accuracy we can expect from different 
vegetation types. 
The second part of this study was to test different methods for extracting GHC types from 
laser data. Using echo information and height data the automatic area classification was 
established (see Fig. 16 and Fig. 16). This kind of approach is good for extracting forested 
areas from crop fields and classifies these forests according to the tree heights. 
 

3. Test flight in Emumäe 
 
A special flight was ordered from ELB over the test area in Emumäe, Central-Estonia (see 
Fig. 5). 
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Fig. 5. Test area in Emumäe, Central-Estonia. The area is 2x2 km. 
 
The test area is 2x2 km in dimension and has mainly agricultural coverage. In the north-west 
part of the area, there is a forest of mixed tree species (mainly leafy trees). 
 
The ALS measurements were acquired in August 2010 with the ALS50-II scanner. The flying 
altitude was 1300 m (because the MPiA system starts to operate at 1200 m it gave us more 
points per square meter), the field of view was 40 degrees, the pulse repetition frequency 150 
kHz, scan rate was 45 Hz and the average point density was 5-6 pts/m2. The total number of 
flightlines was 6, three of them in north-south direction and three in west-east direction. This 
gives double the point density compared to three parallel flightlines. The flightlines are shown 
in Fig. 6. 

 
 
Fig. 6. Flightlines in the Emumäe test area: 3 flightlines in north-south direction and three in 
west-east direction. 
 
The second set of ALS data that was used was sourced from the nationwide 2400m ALS ELB 
acquisitions of summer 2010.  
 

4. Field work 
 
The field work involved two activities:  
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1. A field survey to characterise the habitats present within the 2kmx2km area. This was 
done during the summer of 2010 and following the “Handbook for Surveillance and 
Monitoring of Habitats, Vegetation and Selected Species“ (Bunce et al., 2010). The 
results are shown on Fig. 7.  

2. The collection of surface height measurements for different types of vegetation (forest, 
grass) and for different surfaces (asphalt, cut or uncut grass). In total 9 small areas 
were chosen and measured with a total station and RTK (Real Time Kinematic) GPS 
(Global Positioning System). The chosen areas are shown in Fig. 8. The “Uncut CRO 
1” and “Uncut CRO 2” are areas where crop has not yet been cut and has a height of 
about 70-80 cm. The “Cut CRO 1” and “Cut CRO 2” are areas where crop has already 
been cut and the laser can reach the ground. “Asphalt road” is a 100 m section of 
asphalt road. “Forest 1” is an area where the taller vegetation is not very dense but the 
understorey vegetation is very dense. “Forest 2” has a dense layer of tall vegetation 
but almost no understorey vegetation. “Slope” is a temporary road area in a natural 
hay area where the grass is short and the tilt of the road is about 20%. “Natural hay” 
represents an area where there has not been any agricultural activity for a long time 
and the height of the grass is about 50-60 cm. 
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Fig. 6. GHC as recorded during the fieldwork on the Emumäe test area in summer 2010. 
 
 
 

 
Fig. 8. The location of the 9 different areas within the test area of Emumäe where the surface 
height measurement were taken. 
 
 

5. In-situ –LiDAR comparison 
 
The field measurement points were compared to the ALS points (1300 m and 2400 m) for all 
the 9 different areas. This comparison shows us how well the laser can penetrate through 
different type of vegetation. The results for 1300 m data are in Fig. 9 and for 2400 m data in 
Fig. 10.
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Fig. 9. Vertical differences of 1300m laser points from field measurements. 

0

20

40

60

80

100

120

[-
0
.3
5
-(
-0
.3
0
))

[-
0
.3
0
-(
-0
.2
5
))

[-
0
.2
5
-(
-0
.2
0
))

[-
0
.2
0
-(
-0
.1
5
))

[-
0
.1
5
-(
-0
.1
0
))

[-
0
.1
0
-(
-0
.0
5
))

[-
0
.0
5
-0
.0
0
)

[0
.0
0
-0
.0
5
)

[0
.0
5
-0
.1
0
)

[0
.1
0
-0
.1
5
)

[0
.1
5
-0
,2
0
)

[0
.2
0
-0
.2
5
)

[0
.2
5
-0
.3
0
)

[0
.3
0
-0
.3
5
)

N
u

m
b

e
r o

f 
p

o
in

ts

Δz, m

Cut CRO 2

0

1

2

3

4

5

6

7

8

[-
0
.3
0
-(
-0
.2
5
))

[-
0
.2
5
-(
-0
.2
0
))

[-
0
.2
0
-(
-0
.1
5
))

[-
0
.1
5
-(
-0
.1
0
))

[-
0
.1
0
-(
-0
.0
5
))

[-
0
.0
5
-0
.0
0
)

[0
.0
0
-0
.0
5
)

[0
.0
5
-0
.1
0
)

[0
.1
0
-0
.1
5
)

[0
.1
5
-0
,2
0
)

[0
.2
0
-0
.2
5
)

[0
.2
5
-0
.3
0
)N

u
m

b
e

r o
f 

p
o

in
ts

Δz, m

Forest 2

0

1

2

3

4

5

6

7

8

9

10

[-
0
.4
0
-(
-0
.3
5
))

[-
0
.3
5
-(
-0
.3
0
))

[-
0
.3
0
-(
-0
.2
5
))

[-
0
.2
5
-(
-0
.2
0
))

[-
0
.2
0
-(
-0
.1
5
))

[-
0
.1
5
-(
-0
.1
0
))

[-
0
.1
0
-(
-0
.0
5
))

[-
0
.0
5
-0
.0
0
)

[0
.0
0
-0
.0
5
)

[0
.0
5
-0
.1
0
)

[0
.1
0
-0
.1
5
)

[0
.1
5
-0
,2
0
)

[0
.2
0
-0
.2
5
)

[0
.2
5
-0
.3
0
)

[0
.3
0
-0
.3
5
)

[0
.3
5
-0
.4
0
)

N
u

m
b

e
r o

f 
p

o
in

ts

Δz, m

Forest 1

0

2

4

6

8

10

12

14

16

18

20

[-
0.
35

-(
-0
.3
0)
)

[-
0.
30

-(
-0
.2
5)
)

[-
0.
25

-(
-0
.2
0)
)

[-
0.
20

-(
-0
.1
5)
)

[-
0.
15

-(
-0
.1
0)
)

[-
0.
10

-(
-0
.0
5)
)

[-
0.
05

-0
.0
0)

[0
.0
0-
0.
05

)

[0
.0
5-
0.
10

)

[0
.1
0-
0.
15

)

[0
.1
5-
0,
20

)

[0
.2
0-
0.
25

)

[0
.2
5-
0.
30

)

[0
.3
0-
0.
35

)

N
um

be
r o

f p
oi

nt
s

Δz, m

Slope

0

2

4

6

8

10

12

14

[-
0
.6
0
-(
-0
.5
5
))

[-
0
.5
5
-(
-0
.5
0
))

[-
0
.5
0
-(
-0
.4
5
))

[-
0
.4
5
-(
-0
.4
0
))

[-
0
.4
0
-(
-0
.3
5
))

[-
0
.3
5
-(
-0
.3
0
))

[-
0
.3
0
-(
-0
.2
5
))

[-
0
.2
5
-(
-0
.2
0
))

[-
0
.2
0
-(
-0
.1
5
))

[-
0
.1
5
-(
-0
.1
0
))

[-
0
.1
0
-(
-0
.0
5
))

[-
0
.0
5
-0
.0
0
)

[0
.0
0
-0
.0
5
)

[0
.0
5
-0
.1
0
)

[0
.1
0
-0
.1
5
)

[0
.1
5
-0
,2
0
)

[0
.2
0
-0
.2
5
)

[0
.2
5
-0
.3
0
)

[0
.3
0
-0
.3
5
)

[0
.3
5
-0
.4
0
)

[0
.4
0
-0
.4
5
)

[0
.4
5
-0
.5
0
)

[0
.5
0
-0
.5
5
)

[0
.5
5
-0
.6
0
)

N
u

m
b

e
r 

o
f 

p
o

in
ts

Δz, m

Natural hay

0

1

2

3

4

5

6

7

8

[-
0
.8
0
-(
-0
.7
5
))

[-
0
.7
5
-(
-0
.7
0
))

[-
0
.7
0
-(
-0
.6
5
))

[-
0
.6
5
-(
-0
.6
0
))

[-
0
.6
0
-(
-0
.5
5
))

[-
0
.5
5
-(
-0
.5
0
))

[-
0
.5
0
-(
-0
.4
5
))

[-
0
.4
5
-(
-0
.4
0
))

[-
0
.4
0
-(
-0
.3
5
))

[-
0
.3
5
-(
-0
.3
0
))

[-
0
.3
0
-(
-0
.2
5
))

[-
0
.2
5
-(
-0
.2
0
))

[-
0
.2
0
-(
-0
.1
5
))

[-
0
.1
5
-(
-0
.1
0
))

[-
0
.1
0
-(
-0
.0
5
))

[-
0
.0
5
-0
.0
0
)

[0
.0
0
-0
.0
5
)

[0
.0
5
-0
.1
0
)

[0
.1
0
-0
.1
5
)

[0
.1
5
-0
,2
0
)

[0
.2
0
-0
.2
5
)

[0
.2
5
-0
.3
0
)

[0
.3
0
-0
.3
5
)

[0
.3
5
-0
.4
0
)

[0
.4
0
-0
.4
5
)

[0
.4
5
-0
.5
0
)

[0
.5
0
-0
.5
5
)

[0
.5
5
-0
.6
0
)

[0
.6
0
-0
.6
5
)

[0
.6
5
-0
.7
0
)

[0
.7
0
-0
.7
5
)

[0
.7
5
-0
.8
0
)

N
u

m
b

e
r o

f 
p

o
in

ts

Δz, m

Uncut CRO 1

0

20

40

60

80

100

120

140

[-
0.
20

-(
-0
.1
5)
)

[-
0.
15

-(
-0
.1
0)
)

[-
0.
10

-(
-0
.0
5)
)

[-
0.
05

-0
.0
0)

[0
.0
0-
0.
05

)

[0
.0
5-
0.
10

)

[0
.1
0-
0.
15

)

[0
.1
5-
0,
20

)

N
um

be
r o

f p
oi

nt
s

Δz, m

Aspahlt road

0
20
40
60
80
100
120
140
160
180
200

[-
0
.1
5
-(
-0
.1
0
))

[-
0
.1
0
-(
-0
.0
5
))

[-
0
.0
5
-0
.0
0
)

[0
.0
0
-0
.0
5
)

[0
.0
5
-0
.1
0
)

[0
.1
0
-0
.1
5
)

N
u

m
b

e
r 

o
f 

p
o

in
ts

Δz, m

Cut CRO 1

0

5

10

15

20

25

[-
0
.7
0
-(
-0
.6
5
))

[-
0
.6
5
-(
-0
.6
0
))

[-
0
.6
0
-(
-0
.5
5
))

[-
0
.5
5
-(
-0
.5
0
))

[-
0
.5
0
-(
-0
.4
5
))

[-
0
.4
5
-(
-0
.4
0
))

[-
0
.4
0
-(
-0
.3
5
))

[-
0
.3
5
-(
-0
.3
0
))

[-
0
.3
0
-(
-0
.2
5
))

[-
0
.2
5
-(
-0
.2
0
))

[-
0
.2
0
-(
-0
.1
5
))

[-
0
.1
5
-(
-0
.1
0
))

[-
0
.1
0
-(
-0
.0
5
))

[-
0
.0
5
-0
.0
0
)

[0
.0
0
-0
.0
5
)

[0
.0
5
-0
.1
0
)

[0
.1
0
-0
.1
5
)

[0
.1
5
-0
,2
0
)

[0
.2
0
-0
.2
5
)

[0
.2
5
-0
.3
0
)

[0
.3
0
-0
.3
5
)

[0
.3
5
-0
.4
0
)

[0
.4
0
-0
.4
5
)

[0
.4
5
-0
.5
0
)

[0
.5
0
-0
.5
5
)

[0
.5
5
-0
.6
0
)

[0
.6
0
-0
.6
5
)

[0
.6
5
-0
.7
0
)

N
u

m
b

e
r 

o
f 

p
o

in
ts

Δz, m

Uncut CRO 2



ANNEX - 4 
Studying the vertical accuracy of LiDAR data in different vegetation types and using LiDAR data with combination of aerial images to classify EBONE 

General Habitats Categories in Estonia 
 
 

  
11 

 
  

 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

0

10

20

30

40

50

60

70

80

90

100

[-
0
.1
5
-(
-0
.1
0
))

[-
0
.1
0
-(
-0
.0
5
))

[-
0
.0
5
-0
.0
0
)

[0
.0
0
-0
.0
5
)

[0
.0
5
-0
.1
0
)

[0
.1
0
-0
.1
5
)

N
u

m
b

e
r o

f 
p

o
in

ts

Δz, m

Cut CRO 2

0

1

2

3

4

5

6

7

[-
0
.4
0
-(
-0
.3
5
))

[-
0
.3
5
-(
-0
.3
0
))

[-
0
.3
0
-(
-0
.2
5
))

[-
0
.2
5
-(
-0
.2
0
))

[-
0
.2
0
-(
-0
.1
5
))

[-
0
.1
5
-(
-0
.1
0
))

[-
0
.1
0
-(
-0
.0
5
))

[-
0
.0
5
-0
.0
0
)

[0
.0
0
-0
.0
5
)

[0
.0
5
-0
.1
0
)

[0
.1
0
-0
.1
5
)

[0
.1
5
-0
,2
0
)

[0
.2
0
-0
.2
5
)

[0
.2
5
-0
.3
0
)

[0
.3
0
-0
.3
5
)

[0
.3
5
-0
.4
0
)

N
u

m
b

e
r o

f 
p

o
in

ts

Δz, m

Forest 2

0

2

4

6

8

10

12

14

[-
0.
30

-(
-0
.2
5)
)

[-
0.
25

-(
-0
.2
0)
)

[-
0.
20

-(
-0
.1
5)
)

[-
0.
15

-(
-0
.1
0)
)

[-
0.
10

-(
-0
.0
5)
)

[-
0.
05

-0
.0
0)

[0
.0
0-
0.
05

)

[0
.0
5-
0.
10

)

[0
.1
0-
0.
15

)

[0
.1
5-
0,
20

)

[0
.2
0-
0.
25

)

[0
.2
5-
0.
30

)N
um

be
r o

f p
oi

nt
s

Δz, m

Slope

0

2

4

6

8

10

12

[-
0
.2
5
-(
-0
.2
0
))

[-
0
.2
0
-(
-0
.1
5
))

[-
0
.1
5
-(
-0
.1
0
))

[-
0
.1
0
-(
-0
.0
5
))

[-
0
.0
5
-0
.0
0
)

[0
.0
0
-0
.0
5
)

[0
.0
5
-0
.1
0
)

[0
.1
0
-0
.1
5
)

[0
.1
5
-0
,2
0
)

[0
.2
0
-0
.2
5
)N

u
m

b
er

 o
f 

p
o

in
ts

Δz, m

Natural hay

0

2

4

6

8

10

12

14

16

18

20

[-
0
.2
0
-(
-0
.1
5
))

[-
0
.1
5
-(
-0
.1
0
))

[-
0
.1
0
-(
-0
.0
5
))

[-
0
.0
5
-0
.0
0
)

[0
.0
0
-0
.0
5
)

[0
.0
5
-0
.1
0
)

[0
.1
0
-0
.1
5
)

[0
.1
5
-0
,2
0
)

N
u

m
b

e
r 

o
f 

p
o

in
ts

Δz, m

Uncut CRO 1

0
10
20
30
40
50
60
70
80
90

[-
0
.3
0
-(
-0
.2
5
))

[-
0
.2
5
-(
-0
.2
0
))

[-
0
.2
0
-(
-0
.1
5
))

[-
0
.1
5
-(
-0
.1
0
))

[-
0
.1
0
-(
-0
.0
5
))

[-
0
.0
5
-0
.0
0
)

[0
.0
0
-0
.0
5
)

[0
.0
5
-0
.1
0
)

[0
.1
0
-0
.1
5
)

[0
.1
5
-0
,2
0
)

[0
.2
0
-0
.2
5
)

[0
.2
5
-0
.3
0
)

N
u

m
b

e
r 

o
f 

p
o

in
ts

Δz, m

Asphalt road



ANNEX - 4 
Studying the vertical accuracy of LiDAR data in different vegetation types and using LiDAR data with combination of aerial images to classify EBONE 

General Habitats Categories in Estonia 
 
 

  
12 

 
  

 

 
Fig. 10. Vertical differences of 2400m laser points from field measurements.
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From the results in Fig. 10 we can see that there were no laser points from 2400 m in “Forest 
1” area because the density of lower vegetation in that area was high. The “Cut CRO 1” and 
“Cut CRO 2” are quite close to the filed measurement data. Most of the laser points are up to 
15 cm higher. The “Uncut CRO 1” and “Uncut CRO 2” show the same results which is 
caused by the fact that the ELB data from the Emumäe test area was gathered in June which 
means that the crop was still quite low. The “Forest 2” area shows that the distribution of laser 
points beneath the forest canopy can be very different due to the density of vegetation. 
Therefore the accuracy and penetration of the laser point can vary quite much. The “Slope” 
pit was measured to see if there is a difference in height component with the tilted ground. 
Most of the laser points are within +/- 10 cm which can be considered as a good result from 
2400 m altitude. In theory there should be a difference in Z value from the areas with rough 
topography (Baltsavas, 1999). Put in practice it cancels out with the modelling of the surface 
because then average values are calculated. The “Natural hay” pit shows that the 90% of the 
laser points are within -10 to +15 cm, which can be explained also with the flight time (June 
2010). The “Asphalt road” distribution is quite close to normal distribution which is expected 
since asphalt is a stable target and has been used well as a calibration target for ALS intensity 
(Vain et al., 2009; Coren and Strezai, 2006).  
The “Cut CRO 1” and “Cut CRO 2” from 1300 m altitude showed similar results. They both 
are close to normal distribution; “Cut CRO 1” has a smaller error (10 cm) and “Cit CRO 2” a 
little bit larger (up to 25 cm). The “Uncut CRO 1” and “Uncut CRO 2” produced results that 
were expected. The crop was about 70 cm in height and as we can see from Fig. 9 and Fig. 10 
then the distribution of errors are not close to normal distribution and can vary from 5 cm up 
to 85 cm. This is quite expected because the laser points cannot penetrate though rough 
vegetation. The “Forest 1” pit has laser points from 1300 m that have reached through the 
vegetation but they are 20-40 cm higher than field measurements which is caused by the 
dense lower vegetation. But the comparison of 1300 m and 2400 m data for “Forest 2” pit 
shows that the probability of laser to penetrate though the higher and lower vegetation is 
higher with lower flying altitude due to the fact that there is less atmosphere between the laser 
and object, therefore less energy losses and more chance to get stronger response back to the 
detector (see more detailed information about the physical background of ALS systems in 
Wagner, 2010). The “Slope” showed quite similar results to 2400 m data, but the distribution 
of errors is closer to normal distribution. The “Natural hay” shows that the laser points are 30-
40 cm higher than the ground and we can see that it is more than with 2400 m data which can 
be also explained with the flight time and the growth of vegetation. The “Asphalt road” is 
very well distributed and showed good results (almost 95% are within 10 cm). 
 

5.1. RGB and intensity images 
 
The possibility to use intensity data that is recorded simultaneously with position information 
(X, Y and Z) and the combination of RGB and LiDAR data was also tested to see whether it 
helps to speed up the classification procedure. 
The intensity describes the backscattering properties of the target (Kaasalainen et al., 2005) 
and therefore is an additional information source about the object. The intensity image is 
usually used as a background data and it helps to understand the studied area better (see Fig. 
11). 
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Fig. 11. The intensity image used as a background for field measurement results. 
 
The negative side of the intensity image is that it is monochromatic and therefore all objects 
are not visible. The other option is to assign RGB values from areal images to individual laser 
points (see Fig. 12). This makes the laser data similar to aerial image, but we do not need 
stereo equipment to see it in “3D”. 
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Fig. 12. RGB values from aerial image has been assigned to individual laser points.  
 

 

 
Fig. 13. Profile of the same area. RGB values have been used on the top image and intensity 
data on the bottom. 
 
As we can see from Fig. 12 and Fig. 13 the RGB values have giving the laser data much more 
information about the objects, especially linear object (see Fig. 13 where the road in white 
colour is visible on the RGB image).  
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Fig. 14. 3D image of the combination of aerial image and LiDAR data. 
 
The combination of aerial image and LiDAR data is useful for mapping and detecting 
individual small object (see Fig. 14). Also linear object are very well visible and the 
understanding of the environment is much better than using just aerial image or just LiDAR 
data. 
 
 
 

5.2. Elements extracted from LiDAR data 
 
Forest 
Using the echo data we can extract data points that represent the forest areas. Since the forest 
areas have several echoes from single pulse we can use that information and select only these 
areas that have several echoes. 
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Fig. 15. Left: 2400 m echo data used to isolate forest areas. Right: 1300 m echo data used to 
isolate forest areas.  
 
 
As we can see from Fig. 15 then data points that are from the forest areas can be isolated 
using echo information. The 1300 m data is more representative to the actual situation and 
give more detailed information about the studied area. The minimum size of the area was 400 
m2 and the minimum gap between data points was 10 m. Comparing the result to the filed 
measurements we can see that the level of detail is much higher and some areas are even left 
out because they did not fit to the minimum size requirements (see Fig. 16). And we can also 
notice that the areas extracted from 1300 m data have formed 3 different areas (south-east part 
of the picture) instead of one as it was done during the field measurements. Notice that these 
areas are missing from 2400 m image. 
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Fig. 16. White line represents the areas automatically drawn from LiDAR data and red lines 
are the areas from field measurements.  
 
The same solution can be used for mapping individual elements (single trees e.g.) that are 
within 100 m2 and 400 m2. 
 
Using the echo information we can also see the height distribution of the vegetation. For that 
we simply classify points from ground level according to the height from ground. As we can 
see from Fig. 17 the points are with different colours according to the distance from ground 
level. The ground level itself is coloured white; vegetation up to 2 m from ground is light 
blue, 2-5 meters dark blue, 5-15 meters light green and 15-40 meters is red. These categories 
are taken from the “Handbook for Surveillance and Monitoring of Habitats, Vegetation and 
Selected Species“ (Bunce et al., 2010) but they can be changed according to the needs.  
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Fig. 17. Area classified according to the height from ground. The right sector diagram shows 
the distribution of points. Almost 50% of the points are 5-15 m from ground. 
Roads 
Using the intensity and RGB information that is stored for every point, we can extract the 
roads. A first step is to take sample measurements from the roads. The deviation of the 
intensity values were from 50 to 70 units and the RGB (or HSV – Hue Saturation and Value) 
numbers were: H= 60±25; S= 15 to 30; and V= 75 to 95. Since the road has only one echo 
coming back to the sensor, the first step is to select data point with “Only” echo. Second step 
is to use intensity values (50-70) to remove unwanted points (field crops etc) and the third 
step is to use HSV numbers to do the final selection. The result is shown on Fig. 18. 
 

 
Fig. 18. Extracted LiDAR points from 1300 m data that represent road. The intensity, echo 
and HSV information was used. 
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As we can see from Fig. 18 then the points inside the small area (stones) near the road have 
also the same characteristics as the road data points. Using RGB or HSV values can be 
difficult because the aerial images are taken in different periods throughout the Europe and 
therefore HSV values e.g. for asphalt road can differ quite a lot. 
 
Conclusions 
 
We have investigated the vertical accuracy and penetration rate of LiDAR data in different 
vegetation types. We used two LiDAR data sets: 2400 m and 1300 m flight data. The results 
showed that the penetration rate is higher with 1300 m data, which was expected due to the 
fact that the laser light attenuates less with lower flying altitude. This makes the incoming 
energy level higher and therefore more points can be detected. The vertical accuracy of laser 
points on asphalt road was estimated to be within 10 cm with both altitudes. This shows that 
the vertical accuracy is pretty much the same with 2400 m and 1300 m. The effect of 
vegetation on penetration rate was also noticed. Uncut crop and lower vegetation beneath the 
trees had an impact on the overall accuracy of laser point. The laser could not penetrate 
through the dense lower vegetation and also trees reduced the number of points that reach the 
ground level. The national wide LiDAR data in Estonia (2400 m) can be used for 
environmental monitoring but the vertical layers are not described in such detail as it would 
be with 1300 m data.  
We also tested the possibility to use LiDAR data with combination of aerial images and RGB 
values that was assigned to LiDAR points from aerial mages. The use of aerial images and 
LiDAR data together will increase the recognition of linear object more easily and makes the 
mapping of smaller areas much simpler than just to use either aerial image or just LiDAR 
data. 
The use of echo information is useful for mapping forest areas and classifying them according 
to the height. 
The future work would be study the possibility to use LiDAR and aerial images to 
automatically detect natural habitats boundaries (as can be seen from Fig. 16). LiDAR data 
would also allow us to map layers for different habitats. 
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1 Introduction 

1.1 Context 

As a contracting party to the United Nations (UN) Convention on Biological Diversity (CBD), 
the European Union (EU) wanted to stop the decline of biodiversity in Europe by 2010 via 
restoring and conserving habitats and natural ecosystems (UNEP, 2002). One policy 
instrument to stop the decline in biodiversity is through the realization of the Natura 2000-
network, the EU network of sites designated under the Birds Directive (1979) and the Habitat 
Directive (1992) (EC 2002). To asses and evaluate the conservation status of the designated 
habitat types, policy makers and nature reserve managers increasingly require hard figures 
that give details on the state of habitats as well as the definition of historical trends to 
evaluate international conventions and commitments (Bunce et al. 2008). Due to many 
concepts and definitions of habitats there is a wide range of regional, national and European 
habitat classifications, and so there are no consistent figures on habitats in Europe (Mücher 
et al. 2009). Monitoring biodiversity at large scales, using traditional (ground-based) 
surveying techniques are logistically difficult and/or financially prohibitive (Duro et al. 2007). 
A remote sensing based assessment of vegetation patterns could be a cost effective method 
to map and monitor the development of biodiversity. Imaging spectroscopy is especially 
interesting for vegetation mapping. The spectral information provided by hyperspectral 
sensors allows up to species-level detection (Clark et al. 2005; Underwood et al. 2007; 
Andrew and Ustin 2008) and like Gao (1999), Thenkabail et al. (2003) and Lucas and Carter 
(2008) argued, a fine spectral resolution may be more important than a greater spatial 
resolution in characterization vegetation to obtain a good mapping success.  
 

1.2 Problem definition 

 
Consistent monitoring and analysis of biodiversity, which is the total sum of all biotic variation 
(Purvis and Hector 2000), of European ecosystems requires a general methodology that is 
applicable over Europe. The recently developed GHC (General Habitat Mapping) method, 
which is validated for surveillance and monitoring of European Habitats (Bunce 2005; Bunce 
et al. 2008), has been used as a basis for habitat mapping . Bunce et al. (2005) defined 
habitat as: ’An element of the land surface that can be consistently defined spatially in the 
field in order to define the principle environments in which organisms live’. This is related to 
the definition of the Habitat Directive (EC 2002): ‘Terrestrial or aquatic areas distinguished by 
geographic, abiotic and biotic features, whether entirely natural or semi-natural’. Individual 
species are too specific to encompass all Europe’s variation so GHCs are based on 
Raunkiaer’s classification of plant life forms (Raunkiaer 1934). Combinations of plant life 
forms are used to define 160 General Habitat Categories (GHCs). These GHCs are recorded 
in the field, and at the same time  the use of plant life forms might provide direct links with the 
patterns present on satellite images due to their relationship with vegetation structure (Bunce 
et al. 2008; Mücher, 2009). So remote sensing could potentially be used for the creation of 
GHC maps for ecosystems.  
 
Remote sensing derived vegetation maps are usually the result of non-continuous vegetation 
mapping with sharp boundaries around the classified patches which do not necessarily follow 
the concrete local discontinuities (Schmidtlein et al. 2007). The image classification has 
reduced the ecotones, zones of transition between adjacent ecological systems (Gosz 1993), 
to simple lines between internally homogeneous areas. This way of mapping has often been 
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criticized (Zonneveld 1974; Kent et al. 1997; Schmidtlein et al. 2007). Fortin et al. (2000) 
mentioned that shifts in the location of ecotones may indicate environmental and/or climate 
change, because species may be at the limits of their tolerance in these transitional zones. 
The use of continuous vegetation maps represents abrupt transition as well as gradual 
transitions between vegetation types (Schmidtlein et al. 2007). Following the GHC mapping 
methodology, habitats consists of a mixture of one or more plant life forms. The GHCs are 
based on different life form combinations and can be computed by assuming that the 
reflectance of a habitat is the result of a mixture of the reflectances of the  ‘end-members’ 
(i.e. lifeforms) present in the habitat. The end-member training pixels must be representative 
of pure life forms.  
 
In this study we evaluate how well hyperspectral imagery is able to map GHCs. The selection 
of representative spectral end-members using GHC field observations will be difficult as the 
GHCs already represent mixed vegetation which could be expressed as a polygon containing 
a mixture of pure life form pixels or a mixture of pixels each representing a mixture of pure 
life forms, or a combination of both. At the other hand hyperspectral imagery is particularly 
suited for an end-member based classification as the many narrow spectral bands increase 
the likelyhood of finding features in the spectral signature which are unique to the end-
members of interest.  
 

1.3 Research objectives 

The objective of this research is to investigate and define the relationship between site 
complexity and mapping success of classified hyperspectral remote sensing images for 
different ecosystems (peatland and riparian). The research is subdivided in the following 
parts: 

1. Apply the GHC methodology for habitat mapping in the field for 4 different sites that are 
characterized by two different ecosystems in the Netherlands: peat bogs ( 2 sites) and 
floodplains (2 sites). 

2. Classification of Hymap-images for the 4 study areas with a well-selected classification 
algorithm, to derive GHC’s like they are defined in the GHC methodology.  

3. Validate the Hymap classifications with field data and the GHC maps derived from the 
fieldwork, compare the mapping success in the different GHC’s and ecosystems. 

4. Examine different (combinations of) analysis tools to determine the different aspects of 
site complexity and bring them into practice for the 4 study areas (and 2 ecosystems). 

5. Investigate the relationship between the site complexity and the mapping success. 

 
The hypothesis is that an increase in complexity tends to an decrease in mapping 
success. 

 

Based on the research objective, the following research questions are derived: 
I. Which remote sensing based classification algorithm applicable to Hymap data can 

deliver Life Forms as output, and can it be transposed to GHC’s? 

II. What are the differences in mapping success, after validating the GHC’s classification 
results with the field-based GHC maps, for the different ecosystems and what are the 
specific differences? 
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III. How can you define site complexity using species, spectral, landscape and/or structural 
diversity measures? 

IV. What are the differences in site complexity for the different ecosystems and what are 
the site-specific differences? 

V. What’s the relationship between site complexity and mapping success in the different 
ecosystems?   
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2 Literature review 
 
Before the start of the study, several decisions had to be made concerning two of the five 
research questions proposed in chapter one. This was based on a literature study in 
advance. The first decision concerned the question, ”Which classification algorithms are 
applicable to HyMap that can deliver Life Forms as output, and can it be transposed to 
GHC’s?”. It must deliver a useful and well performing algorithm to carry out the classification 
of the HyMap images. And the second decision concerned: “How can you define site 
complexity using species, spectral, landscape and/or structural diversity measures?”. It must 
be a definition of site complexity and a set up to analyse it but first an introduction to the 
Raunkiaert Life Forms and the GHC methodology. 
 

2.1 GHC handbook 

Based on the GHC Handbook  ‘Handbook for Surveillance and Monitoring of European 
Habitats’ by Bunce et al. (2005) we give hereafter a short description of the GHC mapping 
methodology. The overall goal of the GHC methodology was to set up a methodology 
designed for collecting information on European habitats in order to obtain statistically robust 
estimates of their extent and associated changes in biodiversity. GHCs are thus a consistent 
methodology for field recording and monitoring of habitats.  
In this methodology the term habitat refers to: “An element of land that can be consistently 
defined spatially in the field in order to define the principal environments in which organisms 
live.” This division is done by using predetermined General Habitat Categories (GHC’s) for 
recording point-, linear- and areal habitat elements. The Raunkiaer classification of plant Life 
Forms (LF) is the basis for these GHC’s. Raunkiaert divided plant species on the location of 
the plants growth point during seasons with adverse conditions e.g. winter or dry seasons.  
 
The use of plant life forms enables the recording of habitats with comparable structures 
within contrasting bio-geographical zones that have similar habitat structures. Based on the 
hypothesis that habitat structure is related to the environment and thus it will correspond to 
phytosociological classes at high level. For the European region 130 GHC’s are derived from 
16 Life Forms. The variation within a GHC is additional expressed by environmental, 
management and global qualifiers. 
 

2.2 From Reflectance to Life Forms 

2.2.1  Remote Sensing 
Remote sensing (RS), the science and art of obtaining information about an object, area, or 
phenomenon through the analysis of data acquired by a device that is not in contact with the 
object, area, or phenomenon under investigation (Lillesand et al., 2008), is suggested for the 
monitoring of vegetation in combination with GHCs. This implies that we need to go from 
reflectance (captured through remoter sensing images) to life forms. The electromagnetic 
radiation from the sun is reflected by the earth’s surface and an optical remote sensing 
devices captures the radiation reflected in the direction of the sensor. The atmosphere, the 
reflecting surface and the height of the sun are the main factors that influence this captured 
radiation. The atmospheric effect on the received signal is a combination of scattering and 
absorption. Scattering is the unpredictable diffusion of radiation in the atmosphere and 
absorption results in the effective loss of energy to atmospheric constituents in specific 
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wavelength bands. The wavelength ranges without absorption are the so-called ‘atmospheric 
windows’, which are used in RS (Lillesand et al., 2008).  
Radiation from the sun passed the atmosphere, is reflected by the earth’s surface, passed 
again (a part of) the atmosphere and is finally captured by the sensor. Reflectance, which is 
the interaction between radiation and surface (radiative transfer), is surface dependent and 
makes thus optical remote sensing possible. A graph of the spectral reflectance of an object 
in function of the wavelength is called a spectral reflectance curve (Lillesand et al., 2008). 
This will be used for the classification and can be derived from the image itself, an spectral 
library or from field measured spectra. 
It’s obvious that the height of the sun influences the radiative transfer and the reflectance in 
the direction of the sensor, and thus the ‘properties‘ of the object that reflected the radiation. 
The lower the sun the more influence shade will have on the reflectance image.  
Radiative transfer in vegetation comprises reflectance, transmission, absorption and 
emission, intrinsically related to the vegetation (biophysical and biochemical) properties 
which cause variation in absorbance and transmittance across wavelength via multiple 
scattering processes throughout the canopy and background (Verrelst, 2010). Specific 
biochemical vegetation properties like the higher absorption in blue and red (chlorophyll 
absorption bands) and the high reflectance of the leaves in the green part of the spectrum 
can be seen in the reflectance curve, while other are more structural vegetation properties 
like vegetation cover. The information in the spectral reflectance curve is thus only 
information from properties that have an impact on the reflectance of the radiation (Chen et 
al., 2000). The more spectral bands, the more specific absorption features can be seen and 
thus distinguished. For example for the research presented in this study, HyMap images with 
126 spectral bands will be used  

 
The HyMap (Hyperspectral Mapper) sensor is an airborne hyperspectral sensor. The HyMap 
images are acquired with 126 spectral bands from the visible till the infrared (covering the 
spectral range from 450 nm till 2480 nm) and a spatial resolution of 5 m. These hyperspectral 
images make it possible to detect most absorption features in the vegetation spectrum (Ustin 
et all. 2004). To deal with this hyperspectral data a specific classifier is needed. 
 

2.2.2 Classification algorithms 
There are several classifiers like the Spectral Angle Mapper (SAM), Spectral Mixture 
Analysis (SMA) or a modified version Multiple Endmember Spectral Mixture Analysis 
(MESMA) who can take advantage of hyperspectral images, but it’s also possible to apply 
one of the traditional classification methods like Maximum Likelihood (ML). These methods 
differentiate from each other on the way they deal with the training data to assign a pixel to a 
‘class’ or ‘classes’. 

These classifiers have been commonly used for vegetation and/or land cover 
mapping:  

I. SAM: Lass et al. 2002; Silvestri et al 2003; Hestir et al. 2007,  
II. SMA: Rosso et al. 2005; Hestir et al. 2007, and  

III. MESMA: Okin et al. 2001; Rosso et al. 2005; Schaepman-Strub et al. 2009. 
 
Maximum Likelihood  
The ML classifier differentiates from the SAM and SMA classifiers by the use of a training set 
instead of an endmember to categorise a class. This training sets are a collection of statistics 
that describe the spectral response pattern of each class to be classified in the image. The 
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ML quantitatively uses both the mean and covariance matrix, that summarize the spectral 
response of each class, to determine the class with the highest statistically probability for a 
single pixel in the image (Lillesand et al. 2008). 
 
 
Spectral Angle Mapper 
 
The SAM classifier (Kruse et al. 1993) uses, as motioned before, endmembers of the various 
classes to assign each single pixel to a certain class. These endmembers represents the 
pure spectral signatures of the classes. Each endmember and pixel can be considered as a 
vector in a multidimensional space (dimensions are equal to the number of spectral bands). 
To compare an image spectra with an endmember, the vectors, which have a common 
origin, are defined and the spectral angle between the two is calculated. 
This spectral angle ( ) is the error metric for the spectral similarity. By comparing different 
endmembers, the endmember who delivers the lowest spectral angle is considered to match 
(if this spectral angle is under a defined threshold). The advantage of this spectral angle is 
that SAM isn’t sensitive for differences in overall illumination due to the presence of a mix of 
sunlight and shadows, the albedo, which is measured by the length of the vector of the 
modelled spectrum (Lillesand et al. 2008). 
Length of a spectrum vector ( L ): 





M

L
1

2



   

Spectral angle ( ): 
























'

1

'

1cos







LL

M

 

 
Spectral Mixture Analysis 
SMA assumes that a value of a given pixel is the result of a linear combination of one or 
more endmembers (Adams et al. 1986, Smith et al. 1990). These spectral mixed pixels are 
compared to a set of endmembers (‘pure’ reference spectra). During the unmixing, SMA 
estimates the fit of selected endmembers to the pixel in order to estimate it’s composition 
(Rosso et al. 2005). The amount of used endmembers is limited, since including large 
amounts of endmembers while there are few represented in the pixel leads to additional 
errors (Roberts et al. 1998). 
MESMA, based on SMA, allows an almost unlimited number of endmembers. It evaluates 
the best fit for each pixel using a root mean square error (RMSE) error metric, thus avoiding 
over fitting due to too many endmembers (Roberts et al. 1998). 
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The  SAM algorithm is less sensitive to the overall albedo than the MESMA algorith. 

 
 
In choosing a spectral algorithm, the advantages and disadvantages of the model must be 
evaluated but also the endmember selection is critical. Endmember selection is crucial and 
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algorithm dependent, like Foody (2009) mentioned: a training site that could be used to 
derive a highly accurate classification from one classifier may yield a considerably lower 
accuracy if used with another classifier. Some candidate endmembers can be easily 
selected, other only appear as mixed spectra, but the training sample should provide a 
representative and unbiased description of the classes (Foody and Mathur 2006). Different 
approaches to obtain endmembers are possible: endmembers from a spectral library, field-
based and image based endmember extraction. 

2.3 Site complexity 

The information in the spectral reflectance curve used for the classification only represents 
the properties of the feature of interest (i.e. GHC; lifeform) that have an impact on the 
reflectance of the incoming radiation (Chen et al., 2000). When the spectral detectability of a 
habitat is assessed the environmental context of the study area is often only briefly 
mentioned, even though this aspect is important to understand how the neighbouring 
habitats’ spectral properties influence its detectability so that inferences about the suitability 
of a habitat for EO mapping are not confounded by discrepancies in the mapping success 
(Andrew and Ustin, 2008). Andrew and Ustin (2008) mention that the mapping success is 
influenced by the site complexity. Quantifying site complexity from independent information 
would give a better understanding of the origin of the classification errors that occur when 
remote sensing is used and would lead to an improved determination of the suitability of a 
habitat for being mapped using remote sensing. 
 
Warren Weaver (1948) defined ‘complexity’ as ‘the degree of difficulty to predict properties’. 
So the more complex, the more difficult it is to predict the properties of a site. This indeed 
refers to our hypothesis. ‘Complex’ also refers to a lot of interacting components, Merriam-
Webster (http://www.merriam-webster.com/dictionary/complex )  called it the sum of 
factors/components characterizing a condition. So, by determining the ‘condition’ or 
separating the different ‘properties’ of a site we can define the complexity of this site. Here 
we subdivide ‘site complexity’, like previously done by Andrew and Ustin (2008), into 

i. Biological complexity, i.e, the number and relative distribution of species, life forms, 
habitat types or other measures of relevance to the interpretation of the remote 
sensing information for the site; 

ii. Spectral complexity, i.e., the richness and diversity of the spectral signature for the 
site, assuming that such spectral diversity reflects the diversity of habitat properties; 

iii. Landscape complexity, i.e., the richness and diversity of landscape patterns and 
other structures of the site. 

 
 

2.3.1 Biological complexity 
Biological complexity can be assessed by a measure of Species Richness. In this case this 
measure is limited to the total number of abundant plant species, since plants, unlike 
animals, will have relevance for the reflectance properties of the site. Plant species data can 
be easily extracted from vegetation relevees collected from a site.  In a vegetation relevee all 
species and their coverage are recorded.  
 
However, Species Richness does not take the evenness, the relative abundance of different 
species in an area, into account. More complex species diversity indices do this: 
 

 The Simpson’s diversity index (Smith and Wilson 1996): 
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Ni = the number of individuals of species i which are counted 
N = the number of all individuals counted 
The Simpson’s diversity index varies between 0 and 1, representing the probability 
that two randomly selected individuals belong to the same species. A value of 1 
represents 100% probability of selecting the same species, so there will be no 
diversity. 
 
 

 The Shannon diversity index (Kalacska et al. 2007): 

 pipiH ln  
pi = fraction of individuals belonging to the i-th species 
A Shannon diversity index result of zero means there is just one species occurring in 
the site, thus a low diversity. The higher the value of the indices, the higher the 
diversity, i.e. more evenly distributed species.  
 

These measures of richness and diversity can also be applied to other representations of a 
site’s biological complexity, such as the GHCs life forms of the vegetation. 
 

2.3.2 Spectral complexity 
Spectral complexity is dealing with the spectral signature directly derived from the remote 
sensing images and is based on the Spectral Variation Hypothesis (SVH) (Palmer et al. 
2000, 2002): habitat heterogeneity may be estimated from spectral heterogeneity. Palmer et 
al. (2000, 2002) used single waveband panchromatic images with a 1m resolution and 
concluded that the relationship is scale-dependent and increases with the size of the window 
of analyses. Rocchini et al. (2004), who used images with 4 bands and a spatial resolution of 
4m, found also a significant relationship for smaller scales. The HyMap-images, with their 
126 bands and 5m spatial resolution, will probably deliver a significant relationship for even 
smaller scales. The SVH approach deals with continuous data, without loss of information 
due to classifying into discrete classes (Palmer et al. 2002). Oldeland et al. (2010) used 
hyperspectral images, but he investigated the relationship of richness and abundance-based 
diversity measures with spectral variability. Schmidtein and Sassin (2004) are critical of this 
hypothesis and showed that homogeneous reflectance did not necessarily indicate a 
homogeneous plant species composition, but heterogeneous reflectance was always a sign 
of heterogeneous (floristic) composition. The species richness relationship defined by 
Carlson et al. (2007) is based on the spatial variation of the reflectance derivative spectra at 
530, 720, 1201, and 1523nm. These bands are chosen because they predict woody species 
richness with a high precision. This is the reason why Andrew and Ustin (2008) called it the 
‘spectral richness index’; their datasets were very different from those used to parameterise 
the species richness.  
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Figure 1 Raunkiær's life forms. (http://en.wikipedia.org/wiki/Raunki%C3%A6r_plant_life-form, 2010). 

 
The spectral variance (Andrew and Ustin 2008) is another approach, based on the Minimum 
Noise Fraction (MNF) transformation of the images. MNF is a statistical data reduction 
technique that performs a series of two principal component analyses to isolate noise and 
reduce the dimensionality of the dataset (Green et al. 1988). The spectral variance is 
estimated by the total variation covered by the first three MNF bands. This can also be 
covered by a Principal Component Analysis (PCA). 
 

2.3.3 Landscape complexity 
A study site’s landscape complexity may be represented by various landscape metrics. 
Honnay et al. (2003) noticed that the composition and structure of a landscape mosaic 
influence biotic processes and hence species richness. This relationship between landscape 
structure and plant diversity has been extensively studied, see Uuemaa et al. (2009) for an 
overview. Interesting relationships are the Shannon’s diversity index with a riparian woody 
plant species index (r=-0.78) (Burtyon and Samuelson, 2008); edge density and species 
richness (r=0.56), number of patches and species richness (r=0.61) (Moser et all. 2002). 
Andrew and Ustin (2008) also represented landscape heterogeneity with landscape-level 
metrics. Patch size, shape and evenness were defined. There is also some criticism of the 
use of landscape indices, noticing that some of the landscape indices are complex or have a 
nonlinear formulation and should be avoided in correlation analysis, their complex structure 
results in unpredictable responses to changing pattern, scale or classification (O’Neill et al., 
1988; Li and Wu 2004). The use of landscape indices is made easier by the program 
FRAGSTATS, developed to quantify landscape structure. FRAGSTATS makes a distinction 
between patch, class, and landscape metrics; calculating the metrics respectively for each 
patch, each class and the entire patch mosaic. The program offers a comprehensive choice 
of landscape metrics (McGarigal and Marks 1995, Mc Carigal 1994), but as noted by O’Neill 
et al. (1988) and Li and Wu (2004) a proper selection in terms of scale and purpose is 
crucial. Cashman (2008) identified consistent combinations of methods that universally 
describe the major attributes of landscape structure with a focus on ‘objective’ structure 
metrics, which are constant among studies 

 

http://en.wikipedia.org/wiki/Raunki%C3%A6r_plant_life-form
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3 Materials and methods 
 
The mapping success assessment will focus on the remote sensed life form classification, 
but also on the ability to determine GHCs based on these classified life forms. Site 
complexity will be described in terms of the biological, spectral, and landscape complexity. 
This analysis will be done for two different ecosystems: Peat bogs and Floodplains, each 
represented by two study sites. 
 

3.1 Study sites  

The 4 study sites, for which Hymap data is available (see section 2.2.2), are all located in the 
central / eastern part of The Netherlands (fig. 2). They cover the two habitat types: 
 

 2 sites in Peat bogs: Haaksbergerveen and Korenburgerveen. 

 2 sites in Floodplains: Millingerwaard and Wageningen floodplain. 

 

 
Figure 2: Location of the study sites in the Netherlands (Google Earth, 2010). 
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3.1.1 Haaksbergerveen 
Haaksbergerveen is located to the south-east of the city Haaksbergen, near the German 
border. It’s 500 ha degraded raised bog are managed by Staatsbosbeheer. On the German 
side the area continues in the Ammeloër Venn (70 ha). 
 
 

    
 
Figure 3: Haaksbergerveen. a) Spagnum species covered by Erica tetralix; Phragmites australis and Juncus effuses are 
developing, at the back there’s more Molinia caerulea and Betula. b)  Molinia caerulea forming perennial, and Betula sprouting. 

The Haaksbergerveen is the southern part of the Natura 2000 area ‘Buurserzand en 
Haaksbergerveen’ and is a relict of one of the last raised bog areas in the Netherlands. Due 
to peat cutting, water drainage and an enrichment of the soil the reserve is degraded. During 
the last decades a network of dams was constructed in order to restore the water table, 
which is necessary to allow the bog vegetation to recover. The management objectives are 
to secure a sustainable abiotic system to create the most optimal conditions for the 
restoration of a vivid bog area, and to ensure an open moor landscape to reduce the 
evaporation of the system (Natura, 2009). 
 

3.1.2 Korenburgerveen 
Korenburgerveen is located north-west of Winterswijk, most of the area (509 ha) is owned 
and managed by Natuurmonumenten.  
 

    
Figure 4: Korenburgerveen. A) Molinia caerulea  mixed with Myrica gale. B) A smaller wet part with Potentilla palustris, Typha 
latifolia, Nuphar lutea and Salix. 

The Korenburgerveen is a raised bog area and is incorporated as a Natura 2000 site. Due to 
the input of highly nutritious ground and surface water and the ground water exploitation the 
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reserve has been degraded. There is a central raised bog area surrounded by (wet) peat 
forests. In the south of the area, the raised bog gradually evolves into a stream bed with wet 
grassland (Junco-Molinion) and swamps. 
 
The management objectives are to restore the peat by restoring the alkaline groundwater 
table, which is necessary to allow the raised bog vegetation to recover. 
 

3.1.3 Millingerwaard 
The Millingerwaard (400 ha) is located south of the Waal, in the neighbourhood of Millingen 
a/d Rijn and Kekerdom.  
 

   
 

Figure 5: Millingerwaard. Pictures are taken during winter 2010.  

The floodplain Millingerwaard is a part of the Gelderse Poort nature reserve. The area has  
gradually been improving since 1990 when arable land and production grassland were 
converted into nature. Amongst other measures, the fences between the parcels were 
removed and a low density of cattle for natural grazing was introduced (Kooistra et al. 2005). 
This resulted in a heterogeneous landscape with river dunes, softwood forest and vegetation 
in different stages of succession. Also an old clay pit is present in the centre of the study 
area. 
 

3.1.4 Wageningen floodplain 
The floodplain is located south of the city Wageningen, at both sides of the river Rhine.  

    
 

Figure 6: Wageningen floodplain. Pictures are taken during winter 2010. 
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The Wageningen floodplain is a part of the Natura 2000 area ‘Uiterwaarden Neder-Rijn’. 
Before the natural reconstruction of the floodplain, due to huge flooding problems in the 
nineties, the area had an agricultural formation. Now the floodplain is converted into 
extensive semi-natural grazing land. This has resulted in a wide range of vegetation types 
from grassland over shrubs to wet forest. The northern part of the study area is covered by 
housing, forest and the Arboretum on the Westerberg 
 
 

3.1.5 Natura 2000 habitat types 
Annex 1 of the Habitat directive (EC 2002) lists the natural (and semi-natural) habitats of 
community interest whose conservation require the designation of special conservation 
areas. Table 1 gives an overview of these special protected natural habitat types for the 
Natura 2000 sites covering the study sites. Also the EU code listed in the Habitat Directive 
and a short version of the definition given by the habitat directive (EC 2002) are shown in 
table 1. 
 



ANNEX-5 

Hyperspectral imagery to map General Habitat Categories and relation of classification success 
with site complexity 

 

19 
 

Table 1: Overview of the Natura 2000 habitat types per study site. 

 

Natura 2000 habitats
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Coastal sand dunes and inland dunes 2
Inland dunes, old and decalcified 23
   Dry sands heaths 2310 v
Freshwater habitats 3
Standing water 31
   Oligotrophic to mesotrophic waters 3130 v
   Natural eutrophic lakes 3150 v
Running water 32
   Rivers with muddy banks 3270 v v
Temperate heath annd scrub 4
   Northern Atlantic wet heaths 4010A v v
Scelerophyllous scrub 5
   Juniperus communis formations on heaths or calcareous grasslands 5130 v
Natural eand semi-natural grassland formations 6
Natural grasslands 61
   Xeric sand calcareous grasslands 6120 v
Semi-natural tall-herb humid medows 64
   Molina meadows on calcareous, peaty or clayey-silt-laden soils 6410 v
   Hydrophilous tall herb fringe communitiesof plains 6430A&C v
Mesophile grasslands 65
   Lowland hay meadows 6510A v v
Raised bogs, mires, and fens 7
Sphagnum acid bogs 71
   Active raised bogs 7110A v v
   Degraded raised bogs still capable of natural regeneration 7120 v v
Calcareous fens 72
   Calcareous fens 7210 v
Forests 9
Forests of boreal Europe 91
   Bog woodland 91D0 v v
   Alluvial forests 91E0A v
   Alluvial forests 91E0C v
   Riparian mixed forests along the great rivers 91F0 v v
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3.2 Data 

3.2.1 Aerial Photographs 
The aerial photographs used in this study were acquired in 2008. They have a spatial 
resolution of 25cm and are in the Red Green Blue (RGB) colour model. They served as input 
for the construction of the preliminary GHCs maps for the study sites Haaksbergerveen and 
Korenburgerveen. 
 

3.2.2 HyMap – Imaging spectroscopy data 
The airborne HyMap data of the Millingerwaard floodplain were acquired on the 28th of July 
2004 and that of Wageningen on the 2nd of August 2004. They were atmospherically 
corrected with the modules PARGE and ATCOR4 to obtain geo-coded top-of-canopy 
reflectance data and geometrically corrected to the UTM-projection (zone 31 N, geodetic 
datum WGS84). For more information about the HyMap acquisition: Kooistra et al. (2005); 
Clevers (2005). The Haaksbergerveen and Korenburgerveen airborne HyMap data were 
acquired on 24th of July 2008 by DLR (Deutsches Zentrum für Luft- und Raumfahrt). The 
data are ortho-rectified radiance data performed with ORTHO (zone 32 N, geodetic datum 
WGS84). The atmospheric correction is performed with the ATCOR4 model.  
 
 

3.3 GHC maps 

The preliminary GHCs maps, based on visual interpretation of the aerial photographs, were 
used as a first guide in the field. These boundaries were checked  and if necessary adapted. 
Then the percentage cover of each life form was estimated, from a vertical perspective, in 
the field. The determination of GHCs was based on two percentage rules, >70% for single 
GHCs, and 40-60% for GHCs that were a combination of two life forms. Also all life forms 
with a cover >10% and single species present over 30% were recorded. The standard 
mapping area was one square kilometre. The result of the fieldwork survey was a map with 
polygons showing the different GHCs present in the one square kilometre. Usually, also data 
about line and point observations and environmental, management and global qualifiers were 
collected but these have not been included in this analysis. As this study focuses on the 
vegetation part of the study areas, the GHCs Urban and Crops were not subdivided into life 
forms. The vegetation GHCs and their life forms are shown in table 2. The subdivision of the 
shrubs and trees GHCs is based on the vegetation height, also given in table 2. 
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Table 2: The vegetated GHCs and their life forms. 

 
 

3.4 Classification 

3.4.1 SAM classification algorithm 
The SAM classification algorithm (Dennison et al., , 2004) was selected for use on the 
hyperspectral HyMap images because it deals with the whole spectral information delivered 
by the HyMap data and is not affected by the albedo. The SAM algorithm is included in the 
IDL-ENVI software version 4.5. The maximum spectral angle used was the default 0.1 
radians. The same threshold value was used for all the classes. Problems using this 
approach were expected for areas consisting of pixels with a high complexity in their spectra, 
like water bodies and clear soil. They appear mostly as mixed pixels, making it impossible to 
collect homogeneous spectra. The Normalised Difference Vegetation Index (NDVI) is based 
on the near-infrared and red spectral bands and designed to determine green vegetation, 
making it possible to discriminate and mask out non-vegetated areas before the SAM 
classification is carried out.  
 

3.4.2 SAM endmember selection 
Aerial photographs in combination with a vegetation map overlay are used to select the 
endmembers without fieldwork. Potential endmembers were selected where its occurrence is 
homogeneous in the aerial  photograph. Some endmembers were easily selected, but were 
not. Foody and Mathur (2006) noticed that the training sample should provide a 
representative and unbiased description of the classes. The selection of mixed endmembers 
is thus not representative. Plant life forms which only occur in mixed pixels were excluded 
from the classification. The number of life forms for which endmember spectra were 
extracted differs thus from site to site. 
 

Hight
Sparsly vegetated SPV Aquatic AQU

Terrestrial TER
Vegetated herbacious HER Submergerd hydrophytes SHY

Emergent hydrophytes EHY
Helophytes HEL
Leafy hemicryptophytes LHE
Caespitose hemicryptophytes CHE
Therophytes THE
Geophytes GEO
Herbaceous chamaephytes HCH
Cryptogams CRY

Shrubs and trees TRS Shrubby chamaephytes SCH 0.05-0.30m
Low phanerophytes LPH 0.3-0.6m
Mid phanerophytes MPH 0.6-0.2m
Tall phanerophytes TPH 2-5m
Forest phanerophytes FPH >5m

General Habitat Category Life Form
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3.4.3 SAM validation data 
The approach for the collection of validation data was identical to the endmember selection, 
but strictly separated. Endmembers were not used for validation and vice versa. So, the 
aerial photographs are used in combination with a vegetation map overlay to select the 
validation data without fieldwork. Validation pixels were selected where its occurrence is 
homogeneous in the aerial photograph. 
 

3.5 Mapping success 

Mapping success is a general term used for the life form classification accuracy and the 
ability to determine GHCs with the life form classification result. The life form classification 
accuracy indicates the ability to determine the different life forms with the classification 
algorithm whereas the GHCs classification accuracy determines the ability to identify the 
correct GHC category with the classification result. Another distinction is the scale of the 
accuracy assessments, the SAM classification accuracy applies to a site whereas the GHC 
accuracy assessment may apply to single patches or the complete site. The classification 
accuracy for the SAM classification of the HyMap images was assessed by calculating an 
error matrix and the kappa-statistic per classified image.  

 

GHC-classification  
The GHCs classification accuracy indicates the ability to identify the GHCs (or major life 
forms) obtained during the field work with the classification result obtained from the HyMap 
data. The classified maps were overlaid with the representative GHCs map and the 
percentage cover of each life form in each polygon was calculated. Because the GHC maps 
used as an overlay are already a simplification and generalisation of the ground truth the 
relative occurrence of the life forms in the patches was compared with the life form 
percentages. This means that only the relative proportion was taken into account, and not 
the exact spatial location of the life forms.  To make the life forms mapping success 
comparable with the SAM mapping success, the same validation pixel to life form ratio was 
used. The accuracy assessment was represented by: 

 Error matrix 

 Kappa coefficient 

 

3.6 Site complexity indicators 

 

3.6.1 Biological complexity 
The species lists from the SynBioSys database (www.synbiosys.alterra.nl/natura2000/googlemapslvd.aspx)  
do not provide the abundance data of a certain species. However there are different field 
samples available that were recorded in the field for the different study sites. This information 
was taken into account to calculate the diversity indices. 
The biological complexity will be covered by:  

 Species Richness 
 Simpson diversity index 
 Shannon diversity index 
 Total number of life forms 

http://www.synbiosys.alterra.nl/natura2000/googlemapslvd.aspx
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 Total cover of GHC’s with mixed life forms 
 
 

3.6.2 Spectral complexity 
The spectral complexity will be covered by: 

 Spectral richness 

 Explained variance by the first 3 Principal Components bands 

 Total Principal Components bands to cover >= 99.9% of the variation in the data 

 

3.6.3 Landscape complexity 
The selected landscape metrics, available in Fragstats and described by McGarigal 
and Marks (1995), to encompass the landscape complexity per study site are: 
 

 Number of patches (NP): The total number of patches in the study site. NP>=1, if NP 
equals 1 then there is only one patch in the site. 

 Patch Density (PD): The total number of patches divided by the total area, expressed 
in patches per 100 hectare. 

 Total Edge (TE): The sum of the lengths in meters of all edge segments in the study 
site. 

 Edge Density (ED): The total edge in meters, but relative to the area size converted 
to 100 hectares. This is thus the edge length (in meters) per unit area (100 hectares).  

 Area Mean: The sum of all patch areas of a study site divided by the total number of 
patches of that site. The average patch mean per site. 

 Area Standard Deviation: The standard deviation of the average patch area, a 
measure of variation in a study site.  

 Shape Mean: Mean of the patch perimeter divided by the minimum perimeter for each 
patch. Shape >= 1, a shape of one indicates a maximum compact shape like a 
square, and increased with an increased irregularity. 

 Shape Standard Deviation: The standard deviation of the average shape mean, a 
measure of variation in shape irregularity in a study site. 

 Shannon’s Diversity Index (SHDI): The positive value of the sum of the proportional 
abundance of each patch type multiplied by that proportion. SHDI>=0 and if SHDI 
equals zero then there is only one patch, so there isn’t diversity. The value increases 
with an increase of patch types and/or the proportional distribution of area among the 
patch types become more equitable. The index is somewhat more sensitive to rare 
patch types than the Simpson’s diversity index. 

 Shannon’s Evenness Index (SHEI): The positive value of the observed Shannon’s 
Diversity Index divided by the maximum SHDI for that number of patch types. 
0<=SHEI<=1, SHEI equal zero when the landscape contains only one patch and thus 
no diversity and if the distribution of area among the different patch types are 
dominated by one patch type. SHEI equals one when the distribution of the area 
among the patches is perfectly even, so the proportional abundances are the same. 



ANNEX-5 

Hyperspectral imagery to map General Habitat Categories and relation of classification success 
with site complexity 

 

24 
 

 Simpson’s Diversity Index (SIDI): Represents the probability that any two pixels 
selected at random would be different patch types. 0<=SIEI<=1, SHEI equal zero 
when the landscape contains only one patch and thus no diversity and SIEI equals 
one  as the number of different patch types increases and the proportional distribution 
of area among patch types become more equitable. 

 Modified Simpson’s Diversity Index (MSIDI): Transforms the Simpson’s diversity  
index to a general diversity index. MSIDI>=0, MSIDI equal zero when the landscape 
contains only one patch and thus no diversity and increases as the number of 
different patch types increases and the proportional distribution of area among the 
different patch types become more equitable. 

 Simpson’s Evenness Index (SIEI): The positive value of the observed Simpson’s 
Diversity Index divided by the maximum SIDI for that number of patch types. 
0<=SIEI<=1, SHEI equals zero when the landscape contains only one patch and thus 
no diversity and if the distribution of area among the different patch types become 
increasingly uneven. SHEI equals one when the distribution of the area among the 
patches is perfectly even, so the proportional abundances are the same. An even 
distribution of area among patch types results in a maximum evenness. 

 Modified Simpson’s Evenness Index (MSIEI): The observed MSIDI divided by the 
maximum MSIDI for that number of patch types. 0<=MSIEI<=1, MSHEI equal zero 
when the landscape contains only one patch and thus no diversity and as the 
distribution of the area among the different patch types become increasingly uneven, 
so dominated by one type. The MSIEI equals one when the distribution among the 
patch types is perfectly even and have thus the same proportional abundances. An 
even distribution of area among patch types results in maximum evenness, so 
evenness is the complement of dominance. 
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4 Results 

4.1 Haaksbergerveen 

4.1.1 GHC map of Haaksbergerveen 
The preliminary GHCs map was based on the RGB aerial photographs of 2008 (fig 7a) and 
existing vegetation maps. The validation of this map was made in the field during October 
2009. Due to the high fragmentation and the occurrence of dikes most of the area was 
accessible. Some parts were too wet and thus impossible to visit. These parts were checked 
by the use of a binocular or in a small number of cases not checked. 
 
 

    
 

Figure 7: Haaksbergerveen (a) Aerial photograph with the study area delineated; (b): Identified GHCs. 

There are 135 polygons divided over 10 single and 12 mixed GHCs. The classes with the 
highest number of patches are CHE, TPH and AQU covering in total 48.2%  of the study 
area. FPH, CHE and TPH have fewer patches but occupy the most area (63.9%) (table 3). 
The 12 mixed classes jointly add up to 23 patches and represent 16% of the study area. In 
the south-west there is the only ‘homogeneous’ FPH patch, covering 23.2% of the total area 
(fig. 12b). The rest of the site is more fragmented. 
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Table 3: Life form distribution of the Haaksbergerveen study site, showing the number of patches (n) and their representative 
area cover (%). 

     
 

4.1.2 SAM classification 
The SAM classification of the Haaksbergerveen HyMap image is shown in figure 8a. The 
GHC URB is beyond the scope of this study and is excluded from the classification. SCH 
only appears in mixed GHCs and is excluded because it was impossible to select a pure 
endmember. Based on knowledge from the field, the other endmembers (fig.8b) were 
selected on the aerial photographs (fig.7a). 
 
 

  
 

Figure 8: (a)The SAM classification of the Haaksbergerveen HyMap with the GHC maps as an overlay and (b):The 
endmembers used for the SAM classification. 

The most striking shown by figure 8a are the classes almost entirely covered with the black 
‘not classified’ dots.  These correspond well with the occurrence of ‘open’ water in the area.  

Legend 

 TPH  CRY 

 FPH  CHE 

 HEL  GEO 

 HCH 
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The homogeneous FTP patch visible in figure 7b appears in the classification (fig.8a) as a 
mixture of categories, whereas other classes fit well with the GHC overlay.  

4.1.3 Mapping success 
There were 53 validation points selected on the aerial photograph, which results in 53 control 
pixels for the calculation of the error  matrix. 
 
Table 4: Confusion matrix of the SAM classification for the HyMap image of Haaksbergerveen. 

 

 
 
 
 
The overall mapping success is high: 71.15% and a Kappa coefficient of 0.65.  From table 4 
we see that especially GEO and CRY score well with 100% producers accuracy, whereas 
CHE (56%) and HEL (60%) scores low. The ‘confusion’ takes place with HCH and TPH, with 
low users accuracy.  
 

4.1.4 GHC mapping success 
The overall GHC-classification (table 5) is comparable with the Producers accuracy from the 
SAM classification (table 4) despite the fact that the overall success of the SAM classification 
is higher. The R2 of the linear regression is 0,52 (fig.9) if the result of the GEO-life form, with 
no correct classification, isn’t taken into account (if so R2 is 0,05).  
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Table 5: GHC mapping success for the combination SAM LF classification of Haaksbergerveen. 

 
 
Comparing the mapping success in relation to the relative size of the patches, the large 
patches have in general a better classification than the overall mean and smallest patches. 
Figure 9 indicates in the direction of  a linear relation between the SAM mapping success 
and the GHCs mapping success, but the accuracy for CHE, HEL, TPH and GEO is very low, 
even for the largest patches. None of the 5 GEO patches are correctly classified. Most of the 
GEO-patches are classified as HCH with a small central GEO-area (fig.8a). For the HEL life 
form, only one out of four is correct classified and there is a strong mixture with FPH/TPH (fig 
8a). TPH in its turn is generally classified as FPH, and CHE is in general classified as CRY, 
HCH, and FPH in smaller patches. 
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Figure 9: The relation between SAM- and GHC mapping success for Haaksbergerveen. 

y = 1.6226x - 68.785 
R² = 0.5151 

0 

20 

40 

60 

80 

100 

120 

50 70 90 110 

G
H

C
 

SAM 

Classification success 

CHE 
HEL 

CRY 

TPH 

HCH 

FPH 



ANNEX-5 

Hyperspectral imagery to map General Habitat Categories and relation of classification success 
with site complexity 

 

31 
 

 
 
Table 6: GHC mapping success with combined life forms for Haaksbergerveen 
 

 
 
 
This indicates a strong confusion between comparable classes. The life forms which are 
frequently confused are aggregated in table 6. The combination of FPH and TPH give a 
mapping success of 78%, combining CHE, HCH, and CRY delivers a mapping success of 
82%.  
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4.2 Korenburgerveen 

4.2.1 GHC map of Korenburgerveen 
The preliminary GHCs map was obtained from the aerial photographs of 2008 (fig. 10a). 
The validation of the GHC map was done in the field during October in 2009. Most of the 
area was accessible to control the preliminary borders, but some parts were too wet 
and/or just impossible to visit. These borders were checked by the use of a binocular or in 
a small number of cases not checked. The study area is delineated in figure 10a, the final 
GHCs map is shown in figure 10b.  

 
 

Figure 10: Korenburgerveen a) Aerial photograph with the delineated study area; b) Identified GHCs. 

 
 
Table 7: Life form distribution of the Korenburgerveen study site, showing the number of patches (n) and their 
representative area cover (%). 
 

 
 
 
The most frequent GHC patches are HEL, CHE, TPH and FPH. HEL accounts for most 
patches but covers just 6% of the area whereas CHE covers 17%, and TPH and FPH 
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respectively 15% and 34% (Table 7). The dominant life form is Phanerophytes, varying 
from low shrubs (LPH) to tall forest trees (FPH), and covers 60% of the area. Seven out of 
seventeen habitat classes have mixed life forms. However they cover just 13%. There is 
only a small patch of open water (AQU, 0.1%). 
 
 
4.2.2 SAM classification 

The classification of the Korenburgerveen HyMap image is done with the SAM classifier. 
The classification result is overlaid with the GHC field based polygon map (figure 11a). 
The GHCs URB and CUL are beyond the scope of this study and are excluded from the 
classification. Also the life forms that only appear in mixed GHCs (CRY, HCH, and SCH), 
AQU, and HEL are excluded because it was impossible to select pure endmembers. The 
other endmembers (fig.11b) were selected using the aerial photograph (fig.10), combined 
with knowledge from the field. 
 

 
 

Figure 11: (a)The SAM classification of the Korenburgerveen HyMap overlaid with the GHC field maps and  
(b) its endmembers used. 

As shown in figure 11a, some classified categories, such as CHE, match up well with the 
GHC outlines acquired from the field. The GHC-boundaries delineate (relatively) well the 
CHE classification. Other GHCs tend to show a more mixed/speckled classification like 
the FPH. Especially LPH tends to appear in FPH GHC patches (compare with fig.10b). 
Figure 11b shows the endmembers of FPH and LPH popping up amongst CHE and TPH. 
The black dots are ‘not classified’, due to a lack of endmembers for the cultivated species, 
water bodies and rare mixed life forms. 
 

4.2.3 SAM validation 
36 validation points were selected on the aerial photograph, and used for the calculation 
of the confusion matrix.  
 

  Legend 

   MPH  LPH 

   TPH  CHE 

   FPH 
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Table 8: Confusion matrix of the SAM classification for the HyMap image of Korenburgerveen. 

 

 
 
The overall mapping success is 77,78% with a Kappa coefficient of 0,71.  Especially CHE 
and FPH score well with 100% producers accuracy, whereas MPH and TPH score low 
with 20 and 50% (table 8). The ‘confusion’ occurs mostly with FPH. Half of the TPH and 
40% of the MPH training pixels are classified as FPH; as well 40% of MPH and 17% of 
LPH is classified as TPH. This is also represented in the low users accuracy (table 8) for 
TPH and FPH. 
 

4.2.4 GHC classification 
The total GHC-classification (table 9) is comparable with the Producers accuracy (table 8) 
from the SAM classification but overall the classification success of SAM is higher. The R2 
of the linear regression is 0,67 (fig.12), suggesting an positive relation (note that the 
number of observations is very limited). 
 
Table 9: GHC mapping success of Korenburgerveen. 

  
  Figure 12: Relation between SAM- and GHC 

mapping success for Korenburgerveen. 

Comparing the mapping success in relation to the size of the patches, the large patches 
achieve a higher accuracy than the overall classification. The small- and middle-sized 
patches generally show lower classification successes.  
 

4.2.5 GHC map of Millingerwaard 
The GHC map of Millingerwaard (fig. 13) was already presented in the the internshop 
report of  Ana Ruiz: ‘Monitoring habitats by remote sensing data’. The fieldwork was 
realized during July and August 2006.  
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Figure 13: Millingerwaard (a): Aerial photograph with the delineated study area; (b): Identified GHCs. 

 
 
Table 10 shows that the 49 polygons are divided over 14 GHC classes (10 classes if the 
URB classes are merged). The classes with the highest number of patches are MPH and 
TPH while AQU, MPH and FPH occupy the most area. Most of the classes are based on 
the differences between the phanerophytes.  

4.2.6 SAM classification 
The classification of the Millingerwaard HyMap image is done with the SAM classifier. The 
GHC category URB is beyond the scope of this study and is excluded from the 
classification. CHE, CRY, THE, LPH, EHY and HCH only appear in mixed GHCs and 

Table 10: Life form distribution of the Millingerwaard  study site, showing the number of patches (n) and their 
representative area cover (%). 
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were excluded because it was impossible to select pure endmembers. The other 
endmembers were selected on the aerial photographs, with knowledge from the field. 
 

   
 

Figure 14: (a)The SAM classification of the Millingerwaard HyMap with the GHC maps as an overlay and (b): the 
endmembers used for the classification. 

The spectra of the endmembers (fig.14b) show two separated endmember-classes: 
FPH/TPH (lower two) and MPH/LHE (upper two), with closely related spectra. For 
FPH/MPH the SAM classification follows relatively well the GHCs (eastern part of fig.14a), 
whereas for MPH/LHE it does not do a good job (western part of fig.14a). The central grey 
spot is the clay pit, masked out with an NDVI-mask. Compared with figure 13a, most of 
the other black spots are also water or bare soil. 

4.2.7 Mapping success 
There were 40 points selected on the aerial photograph, which results in 40 control pixels 
for the calculation of the confusion matrix. 
 
Table 11: Confusion matrix of the SAM classification for the HyMap image of the Millingerwaard. 

 

 
 

Legend 
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The overall mapping success is high: 75,00% and a Kappa coefficient of 0,67. From table 
11 we see that only FPH scores 100% producers accuracy, and that there is a lot of 
confusion between MPH, TPH and FPH. Here again we can notice the two classes, 
distinguished by the spectrum in figure 14b. MPH and LHE have their largest confusion in 
between. For TPH the confusion happens with FPH, but not the other way around. 
 

4.2.8 GHC classification success 
The overall GHC-classification success (table 12) is comparable with the producers 
accuracy from the SAM classification (table 11) despite the fact that the overall success of 
the SAM classification is bit higher. The R2 of the linear regression is 0,93 (fig.15) 
indicating a relationship between the mapping success of the SAM classification and the 
determination of the GHCs. 
 
Table 12: Mapping success for the determination of GHCs for the Millingerwaard. 

 

  
 

 
Figure 15: Relation between SAM- and GHC- mapping success for the Millingerwaard. 
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Comparing the mapping success in relation to the size of the patches (table 12), the large 
patches have a relativly better classification than the overall classification. The accuracy 
for TPH and MPH is low, even for the largest patches because most of the patches with 
an MPH or TPH life form are classified as FPH. Another remarkable effect is the 
difference in proportion between the GHC and SAM map of the combination MPH-LHE.  
Due to the elimination of the CHE, CRY, THE, LPH, EHY and HCH classes in the SAM 
classification these classes are excluded from this validation. 
 

4.3 Wageningen Floodplain 

4.3.1 GHC map of Wageningen floodplain 
The GHC map of the Wageningen Floodplain was already presented in the Internship 
report of Ana Ruiz: ‘Monitoring habitats by remote sensing data’. The fieldwork was 
realized during July and August 2006. 
 

 
Figure 16: Wageningen (a): Aerial photograph with the delineated study area; (b): Identified GHCs. 
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Table 13: Wageningen, total number of patches (n) and their % area cover. 
 

 
 
 
Table 13 shows that there are 46 polygons delineated during the GHC mapping, divided 
over 15 GHC classes. The classes with the highest number of patches are FPH and LHE, 
and together with AQU they occupy most of the area. 
 

4.3.2 SAM classification 
The classification of the Wageningen Floodplain HyMap image is done with the SAM 
classifier. The GHC category URB is beyond the scope of this study and is excluded from 
the classification. It was not possible to select MPH and TPH endmembers. The other 
endmembers were selected on the aerial photographs, with the knowledge from the field. 
 

    
 

Figure 17: : (a)The SAM classification result of the Wageningen floodplain overlaid with the GHC field maps (b): The 
endmembers used for the classification. 

 

Legend 
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Although the endmembers are well separated from each other (fig.17b), the classification 
appears to be speckled (fig.17a). The endmember spectrum (fig. 17b) of LHE does not 
display the typical spectral features of vegetation which is clearly visible in the other 
spectra. 
 
4.3.3 Mapping Success 

There were 36 points selected on the aerial photograph, which results in 36 control pixels 
for the calculation of the confusion matrix.  
 
Table 14: Confusion matrix of the SAM classification for the HyMap image of the Wageningen floodplain. 

 

 
 
The overall mapping success is 64,00% and a Kappa coefficient of 0,55.  Especially CUL 
scores well with 100% producers accuracy, whereas THE scores low (table 14). The 
‘confusion’ happens with both CUL and THE, with low users accuracy.  
 
 
 
4.3.4 GHC classification success 

The overall GHC-classification (table 15) is comparable with the producers accuracy from 
the SAM classification (table 14) despite the fact that the overall success of the SAM 
classification is higher. Figure 18 shows a linear regression (R2 of 0,23). 
 
Comparing the mapping success in relation to the size of the patches in table 15, the large 
patches have a better classification success. Especially the small patches have a very low 
classification success, only two patches are classified correct. The accuracy to determine 
FPH- and LHE-patches is also low. The mapping success of LHE is even low for the 
largest patches, LHE only appears in patches with mixed life forms. For FPH none of the 
small and middle patches are correctly classified, most of them are classified as THE. Due 
to the elimination of the MPH- and TPH-classes in the SAM classification these classes 
are excluded from this validation. 
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Table 15: Mapping success for the determination of GHCs for the Wageningen floodplain. 
 

  

 

 

Figure 18: Relation between SAM- and GHC- mapping success for the Wageningen floodplain 

 
 



ANNEX-5 

4.4 Overview of the site complexity 

4.4.1 Biological Complexity 
Table 16 gives the biological diversity measures calculated for the different study sites which 
are grouped according to habitat.  
 
Table 16: Overview of the Biological complexity indicators. 

 Floodplains Peat bogs 
Biological Complexity Wageningen Millingerwaard Korenburgerveen Haaksbergerveen 
Plant Species 103 109 43 45 
Shannon 4,45 4,57 2,94 3,3 
Simpson 0,00913 0,00636 0,03280 0,02496 
LF-diversity 7 10 9 10 
Mixed LF(%) 36,9 56,3 13,3 14,3 

 
For 4 of the 5 diversity measures a clustering according to habitat can be observed. 
Wageningen-Millingerwaard have a comparable number of species occurrence, a higher 
species diversity, so a higher Shannon diversity index and a lower Simpson’s diversity index, 
and a higher coverage with mixed Life Forms. Only the life form diversity does not follow this 
trend. This indicates that floodplains have a higher biological complexity than peat bog areas. 
 
There are also within-habitat differences: the differences between Wageningen and 
Millingerwaard are very small but the general trend is that the Millingerwaard has a higher 
biological complexity than the Wageningen floodplain. The differences for peatland are also 
very small, indicating that Haaksbergen has a higher biological diversity than 
Korenburgerveen.  
 
These biological complexity indicators show that Millingerwaard and Wageningen, as 
representations of the floodplains, tend to have a higher biological complexity than 
Korenburgerveen and Haaksbergerveen (peat bogs) and that the within-habitat differences 
are very small. 
 

4.4.2 Spectral Complexity 
An overview of the spectral complexity indicators is given in table 17, separated for the 
different study sites and habitats.  
 
Table 17: Overview of the Spectral complexity indicators. 

 Floodplains Peat bogs 
Spectral Complexity Wageningen Millingerwaard Korenburgerveen Haaksbergerveen 
Spectral richness 9,54 7,18 15,24 8,65 
Spectral richness SD 3,34 1,58 2,63 1.00 
1 PC variance 82,03 94,12 81,87 89,32 
2 PC variance 97,27 99,55 85,67 97,37 
3 PC variance 98,66 99,75 97,28 98,24 
number of bands for 
99,9% variance 9 5 15 13 

 
The spectral richness of Korenburgerveen is much higher than the three other areas. This 
trend is also present in the relatively low explained variance for the first two principle 
components. Korenburgerveen has the overall highest spectral complexity. 
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The inside-habitat differences for floodplains show a clear  pattern, Wageningen  has a 
higher spectral complexity than Millingerwaard. For the peatland areas Korenburgerveen has 
a higher spectral complexity. The difference is greater between the peatland areas than 
between the floodplain areas. 

4.4.3 Landscape complexity 
An overview of the calculated landscape complexity indicators, is given in table 18.  
 
Table 18: Overview of the Landscape complexity indicators. 

 Floodplains Peat bogs 
Landscape 
Complexity Indicator Wageningen Millingerwaard Korenburgerveen Haaksbergerveen 
NP 75 88 71 106 
PD 70,4 96,5 47,3 105,5 
TE 20740 26320 30810 33880 
ED 194,6 288,7 205,3 337,1 
Area Mean 1,329 0,961 2,114 0,943 
SD 4,538 2,690 5,831 2,488 
Shape Mean 1,7926 2,009 2,010 1,957 
SD 0,852 0,858 1,084 0,775 
SHDI 1,779 1,881 2,060 2,307 
SIDI 0,799 0,807 0,812 0,855 
MSIDI 1,602 1,646 1,672 1,931 
SHEI 0,773 0,733 0,713 0,747 
SIEI 0,887 0,874 0,860 0,896 
MSIEI 0,696 0,642 0,578 0,625 

 
The pattern from table 18 is that the Wageningen-Korenburgerveen (W&K) and 
Millingerwaard-Haaksbergerveen (M&H) cluster together for the landscape complexity 
indicators. W&K has a lower patch and edge density and a tendency for larger area means, 
but also for higher standard deviations on that mean. For the more complex landscape 
metrics like the Shannon and Simpsons indices, this pattern is not clear. The differences 
between the peat bog areas are most of the time larger than those of the floodplains, 
indicating a higher within-habitat complexity. The within-habitat differences show that 
Millingerwaard has a higher landscape complexity than Wageningen and Haaksbergerveen 
tends to have the highest landscape complexity for the peatland areas. 
 

The relation between mapping success and site complexity 

4.4.4 Mapping success 
An overview of the mapping success for the different habitats and study sites is given in table 
19.  
  
Table 19: Mapping Success. 

 Floodplains Peat bogs 
  Wageningen Millingerwaard Korenburgerveen Haaksbergerveen 
SAM Classification (%) 64,0 75,0 77,8 71,2 
Kappa 0,55 0,67 0,71 0,65 
GHC Classification (%) 39,9 64,7 50,9 40,4 
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Wageningen has the lowest classification success for the SAM and the GHC classification 
(table 19). Although Haaksbergerveen shows a good SAM mapping, the recognition of the 
life forms is low in comparison to the Millingerwaard and Korenburgerveen. They have a 
comparable SAM classification but the Millingerwaard has a better GHC classification. On 
average peat bogs show a higher classification success, but the values of Millingerwaard and 
Korenburgerveen are almost similar. The differences within the habitats are clear, 
Millingerwaard for the floodplains and Korenburgerveen for the peat bog areas have the best 
mapping success. In the next sections the Kappa coefficient is used to represent the SAM 
Mapping Success.  
 

4.4.5 The relation between Biological Complexity and Mapping Success 
There is a negative relation between the kappa coefficient and the species richness (fig.19a), 
indicating that a higher species richness tends to result in a lower mapping success. The 
same pattern appears for the diversity indices (fig.19bc), a high diversity, represented by a 
high Shannon and a low Simpson index value, leads to a lower mapping success. For the 
percentage cover of mixed life forms, no pattern is observed (fig 19d, R2=0.08). 
 
 

 
 

 
 
Figure 19: Mapping success, represented by the kappa coefficient, versus the indicators for the Biological Complexity. 
a)species richness, b) Shannon diversity, c) Simpsons diversity, and d) Mixed life forms(%). 

A contradictory observation is seen in figure 20, the relation between the number of life forms 
in a study area and the mapping success, suggesting that the more life forms present in the 
area, the better is the classification. Wageningen, with the lowest mapping success, shows 
the most distinct values (fig 19 and 20). 
 

a b 

c d 
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Figure 20: Mapping success, represented by the kappa coefficient, versus Life Form diversity. 

4.4.6 The relation between Spectral Complexity and Mapping Success 
The spectral complexity was covered by the spectral richness, the explained variance by the 
first 3 PC bands and the total PC bands to cover at least 99.9% of the variation. Only the 
spectral richness will be related to the mapping success, the two others are more descriptive. 
 

 
 

Figure 21: Mapping success, represented by the kappa coefficient, versus spectral richness. Left, With Korenburgerveen area, 
R2of 0.17; right, Without Korenburgerveen area, R2 of 0.74. 

 
The graph in figure 21a indicates a (weak) positive relationship between the spectral 
richness and the mapping success. The point with the highest spectral richness can be seen 
as an outlier. Due to the appearance of cloud shade in the image and visible residuals in the 
corrected spectroscopy data Korenburgerveen is left out. Further research is needed to 
determine the exact cause of this high value. The result in figure 22b is a stronger but 
negative relationship between spectral richness and the kappa coefficient, suggesting that a 
high spectral richness leads to a lower mapping success.  

 
 

Figure 22: Mapping success, represented by the kappa coefficient, versus the standard deviation of the spectral richness. Left, 
With Korenburgerveen area, R2of 0.25; right, Without Korenburgerveen area, R2 of 0.87. 
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The graph in figure 22a indicates a negative relationship between the SD Spectral richness 
and the mapping success. The result in figure 22b without the Korenburgerveen shows a 
stronger negative relationship, suggesting that a high SD spectral richness lead to a lower 
mapping success. 
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4.4.7 The relation between Landscape Complexity and Mapping Success 
There is a positive relationship observed between the area mean, the shape mean, and the 
edge density in relation with the mapping success represented by the kappa statistic (fig. 23, 
a. c, e). This indicates contradictory relations: A larger area mean seems to give a better 
classification, indicating a better mapping success for larger mean patches of less complexity 
(area mean). However, also more complex landscape patterns seem to improve the 
classification (shape mean and total edge). The standard deviations of the area mean and 
shape mean (fig. 24 b, c) follow the same pattern, indicating that a higher standard deviation 
leads to a better mapping success. 
 

 
 
 

 
 

 
 
Figure 23: Mapping success, represented by the kappa coefficient, versus the Landscape Complexity indicators: a) Area Mean, 
R2of 0.12; b) SD Area Mean, R2 of 0; c) Shape mean, R2 of 0.94; d) SD Shape Mean, R2of 0.28; e) Shape Mean, R2 of 0.09; f) 
Edge Density, without Wageningen, R2 of 0.99. 

Figure 23 also clearly indicates that the floodplain of Wageningen has an exceptional 
behaviour in relation to the other study sites (fig 23, a-e). Figure 23f shows a strong pattern 
(R2=0.99) without Wageningen, indicating that a high edge density causes a lower mapping 
success. This is contradictory to fig 23e with Wageningen included. The evenness indices in 
relation to the mapping success suggest strong negative relationships (fig. 24, b, d, f): the 
Simpson’s evenness index (SIEI, R2=0.39), the modified Simpson’s evenness index (MSIEI, 
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c d 
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R2=0.89) and the Shannon’s evenness index (SHEI, R2=0.94). This relationship indicates 
that the higher the evenness is, so the more even the distribution of the area, the lower the 
mapping success. A positive but very weak relationship is observed between the diversity 
indices and mapping success (fig. 24, a, c, e).  The floodplain of Wageningen shows again a 
different behaviour in relation to the other study sites (fig 24, a, c, d, e). 
 

 
 

 
 

  
 

Figure 24: Mapping success, represented by the kappa coefficient, versus the Landscape Complexity indicators: a) Shannon 
Diversity index, R2of 0.27; b) Shannon Evenness Index, R2 of 0.94; c) Simpson Diversity Index, R2 of 0.09; d) Simpson 
Evenness Index, R2of 0.39; e) Modified Simpson Diversity Index, R2 of 0.08; f) Modified Simpson Evenness Index, R2 of 0.89. 
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5 Discussion 
 

5.1 GHC mapping 
 
The GHC classification methodology was successfully applied to four sites, covering two 
different ecosystems in the Netherlands. The results are representative habitat maps of 
these areas. Although two different observers made the field-based habitat maps at different 
a time. This can influence the results because the delineation is based on assumptions you 
make while interpreting the aerial photographs and the situation in the field. The suggestion 
from the handbook (Bunce et al. 2005) for an intensive training before the application of the 
GHC methodology will improve the success and comparability of the results. Analysis shows 
that the dominant life forms (70-100% cover) are  overestimated in the field, whereas a 
secondary life forms are slightly  underestimated by the SAM classification This indicates that 
100% life form cover often is an overestimation whereas the life forms with a small coverage 
are often underestimated. The Millingerwaard shows also an over and underestimation 
problem. There were many under and overestimations by comparing the GHCs cover 
percentages with the SAM result. There may also be something wrong with the SAM 
classification, or the estimation of cover percentage is difficult in the case of Phanerophytes 
in lower vegetation: How to define the exact vertical cover of trees in a grassland? A last 
remark on the GHC methodology: In the determination of the GHC categories, 
Phanerophytes are overruling the other life forms by definition whereas for the evaluation of 
the habitat these percentages could be an indicator of the ecological status of the area. This 
is especially the case in peatland where the occurrence of Phanerophytes like birch could be 
an indicator for degradation. 
 
 

5.2 SAM classifications 
 
All areas were classified using the SAM classifier for the hyperspectral HyMap data. 
Although the overall mapping success is high, from 64 till 78% (table 19), there are huge 
differences in classification accuracy between the classified life forms. A common ‘error’ in 
the SAM classification is that one phanerophyte class with a high producers accuracy but a 
low users accuracy tends to overrule another phanerophyte class with the low producers and 
high users accuracy. This can be observed by comparing table 4&5, 7&8, and 11&12. This is 
probably because the HYMAP data cannot differentiate height classes if they are dominated 
by the same species. This was clearly observed in the Haaksbergerveen study area where 
the life forms TPH and FPH probably were represented by a ‘species’ endmember. The 
occurrence of the endmember species can be related to a representative life form but can 
also occur (under different site conditions) as another life form, e.g. under ideal conditions 
oak or birch occur as FPH, but younger trees or trees under stress can also occur as MPH or 
TPH. The SAM classifier is able to detect phanerophytes, probably on a species-level, but for 
the determination of the height aspect another technique is needed, like LiDAR is needed. 
Difficulties were encountered with the selection of representative endmembers for water 
bodies and bare soil, due to a high spectral variabilty. Here the theory of Underwood et al. 
(2007) is applicable: finer spatial resolution may reduce the classification accuracy by 
increasing within-class variability. Even with an NDVI-mask it was not possible to mask out 
all the water bodies  For several life forms it wasn’t possible to select a representative 
endmember based on the aerial photographs and so they were not used in the classification. 
Also the selection of reference pixels should be spatial randomly selected, proportional to the 
covered area to obtain a better and comparable mapping success 
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5.3 GHC classification success 
 
Constructing GHC maps with the SAM classification data tends to yield a lower mapping 
success than that of the SAM classifier, from 40% till 65%. The observed linear relationship 
between GHC mapping success and the SAM mapping success (R2 from 0.23 to 0.93) 
indicates that the identification of GHCs from the SAM classification strongly depends on 
SAM mapping success. This is logical, the better the SAM classification, the better is the 
input for classifying GHCs.  
 
The use of hyperspectral imagery could be quite powerful if life forms are spectrally distinct 
and the within life form spectral range (variability) does not overlap between life forms. To 
achieve a GHC map you will need to (depending on the spatial resolution of the imagery) 
either impose parcel outlines or unmix the imagery. For the distinction of the height based life 
forms you will need to use lidar.  The SAM classifier performance will depend on the quality 
of the training set it was given and the spectral separability of the life forms at that point in 
time. Better classification results could be obtained with the SAM classifier in combination 
with Lidar data that give information on the height of the vegetation. Also the pure pixel-
approach of the SAM classifier is completely different from the patch-approach of the GHC 
methodology. Therefore a patch-based classifier or segmentation techniques could be a 
better solution. 
 
 

5.4 Site complexity compared to Classification Success 
 

Biological complexity 
The regression analyses showed weak relationships between the parameters of the 
biological complexity and the classification success indicating that a high biological 
complexity (represented by a higher species richness, a higher Shannon diversity, a lower 
Simpson diversity, and a higher cover with Mixed life forms) decreased the mapping 
accuracy. However, Andrew and Ustin (2008) found that the mapping success (of a specific 
species) was inversely related to the species richness of the site. In this study the best 
classification result was obtained in the area with the lowest species diversity. Also the 
Shannon and the Simpsons indices showed this relation and the lowest classification result 
was obtained in the area with almost the most species. The strongest positive relation (R2= 
0.60; fig. 20) was found between the number of life forms in an area and the mapping 
success. This is indicating the opposite!. 
 

 
 
Figure 25: Mapping success, represented by the kappa coefficient, versus Life Form diversity without Wageningen. 

The three sites without the Wageningen site showed a negative trend (R2=0.91; fig. 25), 
indicating that higher life form diversity leads to lower mapping success. The effect on this 
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relationship of one study site can be very large if there are only four sites. The analysis could 
be substantially improved by using more study sites (but would take much more efforts). 

 

Spectral Complexity 
The spectral richness is highest for the Korenburgerveen with the best classification result, 
followed by the Wageningen Floodplain with the lowest classification success. The explained 
variances of the first three Principle Components show the same trend.  Figure 22a gives a 
weak indication of a positive relationship. However, the high spectral complexity value for the 
Korenburgerveen area is remarkable, because there was a lot of cloud shade in the image 
(fig. 27a). This may have influenced the spectral complexity. 
 

   
 
Figure 26: (a) Cloud shade and  (b) the residuals of the cloud shade in the HyMap data of Korenburgerveen. 

The image of the Korenburgerveen area (fig. 26) shows that a lot of the area is covered with 
cloud shade. After atmospheric correction some residuals are still visible and will probably 
influencing the spectral complexity. If we compare the relationship without the 
Korenburgerveen area (fig. 23b), the spectral complexity shows a negative relationship 
indicating that higher spectral complexity leads to lower mapping success. The occurrence of 
the high spectral complexity value for the Korenburgerveen needs further study. Spectral 
complexity calculations with the cloud shade masked out could give more insight into the 
spectral complexity of the Korenburgerveen HyMap data. 
 
 
 

Landscape complexity 
 
Evenness, indicating the variation between patches, seems to be the landscape complexity 
parameter with the most explanatory power in relation to the mapping success (fig. 24, b, d, 
e). A high evenness suggests a low mapping success. This can be the case, as high 
mapping success was mostly obtained within the largest patches. The four areas have 
almost the same number of patches, so a high evenness leads to a large difference between 
the patches and a higher amount of large patches. The area mean also indicated higher 
mapping success for an increased area mean (fig. 24), so the larger the mean areas the 
better the classification. The shape mean and the total edge, two straightforward measures 
of shape complexity, show a positive relationship with the mapping success (fig. 24). This 
indicates that higher landscape complexity results in better mapping success. This 
unexpected relationship for the shape mean is due to the areas in this study having in 
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general the same (high) amount of patches. A look at figure 24e of the total edge shows that 
the linear relationship without Wageningen is more representative for the trend in the data 
(R2=0.99; fig. 24f), indicating that a higher edge complexity leads to a lower mapping 
success. The Shannon and Simpson’s diversity indices are indicating that a higher 
landscape diversity leads to a better mapping success. 
 
 
 

Site complexity compared to Mapping Success, overall discussion 
 
Based on this study, the general pattern is that with an increase in Biological Complexity the 
mapping success will decrease. This supports the conclusions of Andrew and Ustin (2008). 
They also found an inverse relationship between the Spectral Complexity and mapping 
success, but to rely on the result for this study the effect of cloud shade in the image of 
Korenburgerveen must be first investigated. The landscape complexity indices showed 
mostly the dependence of the classifier for large patches, indicating that sites with most small 
patches will have the worst classification result. Some complexity indicators disagree with 
our hypothesis, like the landscape diversity indices. Also Andrew and Ustin (2008) could not 
find a direct logical relationship at landscape scale but most of their indices were indicating 
that increased complexity reduces the mapping success. There are still several uncertainties 
like the really low mapping success of the Wageningen floodplain and the effect of cloud 
shade in the data of Korenburgerveen. This can have a large effect on the observed patterns 
based on only four study sites. 
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Introduction
Radiative transfer in vegetation is influenced by the arrangement, structure, functioning of plants 
and their optical properties. Incident radiation is absorbed, transmitted and reflected in the 
vegetation. The amount of energy that is reflected towards a sensor can be recorded and stored as an 
image. The images are characterised by their spatial, radiometric and spectral resolution. Many 
scanners are able to aim at different angles to the object or area of interest. The recorded signal is 
also influenced by atmospheric and illumination conditions and sensor characteristics.

The spectral signature of an object or an area represents the recorded radiance (or reflectance or 
reflectance factor) at different wavelengths (channels) and can be assumed to be characteristic to 
this object. It can also be assumed that objects with different properties have separable signatures. 
However, different objects can have similar spectral signatures and objects with similar properties 
with regard to our focus (e.g land cover types) can have different spectral signatures. In general, the 
spectral signature of a pixel over a vegetated landscape is a function of viewing and illumination 
geometry, canopy structure, tissue optics, landscape structure and soil optics (Asner, 2004). In a 
similar way angular and temporal signatures for an object can be defined.

The spectral signature of a image pixel is proportionally dependent on spectral signatures of the 
objects within this pixel and the respective areas of the objects in view direction. In medium spatial 
resolution images one pixel (10-30 meters) over the vegetation consists of four basic components: 
illuminated canopy, shaded canopy, illuminated ground and shaded ground (Kasischke et al. 2004). 
If the pixel is located in a homogeneous surrounding then neighbourhood influence can be 
neglected. Alternatively, contrasting neighbourhood influences the pixel through multiple scattering 
in the land-atmosphere system (Liang, 2004). Atmosphere between the sensor and target has a 
pronounced influence in certain wavelength ranges on the spectral signature and so called 
atmospheric correction procedure is usually needed prior to analysing and using relationships 
between objects of interest and their spectral signatures (Liang, 2004). The temporal signature of a 
pixel is influenced by many components from which the main are the actual changes occurring in 
the area, atmosphere, illumination and view geometry, mapping and binning the observed raw 
signals (including geometric correction) into raster image and scanner degradation.

There are numerous studies on estimating vegetation and in general ecosystem characteristics using 
spectral signatures from remotely sensed images. General habitat categories are the units used to 
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describe biodiversity over wide range of ecosystems (Bunce et al., 2011). Based on the life forms 
(Bunce et al., 2011 referring to Raunkiaer, 1934), the general habitat categories (GHC) are expected 
to be different in their vegetation structure and functioning. Hence, it could be assumed that GHC-s 
differ also by their spectral signatures in the extent that makes it possible to use spectral image data 
to map GHC-s over large areas. Changes in the optical properties of vegetation during the growing 
season can be informative for distinguishing otherwise spectrally similar GHC-s (Clerici and 
Weissteiner, 2010; Levin et al., 2011)

In practical fieldwork the Minimum Mappable Element (MME) for an areal GHC element is 400m2 

with minimum dimensions of 5 x 80m or 20 x 20m (Bunce et al., 2011). This corresponds roughly 
to the pixel size of medium spatial resolution satellite images. Hence, it is not realistic to distinguish 
the MME-size general habitat area unless it is significantly different by its spectral characteristics 
from the surroundings. The true content of a pixel in geo-referenced consecutive images is never the 
same, since imaging platforms (planes, satellites) are not fixed but moving. This also makes it 
difficult to remotely detect changes of the pixel size areas, adds noise for larger areas in multi date 
change detection and complicates direct assignment of GHC class codes using raw digital number 
combinations from spectral channels and multi temporal images. However, the number of detailed 
field survey areas is usually limited because of time, cost and labour restrictions and therefore such 
medium resolution satellite images, each of which extends over 60 to 185 kilometre’s depending on 
scanner, can be still useful to extend the local ground surveillance information over larger areas 
(e.g. landscapes). Even more, the small number of detailed field sites does not allow to draw 
statistically significant conclusions for the whole area of interest. The sample-only based design 
does not work because of the small sample size. On the other hand, multispectral images do allow 
the application of so called model based sampling design, provided that the spectral signatures and 
the properties of objects of interest are well correlated. 

In this study atmospherically corrected Landsat-7 ETM+ image (SLC-off mode) and field 
measurements from European Biodiversity Observation Network (EBONE, 2011) monitoring areas 
in Estonia were used to test the applicability of medium resolution multi-spectral data to map 
general habitat categories. The spectral content of image was studied with unsupervised iterative 
self organizing clustering (ISOCLUST). Maximum likelihood classification (MAXLIKE) technique 
was used to extend the information from field measurements to outside the EBONE 1x1 km2 

monitoring squares. The main aim was to extrapolate the information in EBONE field sites over a 
larger area. 

Material and methods

Test site
Estonia is a small country (total area 45 227 km²) located in the North-East of Europe. The climate 
and weather are mainly determined by the Gulf stream and air masses from the Atlantic ocean 
(west) and continental air from Russia (Figure 1). Depending on the prevailing air mass the weather 
can by mild and wet or dry with rather high summer or low winter temperatures. The rate of annual 
precipitation is higher than evaporation and 20-25% of the land suffers from swamping (Vallner, 
1998; Valk, 2005).

The topography of Estonia is generally flat, with a maximum elevation of 318 m above mean sea 
level. According to the National Forest Inventory (NFI) data more than half (51,5%) of Estonia is 
forest land, on third is arable land (30,3%) and 5,3 % are wetlands (Pärt, et al., 2008). However, 
estimates of the percentage of forest land at the beginning of the last century in Estonia is 18.3% 
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(Etverk, 2003). Since 1958 the forest area of Estonia has almost doubled (from 12 711 km² to 21 
133 km²) and the growing stock volume has more than tripled (from 131.18 * 106m3 to 453.04 *106 

m3 ) (Pärt et al. 2008). The causes of this increase are the conversion of agricultural lands into forest 
after World War II when the soviet system introduced collective farming and increased final felling 
ages of the stands (Etverk, 2003). After the collapse of the Soviet Union in 1990 about 300 000 
hectares of agricultural land was abandoned. 

Forests are characteristic to the hemiboreal zone. Forest growth conditions have a wide range 
dependent on soil type, local relief and water regime. The forest site types range from dry alvars, 
poor dry or wet sandy or gley soils to the fertile typical brown soils and fertile brown lessive soils. 
Phytoproductivity (dry mass per hectare in year) of the forest ecosystems reaches up to 15 Mg ha-1y-

1 (Kõlli and Lemetti, 1999). Main forest forming species in Estonia are Scots pine (Pinus sylvestris), 
Norway spruce (Picea abies), Silver birch (Betula pendula), grey alder (Alnus incana), black alder 
(Alnus glutinosa) and aspen (Populus tremula). 

Field data
Eight EBONE 1x1 km2 monitoring squares in North-East Estonia (Figure 2) were mapped in the 
July 2010 (Appendix 1). Each monitoring square is identified by the code EE and a number starting 
from one. Around each EBONE field monitoring site a 3 by 3 grid of one square kilometre size 
squares was created in mapping software. These squares are further referred as surrounding squares.

Satellite image
Landsat-7 ETM+ image acquired in 29.06.2010 (WRS-2 path=187, row=19) was downloaded from 
USGS archive. The image has missing data stripes due to scene line corrector failure (SLC-off 
mode, Figure 2). Atmosphere was clear and only a marginal amount of cumulus clouds were found 
in the image. Raster was re-projected from UTM into Estonian basic map coordinate system. 
MODIS image with close acquisition time was checked for any visible trends in transparency and it 
was concluded that the air mass was with similar properties over all the ETM+ image. Atmospheric 
correction was done with a modified 6S code that included two layer homogeneous canopy 
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Figure 1: Location of the EBONE field monitoring areas used in this study.



reflectance model (Andres Kuusk, Tartu Observatory, personal communication). Aerosol size 
distribution data, spectral refraction index, aerosol optical thickness and amounts of absorbing 
gasses measured at Tõravere AERONET station (58° 15' 55'' N, 26° 27' 58'' E) were used.

Data processing and image classification
Image processing was done using IDRISI Taiga. Cloud and cloud shadow mask was digitized 
manually. The image fields of single channels are slightly shifted and a pixel near the missing data 
stripe can have a usable value in visible and NIR channels, but zero value in the short-wave infrared 
channels. Therefore, additional common mask to exclude all pixels with missing data in any of the 
six channels was created. 

The spectral variability of the ETM+ image (Figure 2) was studied using unsupervised iterative self 
organising clustering (ISOCLUST). The number of classes was set to 41 including one class for 
background (missing data). The unsupervised classification produced several spectral classes for 
open water due to lakes having water with different spectral properties (see Figure 1 and Figure 2). 
These were merged into a single class. From the classified ISOCLUST image the pixel groups 
(segments) with an area  larger than one hectare were extracted for further interpretation and 
analysis.

To extend the habitat/cover knowledge obtained from field monitoring squares, maximum 
likelihood classification (MAXLIKE) of ETM+ image was used. First, minimum limit of one 
hectare was imposed on the size of mapped GHC polygons to select training areas. This rule 
excluded almost all urban (URB) superclass GHC areas. Next, possible mixed pixels along the 
borders of adjacent areas were excluded from the training areas. Finally, only those training areas, 
which after the mixed pixel exclusion had more than five data pixels remaining, were kept for 
further use. In total 120 of such training areas were identified from the eight field monitoring sites.

In the first classification test, eight separate classifications were produced each of which using as 
input training areas from a single EBONE field site (EE01 to EE08). Each training area (GHC 
polygon) was used as an individual class assuming that similar individual objects do exist in near 
vicinity. Common GHC codes were assigned after classification. IDRISI Taiga MAXLIKE offers 
the option to set the minimum likelihood threshold to classify a pixel. If the maximum likelihood of 
a pixel is less than the critical (minimum) level then the pixel is left unclassified. This can be, to 
some extent, used to identify objects for which there are no training areas. Following minimum 
likelihood levels were used for each monitoring square: 0.00 (classify all) and 0.05.

In the second classification test all 120 training areas (Table 1) from the eight monitoring squares 
were used inclusively. Additional minimum likelihood threshold levels (0.10, 0.15, 0.50) were 
tested.

The classification accuracy assessment is usually done by evaluating how well the predicted cover 
classes match up (thematically and spatially) with a validation dataset. The percentage of correctly 
classified pixels and kappa index of agreement derived from a correspondence matrix are the most 
commonly used accuracy statistics. Both were calculated keeping in mind that the standard version 
of kappa index might not be the most informative (Pontius, 2000). Usually validation sites and 
training sites are expected to be independent, however on this occasion, splitting up the eight field 
sites into a separate calibration and validation set was not an option because of the small sample 
size and the distance (in average 20 kilometres and maximum 65 kilometres) between EBONE field 
sites. Nordkvist et al. (2010) used the leave-one-out for accuracy assessment, which gives also the 
estimate of local variability over the image. This option was also not used in this study because it 
requires spatially systematically distributed samples. Instead the accuracy assessment was done 
using all the training areas as the validation areas. Using this approach would invariably produce 
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elevated accuracy results (compared to a classical validation procedure), but also provide an 
indication of the internal homogeneity of the training areas. Since the aim of the tests was to 
extrapolate the knowledge about landscape information to near vicinity around each central square 
the minimum likelihood threshold and its influence to the classification results was considered to be 
the most informative.

Table 1: Number of individual distinct spectral  signatures per general habitat category that were  
used in maximum likelihood classification.

General habitat category Number of signatures / 
training areas

AQU 1
ART 1
CHE 17
CHE/LHE 14
CHE/MPH/DEC 1
CRO 25
FPH/CON 10
FPH/DEC 17
GRA 4
GRA/ART 1
LHE 7
LHE/CHE 16
NON 1
SPA 1
TPH/DEC 4
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Figure 2: False color composite (bands 1,2,3) of the Landsat-7 ETM+ image from 29.06.2010,  
(courtesy of USGS). Empty stripes resulting from SLC failure are visible. Red squares mark the  
EBONE 1x1 km2 field sites.



Results and discussion
Unsupervised classification produces the result where the content and labels for each class has to be 
determined after the procedure using existing maps and data. Pixels are grouped according to 
spectral similarity and the real world objects that the class represents can vary by their structural 
properties. Levin et al. (2011) used also self organizing clustering (ENVI isodata) starting with 50 
classes which were interpreted and joined finally into 10 GHC categories. Considering that medium 
spatial resolution satellite images (pixel size about 15-30 m) contain many mixed pixels, it can be 
informative to separate the similar adjacent pixels belonging to the groups of some size. In this 
study the minimum group size was set to one hectare. This allows the separation of homogeneous 
areas according to the spectral information (Figure 3) which can be further used as training data. On 
the other hand, separating areas where the number of classes per unit area is high can be informative 
for detecting locations with high diversity in the spatial scale of the image. We can apply moving 
window filter to the image where pixel values represent area of pixel groups and calculate mode of 
group size. By selecting a mode value which is appropriate for the particular spatial resolution of 
the image (on the 30 metre pixel ETM+ image one hectare) spectrally variable areas can be 
delineated (Figure 4).

The unsupervised classification results can be used also to study the spectral variability within and 
around the EBONE monitoring squares (Figure 5, Appendix 1). It revealed, particularly for crop 
areas (CRO), significant spectral variability which indicated that a structure based GHC class can 
contain spectrally different areas. For example, the large LHE type area (Trifolium sp. L., dominated 
grassland) in the square EE03 (Appendix 1) is composed of pixels belonging to four clusters. The 
same phenomena can be found in other squares. The drawback with the unsupervised classification 
is its inherent dependence on the image spectral properties and variability. If in the next image 
spectral variability is different (caused by seasonal or weather conditions) the content of classes 
changes and this makes it difficult to do change analysis.

In supervised classification the relationship between the spectral data and a class in interest is 
established prior to the procedure using training areas. Among many methods the maximum 
likelihood has been shown to produce reliable results (Nordkvist et al., 2010; Levin et al., 2011). 
Supervised classification can be used to extrapolate the knowledge from a field monitoring area 
over the larger surrounding (Figure 6c). Since one square kilometre size area might not be 
representative, additional rule can be applied to classify only those pixels which have the likelihood 
to a training area equal or more than a certain threshold (Figure 6d). When applied, the rule can 
exclude a significant amount of pixels from being classified (Appendix 2). This does not exclude 
the possibility of classifying a pixel correctly by a chance.

If the 1km field monitoring sites are close enough to be considered in the same vegetation and 
growth conditions then data all of them can be used as training areas together. Spectral signature for 
a class would then be created using several training areas which represent typical examples. 
However, instead of creating an average signature over several training sites with the same GHC 
(typical examples), each individual area shall be treated as a class first and then classification output 
must be relabelled. This corresponds to the idea of having similar individual landscape objects in 
the surrounding of the central monitoring square. The risk of classification error usually increases 
with distance from the training area and therefore the a priori probability maps can be useful for 
reducing appearance of classes on improbable locations (e.g. urban class in a wetland, or sparsely 
vegetated class in urban areas).

By combining minimum likelihood threshold applied supervised classification results and 
unsupervised classification results as overlays allows to identify locations for which well defined 
training areas were not found. The minimum likelihood threshold 0.05 causes a compact area to be 
excluded from the use-all-training-areas based classification (Figure 6e) from the North-West 
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surrounding square and from the South-West surrounding square (Figure 6f) of EE04 (locations are 
marked with red circle). The areas  probably belong to a single class each, since unsupervised 
classification (Figure 6b) indicates homogeneous areas in these locations. Similar comparison on 
the only EE04 training areas based classification (Figure 6c, 6d) reveals that the straightforward 
extrapolation of the GHC class information from central square may not be always applicable, since 
usually in the unclassified areas spectrally homogeneous area exists according to the unsupervised 
classification (Figure 6b). For these areas respective higher level GHC class signature does 
probably not exists in field data.

On the other hand, similar spectral signatures can be found on different GHC classes (Figure 7) 
according to Euclidean distance measure in spectral space (hclust procedure with complete link 
method in R, www.r-project.org). If we represent spectral signatures as a tree leaves then similar 
spectral signatures would belong to the same shoot of the tree. If those signatures belong to a GHC 
from the same super-group then the classified pixels could be joined into more general GHC 
category. If those signatures do belong to different GHC super-groups (Bunce, et al., 2011) then 
respective pixels that were classified according to those signatures shall be treated separately, since 
they can represent a mixture of two classes. Topographic or soil maps can be used as a priori 
knowledge to separate spectrally similar but in reality different GHC areas to increase classification 
accuracy.

In maximum likelihood classification procedure several factors influence the result. Percentage of 
correctly classified pixels (GHC classes) varied from 75% in EE03 to almost 100% in EE05 (Figure
8a). Minimum likelihood threshold excluded 5...15% of pixels from classification in use-individual-
square-signatures test. As a result the percentage of correctly classified pixels increased in all 
monitoring squares. The kappa index of agreement and percentage of correctly classified behaved 
similarly in this dataset (Figure 8a). The share of correctly classified pixels in use-all-signatures did 
not exceed 80,4% (Figure 8b). This seems somewhat low considering that the same areas were used 
for signature development and for validation of the classification. However, the explanation is 1) 
the within polygon spectral variability of GHC polygons and 2) spectral similarity of the GHC 
classes that were separated according to structural differences in the field. Leafy hemicryptophyte 
(LHE) and Caespitose hemicryptophyte (CHE) classes are spectrally similar and are frequently 
mutually misclassified (Table 2, in Appendix 3).

Because of internal spectral variability of training areas the classification accuracy in use-all-
training areas test decreased, since there was more chance to find the most likely but possibly 
wrong signature for a single pixel in a mapped GHC area. Minimum likelihood threshold had a 
more pronounced influence on the result and at threshold=0.05 already more than 20% of pixels 
were left unclassified (Figure 8b). At the same time, by changing the minimum likelihood threshold 
from 0.00 to 0.05 improved classification accuracy about 10% according to the share of correctly 
classified pixels. Increasing the threshold i.e including only the most similar pixels did not increase 
the kappa index of agreement or percentage of correctly classified significantly compared to the 
minimum likelihood threshold=0.05. The reason for somewhat contradicting results from use-
single-square and use-all-training areas in classification with respect to the share of unclassified 
pixels is not clear and can be related to the maximum likelihood estimation dependence on the 
number of input signatures in IDRISI MAXLIKE procedure.
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a

b
Figure 3: Window over Vooremaa landscape protection area of the ISOCLUST classification of  
Landsat-7 ETM+ SLC off image using 41 classes. In upper image (a) all pixels are retained and in  
lower image (b) only those adjacent pixels that belong to a group bigger than one hectare are  
retained. The size of the largest lake (blue colour) Saadjärv is 708 ha. Gray pixels along the coast  
belong to areas covered with Phragmites australis or shallow areas in lakes.
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a b

Figure 4:  a) Spectrally variable areas delineated in EBONE field monitoring site EE04 based on  
ISOCLUST classification . b) Window from color composite image overlaid with the detected  
spectrally variable area borders is shown for comparison. Separated are the locations where the  
mode value of size of pixel groups in the ISOCLUST classification image under 3x3 pixel moving  
window was less than 12 pixels (roughly one hectare).

Color composite
Field data ISOCLUST

Figure 5: Window from color composite image, field measurements and unsupervised ISOCLUST 
classification result over EBONE field monitoring site EE01 in Estonia. The number of classes in  
ISOCLUST procedure was limited to 41.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Supervised classification in EBONE monitoring square EE04. Central square and eight  
surrounding squares are shown. (a) is false colour colour composite; (b) shows the ISOCLUST 
areas larger than one hectare in size; (c) is the result using training sites from EE04 as individual  
classes; (d) is the same as (c) except that only those pixels which fulfilled the 0.05 minimum 
likelihood threshold were classified; (e) training data from all eight monitoring squares were used  
similar to (c) but the resultant individual classes were joined into common GHC class; (f) is the  
same as (e) but with 0.05 minimum likelihood threshold.
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(a)

(b)

Figure  7: Similarity tree of training areas created with complete linkage clustering method. The  
tree is split into three large groups (branches) at height of 4000 for better readability. The group of  
additionally added large lake water signatures is not shown here (there was only one small shallow  
lake in monitor square EE03). 
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a b

Figure 8: Descriptive statistics for maximum likelihood classification. Percentage of correctly  
classified pixels and kappa index of agreement (KHAT) depending on the minimum likelihood  
threshold are presented. The figures characterize the variability within field mapped GHC areas in  
monitoring squares. a) Each individual square as training area and validation area. b) All  
monitoring squares used as training areas and validation areas.

Summary and conclusions
In this study we show that Landsat-7 ETM+ images acquired in SLC-off mode since March, 2003, 
can be used to extend detailed information from limited field monitoring sites of the European 
Biodiversity Observation Network. An atmospherically corrected image from 28. June, 2010 was 
classified using iterative self organizing clustering and maximum likelihood method. 

• Unsupervised image classification was useful to examine the spectral variation in the image, 
within field mapped GHC areas and to locate those areas for which the supervised classifier 
did not have a like training area in the monitoring square.

• Supervised maximum likelihood can be used to extrapolate knowledge from EBONE field 
monitoring squares to wider area by using each delineated GHC area as an individual class 
training site. However, in medium spatial resolution multi spectral images the pixel count 
requirement for signature development excludes small GHC areas which can be important 
for some aspects of biodiversity. Single central monitoring square can be non-representative 
for surrounding squares. 

• By using training areas from several monitoring squares there is more chance for a pixel to 
be classified in a wrong class because the GHC areas are internally spectrally non- 
homogeneous. On the other hand, objects from different classes (e.g. CHE,LHE and CRO) 
can have similar spectral signatures.

• Minimum likelihood threshold in maximum likelihood classifier was useful to some extent 
to distinguish the pixels that caused classification error. Minimum likelihood threshold=0.05 
resulted in 5...15% of unclassified pixels in use-single-square test and 20% of unclassified 
pixels in use-all-training areas test.
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Appendix 1. Field maps 
Landsat ETM+ image 29. June 2010 (Courtesy of USGS) as false colour composite, GHC classes 
from 2010 field measurements on EBONE 1x1 kilometre squares (EE02 to EE08) in Estonia and 
ISOCLUST classification (41 classes).

EE02

EE03

EE04
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EE05

EE06

EE07

EE08
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Appendix 2. Maximum likelihood classification in EE04
The influence on the minimum likelihood threshold value to the maximum likelihood classification 
procedure in EBONE monitoring square EE04. Legend represents all of the GHC codes found in 
field measurement data.

(a) (b)

(c) (d)

(e)

Values  for  minimum likelihood  are:  (a)=0.00 
(classify  all),  (b)=0.05,  (c)=0.10,  (d)=0.15, 
(e)=0.50.  Higher  value  results  in  a  larger 
number  of  unclassified  pixels.  On  the  other 
hand, if the training areas are well defined then 
the pixels satisfying the value are also correctly 
classified.

Training  areas  from  all  monitoring  squares 
were used as individual classes in  first  phase 
and the result was then converted into common 
GHC classes. 
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Appendix 3. Example of classification validation cross tabulation

Table 2: Validation cross tabulation of maximum likelihood classification in use-all-signatures test. Signatures were created for those training field  
polygons which had at least five pixels left after masking out border pixels. Exceptionally variable NON  class signature from monitoring site EE03  
was not used. Minimum likelihood threshold in classification  was set to 0.

Validation
Classification

1 2 3 4 5 6 7 8 9 10 11 12 13 14
AQU 1 16 0 0 0 0 1 4 0 0 0 1 0 0 0
ART 2 0 41 2 5 0 14 1 0 0 4 3 5 0 0
CHE 3 0 3 661 39 0 22 4 12 5 24 33 64 0 8
CHE/LHE 4 0 2 77 521 0 38 7 11 6 15 25 30 0 17
CHE/MPH/DEC 5 0 0 1 0 6 3 0 0 0 0 0 1 0 0
CRO 6 0 0 174 98 0 1827 37 155 9 131 72 46 20 13
FPH/CON 7 2 1 3 3 0 15 165 65 0 3 0 1 0 4
FPH/DEC 8 0 0 37 8 0 46 108 477 2 5 3 6 1 45
GRA 9 0 3 18 13 0 15 0 0 26 10 1 14 1 1
GRA/ART 10 0 0 3 3 0 4 0 0 0 16 1 4 0 0
LHE 11 0 0 89 83 0 58 7 2 3 7 532 59 4 5
LHE/CHE 12 0 2 317 52 0 31 0 2 0 36 49 798 1 4
SPA 13 0 0 9 1 0 17 0 0 0 8 4 3 68 0
TPH/DEC 14 0 0 4 1 0 5 6 14 0 3 4 2 0 49
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1 Introduction 
 

The spectral characterization of different habitats is related to the properties of the vegetation 

or the soil susceptible of being remotely received by the sensor, processed and send back to 

the ground station (Lillesand and Kiefer, 2000). A condition for a characterization from a 

spectral signal is the signature separability from different habitats. The different properties of 

the vegetation determining the reflectance are a matter of importance, and it still offers 

significant difficulties due to the multiple factors involved. Firstly, consider the leaf 

reflectance, phenological state, shape and water content. Then, other factors of 

consideration are the morphology of the plant (height, canopy structure, percentage of land 

cover). A third group of factors are those susceptible of being derived from the geographic 

location of the plant: slope, orientation, association with certain communities, geometric 

characteristics of certain plantations, etc (Chuvieco, 1995). The method of habitat mapping 

by means of signature classification has been applied throughout the last decades (Evans, 

1994; Recio, 1998; Salvador and Pons, 1998; Eerens et al., 1999). (Mücher et al., 2000), 

showed that often poor accuracy was obtained with heterogeneous land cover from the 

Mediterranean region. To enable the mapping of the vegetation it  requires the use of aerial 

photography or the use of high resolution satellite imagery that can capture the spatial 

complexity of Mediterranean vegetation. Moreover the vegetation can quickly change over 

and during the growing season, especially in arid places like the Southern part of Spain 

where the natural growing season is very short. This requires that proper timing of acquisition 

and having a multi-temporal approach is of utmost importance. A complication is that aerial 

photography in the Mediterranean is often out-of-date and not easily to obtain, while very 

high resolution satellite imagery like Worldview-II or QuickBird are mostly too expansive to 

use in an explorative study. Therefore there is an interest here to explore the use of high 

resolution satellite imagery that can be obtained freely from satellite archives through data 

portals, such as the ones from NASA and the USGS, e.g. http://glovis.usgs.gov/. 

Our area of interest is Almeria in the South-west corner of Spain were fieldwork was done in 

the beginning of October 2009 (note already that this not the most optimal period, which is 

normally around the end of April). More specifically we did fieldwork in October 2009 in 4 

small sites, namely: Cabo de Gata, Rodalquilar, Sorbas and Tabernas. 

The field work for habitat recording was done according to the field protocols of the GHC 

Handbook  ‘Handbook for Surveillance and Monitoring of European Habitats’ by Bunce et al. 
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(2005). Note that an update of the manual was published in 2011, amongst others based on 

the new experiences that were obtained during the fieldwork in 2009 in this semi-arid area. 

The overall goal of the GHC methodology was to set up a methodology designed for 

collecting information on European habitats in order to obtain statistically robust estimates of 

their extent and associated changes in biodiversity. GHCs are thus a consistent methodology 

for field recording and monitoring of habitats. The Raunkiaer classification of plant Life Forms 

(LF) is the basis for these GHC’s. Raunkiaert divided plant species on the location of the 

plants growth point during seasons with adverse conditions e.g. winter or dry seasons. The 

use of plant life forms enables the recording of habitats with comparable structures within 

contrasting bio-geographical zones that have similar habitat structures. Based on the 

hypothesis that habitat structure is related to the environment and thus it will correspond to 

phytosociological classes at high level. For the European region 160 GHC’s are now derived 

from 34 Life Forms. The variation within a GHC is additional expressed by environmental, 

management and global qualifiers. 

During the duration of this project we got also access to HYMAP hyperspectral data for the 

Rodalquilar study area through Wim Bakker (ITC). The HYMAP data were included in this 

study since one of the conclusions from this report is that the spatial resolution of Landsat 

TM is too low to study the vegetation structure and GHCs in such complex areas.     

 

   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ANNEX-7 

Mapping of General Habitat Categories for Almeria using high resolution multispectral 
imagery 

 

25.4.2012  5  

 
 
 

2 Study Area and materials 
 

Study area 
 
Our primary study area is an area near Rodalquilar, situated in the Southwest of the Province 

Almeria, in the National Park Cabo de Gata. Almería is a province of the Autonomous 

Community of Andalucia, Spain. It is bordered by the provinces of Granada, Murcia, and the 

Mediterranean Sea. One of Europe's driest areas is found in Almería and is part of the Cabo 

de Gata-Níjar Natural Park. The semiarid landscape and climate that characterizes part of 

the province have made it an ideal setting for Western films, especially during the 1960s. 

Many interesting and unique species of animals native to the region are in the process of 

extinction. The most important economic activity is greenhouse farming. Millions of tons of 

vegetables are exported to other European countries and other parts of the world each year. 

Tourism is also a key sector of the economy, due to the sunny weather and attractive areas 

such as Roquetas de Mar, Aguadulce, Almerimar, Mojacar, Vera or Cabo de Gata 

(Wikipedia).  

 
Figure 1 Southwest corner of the Province of Almeria, with the Natural Park Cabo de 

Gata, more or less situated between the Provincial capital Almeria and Carboneras. 
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The red drop with capital A indicates the study area Rodalquilar (source: Google 

Maps).ps).   

 

The Natural Park Cabo de Gata-Níjar is covering 45,000 ha in the southeastern corner of 

Spain. Cabo de Gata-Níjar is Andalucia's largest coastal protected area, a wild and isolated 

landscape with some of Europe's most original geological features. The eponymous 

mountain range is Spain's largest volcanic rock formation with sharp peaks and crags in 

ochre-hues. It falls steeply to the sea creating jagged 100m-high cliffs, which are riven by 

gullies leading to hidden coves with white sandy beaches, some of the most beautiful in 

Andalucia. Offshore are numerous tiny rocky islands and, underwater, extensive coral reefs 

teeming with marine life (Williams). High temperatures (an annual average of 18°C) and the 

lowest rainfall in the Iberian peninsula (200mm annually on average) has created a large 

semi-desert area, with characteristic shrubby vegetation and dwarf fan palms. But the park 

also encompasses an outstanding variety of habitats, from coastal dunes, beaches, steep 

cliffs, saltpans, a substantial marine zone of 12,200ha, saltmarshes, inland arid steppe and 

dry river beds. Designated a Unesco Biosphere reserve in 1997, the park shelters an 

extraordinary wealth of wildlife, including many rare and endemic plants and endangered 

fauna.  

 

Rodalquilar itself is a small village, surrounded by mines. The history of mining in the Cabo 

de Gata area goes back thousands of years. Copper, Alum, Lead, Silver and Zinc were just 

some of the minerals mined. However, it wasn’t until the late 1800s that gold was discovered. 

Many small mines were opened up but it was 1925 before the first serious attempt was 

made. This was by the Rodalquilar Gold Mines Company. They used mercury to dissolve the 

gold as did a later company, the Exploitation of Rodalquilar Gold Mines. Both mines failed to 

make a profit and closed down (http://www.faydon.com/Gold/Gold.html). The study site is the  

The rocks in this area are dominated by quartz, alunite, jarosite, pyrophyllite, illite, kaolinite, 

hematite, and related minerals (Choe et al., 2008). 

 

 
 
 
  

http://www.faydon.com/Gold/Gold.html
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Materials 
 

Aerial photographs 
 
The true colour aerial photographs (3 bands) had a 1 meter spatial resolution and were from 

the year 2002. In other words, there were not very recent, and above all they did not have 

a very good quality. Nevertheless, they were already very useful to prepare the fieldwork. 

The aerial photographs (APs) were provided by the Univerity Polytecnica in Madrid as sid 

files and were already geometrically corrected.  

 
 
The APs were delivered in the following national projection: PROJCS 
["WGS_1984_UTM_Zone_30N",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["
WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.017453292519
9433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],PARAMETER
["False_Northing",0.0],PARAMETER["Central_Meridian",-
3.0],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]  
 
 

Ecognition 
 
Once the location of the sample sites were obtained together with the aerial photographs, 

a preliminary segmentattion was performed in eCognition. The following parameters settings 

were used in Ecognition:  

 Layer weights: 1,1,1 

 Scale factor: 100 

 Shape factor: 0.1 

 Compactness: 0.5 

 

The shapefactor was set very low, since in fact the patches could have any shape. The 

compactness was set relatively high , since we did not want to obtain patches that were too 

large, which is not convenient for field mapping. The scale factor was set to 100 on 

a experimental basis. During fileld work the scale factor was encountered as too high, in 

other words the segments were still to detailed. Note also that shadowed parts have been 

segmenetd separately.   
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Figure 2 Segmented aerial photograph for the filed sample of 1 square kilometers of the site 

Rodalquilar. 
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Fieldwork 

Fieldwork was done in the from the 30th of September 2009 till the 3rd of October 2010 in 4 

small sites, namely: Aqua Amarga, Cabo de Gata, Rodalquilar, Sorbas and Tabernas. The 

fieldwork in Rodalquilar was done on the 30th of September 2009. Each time a GHC habitat 

map was produced for an area of 1 km2 according the the field protocols of the handbook 

(Bunce et al, 2005).    

 

Figure 3 Location of the 1 km samples sites were habitat field recordings has been done in 

September and October 2009 according to the GHC field mapping protocols. 
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Photo 1 Rodalquilar study area is a semi-desert area. On the front is the characteristic dwarf 

palm, Chamaerops humilis (Mücher, 2009). 
 

 
 
Photo 2 Photograph taken from a hill overviewing the Rodalquilar study area (Mücher, 2009) 
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Photo 3. Hillls of Sierra de Gata just outside the Rodalquilar km sample. (Mücher, 2009) 
 

Landsat 

The Landsat can be obtained freely from the USGS data portal GLOVIS 

(http://glovis.usgs.gov/). The USGS Global Visualization Viewer is a quick and easy online 

search and order tool for selected satellite and aerial data.  

The Landsat 1, 2, and 3 satellites carried the Multispectral Scanner (MSS) sensor; the  

Landsat 4 and 5 satellites carry  both the MSS and the Thematic Mapper (TM) sensors; and 

the  Landsat 7 satellite carries the Enhanced Thematic Mapper Plus (ETM+) sensor. These 

sensors support the Landsat Project’s mission to provide quality remote sensing data in 

support of research and applications activities. Landsat MSS, TM, and ETM+ data are 

provided in GeoTIFF for Level 1T (terrain corrected) products, or for either Level 1Gt 

(systematic terrain corrected) or Level 1G (systematic corrected) products, if Level 1T 

processing is not available. GeoTIFF defines a set of publicly available TIFF tags that 

http://glovis.usgs.gov/
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describe cartographic and geodetic information associated with TIFF images. GeoTIFF is a 

format that enables referencing a raster image to a known geodetic model or map projection.  

 
Figure 4 USGS Global Visualization viewer to enable selection and downloading satellite 

imagery. 
 
 
In 1992, the US Congress authorized the procurement, launch and operation of a new 

Landsat satellite. This new system, Landsat 7, is now under construction and is scheduled 

for launch in April, 1999. It will be the latest in a series of earth observation satellites dating 

back to 1972. The twenty-two year record of data acquired by the Landsat satellites 

constitutes the longest continuous record of the earth's continental surfaces. Preservation of 

the existing record and continuation of the Landsat capability were identified in the law as 

critical to land surface monitoring and global change research (Source: 

http://geo.arc.nasa.gov/sge/landsat/l7.html). 

 

Table 1

Band Number Spectral Range(microns) Ground Resolution(m) 
1 .45 to .515 30 
2 .525 to .605 30 
3 .63 to .690 30 
4 .75 to .90 30 
5 1.55 to 1.75 30 
6 10.40 to 12.5 60 
7 2.09 to 2.35 30 

Pan .52 to .90 15 
Swath width: 185 kilometers 

http://geo.arc.nasa.gov/sge/landsat/l7.html
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Repeat coverage interval: 16 days (233 orbits) 
Altitude: 705 kilometers 
Quantization: Best 8 of 9 bits 
On-board data storage: ~375 Gb (solid state) 
Inclination: Sun-synchronous, 98.2 degrees 
Equatorial crossing: Descending node; 10:00am +/- 15 min. 
Launch vehicle: Delta II 
Launch date: April 1999 

 
Landsat 5 TM scenes were downloaded for the following dates: 

 24 July 2009 

 12 October 2009 

 13 November 2009 

 24 May 2010 

 11 July 2010 

 27 July 2010 

Since the vegetation in sem-arid areas have a very strong seasonal phenology, it’s important 

to obtain time series for optimal identification of habitats.  
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Figure 5 Combination of multi-temporal Landsat 5 TM scenes (R: 24 July 2009, G: 13 

November 2009,  B: 11 July 2010) that beautifully reflects the main land use types. 
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Figure 6 Land use of Almeria (Source: Junta de Andalucía) and reflects the visual 

interpretation of Landsat TM imagery as demonstrated in Figure 5. 

 

The land use map of Andalusia has as original title “Mapa de Usos y Coberturas Vegetales 

de Andalucía“, and has a scale 1:50.000 and has been produced by the Junta de Andalucia. 

It is based on the visual interpretation of Landsat TM imagery (30 m) and IRS-PAN (5 m). 

(http://www.juntadeandalucia.es/medioambiente/red_ambiental/cartografia/usoscob/VisorRaster.html). 

   

HYMAP 
 
The HyMapH is an airborne imaging system developed by Integrated Spectronics, Sydney, 

Australia. It  is normally placed on a fixed wing aircraft typically flown at an altitude of 2.5 km. 

The sensor collects reflected solar radiation in 126 bands covering the 0.45–2.5 mm 

wavelength range of the electromagnetic spectrum. The Rodalquilar HyMap scene  was 

recorded on 11 July 2003 in 126 narrow bands, from 0.45 mm to 2.48 mm with 4m pixel size. 

The spectrometer of  SWIR-1 (1.40–1.80 mm) did not work properly and so data from this 

part of the electromagnetic spectrum from the airborne imagery were not available. The 



ANNEX-7 

Mapping of General Habitat Categories for Almeria using high resolution multispectral 
imagery 

 

25.4.2012  16  

Rodalquilar HyMap scene was geometrically and atmospherically corrected by the German 

Aerospace Center (DLR) using the software PARGE and ATCOR4 (Bedini et al., 2011).  

3 Method and results 
 
Field work was in September and October 2009, and resulted in habitat maps according to 

the the the field protocols of the handbook (Bunce et al, 2005). For the 1 square kilometer 

field sample of Rodalquilar the fielwork was done on  the 30th of September 2009. 

   
Figure 7 On the left, GHC habitat mapping with the boundaries of the habitat pactches and 

alpha coe. The attributes can be found in the table below. On the right, the mapping result 

with the General Habitat Categories (GHCs). 

 
 
 Table 2 Example with part of the attributes for the GHC mapping units recorded during field 

work 
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RODAL_ID AREA CODE GHC LF1 LF1% SPECIES1 SP1% LF2 LF2% SPECIES2 SP2% LF3 LF3% SPECIES3 SP3%

6 2124 A ART CHE 40 Lygeum spartum 20 THE 50 Stipa 10 0 0 Chamaerops humilis 5

21 7709 A ART CHE 40 Lygeum spartum 20 THE 50 Stipa 10 0 0 Chamaerops humilis 5

56 2898 A ART CHE 40 Lygeum spartum 20 THE 50 Stipa 10 0 0 Chamaerops humilis 5

61 451 A ART CHE 40 Lygeum spartum 20 THE 50 Stipa 10 0 0 Chamaerops humilis 5

54 29480 AA SCH/DEC 0 0 0 0 0 0 0

43 45060 AB THE 0 0 0 0 0 0 0

51 16713 AB THE 0 0 0 0 0 0 0

44 7332 AC THE 0 0 0 0 0 0 0

42 6462 AD THE 0 0 0 0 0 0 0

32 12612 AE THE 0 0 0 0 0 0 0

13 17055 AF THE 0 0 0 0 0 0 0

15 8584 AF THE 0 0 0 0 0 0 0

11 4653 AG THE 0 0 0 0 0 0 0

12 6905 AH THE 0 0 0 0 0 0 0

27 2229 AJ THE 0 0 0 0 0 0 0

49 45219 B ART/GRA 0 0 0 0 0 0 0

2 87847 C SPA 0 Lygeum spartum 20 0 Stipa tenasissima 10 0 0 Lyceum 5

9 5077 C SPA 0 Lygeum spartum 20 0 Stipa tenasissima 10 0 0 Lyceum 5

10 27198 C SPA 0 Lygeum spartum 20 0 Stipa tenasissima 10 0 0 Lyceum 5

46 14311 D TER SCH 20 Thymus 20 LPH 10 Lyceum 5 0 0 0

34 54281 E SPA SCH 20 Thymus 20 LPH 10 Lyceum 5 0 0 0

45 356 E SPA SCH 20 Thymus 20 LPH 10 Lyceum 5 0 0 0

5 13180 F SCH/EVR SCH 20 Thymus 20 LPH 10 Lyceum 5 0 0 0

14 15064 G THE 0 0 0 0 0 0 0

8 14031 H CHE 0 Lygeum spartum 20 0 Stipa 10 0 0 0

7 33783 I 0 0 0 0 0 0 0

1 65535 J CHE/SCH/EVRSCH/CRO 30 Lygeum spartum/Thymus 20 TRE/LPH 70 Stipa/Lyceum 10 0 20 0

3 48831 J CHE/SCH/EVRSCH/CRO 30 Lygeum spartum/Thymus 20 TRE/LPH 70 Stipa/Lyceum 10 0 20 0

59 7091 J CHE/SCH/EVRSCH/CRO 30 Lygeum spartum/Thymus 20 TRE/LPH 70 Stipa/Lyceum 10 0 20 0

62 976 J CHE/SCH/EVRSCH/CRO 30 Lygeum spartum/Thymus 20 TRE/LPH 70 Stipa/Lyceum 10 0 20 0

38 11015 K SPA CRO 10 0 0 0 0 0 0

60 17100 L THE 0 0 0 0 0 0 0

55 17750 M LPH/DEC 0 0 0 0 0 0 0

48 17220 N CHE 0 0 0 0 0 0 0

37 29225 P LPH/DEC 0 0 0 0 0 0 0

40 728 Q CHE 0 0 0 0 0 0 0

39 29135 R CUL 0 0 0 0 0 0 0

20 37656 S SPA 0 0 0 0 0 0 0

26 12307 S SPA 0 0 0 0 0 0 0

30 12059 S SPA 0 0 0 0 0 0 0

33 14761 S SPA 0 0 0 0 0 0 0

35 8220 S SPA 0 0 0 0 0 0 0

28 6586 T CUL 0 0 0 0 0 0 0

29 18700 T CUL 0 0 0 0 0 0 0

19 5236 U WOC 0 0 0 0 0 0 0

24 5343 U WOC 0 0 0 0 0 0 0

17 4092 V THE 0 0 0 0 0 0 0

18 4593 V THE 0 0 0 0 0 0 0

22 14707 V THE 0 0 0 0 0 0 0

36 11571 V THE 0 0 0 0 0 0 0

41 4042 V THE 0 0 0 0 0 0 0

47 12891 V THE 0 0 0 0 0 0 0

52 29604 V THE 0 0 0 0 0 0 0

57 19716 V THE 0 0 0 0 0 0 0

25 1181 W URB 0 0 0 0 0 0 0

50 1290 W URB 0 0 0 0 0 0 0

16 5098 X MPH/EVR 0 0 0 0 0 0 0

31 6250 Y SPA 0 0 0 0 0 0 0

23 5965 Z CHE 0 0 0 0 0 0 0

4 2223 0 0 0 0 0 0 0

53 1 0 0 0 0 0 0 0

58 30688 0 0 0 0 0 0 0

1000000
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Figure 8 Multi-temporal Landsat TM scene (R: NIR of 24 July 2009, G: NIR of 13 November 

2009, NIR of 24 May 2010) overlaid with GHC mapping units. The area demonstrated in the 

red box is an area of 3 by 3 km with the 1km sample site in the centre. 
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Unsupervised classification 
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Figure 9 Unsupervised classification into 12 clusters using channles 3,4, and 5 of the multi-

temporal Landsat TM scenes (24 July 2009, 13 November 2009, 24 May 2010) 
 
An unsupervised classification was performed on the multi-temporal Landsat TM scenes ((24 

July 2009, 13 November 2009, 24 May 2010) using the channels 3,4 and 5 into 12 clusters. 

Unfortunately, these clusters do not reflect well the General Habitat Categories. 

Nevertheless, all 12 spectral classes found in the area of 3 km by 3 km, were also found in 

the central square, indicating that the slection of the sqaure was well representative for the 

area. 

 

The only reason that the GHCs are not well represented by the spectral classes of the multi-

temporal landsat TM scenes is probably the spatial resolution and that fact that each 

mapping unit exist out of very dispersed vegetation with much bare ground (amount of 

phytosynthetic biomass is very low). Therefore some extra effort was spent on improving the 

spatial resolution of the Landsat TM imagery (30 m) with the aerial photographs ( 1m)   

 

 

Resolution Merge 
 

Software of ERDAS Imagine provides tools to fuse multi-spectral imagery with imagery of 

a high high spatial resolution. In other words, it helps to integrate integrate imagery of 

different spatial resolutions (pixel size). Since higher resolution imagery is generally single 

band (for example SPOT Panchromatic 10m data), while multispectral imagery generally has 

the lower resolutions (for example Landsat TM 30m), these techniques are often used to 

produce high resolution, multispectral imagery. This improves the interpretability of the data 

by having high resolution information which is also in color (source ERDAS). Resolution 

Merge offers three techniques: Multiplicative, Principal Components, and Brovey Transform.  

No to go into details of these different transformation, multiplicative and brovey gave slightly 

better results to integrate the APs with the Landsat TM imagery. Before the resolution merge 

was performed, a principal component (PC 5) was performed on the multi-temporal Landsat 

imagery (24 July 2009, 13 November 2009, 24 May 2010, 11 July 2010). 
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Figure 10 Result of the Brovey resolution merge of the available aerial photographs with 

Landsat TM imagery.   
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Figure 11 On the left, result of an unsupervised classification on Landsat TM imagery. On the 

right, the result of  an unsupervised classification of a  Brovey resolution merge of the 

available aerial photographs with Landsat TM imagery. 
 
 

From Figure 11 it become clear that a resolution merge is very helpful to improve the spatial 

resolution. Especially, the within field spatial variablity becomes much clearer, next to the fact 

that linear features become much clearer. But not only the within field spatial variabily of the 

vegetation becomes clear, it also shows that there is much differences between fields with 

the same GHC. For example alll those field labeled as therophytes (THE) at the east side of 

the 1 km square sample, have quite some spatial difference in vegetation. Also the two fields 

marked with alpha code J (see Figure 7), have clear spectral differences. This makes it very 

difficult to come to a consistent classification of GHCs. For the author it is still not clear what 

hampers a good classification of this region, is it the complexity of the region, was the GHC 

field recording was done improperly due to improper timing of the field work, or is it the 

limitation of the imagery that does not reflect well the sparsely vegetated areas.  

 

To support any conclusion it was decided in the last stage to have a closer look at the 

HYMAP hypectral imagery, although this image was recorded in July when the vegetation 

biomass is at its minimum.   
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HYMAP 
An inverse MNF transform was performed in ENVI on the HyMap scene ( 4m spatial 

resolution) from 11 July 2003 for the Rodalquilar area, in order to minimize the noise.  

   

   
Figure 12 Above left, MNF output of the HYMAP image of 11 July 2003 with a 4 m spatial 

resolution. Above right, unsupervised classification of the MNF HYMAP image into 20 

clusters. Below left, resolution merge of multi-temporal Landsat TM scenes and aerial 

photographs, to a 1 meter spatial resolution. Below right, GHC habitat map as a result of the 

fieldwork done on the 30th of September 2009.   
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ANNEX-7 

Mapping of General Habitat Categories for Almeria using high resolution multispectral 
imagery 

 

25.4.2012  25  

Figure 13 Labeling of 20 clusters as an output of the unsupervised classification of the 

HYMAP image. 
 
The output of the classified HYMAP image seems to be quite satisfactory although the image 

is from July 2003, and the fieldwork was done at the end of October 2009. This might explain 

amongst others why mapping units J do not belong to the same satellite derived classes. 

Since the recent TM imagery reflects the same difference, it is assumed that mistakes were 

made in the field or that the season for field recording was improper.  
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3 Conclusions 

 The spectral characterization of different habitats is related to the spectral properties 

of the plant life forms and non-plant life forms. 

 Landsat TM imagery is easy and freely accessible. 

 Spectral information from Landsat TM imagery reflects well the land cover and often 

to the associated land use. 

 Multi-temporal Landsat TM imagery helps a better identification of the land cover 

types, but is still hard to use for habitat mapping in semi-arid regions. 

 Major limitation of the Landsat TM imagery in semi-arid regions, such as Almeria, 

seems to be its spatial resolution. 

 Aerial photographs have a much higher resolution (often more detailed than 1 m) and 

greatly supports the preparation of the fieldwork. 

 Segmentation of the aerial photographs into basic patches speeds up the field work, 

but the basic patches should be simple. The use of LPIS (Land Parcel Information 

System) could replace a basic segmentation, but is often not available. 

 Preparation and elaboration of the field work into digitized and georeferenced 

products is often more time consuming than the fieldwork itself. 

 Resolution merge of aerial photography and Landsat TM imagery counterbalances 

partly the low spectral resolution of the aerial photographs and the low spatial 

resolution of Landsat imagery. But still does not resemble the quality of the HYMAP 

hyperspectral imagery (which is clear for any RS expert) 

 In this case, HYMAP provides the best GHC classification results. 

 Extrapolation from the 1 km square to the surrounding area seems to be feasible 

using HYMAP satellite imagery (and to a lesser extent for Landsat TM imagery) 

 Only a few of the spectral classes from the HYMAP image did not occur in the central 

sample square (Annex 9). These spectral classes (18,19 and 20) need targeted field 

visits. 

 Supervised classifications of satellite imagery are only possible when targeted 

training samples have been collected in the field. This is especially valid in semi-arid 

regions where the contrast is also very high within and between mapping units. 

 Unsupervised classification of multi-temporal satellite imagery (e.g. Landsat TM) into 

thematic spectral classes helps to prepare the GHC habitat mapping of larger areas. 

 Good timing and preparation of the field work is essential. In semi-arid regions multi-

temporal field visits seems to be essential for a good characterization of the habitats.  
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 Classification of vegetation in semi-arid areas is more difficult than classification of 

vegetation in temperate regions.           
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Annex 1 Topography & DEM 
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Annex 2 PNV & Landscapes 
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Annex 3 CORINE & National Forest Map 
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Annex 4 Natura 2000 & land Use 
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Annex 5 Segmented field sample Agua amarga 
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Annex 6 Segmented field sample Cabo de Gata 
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Annex 7 Segmented field sample Sorbas 
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Annex 8 Segmented field sample Tabernas 
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Annex 9 Classified HYMAP image 
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1. Abstract 

Background and aims: EBONE general habitat categories (GHC) have been 
suggested as a method for objectively mapping land cover categories, so that effective 
monitoring of biodiversity can be conducted. The aim of our study was to examine to 
what degree can available remote sensing methods separate and classify land cover 
categories as used within EBONE. In addition we aimed to determine the limitations 
of remotely sensed based classification with respect to the EBONE categories and the 
spatial and temporal heterogeneity characterizing Israel's Mediterranean and desert 
landscapes. 

Methods: We used three passive sensors in the VIS-NIR-SWIR spectral regions, 
offering varying spatial, spectral and temporal resolutions: MODIS (250 m, every 16 
days, 2000-2010), Landsat (30m, four seasons, early 2000s) and QuickBird (2.4m, 
spring and summer 2010, specially tasked for this study). All images underwent basic 
preprocessing steps prior to their analysis, which included geometric, radiometric, 
atmospheric and topographic corrections, depending on the imagery used. Our basic 
approach was to use phenology as the key to differentiate between vegetation and 
land cover types. Several mapping methods were applied, including supervised and 
unsupervised classification, spectral unmixing, time series analysis of significant 
trends and of abrupt changes. The GIS layers used for calibration and validation of the 
classification included land cover layers from Israel's Nature and Park Authority 
(including EBONE classification collected in three study sites: Ramat haNadiv, 
Lehavim Forest and Ein Avdat), forest stands from the Jewish National Fund, 
vegetation types from the Society for Protection of Nature in Israel, 1m orthophotos, 
as well as areas identified as belonging to specific land cover types. 

Results: We will outline the main results for each sensor separately. 

Landsat. Following a preliminary analysis it was found the topographic correction of 
shading effects was important for improving classification accuracy. Overall 
classification accuracies of the Landsat images were at the order of 90% (when using 
validation sites identified by us), but were lower in the Mediterranean sites when 
using the EBONE GHC field mapping validation sites (between 30% to 60%, after 
merging some of the EBONE classes). Among classes, trees (including maquis) were 
mapped well (accuracies between 60% to 90%), whereas the success in mapping the 
shrubs and herbaceous classes was lower within the supervised classification. 

The results of the unsupervised classification were better when using the BAND-
RATIOS than when using the RUGGED Landsat images as the source for the 
classification, with overall classification accuracies between 70%-90%. 
Mediterranean areas were reasonably classified, with the general distribution of 
perennial and herbaceous vegetation, agricultural areas and even the major urban 
areas showing quite well. However, desert areas were not differentiated, and were 
mostly classified as bare soil. 



Spectral unmixing into the percent cover of perennial green vegetation, seasonal green 
vegetation and bare soil within a pixel was better when based on NDVI values. The 
resulting image clearly shows areas of maquis and of planted forests in Israel. In 
addition, this product presents the transition zones between the Mediterranean and 
desert areas, where the percent cover of seasonal green vegetation decreases 
gradually. 

QuickBird. QuickBird imagery was used to spectrally unmix into the percent cover of 
perennial green vegetation, seasonal green vegetation and bare soil (as in the Landsat 
imagery). The improved spatial resolution of QuickBird allowed the mapping of 
sparse vegetation cover, undetected at the spatial resolution of Landsat. 

Supervised classification of the QuickBird imagery was done using pixel-based 
approaches as well as using object-based image segmentation. The latter approach 
allows for an objective segmentation of the image into homogeneous areas. The 
spectra of coniferous trees of cypress (and to a lesser degree of pines) was shown to 
be different than that of maquis, enabling the separation of these vegetation classes 
(overall accuracy of 75% in Ramat haNadiv site). 

MODIS. The NDVI time series of MODIS were denoised using Fourier 
transformation to remove erroneous data related to atmospheric attenuation. 
Statistically significant trends in vegetation cover were identified using the denoised 
NDVI time series, and were related to decrease in rainfall, recovery of vegetation 
from wildfires, and the development of built-up areas, to name just a few factors. In 
addition, the time and size of large fires can be mapped using raw MODIS time series 
(prior to noise removal). 

A supervised classification based on a neural network classifier and a decision tree, 
was able to classify not only general land cover types, but also demonstrated that 
planted coniferous forests can be separated from maquis, based on their time series 
properties, mainly summer (minimum) NDVI values and the coefficient of variation 
(CV) values of NDVI, which are different (within rainfall zones) between maquis and 
coniferous trees (an overall accuracy of 77%). 

Discussion: Overall remote sensing methods using operational passive sensors have 
been shown to enable the monitoring of gradual and abrupt changes in land cover and 
also enable mapping of broad types of Israel's land cover. The full breadth of EBONE 
classes was found to be too detailed to be replicated using passive remote sensing, and 
we therefore had to merge some EBONE classes prior to accuracy assessment so they 
better match with the remote sensing classifications. If vegetation height is an 
important consideration for land cover mapping, then LiDAR data should be acquired 
and used (out of the scope of our project). Using phonological data we have shown 
that perennial vegetation, seasonal vegetation and bare soil can be mapped at the sub-
pixel level. Using detailed time series, monitoring of changes can be achieved, and the 
spatial distribution of seasonal vegetation can be mapped, being of special interest in 



the transition zones and the desert, where rainfall is highly variable in space and in 
time. One of the challenges in mapping Mediterranean vegetation is that of separating 
between maquis and coniferous planted trees. We have shown that using either high 
spatial resolution or detailed time series, maquis and coniferous trees can indeed be 
separated, at accuracies > 70%. 

While promising, we would like to note on the following limitations of remote 
sensing, as well as sources for errors in the classifications. While cloud cover over 
Israel is less than in Europe, full coverage cloud-free satellite images of Israel are not 
common, and therefore our analysis of Landsat imagery was confined to the early 
2000s (in addition to acquisition problems of Landsat 7 since 2003). A critical issue 
when performing an accuracy assessment of classification results, is to have reliable 
reference data. Different data sets of collected by agencies in Israel provide a variety 
of land cover layers, using different classes and codes. While EBONE aims to create a 
uniform method for classification, it too has several limitations: (1) it is better suited 
for Mediterranean landscapes, leaving most of the desert areas classified as TER (bare 
soil); (2) being based on a polygonal characterization, within EBONE patches there is 
a lot of variability in vegetation cover; (3) EBONE classes are based on the highest 
vegetation type, even if it is not the dominant type in percent cover, whereas remote 
sensing methods are more affected by percent cover of area by a vegetation type, than 
by the height above ground. 

Operational recommendations:  

Following this work we recommend the following: 

1. An annual tasking and acquisition of cloud-free images of all Israel thru a 
Landsat type sensor, around March and October, capturing maximum and 
minimum greenness. 

2. An annual LiDAR coverage of Israel to be freely available for all government 
agencies, for monitoring of changes in vegetation height, coastal erosion (as 
well as urban uses). 

3. Monitoring of large scale changes in vegetation cover in Israel using MODIS 
data, freely available for downloading. 

4. To employ within the GIS unit of INPA a remote sensing technician, that will 
be able to conduct analysis of satellite imagery. 

5. Within the LTER sites, add to the EBONE classification also detailed 
descriptions of percent cover of vegetation types (e.g., perennial, seasonal) 
within 100×100 m quadrats. 

6. Object based image segmentation can be an objective method for defining 
homogeneous patches used in EBONE classification. 

These recommendations can benefit not only INPA, but also other agencies managing 
Israel's open landscapes, such as the Ministry for Environmental Protection and the 
JNF. 



2. Introduction 

Israel's land cover and vegetation are the product of natural and human factors. 
Located between Europe, Asia and Africa, Israel's climate ranges from mesic 
Mediterranean in the north to extreme arid desert areas in the south. In addition, the 
long human history of domestication and agriculture in the Middle East, with varying 
levels of grazing, cutting and fire has left its mark on the vegetation characterizing 
Israel. Since the establishment of the State of Israel, human pressures of overgrazing 
and cutting have been reduced, and the Mediterranean maquis has been able to 
recover. Afforestation efforts have increased the area of coniferous planted forests in 
Israel, in some cases enabling the spreading to large forest fires. All this together with 
the growth in population density and urbanization, have led to highly fragmented 
landscape, with a heterogeneous mosaic of vegetation types at varying succession 
stages. 

The specific objective of the BioHab framework for a European-wide monitoring of 
habitats, is “…to obtain statistically robust estimates of their extent and associated 
changes in biodiversity” (Bunce et al. 2005). The BioHab methodology is a system 
for consistent field recording of habitats and for subsequent monitoring. This is done 
by field recording of so-called General Habitat Categories (hereafter, GHC), and is 
based on the hypothesis that habitat structure is related to environmental factors. This 
is a practical, transmissible, and reproducible procedure for surveillance and 
monitoring habitats which can produce statistics integrated at the landscape level. 
BioHab mapping method is mainly based on the dominant growth forms, which are 
only noted down when having a cover higher than 10%. In addition this categorization 
is done from an aerial viewpoint; first the tall growth forms followed by the lower 
forms. The methodology is based on classical plant life forms, used in biogeography 
since the nineteenth century. The principal advantage of the GHCs is that they enable 
the primary decision on habitat category to be made in the field without the necessity 
of subsequent data analysis.  Their primary disadvantage is the demanding resources 
of time, money, and human industry involved, restricting such mapping to relatively 
small areas. It was proposed that remote sensing and image analysis could be 
combined for automating mapping of GHCs, to complement mapping in situ, which 
could then be used for evaluation purposes. The major question here is how well 
could remote sensing products correspond to in situ BioHab vegetation mapping.  

The spectral reflectance of electromagnetic radiation from vegetation is dependent 
upon several factors, among them are the geometry of the leaves, the morphological 
and physiological characteristics of the plant, the type of soil, the solar incidence 
angle and the climatic conditions (Barret and Curtis, 1992). The spectral range 
between 0.5-0.7�m is characterized by absorption features caused by chlorophyll a 
and b pigments (Rast, 1991; Guyot et al., 1992). The spectral range between 0.7-
1.35�m is characterized by a high reflectance and low absorption, and is mainly 
influenced by the structure of the leaves. The spectral range between 1.35-2.5�m is 
also influenced by the structure of the leaves, but also from the water content of the 



leaves' tissue and its chemical composition. The above mentioned spectral 
characteristics of vegetation form the basis to many vegetation indices that serve as 
estimators for green vegetal biomass (Eastman, 2001). One of the first and most used 
indices is the Normalized Difference Vegetation Index (NDVI; Tucker, 1979; Kerr 
and Ostrovsky 2003): 

NDVI = (NIR-RED) / (NIR+RED)  

Where NIR and RED stand for the near-infrared (NIR) and red bands of the sensor 
(bands 4 and 3 of Landsat). 

 

Due to the limitations of field work monitoring, remote sensing has been 
suggested as a means for mapping and monitoring vegetation and land cover. 
Shoshany (2000) gave a review of remote sensing of natural Mediterranean 
vegetation and recommended a better synergy of methods and data sources 
between passive and active sensors, high and low spatial resolutions, 
multispectral, multitemporal and textural methods, as well as the use of 
ancillary data layers (such as topography, lithology and precipitation). Remote 
sensing estimations of vegetation cover using the VIS-NIR spectral range are 
considered difficult in arid and semi-arid regions where vegetation cover is 
sparse (lower than 25%-35%), due to the soil background reflectance (Tueller, 
1987). Characteristic spectral reflectance curves of several desert habitats and 
of dominant desert vegetation were collected using a field spectrometer by 
Pinker and Karnieli (1995). The spectra collected includes key species 
common also to Israel’s coastal dunes, e.g. Ammophila arenaria, Artemisia  
monosperma and Retama raetam. Separating Mediterranean vegetation 
species is a highly challenging task, and although some promising results have 
been shown using hyperspectral field measurements (Rud et al., 2006), due to 
lack of high signal-to-noise ratio operational hyperspectral sensors onboard 
satellites, this approach cannot, at the present, allow the classification of 
Mediterranean vegetation at a national scale. Using a single-date Landsat 
image within the northern Negev, Rozenstein and Karnieli (2011) 
demonstrated that a coarse land-use classification (6 classes) can be achieved, 
by combining remote sensing and ancillary land-use data. An alternative 
approach for pixel-based mapping of land cover is an object-based 
classification. Such an approach has been demonstrated by Mallinis et al. 
(2008) to delineate forest vegetation polygons in northern Greece, using a 
summer-time QuickBird image.  

Another approach is to use multitemporal satellite imagery, to separate 
between vegetation types based on their phenology. Working on the Nizzana 
desert dunes, Schmidt and Karnieli (2000) and Karnieli (2003) found that the 
temporal analysis of natural vegetation in semi-arid environments should take 



into account three components: annuals, perennials and biogenic 
crusts/lichens. Each of these vegetation components has a different 
phonological cycle. Biogenic crusts are very sensitive to moisture and turn 
green during the first rainy month. The annuals cover the ground only after a 
few intensive rainfall events, whereas the perennials are photosynthetically 
active throughout the year but show a higher spectral response toward the end 
of the rainy season. Shoshany and Svoray (2002) applied a multidate adaptive 
unmixing technique to three Landsat images in the area between Bet-Guvrin 
and Lahav, to calculate the percent soil cover, herbaceous vegeatation, dwarf-
shrubs and shrubs. However, even working in a small area they had to 
partition the analysis in two sub-regions, due to climatic/biotic/lithologic 
transitions. Use of multitemporal Landsat imagery has been applied also by 
Fernandez et al. (2010) for mapping ecosystem functional types in Doñana 
(Spain), examining patterns in the normalized difference vegetation index 
(NDVI), surface temperature and albedo. Coarser spatial sensors such MODIS 
(0.25-1 km) or NOAA-AVHRR (1 km) have also been successfully used to 
map ecosystem functional types of vegetation based on NDVI time series 
(e.g., Alcaraz et al., 2006, for the Iberian Peninsula, or Duro et al., 2007 and 
Coops et al., 2008, for Canada). 

  

3. Aims 

The aim of our work will be to examine several remote sensing methodologies for 
mapping EBONE land cover categories from space-borne sensors and to examine the 
relationship between the remotely sensed categories and in-situ habitat data. We will 
evaluate various sensors for this purpose, in order to develop a general methodology 
and specify sensors that offer good performance and yet are not prohibitively costly.  
In addition, we will examine what are the limitations of remotely sensed based 
classification with respect to the EBONE categories and the spatial heterogeneity 
characterizing Israel's Mediterranean and desert landscapes. Due to the short duration 
of the project, we aimed to demonstrate possible use of readily available images of 
passive multispectral sensors in the VIS-NIR-SWIR spectral regions. 

4. Methods 

a. Study area 

Our study area covers the State of Israel and ranges from extreme desert in the south 
to Mediterranean areas in the north of the country. EBONE-wise field mapping of 
habitats has been conducted within three areas in Israel, Ramat HaNadiv in the north, 
Lehavim Forest in the transition zone, and En Avdat in the south (Figure 1). 
Additional calibration and validation GIS layers that we will use include the planted 
forest stands (Jewish National Fund), Vegetation associations (Amos Sabah, Israel's 



Nature and Parks Authority), and average annual rainfall. A digital elevation model 
(John Hall and the Survey of Israel, at  a spatial resolution of 25 m) will aid us in 

performing some of the preprocessing of the Landsat imagery. 

 

b. Classification scheme 

Our classification scheme will aim at reflecting the primary EBONE classes. These 
include four height classes of woody vegetation: (1) FPH--Forest Phanerophytes, 
FPH>5m. (2) TPH- Tall Phanerophytes, 5m>TPH>2m. (3) MPH- Mid Phanerophytes, 
2m>MPH>0.6m. (4) LPH- Low Phanerophytes, LPH<0.6m. Passive remote sensing 
may not be able to distinguish well between height categories (in contrast with 
LiDAR data) so merging of some of the classes may be needed. Our vegetation 

Figure 1: Study area map. 
a: Extent of Landsat scenes (in white) covering Israel; 
b: Ramat HaNadiv field mapping sites; c: Lehavim; d: Avdat field mapping sites. 



mapping will use both land cover classes, as well as quantitative mapping of 
vegetation properties (e.g., percent vegetation cover). 
The minimum mapping unit defined within EBONE is 20×20m, roughly 
corresponding to the spatial resolution of Landsat TM (30×30m). 

c. Remote sensing and specific sensors 

Remote sensing of vegetation types has been long studied since the 1970s, using a 
wide array of sensors at various spatial, spectral and temporal resolutions (Duro et al., 
2007). Our approach in mapping vegetation types will apply a variety of sensors at 
different scales, to examine upscaling and downscaling possibilities. High spatial 
heterogeneity at fine scales characterizes Mediterranean landscapes in general and 
those of Israel in particular. Thus, high spatial resolution (~ 2m) would be the obvious 
choice (Levin et al., 2007). However due to their restrictive costs, high spatial 
resolution images may not be available for mapping habitats at large spatial scales. 
Here we will evaluate the trade-off between high spatial resolution/ high performance 
on one hand and reasonable costs on the other hand. We will use high spatial 
resolution, as well as medium-spatial resolution sensors at the validation sites for 
which in-situ habitat data is available. At those sites we will calculate the spectral 
separability between the different GHCs, and then construct and evaluate habitat maps 
using various sensors. We will quantify habitat differentiation and classification 
accuracy (hereafter, performance) as a function of the spatial resolution. Compared 
with the Mediterranean areas, in the desert larger habitat may be delineated, which 
may allow the use of coarse spatial resolution sensors (~ 250m). Focusing on the 
natural habitats, we will use GIS Layers of Israel's built-up and agricultural areas 
(from the Survey of Israel) to exclude those areas from our analysis. Following 
atmospheric and topographic correction of all imagery (using ATCOR and ENVI), we 
will apply various classification techniques on the multi-temporal set.. 

Following is a short description of the different sensor. The Results for each sensor 
are described in a separate section within the work.  

i. MODIS Time series 

MODIS is a sensor on-board the TERRA and AQUA satellites of NASA. MODIS 
offers a ground reflectance product (MOD13Q1) that may be downloaded for free, at 
a spatial resolution of 250m, every 16 days (beginning February 2000). Using this 
type of data we will be able to study the phenology of vegetation in details, and to use 
that phonological information to characterize different habitat types. Such an 
approach has been recently developed for Canada, the Habitat Dynamic Index (Coops 
et al., 2008). This approach examines the cumulative annual greenness, the minimum 
level of perennial cover, and the degree of vegetation seasonality, to study and 
classify areas with different vegetation dynamics. Due to the coarse spatial resolution 
of MODIS and the high spatial heterogeneity in Israel's Mediterranean landsacpe, we 
expected that this approach will be more useful in the desert areas, however as will be 



shown in the results, it also delivers good information in the Mediterranean areas. At 
this scale, we will also apply supervised classification techniques to demonstrate a 
nationwide mapping that can be done on a yearly basis. The phenological approach 
will be the basis for our mapping also with higher spatial resolution sensors, albeit 
they do not offer such high revisit times. We will carry out this analysis and others 
within Idrisi TAIGA GIS and remote sensing software ( http://www.clarklabs.org/ ), 
which offers the Earth Trends Modeller, a geospatial software for the analysis of 
image time series. 

ii. QuickBird/WorldView 2 imagery 

Working at the field site level, we will analyze in details the sites of Ramat HaNadiv 
(540 mm/year), Lehavim Forest (300 mm/year) and En Avdat (100 mm/year). Within 
the project we tasked the acquisition of a spring image (March, when herbaceous 
vegetation is at its peak) and a summer image (when there's mainly perennial 
vegetation). Based on the phenological differences between herbaceous and perennial 
plants we expect to be able to differentiate between different vegetation units. 
Working at a spatial resolution of 2m allows the detection of fine details such as 
individual trees and large shrubs. We will then validate the accuracy of our 
classification using the in-situ habitat layer. 

iii. 3.3 Medium spatial resolution imagery 

Based on the classification procedures developed and tested above, we will use 
medium resolution imagery (30 m) to map Israel's natural habitats on a national scale. 
Whereas fine scale details (e.g., trees) cannot be at the spatial resolution of Landsat-
like sensors, some trees can still be mapped using SPOT images of 10 m (Levin et al., 
2009). At this scale we will also use a multi-temporal set of images, representing the 
winter, spring and summer seasons. Ideally SPOT images are best fit for this task, due 
to their higher spatial resolution (5, 10 and 20 m, depending on the spectral band). 
The drawback of SPOT imagery (in addition to their high cost; Table 1) is that more 
images will be required to cover the entire country (about 15 to cover Israel – i.e. 
more computation time and analysis required). Landsat images on the other offer full 
coverage of Israel in just three tiles (Figure 1). In addition, most Landsat images are 
now available for free from the USGS Earth Explorer website, making it an obvious 
source of data that should be examined. 

d. Performance evaluation 

Habitat maps based on the different sensors will be produced using the classification 
scheme described above. We will evaluate the accuracy of each product against two 
sources of independent information:  (1) BIOHAB field mapping conducted last year 
in several locations in the country, (2) validation sites identified by us based on 
available GIS layers and a 1m orthophoto. 

 

http://www.clarklabs.org/


Table 1: Comparison of available sensors 

Sensor Spatial/spectral resolution Coverage Cost Comment
s 

MODIS 250m (B,R,NIR,SWIR1) Entire country 
divided in four 
tiles. 
Available 
since 2000. 

Free. Low 
spatial 
resolution, 
every 16 
days. 

Landsat 5 
(Landsat 7 
has 
problems 
since 2003) 

30m, 
6 bands 
(B,G,R,NIR,SWIR1,SWIR2
) 
15m panchromatic – only in 
Landsat 7 

Two scenes 
cover the 
entire 
Mediterranean 
area. 
Cloud-free 
images mostly 
prior to 2003. 

Free 
from the 
USGS. 
1500€ 
per scene 
from the 
Europea
n 
Station. 

Full 
coverage, 
medium 
resolution, 
not recent 

Aster 15m, 3 bands (G,R,NIR) 
30m, 6 bands (SWIR) 

Approximatel
y Like SPOT 

Cheap, 
80$ per 
scene 

Medium 
resolution, 
some 
images 
available 

SPOT 5m-10m-20m, 
4 bands (G,R,NIR,SWIR1) 

60x60 km. 
 

5m: 
5400€ 
10m: 
2700€ 
20m: 
1900€ 

high 
resolution, 
too 
expensive 

QuickBird,  
WorldView
2 

2m, 4 bands (B,G,R,NIR) by 
QuickBird, 8 bands in 
WorldView2 in the VIS-NIR
The 0.5 m panchromatic 
band is not available for 
purchase over Israel's area. 

Minimum 
area: 
 ~90 km2 per 
tasked image, 
25 km2 per 
archived 
image. 
Available 
since 2001. 

20$ per 
km2 for 
tasked 
image, 
13$ per 
km2 for 
archived 
image. 

Fine 
resolution 
for 
validation 
sites 
alone. 

 

 



5. Results - Landsat 

5.1 Background 

Landsat imagery (30 m) was used to map Israel's natural habitats on a national scale. 
We used a multi-temporal set of images, representing the winter, spring and summer 
seasons, to base our classification on the phenology of the vegetation. Ideally SPOT 
images are best fit for this task, due to their higher spatial resolution (5, 10 and 20 m, 
depending on the spectral band), as fine scale details (e.g., trees) can be mapped using 
SPOT images of 10 m (Levin et al., 2009). The drawback of SPOT imagery is that 
more images will be required to cover the entire country (about 15 to cover Israel – 
i.e. more computation time and analysis required). Landsat images on the other hand 
offer full coverage of Israel in just three tiles (Figure 1), and are now available for 
free from the USGS, making it an obvious source of data that should be examined. 

Searching the USGS website for cloud-free Landsat imagery from different seasons at 
a relatively short time span (2-3 years), the Landsat images chosen for most of the 
analysis are given in Table 1. Four dates for each of the regions of Israel (North, 
Center, and South) were selected.   

Table 1: List of Landsat images used for the project 

 
Winter – Nov, 
Dec, Jan, Feb 

Spring - 
March, April, 
May 

Summer - June, 
July, August 

Late Summer - 
September and 
October 

North (P174 R37) 2000/01/04 2002/03/24 2000/06/14 2002/10/18 

Center (P174 R38) 2000/02/15 2002/03/08 2001/07/11 2003/09/11 

South (P174 R39) 2003/01/06 2002/03/08 2001/07/27 2002/10/18 

 

5.2 Preprocessing 

Prior to the atmospheric correction, all the Landsat images were georeferenced 
to Israel Transverse Mercator coordinate system, using a 1m orthophoto as the 
reference image for collection of the ground points. At least 20 control points 
were used for each image, and the average RMS was about 0.2 pixels, using a 
second order polynomial transformation.  

We corrected the satellite images for atmospheric scattering and absorption 
and for topographic effects of shading using the atmospheric/topographic 
correction of multispectral sensors for rugged terrain as applied in ATCOR 3 
version 7.1 (© DLR 2010) (Richter, 1998), which is considered a reliable 
model for atmospheric corrections (Ben-Dor et al., 2005). We used a Digital 
Elevation Model (DEM) obtained from the Survey of Israel at a spatial 
resolution of 25 m (Hall et al. 1999) for calculating the slope, aspect, cosine of 



the incident solar illumination and the sky view factor (i.e. the visible area of 
the sky as dependent upon the surrounding topography). Three types of 
preprocessed Landsat images were used and compared within this study: 

• RUGGED - Topographic and atmospheric correction, using the DEM 
to calculate the expected shading effects. This approach is partly 
successful in eliminating the shading effects in moderate slopes, 
however in rugged areas on overcorrection is expected (see Smith et 
al., 1980). 

• FLAT - Flat atmospheric correction, i.e. without correcting for shading 
effects. This was done so as to avoid artifacts in the topographically 
corrected image, related to overcorrection, inaccuracies of the DEM, 
and georeferencing errors. 

• BAND RATIOS - Band-ratios calculated on the flat atmospherically 
corrected image. Band ratio images enable to remove most of the 
shading effects contained within the original bands, without the use of 
external GIS layers such as a DEM. Although the resulting band ratio 
images are not in reflectance values and do not contain the information 
whether a pixel is bright or dark, they maintain the information about 
the shape of a spectra (the change in reflectance values between 
bands). The band ratios calculated were of the following form, and 
were calculated for each pair of bands, from the short to the long 
wavelengths: 

݋݅ݐܽݎ ܾ݀݊ܽ ൌ  
ܣ ܾ݀݊ܽ െ ܤ ܾ݀݊ܽ
ܣ ܾ݀݊ܽ ൅   ܤ ܾ݀݊ܽ

Following these preprocessing steps, we joined the four seasons to create three 
meta-files. The atmospherically corrected meta-files were comprised of 24 
bands (4 seasons × 6 bands) whereas the band-ratios meta-file was comprised 
of 20 bands (4 seasons × 5 bands). The resulting metafiles were tested 
visually, comparing between the images, as well as by testing the 
classification accuracy on them (see below). 

5.3 Vegetation mapping 

Vegetation mapping can be performed to derive thematic maps of vegetation 
types (hard classification), or to derive maps of continuous variables such as 
vegetation (soft classification). For some approaches regions of interest (ROIs) 
whose vegetation type are known are first defined, whereas for in some 
approaches there is no need to define ROIs beforehand. We tested the 
following four approaches to map vegetation from the Landsat imagery, as 
shown in Table 2, and detailed below. 

 
 



Table 2: the four approaches used to map vegetation from Landsat imagery 

 Based on ROIs Not based on ROIs 

Hard  classification (vegetation types) 1. Supervised 2. Unsupervised 

Soft classification (% cover of 
perennial vegetation, seasonal 
vegetation and bare soil) 

3. Spectral 
unmixing 

4. NDVI derived 
vegetation cover 

 

5.3.1 Supervised classification 

5.3.1.1 Preliminary tests 

We first compared the accuracy of a supervised classification in the northern 
Landsat scene of Israel with field data from Ramat Ha’Nadiv collected by 
INPA (Appendix 1), to test which of the preprocessed Landsat images (Flat, 
Rugged, Band ratios) was the most successful and would then be applied for 
the entire area of Israel. ROIs representing the different vegetation and land-
cover categories were selected within each of the three Landsat scenes 
separately, using the interpreter knowledge as well as various GIS layers, for 
example: JNF and INPA layers (Stands_cov_Type_Dissolve and 
Eged_VegCov). ROI's as homogeneous as possible were selected to represent 
the different mapping categories. ROIs were selected not only in order to run 
the supervised classification but also in order to validate the accuracy of the 
classification maps. These ROIs were randomly divided into two groups. One 
group of ROIs was used for the calibration process of the supervised 
classification (calibrating ROIs, using all the EBONE GHC types), while the 
other group was used to validate the results of the classification (validating 
ROIs). An additional way to validate the results of the classification maps was 
by using ground truth field data that were collected by INPA in three areas: 
Ramat HaNadiv, Lehavim Area, and Avdat. Six supervised classification 
methods were used for each of the three metafiles: Maximum Likelihood, 
Minimum Distance, Paralleloid, Mahalanobis Distance, Spectral Angle 
Mapper and Spectral Information Divergence. The classification results and 
their accuracies were calculated and compared with field data from Ramat 
Ha’Nadiv and Avdat, collected by Margareta (Appendix 1 and 2). The best 
results (overall accuracy > 40% and kappa index > 0.4, within the Ramat ha 
Nadiv field sites) were achieved with maximum likelihood classifier over the 
atmospherically/topographically corrected images (rugged) as well as over the 
band-ratio images. Comparing different supervised classifiers over the Avdat 
field site, again the maximum likelihood classifier turned out to be the most 
successful (Appendix 2). Therefore we used the RUGGED and BAND-
RATIOS sets of images for further analysis. 



Two more supervised classification methods were tested for all three Landsat 
scenes: Support Vector Machine and Neural Network, in addition to the 
Maximum Likelihood. The classification results for all three Landsat scenes 
and their accuracies were calculated and compared with the validating ROI's 
and field data from Ramat Ha’Nadiv and Avdat, collected by Margareta 
(Appendix 3). The maximum likelihood was chosen as the method to run the 
supervised classification over the entire area of Israel. 

An initial classification was conducted using the detailed ROIs. These ROIs 
include a various range of categories that were used in the initial step as a way 
to check our ability to classify the images using a detailed classification. 
Accuracy assessment calculations were used to validate the initial 
classification maps (Appendix 4). After analyzing the initial classification 
maps some of the categories were combined as a way to improve the accuracy 
of the classification maps (Table 3). These final categories were used to 
produce the final broader classification maps. 

 

5.3.1.2 Accuracy Assessment 

The accuracies of the final classification maps were calculated in two ways: 
(1) by comparing the results of the classification maps with the validating 
ROIs that were selected by the interpreter and (2) by comparing the results of 
the classification maps with field data polygons collected by INPA in three 
sites using the BIOHAB method (termed here as EBONE GHC): Ramat 
Ha’Nadiv, Lehavim and Avdat. Appendixes 4 through 7 show the results of 
these accuracies in different forms and analyses and an explanation of the 
accuracy assessment definitions. 

 

 

 

 

 

 

 

 

 

 



Table 3: Summary of accuracy assessment of classification maps of the three 
Landsat scenes, prior to and after combining the ROI categories  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Accuracy Assessment 
with validating ROIs 

Accuracy Assessment with INPA 
fieldwork data (EBONE GHC) 

 
 

Overall 
Accuracy 

Kappa 
Coefficient

Overall Accuracy Kappa Coefficient

Prior to 
combining 

the ROI 
categories 

North  
(P174 R37)

91.58% 0.89 Ramat Ha’Nadiv: 
27.46% 

Ramat Ha’Nadiv: 
0.18 

Center 
(P174 R38) 

87.72% 0.84 

Ramat Ha’Nadiv: 
36.92% 

Ramat Ha’Nadiv: 
0.20 

Lehavim: 49.16% Lehavim: 0.33 

South  
(P174 R39)

97.63% 0.96 Avdat: 95.31% Avdat: 0 

After 
combining 

the ROI 
categories 

North 
(P174 R37)

90.15% 0.84 Ramat Ha’Nadiv: 
66.85% 

Ramat Ha’Nadiv: 
0.16 

Center 
(P174 R38)

91.34% 0.88 

Ramat Ha’Nadiv: 
58.07% 

Ramat Ha’Nadiv: 
0.08 

Lehavim: 40.27% Lehavim: 0.18 

South 
(P174 R39)

97.60% 0.94 Avdat: 94.69% Avdat: 0.06 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4:  Categories used in the supervised classification: 

Final Categories Initial Categories 

Bare Soil  
Bare Soil  
Bare Soil (Built up) 

Dunes Bare Soil – Sandy (Dunes) 

Herbaceous 
Herbaceous 
Herbaceous – Sandy 

Trees 

Coniferous trees 
Deciduous trees 
Evergreen trees 
Mixed Deciduous and Evergreen trees 

Shrubs  

Deciduous shrubs 
Evergreen shrubs 
Deciduous 'Sub' shrubs 
Sandy 'Sub' shrubs  

Water 
Water (Sea Water, Dead Sea Water, Water 
Bodies) 

Agriculture Agriculture 
Snow Snow 
Clouds Clouds 



 

Figure 1: Supervised classification map of Israel, based on a maximum 
likelihood classifier applied on each Landsat scene separately. 

 

  



Accuracy assessment of the supervised classification of overlapped areas 

Comparing the classification results of overlapping areas was another method 
we used in order to check the classification accuracy of the images. We would 
expect to receive similar classification results.  Yet, comparing the overlapped 
areas revealed differences in the classification.  

Central and South Israel areas: 

Within the overlap area of the central and southern Landsat scenes, the overall 
accuracy was 65.49%. Two main differences were noticed in the overlap areas: 
(1) The southern scene has areas classified as Desert Shrubs while the central 
scene shows no vegetated areas. (2) A bigger area of the southern scene is 
classified as dunes compared to the central scene. 
 
Table 4: Percent accuracy of the category calculated using the total number of 
pixels in the overlap area between the southern and central scenes 
 
Overall Accuracy: 65.49% 
Kappa coefficient: ? 

 
 

 

 

 

 

 

 
 

Central scene 

 
 

Dunes Desert Shrubs Bare Soil Trees Class Total 

SO
U

T
H

E
R

N
 sc

en
e Dunes 29.55 0.05 15.12 0.00 44.71 

Desert Shrubs  2.50 0.02 16.35 0.00 18.86 

Bare Soil 0.49 0.00 35.93 0.00 36.41 

Trees 0.01 0.00 0.00 0.00 0.02 

Class Total 32.54 0.07 67.40 0.00 100.00 

 

Looking at the list of images used and their dates show differences in the dates 
of the images used for the two regions. For spring time, images from the same 
date were used and images with very close dates were used for the summer. 
However, images of one year apart for late summer and 3 years apart for 
winter time were used. Ideally we would have used the same dates for images 
analyzed for the three geographical regions of Israel.  

 

Central and Northern Israel areas: 

Results of classification show an overall accuracy of 43.96% within the 
overlap area of the central and northern Landsat scenes.  The classification of 



the trees is relatively good but there were differences in the congruence 
between the other categories. The main difference between the overlapping 
areas is that the northern scene has an overestimation of herbaceous areas 
while in the central scene these areas are classified also as shrubs and as bare 
soil. 

Table 5: Percent accuracy of the category calculated using the total number of pixels 
in the overlap area between the northern and central scenes 

 Overall accuracy: 43.96% 
 Kappa coefficient:  ? 
 

 
 

Northern Scene 

 
 

Herbaceous Bare Soil Trees Shrubs Agriculture Row Total 

C
en

tr
al

 S
ce

ne
 

Herbaceous 13.12 0.48 3.31 2.91 0.00 19.82 

Bare Soil 3.71 1.02 1.10 0.68 0.18 6.69 

Trees 7.90 0.48 23.56 2.33 0.05 34.33 

Shrubs 20.80 1.04 10.54 6.26 0.01 38.64 

Agriculture 0.15 0.01 0.31 0.05 0.00 0.51 

Class Total 45.67 3.02 38.83 12.22 0.24 100.00 

 

Looking at the list of images used and their dates show adjacent dates for 
winter and spring images but differences in the dates of the images for 
summer and late summer - one year apart for summer and late summer 
images.  

As we used reflectance values (radiometric correction) differences in the 
classification are not due to spectral differences but can be related to the fact 
that images used are from different dates (years and months) as well as from 
limitations in the data that can be collected from the images associated with 
the ROIs selected and the 30-meter spatial resolution of the Landsat images. 

 

5.3.1.3 Results 

NORTH Landsat scene: 

Within the initial classification, prior to combining the vegetation categories, 
revealed some confusion in mapping correctly different categories of trees and 
shrubs (e.g., evergreen, deciduous, and coniferous; Appendix 4). Though the 
calculated overall accuracies are high, 91.58% (Table 3), problems can be 
visually seen when analyzing the classification results, especially when 



analyzing the accuracy assessment with field data from Ramat Ha'Nadiv.  For 
example: Evergreen trees identified in the fieldwork are misclassified as 
Coniferous, Deciduous or mixed trees; herbaceous are classified in the 
classification map not only as herbaceous but also as deciduous trees and 
coniferous 

Final classification maps after combining the categories show a high 
improvement in the classification results, even though not in the overall 
accuracy, 90.15%. Trees can be correctly identified as well as shrubs. Yet, 
there is an overestimation of herbaceous area, especially in urban areas and 
agricultural fields.  

Analyzing the final classification map with the field data reveals a problem 
with correctly classifying trees, shrubs and herbaceous.  

The classification image shows unclassified areas that represent: agricultural 
fields, urban areas, shadows, snow, areas along the shore and other categories 
that were not defined as training sites (ROI's). Time permitting, it would have 
been better to select ROIs from these areas and re-run the classification.  

 

CENTRAL Landsat scene: 

Even though the calculated overall accuracies are high, 87.72% (Table 3), 
problems can be visually seen, as well as by analyzing the accuracy 
assessment table (Appendix 4). The initial classification results, prior to 
combining the categories, reveal confusions in classifying correctly the 
different types of trees and shrubs. For example herbaceous areas that are 
classified in the classification map as not only herbaceous but also as different 
categories of shrubs. Another example is mixture of trees that are mainly 
classified as evergreen trees. 

 Looking at the classification results when compared with field data from 
Ramat Ha'Nadiv shows a problem in mapping correctly herbaceous areas. 
These areas are misclassified as a various mixture categories of trees and 
mainly as deciduous trees. Evergreen Trees are classified not only as 
evergreen trees on the classification map but also as other types of trees. This 
shows the importance of combining the various categories of trees into one 
category.  

Field data from Lehavim that was compared to the classification results show 
(1) a misclassification of herbaceous as mainly bare soils, and (2) a 
misclassification of shrubs also as bare soils.  

Final classifications after combining the categories show a big improvement in 
the classification of trees, where 20% of the area is classified as trees 



compared with 21% identified in the field. Yet, combining the categories 
reveals misclassification of herbaceous category as shrubs as well as shrubs 
areas as trees. This misclassification is also shown when looking at the 
analysis of the field data from Ramat Ha'Nadiv. Field data from Lehavim 
reveals misclassification of herbaceous areas as bare soils, trees and especially 
shrubs, a misclassification of shrubs as bare soils, but a good classification of 
trees. 

There are various areas that were not classified and represent urban areas, 
agriculture, as well as shadows.  Urban areas are classified as bare soil. 
Agricultural areas are classified as herbaceous and bare soil and in some areas 
they are unclassified. In addition, there is an overestimation of areas classified 
as bare soils, as well as an area of mixture between dunes and bare soils in the 
southern part of the region.  

 

SOUTH Landsat scene: 

Areas that were not classified represent areas of shadows as well as clouds that 
were present in one or more of the four Landsat TM images of the metafile 
image. Agriculture fields are also represented as unclassified as no ROIs were 
selected. More ROIs should be selected and used to classify the image in order 
to correctly classify these unclassified areas.  

Looking at the initial classification, prior to combining the categories, the 
accuracy is very high, 97.63%. Yet, visually we see mixture between bare soil 
and dunes, as well as desert vegetation - shrubs that are not always correctly 
identified. 

Final classification after combining the categories does not improve the 
accuracy results, 97.60%, but, it shows some problems of misclassification of 
trees with dunes and bare soils, as well as problems of mixture between dunes 
and bare soils.  

The accuracy received for the classification maps of the three geographical 
regions is high, even though when analyzed there are various problems 
associated with the classification. The high accuracy results are related to the 
low amount of ROIs selected to validate the classification results as well as the 
way they were selected. These ROIs were selected in areas for which it was 
clear what they represent. These areas are the areas that represent "pure" 
categories and where no mixture exists. Yet, on the ground the pixels are not 
homogenous, as the selected ROIs tend to be, and most pixels represent 
mixtures of several categories. When running the accuracy assessment only 
the selected ROIs are involved. As they represent more homogeneous areas, 
the "pure" or homogenous pixels would be correctly classified while the 



heterogeneous ones will not be tested in the accuracy assessment. Problems 
associated with them will not be recorded in the calculation of the Kappa and 
Overall accuracy numbers.     

 

5.3.1.4 Discussion 

Mapping the natural vegetation from Landsat images allowed us to produce 
vegetation maps of large areas at a broad spatial coverage. Even though the 
overall accuracies achieved were quite good, there are limitations with the data 
that can be collected and our ability to correctly separate between vegetation 
categories: 

(1) Differentiating between various types of trees, e.g. evergreen vs. deciduous 
trees. These phenological changes can be detected when seasonal images from 
the same year are used. Therefore, requiring the use of a higher number of 
images from dates that allow the detection of the specific vegetation 
categories. For example, when mapping areas of deciduous trees it is 
important to select dates when the trees are with/without green leaves. This 
issue is complicated when working on large areas, where the same species 
may bloom or shed its leaves in different dates as a function of 
latitude/temperature/elevation. If an area is covered by deciduous trees and an 
image is acquired when they are without leaves, however the ground is 
covered by green herbaceous grasses, at the spatial resolution of Landsat the 
pixel will be interpreted as being with vegetation. 

(2) The 30-meter spatial resolution of the TM Landsat images limits our 
ability to map areas with low vegetation cover. Most pixels represent 
heterogeneous areas of natural vegetation and unless the vegetation category 
covers a big area (of a pixel) and can be represented as a homogeneous area 
(covering more than one pixel) it is hard to map it, and therefore mapping the 
seasonal changes will be hard. 

(3) Another problem is mapping a heterogeneous area that has, for example, 
both trees and herbaceous covering an area of the size of a pixel. Will this area 
be classified as trees or as herbaceous? This area can be classified as a mixture 
of the two categories or as a different category if spectrally the mixture of the 
two categories on the ground has a characteristic of a different category. 

 

 

 



5.3.2 Unsupervised classification 

Unsupervised classification was done using the Isodata algorithm within Envi 
4.7, aiming for 50 classes. This was applied on both the band-ratios image and 
the topographically corrected reflectance imagery, within each Landsat scene 
separately. 

Accuracy assessment was first conducted on the 50 raw classes using the 
validation ROIs collected for the supervised classification described above (15 
classes in the north and centre, six in the south). Association between the 
unsupervised classes and the validation ROIs was performed automatically 
based on the class that corresponded with the maximum number of cells. 
Based on this approach, the percent accuracy achieved was above 70% (Table 
2; detailed confusion matrices in Appendix 7). 
 
Table 2: Accuracy assessment of the unsupervised classification, based on 
automatic association of the raw classes to validation ROIs, excluding water 
(in parentheses, the kappa index) 

 Reflectance values Band ratios 
North 75% (0.61) 71% (0.56) 
Centre 82% (0.76) 84% (0.77) 
South 88% (0.80) 88% (0.80) 
 

The resulting 50 classes were visually interpreted into the following 17 
classes, based on orthophoto and Landsat imagery comparison: sea water, 
shallow water, perennial vegetation, sparse forest, sparse vegetation, 
herbaceous, bare soil, built-up area, small shrubs, bare dunes, agriculture, 
seasonal snow, sparse desert vegetation, dark bare soil, bright bare soil, 
seasonal desert vegetation and seasonally flooded. These 17 classes were then 
clumped into ten classes as shown in Figure U. Visually, it seems that the band 
ratios unsupervised product is better than the reflectance based one, as there is 
a larger distribution of agricultural areas (shown in pink), and as urban areas 
(shown in red) are mapped quite well. Although the accuracy assessment 
results are good, the unsupervised classification was not sensitive in desert 
areas that were mostly classified as bare soil, with very few areas classified as 
seasonally green vegetation. 

  



 

Figure U: Unsupervised classification of Landsat imagery. The classes shown 
are based on a visual interpretation and on joining the original unsupervised 
classes. 

  



5.3.3 Mapping percent cover of seasonal and perennial 
vegetation 

Following the approach suggested by Shoshany and Svoray (2002), we 
applied two methods to map the percent cover of three endmembers: perennial 
vegetation, seasonal green vegetation, and bare soil. 

The first technique used was that of linear spectral unmixing. This was done 
based on 11-12 ROIs collected within each of the three Landsat scenes 
separately, that included areas of 100% vegetation cover, 100% bare soil 
(bright-dark), water and snow. Spectral unmixing was run on the five band 
ratios of the spring and fall Landsat images of each scene, representing 
maximum and minimum vegetation greenness. The Probability guided spectral 
unmixing available within Idrisi TAIGA was used to this end. The vegetation 
endmember images were then summed resulting in a spring percent vegetation 
image and a fall percent vegetation image. Based on these the maximum and 
minimum percent vegetation cover were calculated, and seasonal green 
vegetation was calculated as the difference between the maximum and the 
minimum green vegetation. Percent bare soil was calculated as 1-
MaxVegetation. 
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he resulting images can be used to derive vegetation classes defined by INPA 
(e.g., areas with > 90% perennial vegetation whose areas is > 10 ha can be 

Percent vegetation cover was also calculated based on Normalized Difference 
Vegetation Index (NDVI; Tucker, 1979) values, after the three scenes were 
mosaicked, for spring and for fall. Vegetation cover Pv was calculated based 
on scaled vegetation and NDVI (following Carlson and Ripley, 1997) as 
shown in the following equation, where VI stands for the value of a 
Vegetation Index in a certain pixel, VIbaresoil stands for the vegetation index 
value in an area with no vegetation, whereas VI100% stands for the vegetation 
index value in area with maximum vegetation cover. Based on previously 
collected ROIs the following NDVI values were used to defined 0% 
vegetation and 100% vegetation: 0.15 and 0.63 for the spring image, and 0.27 
and 0.57 for the fall image. The percent cover of perennial vegetation, 
seasonal green vegetation and bare soil was calculated as described above for 
the spectrally unmixed images (Figure %). 

 

T

defined as forest/maquis stands).   



Spring NDVI Summer NDVI

Spring % green 
vegetation 

Summer % green 
vegetation 

Perennial = MIN % MAX % green 
vegetation  green vegetation 

Seasonal (herbaceous) = BARE = 1‐MAX 
% green vegetationMAX‐MIN % green 

vegetation 

 
Figure %: Flowchart for calculating % cover of perennial vegetation, seasonal 
vegetation and bare soil. 

 

  



 

Figure A: Landsat based soft classification into % bare soil (in red), % 
seasonal green vegetation (in green), and % perennial vegetation (in blue). 



 Figure B: Landsat 
based soft 
classification into % 
bare soil (in red), % 
seasonal green 
vegetation (in 
green), and % 
perennial vegetation 
(in blue).



As no field data was available from INPA to validate the percent cover of bare 
soil, seasonal green vegetation and perennial vegetation, the resulting maps 
were assessed visually, and statistically with respect to a similar spectral 
unmix analysis conducted using the QuickBird images (see in the QB section). 
Figures C, D and E compare the Landsat supervised classification and 
spectral/temporal unmixing results, with respect to EBONE classes and 
QuickBird imagery, within each of the field study sites of INPA, where 
EBONE GHC were mapped in the field. 

Comparing the Landsat supervised classification to the EBONE GHCs, it is 
clear that the fine classification obtained in the field mapping, is not captured 
by the supervised classification that was applied on a national scale. On the 
other hand, the EBONE polygons are not homogeneous, and examining the 
Landsat percent cover maps, it can be seen that vegetation cover varies within 
the EBONE polygons. An additional problem with EBONE classes is apparent 
in the transition and arid field sites, where most of the area was classified as 
bare soil, while seasonal patterns of vegetation could be observed when using 
Landsat images from different seasons. Additional differences between 
EBONE GHCs and Landsat results could be attributed to the small size of 
some of the EBONE polygons, falling below what can be expected from the 
medium spatial resolution offered by Landsat.  
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Figure C: Comparing the Landsat supervised classification and spectral/temporal 
unmixing results, with respect to EBONE classes and QuickBird imagery, within the 
Ramat ha Nadiv field site. Each row covers a field site of 1km2. The QuickBird image 
(left column) is shown using a false color composite of bands 4, 3 and 2 (vegetation in 
red). The Landsat percent cover (right column) shows the relative percent cover 
within a pixel of bare soil (red), seasonal green vegetation (green) and perennial 
vegetation (blue). The Landsat NDVI RGB images (2nd column from the right) is a 
false color composite of NDVI values in the months of January (red), March (green) 
and July (blue); areas no vegetation appear in dark colors, while areas with perennial 
vegetation cover appear in white. 
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Figure D: Comparing the Landsat supervised classification and spectral/temporal 
unmixing results, with respect to EBONE classes and QuickBird imagery, within the 
Lehavim Forest field site. Each row covers a field site of 0.25km2. The QuickBird 
image (left column) is shown using a false color composite of bands 4, 3 and 2 
(vegetation in red). The Landsat percent cover (right column) shows the relative 
percent cover within a pixel of bare soil (red), seasonal green vegetation (green) and 
perennial vegetation (blue). The Landsat NDVI RGB images (2nd column from the 
right) is a false color composite of NDVI values in the months of January (red), 
March (green) and July (blue); areas no vegetation appear in dark colors. 
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Figure E: Comparing the Landsat supervised classification and spectral/temporal 
unmixing results, with respect to EBONE classes and QuickBird imagery, within the 
Ein Avdat field site. Each row covers a field site of 1km2. The QuickBird image (left 
column) is shown using a false color composite of bands 4, 3 and 2 (vegetation in 
red). The Landsat percent cover (right column) shows the relative percent cover 
within a pixel of bare soil (red), seasonal green vegetation (green) and perennial 
vegetation (blue). The Landsat NDVI RGB images (2nd column from the right) is a 
false color composite of NDVI values in the months of January (red), March (green) 
and July (blue); areas no vegetation appear in dark colors. 
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6. Results - QuickBird 

6.1. Background 
QuickBird imagery (2 m) was used to map Israel's natural habitats in three pilot areas. 
We used a 2-seasons set of images, representing the spring and summer seasons, to 
base our classification on the phenology of the vegetation. The drawback of 
QuickBird imagery is its cost as well as that a big number of images will be required 
to cover the entire country. It is therefore expected that this type of imagery will only 
serve for monitoring specific areas of interest. 

QuickBird images tasked were acquired by Digital Globe Inc., for the seasons of 
spring and summer 2010. The images covered three pilot areas: Ramat Ha'Nadiv area, 
Lehavim Forest area and En Avdat area.  

Table 1: List of QuickBird images used for the project in three pilot study areas 

Spring  Summer 

20/4/2010 26/7/2010 Ramat Ha'Nadiv Area 

18/7/2010 22/3/2010 Lehavim Forest Area 

15/7/2010 5/4/2010 Avdat Area 
 

 

 

6.2. Preprocessing 
The images were atmospherically corrected using the flat atmospheric correction 
within ATCOR, and were then georeferenced to Israel Transverse Mercator (ITM) 
coordinate system in a two-stage process. First the spring images were referenced to 
the summer images, using more than 1,000 tie points automatically identified using 
the Förnster area-based image matching algorithm as applied in Envi 4.8. The images 
were then georeferenced to a 1m orthophoto using more than 100 tie points. The 
average RMS was about 10 m (due to relief displacement and off-nadir viewing of the 
satellite). 

 

6.3. Methods 
Vegetation mapping can be performed to derive thematic maps of vegetation types 
(hard classification), or to derive maps of continuous variables such as vegetation 
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(soft classification). For some approaches regions of interest (ROIs) whose vegetation 
type are known are first defined, whereas for in some approaches there is no need to 
define ROIs beforehand. We tested four approaches to map vegetation from the 
QuickBird imagery, as shown in Table 2. 

 
Table 2: Four approaches used to map vegetation from QuickBird imagery 

 

 Object-based Pixel-based 
 Based on ROIs Based on ROIs Not based on ROIs 
Hard  classification 
(vegetation types) Segmentation Supervised  

Soft classification  
(% cover of perennial 
vegetation, seasonal 
vegetation and bare soil) 

  5. NDVI derived 
vegetation cover – 
woody vegetation 
density 

6. NDVI derived 
vegetation cover – 
UnMixing  

Each study area was analyzed separately. Mapping methods varied based on the 
vegetation categories and the field characteristics of the area. 

 

Table 3: List of approaches used to map vegetation from QuickBird imagery for each 
of the pilot study areas 
 

 Segmentation Supervised 
Classification UnMixing Woody Vegetation 

Density 
Ramat 
Ha'Nadiv area  √ √ √ 

Lehavim 
Forest area √ √ √  

Avdat area   √  

 

 

6.3.1 Supervised Classification 
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The aim of this step was to check our ability to use supervised classification to 
distinguish between trees: pine and cypress and maquis. 

Ramat Ha'Nadiv area 

Two methods of supervised classification of the summer images were used: 
Maximum Likelihood and Support Vector Machine. Each method was used to 
create a classified image and a rule image. No probability threshold was 
applied at the initial stage.  

We selected ROIs from the summer QuickBird image using GIS data from 
JNF, INPA and Hava Lahav surveys. We identified 'pure' and dense polygons 
that represent various vegetation categories: Maquis, Pine trees, Cypress trees, 
bare soil, clouds, shadow, and terrestrial water bodies. Differences between 
the summer spectra of pine trees, cypress trees and maquis were the following 
(figure 1): (1) the overall reflectance values of cypress tree were the lowest in 
all four bands; (2) the slope between the red and infra-red bands was highest 
for the maquis and lowest for the cypress trees. Using these ROIs initial 
classification and rule maps were produced. Based on the rule images we 
determined the probability threshold per category to generate a new 
classification image. Pixels that did not meet the threshold requirements were 
not assigned into a classification class.  

The accuracy of the new classification images was then calculated by 
comparing the results of the classification maps with validating ROIS that 
were collected from GIS data layers received from JNF, INPA and Hava 
Lahav (SPNI) fieldwork in Ramat Ha'Nadiv.  The three sources of layers were 
combined in ENVI based on their classification categories to produce three 
ROI categories: Maquis, Cypress, and Pine. The accuracy was calculated only 
for these categories. 

As the GIS data collected in the field is of polygon type, patches of vegetation 
are mixtures of vegetation and bare soil. A polygon may be classified as pine 
trees but it may be a mixture of the pine trees with bare soil, herbaceous, and 
shrubs on the ground. Therefore, we have used the NDVI layer that was 
previously created as a 'filter' to identify "pure" woody vegetation areas. Only 
if a pixel was identified as woody vegetation on the NDVI derived image it 
was be assigned the ROI class.  

This new class image showed a high presence of maquis. Therefore, we 
decided to randomly select 10,000 pixels of each category, to have an equal 
representation of the vegetation categories of interest. This final class image 
was used as the ground truth data when checking the accuracy of the 
supervised classification images. 

 Lehavim Forest area   
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In this study area we applied a different approach for image classification – an 
object-based classification, segmenting the image into homogeneous areas 
based on the spectral mean and variability of pixel values. Such approach has 
been shown to be of high value when classifying high spatial resolution 
images (Blaschke, 2010). As applied within Idrisi Taiga, the segmentation 
algorithm is based on the following four stages: 

(1) Applying a watershed based image segmentation process:  a) derive a 
surface image based on the spatial variance of the input image bands; 
b) delineate watersheds from the surface image; and c) merge adjacent 
watersheds that meet stated standards to form image segments. 

(2) Select training image segments with the target classes to be used in the 
classification. 

(3) Apply a pixel based supervised classification on the image based on 
the previous training spectra. 

(4) Apply a majority rule classifier based on the majority class within an 
image segment. 

The maximum likelihood supervised classification map of the Lehavim forest 
area was created during the Segmentation Analysis of the QuickBird summer 
image. In this analysis we used a different approach where a broader number 
of EBONE GHC categories were classified. 

The training data used for the classification was produced during the 
segmentation analysis based on previous knowledge of the area and GIS 
layers. 

 

6.3.2 Segmentation 

The segmentation classification is a hard-classifier, and is an important step 
within the object-based remote sensing information retrieval process. In the 
segmentation process adjacent pixels are grouped into image segments 
according to their spectral similarity. These segments share a homogeneous 
spectral similarity.  
We ran the segmentation in IDRISI software where the module SEGCLASS 
classifies imagery using a majority rule algorithm that is applied to image 
segments created by the module SEGMENTATION. Using the module 
SEGTRAIN training signatures are developed representing the classes within 
the imagery. These training signatures are identified by the interpreter the 
same way the Regions of Interest (ROI) are collected in ENVI for the 
supervised classification. The segmentation image created uses the segments 
identified on the image along with the training signatures in order to classify 
the image based on its textures. 
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For this project we created a segmentation image of the summer QuickBird 
image. 

The accuracy of the segmentation image was then calculated by comparing the 
results of the classification map with field data collected following the 
EBONE GHC categories. The accuracy was calculated with only four 
categories: bare soil, herbaceous, shrubs, and forest trees.  

As QuickBird images cannot detect changes in height of the vegetation there 
has been no attempt to differentiate low and high shrubs. Therefore, the 
accuracy of the segmentation image was calculated by comparing the 
classification results with ground truth data where low and high shrubs, 
identified in the field, were combined into one category of mixed shrubs. 

 

6.3.3 UnMixing 

6.3.3.1 Mapping bare soil, seasonal vegetation, and perennial vegetation 

The aim of this analysis is to use the unmixing classification as a way to map 
percentage of coverage of bare soil, seasonal and perennial vegetation, per 
pixel.  

NDVI images, for the spring and summer 2010 QuickBird images were 
produced. Based on these images NDVI thresholds representing 0% vegetation 
(i.e. bare soil) and 100% vegetation were defined. NDVI values between these 
two threshold values represent partial vegetation coverage within a pixel. 

Different values of NDVI were applied as threshold values, as shown below 
(Table 4) 

 

Table 4: List of NDVI values applied as threshold values to map bare soil, 
seasonal and perennial vegetation for each of the pilot study areas, on each 
QuickBird image 

 
 Summer QuickBird 

image – NDVI value 
Spring QuickBird 

image – NDVI value 

R
am

at
 

H
a'

N
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a Bare soil < 0.4 < 0.37 

Vegetation coverage 0.4 – 0.5 0.37 – 0.6 

Woody vegetation > = 0.5 > = 0.6 
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Bare soil < 0.4 < 0.3 

Vegetation coverage 0.4 – 0.55 0.3 – 0.55 

Woody vegetation > = 0.55 > = 0.55 
A
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Bare soil < 0.17 < 0.15 

Vegetation coverage 0.17 – 0.5 0.15 – 0.55 

Woody vegetation > = 0.5 > = 0.55 

The vegetation coverage in the spring (peak greenness) and the summer 
(minimum greenness) will identify areas of perennial vegetation, seasonal 
vegetation, and bare soil: 

Perennial vegetation  minimum % vegetation (woody vegetation) 

Seasonal green vegetation  maximum - minimum % vegetation 
(herbaceous) 

Bare soil (no vegetation)  1 - maximum % vegetation 

A meta file map was created where band 1 shows the percentage coverage of 
bare soil of the pixel, band 2 shows the percentage coverage of seasonal 
vegetation cover and band 3 shows the percentage coverage of perennial 
vegetation (shown as 432 in RGB). This final 3-bands metafile shows, per 
pixel, the percent coverage of bare soil, seasonal vegetation and perennial 
vegetation within a pixel. 

Two accuracy assessments were tested: 

(1) Comparison of UnMixing classification map with field data 

Two types of analyses were produced:  

(1) As an initial analysis the average percentage of vegetation 
coverage of bare soil, seasonal vegetation and perennial 
vegetation and its standard deviation was computed for each 
GHC category;  

(2) The final analysis looks at the average percentage of bare 
soil, seasonal vegetation and perennial vegetation and its 
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standard deviation computed for four combined categories 
(herbaceous, shrub, high shrubs, and trees).  

A metafile of the UnMixing classification results and EBONE field 
data was created. The data was exported to an ASCII file and a table 
where every row represent a pixel with its vegetation coverage (% 
coverage of bare soil, seasonal vegetation and perennial vegetation) 
and GHC category as defined in the field, was produced. As we were 
interested in analyzing the natural vegetation categories: bare soil, 
herbaceous, shrubs, high shrubs and trees, only pixels that belong to 
these GHC categories were analyzed. 

We would expect the percentage of coverage of the three categories to 
vary within the EBONE GHC categories. High percentage of perennial 
vegetation for forest trees categories is expected and, on the contrary, 
high percentage coverage of seasonal vegetation for herbaceous 
categories. 

(2) Comparison of UnMixing classification map of the QuickBird image with 
UnMixing classification map of the Landsat image 

The aim of this analysis was to check the correlation between the 
results of the UnMixing classification of the Landsat TM with the 
results of the UnMixing classification of the QuickBird images. A high 
correlation between the results can indicate the effectiveness of using 
Landsat images that are cheaper to purchase and cover a longer 
historical dates, when it is important to map a big area. 
 
Pixels values of the UnMixing classification maps produced for the 
Landsat TM and QuickBird images were exported to ASCII. A table 
with the pixels' values for each vegetation category: bare soil, seasonal, 
and perennial, for each of the two classification maps, was produced. 
The data was analyzed to check the correlation between the results of 
the classifications.  
 

6.3.3.2 Mapping woody vegetation density 

The aim of this step was to map the woody vegetation and calculate its 
density.  

Woody vegetation density was calculated based on Normalized Difference 
Vegetation Index (NDVI; Tucker, 1979) values for the summer imagery. An 
NDVI image was produced and then used to determine the threshold value that 
represents the lowest NDVI value indicating the presence of woody 
vegetation. Any NDVI value higher than this threshold represents woody 
vegetation on the ground. A binary image was created where pixels with the 
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value of 1 represent woody vegetation and the value of 0 represent the other 
categories. A convolution filter was then run on the image. The convolution 
filters produced output images in which the value at a given pixel is a function 
of weighted average of the brightness of the surrounding pixels. In this 
analysis a circled convolution filter of 7x7 pixels was run. For each pixel a 
new value was calculated, based on its 48 neighbors, using the equation: (pixel 
value) / (max value) = woody vegetation density. The closer the neighboring 
pixels are, the higher their weight is. The new image is a map of the woody 
vegetation density.  

The accuracy of the woody vegetation density map was tested by comparing 
the calculated average woody vegetation density and its standard deviation for 
each of the EBONE GHC categories: bare soil, herbaceous, shrubs, high 
bushes, and forest trees as collected by INPA in Ramat Ha'Nadiv area using 
the BIOHAB method (termed here as EBONE GHC). We would expect to 
have high woody vegetation density for polygons labeled as forest trees and 
lower values with polygons associated with bare soil and herbaceous for 
example. 

 

6.4. Results 

 6.4.1 Ramat Ha'Nadiv 

 6.4.1.1. Maximum Likelihood Supervised Classification Method 

As an initial step we have tried to correctly distinguish not only between 
Maquis and Forest but also between the two main tree species in the area: pine 
and cypress. 

Figure 1:  Example of the supervised classification map results in Ramat 
Ha'Nadiv area, using two classification methods. 

42 
 



 

The Maximum Likelihood supervised classification method gave an overall 
accuracy of 56% with a kappa value of 0.34, when trying to map the three 
categories: pine trees, cypress trees and maquis (Table 5). The individual 
accuracies show, as expected, a higher problem distinguishing between pine 
and cypress trees. For example, of the cypress trees identified in the field 
about 55% were classified as cypress trees and 32% as pine trees. 
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Table 5: Accuracy assessment of the maximum likelihood classification 
results  in Ramat Ha'Nadiv area, looking at the total number of pixels 
 
Overall Accuracy = 56% 
Kappa Coefficient = 0.34 

 

 
 

Ground Truth Data (GIS data layers) 

 
 

Cypress Pine Maquis Class Total

C
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Cypress 19.04 8.29 3.09 30.42 

Pine 11.13 17.99 9.56 38.68 

Maquis 4.73 7.20 18.98 30.91 

Class Total 34.89 33.48 31.63 100.00 

Looking at the class total values we can see a good consistency between the 
total percentages of each vegetation category identified on the classification 
map compared to the ground truth data, for example: approximately 31% of 
the area was identified as Maquis both in the classification map and on the 
ground.  

Figure 2:  Spectral reflectance curves of Cypress, Pine and Maquis for the 
summer QuickBird image of Ramat Ha'Nadiv area 

 

As by default the EBONE GHC categories do not differentiate between Pine 
and Cypress trees, and in addition the classification results show mixtures 
between pine and cypress trees, we produced a new map where the two tree 
categories were combined into one category of trees (Table 6).  
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Table 6:  Accuracy assessment of the Maximum Likelihood 
classification results  in Ramat Ha'Nadiv area, looking at the total 
number of pixels 
 
Overall Accuracy = 75.42% 
Kappa Coefficient = 0.4283 
   

 

 Ground Truth Data (GIS data layers) 

 Trees Maquis Class Total 

C
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ss
ifi
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tio

n 
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Trees 56.45 12.65 69.10 

Maquis 11.92 18.98 30.90 

Class Total 68.37 31.63 100.00 

 

As can be expected combining the two categories improves the overall 
accuracy to 75% and the Kappa coefficient into 0.43.  

 

6.4.1.2 Support Vector Machine Supervised Classification Method 

Using the Support Vector Machine supervised classification method to map 
the three vegetation categories gave an overall accuracy of 52% with a kappa 
value of 0.27 (Table 7). The individual accuracies show problems in 
identifying correctly the vegetation categories, especially pine trees and 
maquis. For example, out of the pine trees identified on the field, about 42% 
were identified as pine trees and 40% as maquis on the classification map.   

Looking at the class total values we can see a low representation of the cypress 
trees while the representation of the maquis is too big. For example: 39% of 
the area was identified on the ground as Maquis while on the classification 
maps 47% pixels were classified as Maquis.  

 

Table 7:   Accuracy assessment of  Support Vector Machine Classification results in 
Ramat Ha'Nadiv area, looking at the total number of pixels 
 
Overall Accuracy = 52% 
Kappa Coefficient = 0.27 
 

 

 
 

Ground Truth Data (GIS data layers) 

 
 

Cypress Pine Maquis Class Total 
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Cypress 12.31 5.64 1.50 19.45 

Pine 8.48 13.82 11.37 33.67 

Maquis 7.40 13.23 26.25 46.88 

Class Total 28.19 32.69 39.12 100.00 

 

As expected, when pine and cypress trees were combined our ability to 
correctly map trees vs. maquis was improved to an overall accuracy of 66.50% 
and a Kappa coefficient of 0.32 (Table 8). 

 

 
Table 8:   Accuracy assessment of  Support Vector Machine Classification 
results in Ramat Ha'Nadiv area, looking at the total number of pixels 
 
Overall Accuracy = 66.50% 
Kappa Coefficient = 0.3207 
  

 

 
 

Ground Truth Data (GIS data layers) 

 
 

Trees Maquis Class Total 

C
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Trees 40.24 12.88 53.12 

Maquis 20.63 26.25 46.88 

Class Total 60.87 39.13 100.00 

Results of both supervised classification methods show a good ability to 
correctly map trees (about 80% of the trees on the field are correctly 
identified), yet a lower ability to map maquis. Mixtures between maquis and 
forest trees categories can be due to various reasons that are discussed in detail 
at the discussion section. 

In addition, the Maximum Likelihood classification method shows a higher 
accuracy, vs. the Support Vector Machine Classification method and should be 
used in this analysis. 

 

  

 

6.4.1.3 UnMixing Classification Method – Mapping bare soil, seasonal 
vegetation, and perennial vegetation 
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6.4.1.3.1 Comparing results of the UnMixing classification of the 
QuickBird images with EBONE field data 

Figure 3:  Comparison of EBONE field data with UnMixing classification 
results in Ramat Ha'Nadiv area 

 

 

(1) Initial analysis looking at each GHC natural vegetation category 

Table 9: The average percentage of vegetation coverage and its standard 
deviation for GHC herbaceous polygons in Ramat Ha'Nadiv area  

 
GHC 
category GHC codes Number 

of pixels  
QuickBird 
Bare Soil 

QuickBird 
Seasonal 

QuickBird 
Perennial 

Herbaceous Herbaceous CHE/GTHE 6257 Average 0.32 0.60 0.09 
Std 0.28 0.30 0.25 

Herbaceous GTHE 93627 Average 0.22 0.60 0.18 
Std 0.33 0.39 0.34 

Herbaceous THE 2362 Average 0.45 0.48 0.07 
Std 0.29 0.28 0.23 

 

All 
Herbaceous 
categories  

102246 Average 0.24 0.59 0.17 

    
Std 0.33 0.38 0.34 
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Figure 4:  Representation of the percent coverage of bare soil, seasonal and 
perennial vegetation of EBONE GHC herbaceous categories in Ramat 
Ha'Nadiv  
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Table 10: The average percentage of vegetation coverage and its standard 
deviation for GHC shrubs polygons in Ramat Ha'Nadiv area 

 
GHC 

category GHC codes Number 
of pixels  

QuickBird 
Bare Soil 

QuickBird 
Seasonal 

QuickBird 
Perennial 

Shrubs 
Mixed Eve. 
and Dec. 
Shrubs 

LPH/EVR/SUM 1867 Average 0.33 0.34 0.33 

Std 0.25 0.23 0.35 
Dec. Shrubs LPH/SUM 2657 Average 0.21 0.47 0.31 

Std 0.24 0.34 0.42 
Mixed Eve. 
and Dec. 
Shrubs 

LSPH/EVR/SUM 3909 Average 0.32 0.42 0.26 

Std 0.32 0.32 0.39 
Deciduous 
Shrubs LSPH/SUM 17637 Average 0.17 0.58 0.25 

Std 0.24 0.35 0.37 

All Mixed 
Shrubs  26070 Average 0.21 0.53 0.26 

Std 0.26 0.35 0.38 
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Figure 5:  Percent coverage of bare soil, seasonal and perennial vegetation of 
EBONE GHC shrubs categories in Ramat Ha'Nadiv  
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Table 11: The average percentage of vegetation coverage and its standard 
deviation for GHC bushes (high-height) polygons in Ramat Ha'Nadiv area 

 
GHC 

category GHC codes Number 
of pixels  

QuickBird 
Bare Soil 

QuickBird 
Seasonal 

QuickBird 
Perennial 

High 
Bushes High Bushes MPH/CAC 1068 Average 0.33 0.32 0.35 

Std 0.39 0.36 0.45 

Deciduous 
high bushes MPH/DEC 478 Average 0.08 0.40 0.53 

Std 0.22 0.39 0.43 

Mixed Eve. 
and Dec. 
high Bushes 

MPH/DEC/EVR 5387 Average 0.10 0.23 0.68 

Std 0.21 0.31 0.41 

Eve. high 
bushes  MPH/EVR 67279 Average 0.19 0.27 0.54 

Std 0.30 0.32 0.44 

Eve. high 
bushes MPH/EVR/CAC 2694 Average 0.18 0.32 0.51 

Std 0.30 0.36 0.45 

Evergreen 
high bushes MPH/EVR/FLE 614 Average 0.53 0.38 0.09 
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Std 0.27 0.24 0.20 

Mixed Eve. 
and NL Eve. 
high bushes 

MPH/EVR/NLE 127489 Average 0.08 0.15 0.76 

Std 0.21 0.27 0.37 

Non Leafy 
Evergreen 
high bushes  

MPH/NLE 77519 Average 0.19 0.24 0.57 

Std 0.28 0.28 0.42 

All Mixed 
high bushes  282528 Average 0.14 0.21 0.65 

Std 0.26 0.29 0.42 
 

Figure 6:  Percent coverage of bare soil, seasonal and perennial vegetation of 
EBONE GHC high bushes categories in Ramat Ha'Nadiv  
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Table 12: The average percentage of vegetation coverage and its standard 
deviation for GHC trees polygons in Ramat Ha'Nadiv area 

 

GHC 
category GHC code Number 

of pixels  
QuickBird 
Bare Soil 

QuickBird 
Seasonal 

QuickBird 
Perennial 

Trees 
Coniferous 
Trees FTPH/CON 85860 Average 0.09 0.20 0.71 

Std 0.21 0.29 0.40 
Deciduous 
Trees FTPH/DEC 89519 Average 0.07 0.15 0.78 
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Std 0.19 0.27 0.36 
Mixed 
Dec. and 
Con. Trees 

FTPH/DEC/CON 10879 Average 0.07 0.10 0.83 

Std 0.25 0.25 0.35 
Mixed 
Dec. and 
Eve. Trees 

FTPH/DEC/EVR 32542 Average 0.03 0.13 0.84 

Std 0.13 0.29 0.33 
Evergreen 
Trees FTPH/EVR 104385 Average 0.08 0.19 0.73 

Std 0.21 0.31 0.39 
Mixed 
Eve. and 
Con. Trees 

FTPH/EVR/CON 4711 Average 0.20 0.09 0.71 

Std 0.37 0.19 0.42 
Non Leafy 
Evergreen 
Trees 

FTPH/NLE 490 Average 0.15 0.28 0.56 

Std 0.32 0.37 0.44 
All Mixed 
Trees  328386 Average 0.08 0.17 0.75 

Std 0.20 0.29 0.38 
 

 

Figure 7:  Percent coverage of bare soil, seasonal and perennial vegetation of 
EBONE GHC trees categories in Ramat Ha'Nadiv  
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The results of this initial analysis show the problems in using the UnMixing 
classification, as done in this project, to classify accurately the detailed 
EBONE GHC categories. Additional study is needed to check this matter. 

  

(2) Analysis looking at four combined GHC natural vegetation categories 

 

Table 13: The average percentage of vegetation coverage and its standard 
deviation of the combined GHC categories polygons in Ramat Ha'Nadiv area 

GHC 
category 

Number 
of pixels  

QuickBird 
Bare Soil 

QuickBird 
Seasonal 

QuickBird 
Perennial 

Herbaceous  102246 Average 0.24 0.59 0.17 

Std 0.33 0.38 0.34 

Trees 328386 Average 0.08 0.17 0.75 

Std 0.20 0.29 0.38 

High bushes 282528 Average 0.14 0.21 0.65 

Std 0.26 0.29 0.42 

Shrubs 26070 Average 0.21 0.53 0.26 

Std 0.26 0.35 0.38 
 

Figure 8:  Percent coverage of bare soil, seasonal and perennial vegetation of 
four combined EBONE GHC categories in Ramat Ha'Nadiv: herbaceous, 
shrubs, high bushes, and trees  
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Figure 9:  Representation of percent coverage of bare soil, seasonal and 
perennial vegetation for each of the four combined EBONE GHC categories in 
Ramat Ha'Nadiv: herbaceous, shrubs, high bushes, and trees  
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Table 14: Summary of the UnMixing classification results for Ramat 
Ha'Nadiv area:  

Perennial vegetation 
coverage 

Seasonal vegetation 
coverage 

Bare soil 
coverage  

low high low Herbaceous 
low high low Shrubs 
high low lower High shrubs 

Very high lower Very low Trees 
 

Results of the UnMixing classification map of Ramat Ha'Nadiv show a good 
ability to map bare soil, seasonal and perennial vegetation, and associate them 
with the EBONE GHC categories, especially bare soil and trees categories 
(Table 14).  

In this analysis, the UnMixing classification, by definition, is used in order to 
calculate, per pixel, the percent coverage of bare soil, seasonal vegetation 
(herbaceous) and perennial vegetation (woody vegetation). Looking at the 
results we can see that, as expected, pixels classified in the field as trees have, 
on average, a high percentage of perennial vegetation coverage and a lower 
percentage of seasonal vegetation and bare soil coverage. Pixels classified in 
the field as herbaceous show on the contrary a high percentage of seasonal 
vegetation coverage and a low percentage of bare soil and perennial coverage. 
Shrubs category (shrubs and high bushes) is a bit harder to classify using this 
method of classification. When looking at the shrub category without 
distinguishing between the two heights categories, it shows a higher coverage 
of perennial vegetation and lower percent of coverage of seasonal vegetation 
and bare soil. But, when differentiating between the two shrub categories, 
based on their height (as defined by EBONE GHC categories) we can see that 
lower height shrubs have higher seasonal vegetation coverage, like the 
herbaceous category, and on the contrary high bushes have a higher perennial 
coverage. This may introduce some errors when using this classification 
method as a way to distinguish shrubs from herbaceous as well as high bushes 
from forest trees. 

When summarizing the results we can say that we can use the UnMixing 
classification as a reliable way to classify herbaceous and shrubs (low height) 
from high bushes and trees, yet more research is needed to improve our ability 
to accurately classify herbaceous from shrubs and high bushes from forest 
trees. 
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6.4.1.3.2 Comparing the results of the UnMixing classification of the 
QuickBird images with the results of the UnMixing classification of the 
Landsat TM 

A high correlation between the results can indicate the effectiveness of using 
Landsat images that are cheaper to purchase and cover a longer historical 
dates, when it is important to map a big area. 
 

Figure 10:  Example for UnMixing classification results of QuickBird images 
vs. Landsat images in Ramat Ha'Nadiv area 

 

 
For the comparison, four ROIs, representing mostly areas of natural vegetation 
and planted trees, were digitized on the QuickBird image. A table with the 
pixel values, for each vegetation category: bare soil, seasonal, and perennial, 
derived from the QuickBird and Landsat UnMixing classification maps was 
produced. The data was analyzed to check the correlation between the results 
of the classifications (Table 15).  
 

Table 15: Results of the correlation analyses of results of the UnMixing 
classifications of Landsat and QuickBird data in Ramat Ha'Nadiv area 

Bare Soil  Seasonal Perennial 
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Correlation between Landsat 
and QuickBird data 0.74 0.53 0.75 

 

Results of the correlation show the high correlation between the the UnMixing 
classification results of the two satellite images. The lower correlation of the 
seasonal vegetation classification does not necessarily show an error in the 
classification maps but can be due to various reasons that will be disscussed in 
detail in the discussion section. 

 

 

6.4.1.4 UnMixing Classification Method - Mapping Woody Vegetation 
Density 

The woody vegetation density map was created based on the NDVI image of 
the summer QuickBird image, and its accuracy was tested by comparing the 
calculated average woody vegetation density and its standard deviation for 
each of the EBONE GHC categories: bare soil, herbaceous, shrubs, high 
bushes, and forest trees as collected by INPA in Ramat Ha'Nadiv. 

 

Figure 11:  Example for the woody vegetation density results in Ramat 
Ha'Nadiv area – comparison of results of analysis of the QuickBird image 
with field data  
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Table 16: The average woody vegetation density and its standard deviation for 
EBONE GHC categories: bare soil, herbaceous, shrubs, high bushes, and 
forest trees, in Ramat Ha'Nadiv area 

EBONE GHC Category Woody Vegetation 
Density # pixels 

Bare soil Average 0.05 36184 
Std 0.14 

Herbaceous Average 0.16 104797 
Std 0.26 

Shrubs Average 0.18 26032 

Std 0.20 
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High bushes Average 0.59 286703 
Std 0.32 

Forest trees Average 0.72 330698 
Std 0.28 

 

Figure 12:  Woody vegetation density representation of combined EBONE 
GHC categories in Ramat Ha'Nadiv  
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When comparing the woody vegetation density map with the INPA field data 
we can see, on average that areas identified as trees and high bushes have high 
woody vegetation density value, while shrubs, herbaceous, and bare soil are 
associated with lower density values. 

Possible reasons for errors in woody vegetation density values, calculated 
based on NDVI values will be discussed in detail in the discussion section. 

Nevertheless, on average, the summer QuickBird NDVI map show a good 
ability to calculate the woody vegetation density. 

 

6.4.2 Lehavim Forest 

6.4.2.1 Maximum Likelihood Supervised Classification Method 

A classification map of five EBONE GHC categories was created: bare soil, 
herbaceous, shrubs (maquis), forest trees, and agriculture (Figure 13). Its 
accuracy was calculated by comparing the classification results with field data 
(Table 18). 
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Table 17: Accuracy assessment of the Maximum Likelihood pixel-based 
classification results in Lehavim forest area, looking at the total number of 
pixels of all categories 
 
Overall Accuracy = 55% 
Kappa Coefficient = 0.44 

 

 
 EBONE GHC ground truth data 

 
 Agriculture Bare 

soil 
Forest 
trees Herbaceous Shrubs 

(Maquis) 
Grand 
Total 

C
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n 
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Agriculture 5.4 0.1 0.0 0.9 2.3 8.8 

Bare soil 0.1 1.0 0.4 2.6 2.3 6.4 

Forest trees 1.0 1.4 12.9 5.9 7.5 28.8 

Herbaceous 1.8 0.4 0.9 3.3 9.0 15.4 
Shrubs 
(maquis) 0.2 1.8 0.8 5.4 32.3 40.6 

Grand Total 8.6 4.7 15.2 18.1 53.4 100.0 
 

 

Results reveal problems in classifying correctly the image, with higher 
mixture when classifying bare soil and herbaceous using this classification 
method. Most polygons that were associated, in the field, with one EBONE 
GHC category are on the ground heterogeneous polygons that have small 
patches of other vegetation categories. This can be clearly seen on Figure 13, 
when comparing the results of the supervised classification with field data. 
The field data show polygons represented by one specific category while the 
classification map reveals the mixture of patches of categories within these 
polygons. 

In addition to the observed mixture between the categories when classifying 
them using the supervised classification, we can also identify a problem when 
comparing the total % of coverage of each category between the classified 
image and the field data (Table 18). For example: there is an underestimation 
of the % coverage of shrubs on the classified map compared with field data, 
40.6% vs. 53.4%. On the contrary there is an overestimation of the % 
coverage of forest trees on the classified map compared with field data, 28.8% 
vs. 15.2%. 

There are various reasons that may contribute to these errors and they will be 
discussed in detail in the discussion section. 

Figure 13:  Example of the Maximum Likelihood supervised classification 
map in Lehavim forest area 
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6.4.2.2 Segmentation 

Using the IDRISI software a segmentation image of the summer QuickBird 
image of Lehavim forest area was created (Figure 14).  

Figure 14:  Example of the Segmentation classification map in Lehavim forest 
area 
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Table 18:   Percent accuracy the segmentation classification results of 
Lehavim forest area compared with ground truth data (looking at the total 
number of pixels) 
 
Overall Accuracy = 57.38% 
Kappa Coefficient = 0.32 
 

 EBONE GHC Ground Truth Data 

 Class Herbaceous Bare soil Forest 
trees 

Mixed 
Shrubs Total 

C
la
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Herbaceous 4.95 0.37 2.27 11.37 18.95 
Bare soil 0.71 0.00 0.22 0.97 1.90 
Forest trees 9.48 1.24 12.69 9.33 32.73 
Shrubs 5.11 0.71 0.85 39.75 46.42 
Total 20.24 2.32 16.02 61.41 100.00 

 

Results show mixtures between the classified categories when classifying the 
QuickBird image using the segmentation method, e.g. areas of shrubs 
identified in the field that are classified as herbaceous in the classification 
map, herbaceous identified as forest trees, shrubs that are identified as forest 
trees on the classification map. In addition we can see again the inconsistency 
between the total % coverage of forest trees and shrubs identified in the field 
with their % coverage identified in the classification map. 

Possible reasons for these errors will be discussed in detail in the discussion 
section. 
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6.4.2.3 UnMixing 

4.2.3.1 Comparing the results of the UnMixing classification of the QuickBird 
images with EBONE field data 

 

Figure 15:  Example for UnMixing classification results of QuickBird images 
with EBONE field data in Lehavim forest area 

 

Table 19: The average percentage of vegetation coverage and its standard 
deviation of the combined GHC categories polygons in Lehavim forest area 

EBONE GHC 
category # pixels Bare soil Seasonal Perennial 

Urban - road 5783 Average 0.52 0.39 0.09 
Std 0.41 0.38 0.26 

Urban 946 Average 0.77 0.18 0.05 
Std 0.38 0.33 0.20 

Urban - bare soil 15327 Average 0.67 0.31 0.02 
Std 0.40 0.39 0.14 

Herbaceous 124145 Average 0.29 0.71 0.00 
Std 0.34 0.35 0.06 

Agriculture 57996 Average 0.28 0.72 0.00 
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Std 0.26 0.26 0.01 
Bare soil 16994 Average 0.20 0.80 0.00 

Std 0.30 0.31 0.06 
Forest tree 305365 Average 0.15 0.37 0.48 

Std 0.29 0.39 0.45 
Mixed Shrubs 364786 Average 0.48 0.51 0.00 

Std 0.38 0.38 0.06 
 

Figure 16:  Representation of percent coverage of bare soil, seasonal and 
perennial vegetation for each of the EBONE GHC categories in Lehavim 
forest area: 
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Figure 17:  Representation of percent coverage of bare soil, seasonal and 
perennial vegetation for each of the four EBONE GHC categories: bare soil, 
herbaceous, mixed shrubs and forest trees, in Lehavim forest area: 
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Figure 18:  Percent coverage of bare soil, seasonal and perennial vegetation of 
three combined EBONE GHC categories: bare soil, herbaceous, shrubs and 
trees in Lehavim forest area: 
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Table 20: Summary of the UnMixing classification results for Lehavim forest 
area:  

Perennial vegetation 
coverage 

Seasonal vegetation 
coverage 

Bare soil 
coverage  

none high low Bare soil 
almost none high low-medium Herbaceous 
almost none medium medium Shrubs 
high medium low Trees 

  
 
Results of the UnMixing classification map show a good ability to map pixels 
based on their percent coverage of bare soil, seasonal and perennial vegetation 
per pixel and associate them with the combined EBONE GHC categories: 
shrubs (including high bushes) and trees. As bare soil and herbaceous 
categories show close results it is recommended to use seasonal changes in 
order to improve the accuracy of their mapping. The fact that there is a high 
association between percent coverage of seasonal vegetation with the presence 
of bare soil may indicate: 1. an error in the ground data due to the season of 
the fieldwork; and 2. a need to redefine the characteristics of the bare soil 
category and add more categories for bare soil, especially in arid areas.  

 
6.4.2.3.2 Comparing the results of the UnMixing classification of the 
QuickBird images with the results of the UnMixing classification of the 
Landsat TM 
 
Table 21: Results of the correlation analyses of UnMixing classifications of 
the Landsat and QuickBird data in Lehavim forest area 

Bare Soil  Seasonal 
vegetation

Perennial 
vegetation 

Correlation between Landsat 
and QuickBird data 0.56 0.34 0.59 
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Figure 19:  Example for UnMixing classification results of QuickBird images 
vs. Landsat images in Lehavim forest area 

 

Results of the correlation show a lower correlation between the the UnMixing 
classification results of the QuickBird and Landsat images, compared with the 
correlation observed at Ramat Ha'Nadiv area. Yet, the lower corelation does 
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not necessarily show indicate an error in the classification, and can be due to 
various reasons that will be disccussed in detail at the discussion section. 

6.4.2 Avdat area 

6.4.2.1 UnMixing 

6.4.2.1.1 Comparing the results of the UnMixing classification of the 
QuickBird images with EBONE field data 

 

Figure 20:  Example for UnMixing classification results of QuickBird images 
with EBONE field data in Avdat area 

 

Table 22: The average percentage of vegetation coverage and its standard 
deviation of the combined GHC categories polygons in Lehavim forest area 

EBONE GHC 
combined category 

Number 
of pixels  

QuickBird 
Bare Soil 

QuickBird 
Seasonal 

QuickBird 
Perennial 

Bare Soil 945918 average 0.92 0.05 0.03 
std 0.12 0.09 0.05 

Shrubs 12319 average 0.77 0.16 0.07 
std 0.20 0.17 0.07 

High Bushes 4426 average 0.87 0.09 0.04 
std 0.16 0.14 0.05 
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Forest trees 841 average 0.12 0.27 0.61 
std 0.29 0.31 0.37 

Agriculture - bare soil 31682 average 0.81 0.17 0.02 
std 0.25 0.23 0.06 

Agriculture - woody 
crops 1910 average 0.80 0.10 0.10 

std 0.26 0.12 0.21 
No data 4229 average 0.93 0.06 0.02 

std 0.13 0.10 0.05 
Shrubs and Bushes 16745 average 0.80 0.14 0.06 

std 0.19 0.17 0.07 
 

Figure 21:  Representation of percent coverage of bare soil, seasonal and 
perennial vegetation for each of the five EBONE GHC categories: bare soil, 
shrubs, high bushes, and forest trees, in Avdat area 
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Figure 22:  Percent coverage of bare soil, seasonal and perennial vegetation of 
five EBONE GHC categories: bare soil, shrubs, high bushes, and forest trees, 
in Avdat area 
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As we cannot detect height of vegetation using the QuickBird image we 
combined the shrubs and high bushes category into one category of shrubs. 

Figure 23:  Representation of percent coverage of bare soil, seasonal and 
perennial vegetation for each of three EBONE GHC categories: bare soil, 
shrubs and bushes, and forest trees, in Avdat area 
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Figure 24:  Percent coverage of bare soil, seasonal and perennial vegetation of 
three EBONE GHC categories: bare soil, shrubs and bushes, and forest trees, 
in Avdat area 
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Table 23: Summary of the UnMixing classification results for Avdat area:  

Perennial vegetation 
coverage 

Seasonal vegetation 
coverage 

Bare soil 
coverage  

almost none very low high Bare soil 
low low high Shrubs 
almost none low high High bushes 

low low high Shrubs and 
high bushes 

high medium low Forest trees 
 

Results of the UnMixing classification map show a good ability to map pixels 
based on their percent coverage of bare soil, seasonal and perennial vegetation 
per pixel and associate them with the combined EBONE GHC categories: bare 
soil, mixed shrubs (low and high bushes), and forest trees. Yet, there is an 
inconsistency with our expectations to have lower % coverage of bare soil 
associated with shrubs and higher % coverage of seasonal vegetation.  
This can be related to seasonal vegetation on the ground that can be detected 
only on images acquired on appropriate dates. In addition there seem to be a 
need to redefine the characteristics of the bare soil category in the desert and 
add more categories representing different desert bare soil types.  
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6.4.2.1.2 Comparing the results of the UnMixing classification of the 
QuickBird images with the results of the UnMixing classification of the 
Landsat TM 
 

Table 24: Results of the correlation analyses of UnMixing classifications of 
the Landsat and QuickBird data in Lehavim forest area 

 
Bare Soil Seasonal 

vegetation 
Perennial 
vegetation 

Correlation between Landsat 
and QuickBird data 0.42 0.28 0.39 

 

Results of the correlation show a lower correlation between the the UnMixing 
classification results of the QuickBird and Landsat images, compared with the 
correlation observed at Ramat Ha'Nadiv area. Yet, the lower corelation does 
not necessarily show indicate an error in the classification, and can be due to 
various reasons that will be disccussed in detail at the discussion section. 

 

Figure 25:  Example for UnMixing classification results of QuickBird images 
vs. Landsat images in Avdat area 
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6.5. DISCUSSION 

…. Discussion on the 4 methods  

Results of the classification maps identify mistakes in the classification when 
compared with the ground data. Problems are associated both with mistakes in 
classifying the individual categories as well as differences in the total percent 
coverage of each category present on the map.  

These mistakes are not necessarily errors in the classification and can be 
related to the following general reasons, applicable to the four classification 
methods used in the project: 

1. Errors may be introduced due to spatial heterogeneity within natural 
vegetation, which is not captured in the polygonal presentation of 
EBONE GHC. Most polygons that are associated, in the field, with one 
dominant EBONE GHC category are on the ground heterogeneous 
polygons with small patches of vegetation categories. The supervised 
classification picks-up this heterogeneity. 

2. Maquis and forest tree species may have similar reflectance values on 
the ground. Or on the contrary low-height forest tree species that are 
still growing may be classified in the field as shrubs although 
spectrally they look on the image as trees. 

3. Problems in distinguishing herbaceous areas from bare soil might 
require adding the spring image to the classification process and 
analyzing these seasonal changes. This was achieved successfully with 
the UnMixing classification of the QuickBird images.   

When analyzing specifically the errors associated with the UnMixing 
classification maps there are other reasons that need to be taken in 
consideration: 

1. When analyzing the data and its results it is important to remember that 
the spring and summer QuickBird images were registered separately 
and have some error in their alignment. When linking the two images 
there is a small error and a pixel does not necessarily link to the exact 
same pixel on the other image. This can lead to some errors in the 
results although it is expected to affect only edges of polygons and 
contributes to a small degree of error. 

2. A limiting factor in our ability to correctly classify these EBONE GHC 
categories is the high standard deviation. In most of the cases the 
standard deviation values are higher than the average values, which 
may lead to some mistakes if we base the classification of pixels to 
defined categories only on their average percent of coverage. 
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3. The difference in the spatial resolution of the images contributes to 
changes between the UnMixing classification of the Landsat and 
QuickBird images. 

4. There is a difference in the acquisition year between landsat and 
QuickBird images. Some of the changes shown in the results of the 
UnMixing classification is a natural change due to natural vegetation 
changes occuring over the years (Table 16). Changes observed can be 
part of a method to monitor changes in the spatial distribution of 
mediterranean life forms, and to highlight areas where fieldwork is 
required to understand changes. 

5. Seasonal differences because of the different dates of acquisition of the 
images (Table 25). 
 

Table 25: List of acquiring dates of the QuickBird and Landsat images 
for the three study areas: Ramat Ha'Nadiv, Lehavim forest and Avdat 

Study area Season QuickBird image Landsat image 

Ramat Ha'Nadiv 
Spring 20/4/2010 24/3/2002 

Summer 26/7/2010 14/6/2000 

Lehavim forest 
Spring 22/3/2010 8/3/2002 

Summer 18/7/2010 11/7/2001 

Avdat 
Spring 5/4/2010 8/3/2002 

Summer 15/7/2010 27/7/2001 
 

6. Lower detectability of sparse vegetation in the Landsat image 

 

Add the scatter plots  

Figure 26: 
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The segmentation classification process as done in the project is a preliminary 
analysis and needs more study in order to improve its. Additional layers such 
as: other seasonal QuickBird images, DEM, can be used to improve the 
classification. 
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7. Results - MODIS 
7. 1 Data preprocessing 

MODIS product MOD13Q1 was downloaded from 

https://wist.echo.nasa.gov/api/. Altogether 249 images were downloaded of MODIS 

tiles 20/5, 21/5, 20/6 and 21/6, corresponding to the dates between 18/2/2000-

4/3/2000 and 3/12/2010-18/12/2010. The four tiles were mosaicked and reprojected 

into Israel Transverse Mercator (ITM, also known as Israel New Grid) coordinate 

system at a spatial resolution of 250 m. The time series thus included four spectral 

bands (bands 1-3 and 7, corresponding to the red, NIR, blue, and MIR [2105-

2155nm]) and the following variables: the normalized difference vegetation index 

(NDVI; Tucker, 1979), the enhanced vegetation index (EVI; Huete et al., 2002), 

MODIS pixel reliability flag and MODIS vegetation index quality flag (described in 

https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/vegetation_indices/

16_day_l3_global_250m/mod13q1). NDVI time series were smoothed using an 

Inverse Fourier transformation (with 20 harmonics) as applied in Idrisi Taiga Earth 

Trends Modeler. Trends were calculated on both the EVI and NDVI time series, using 

the raw and the smoothed time series. The following statistics were calculated using 

Idrisi Taiga Earth Trends Modeler: 

• Linear correlation calculates the R of the least square correlation of the series with 

a linear trend. It maps out the Pearson Product-Moment linear correlation between 

the values of each pixel over time and a perfectly linear series. This is a 

commonly used form of trend analysis, but it is sensitive to noise in short series 

• Linear trend calculates the intercept and slope of the least square correlation of the 

series with a linear trend.  
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• Median trend calculates the non-parametric Theil-Sen slope and intercept of the 

series. This is a robust non-parametric trend operator that is highly recommended 

for assessing the rate of change in short or noisy series (Hoaglin et al., 2000). It is 

calculated by determining the slope between every pairwise combination and then 

finding the median value.  

• Monotonic trend calculates the non-parametric Mann-Kendall Tau correlation 

coefficient. It provides a non-linear trend indicator that measures the degree to 

which a trend is consistently increasing or decreasing. It has a range from -1 to +1. 

A value of +1 indicates a trend that continuously increases and never decreases. 

The opposite is true when it has a value of -1. A value of 0 indicates no consistent 

trend. It is calculated in a similar fashion to the median trend. All pairwise 

combinations of values over time are evaluated at each pixel and a tally is made of 

the number that are increasing or are decreasing with time. The Mann-Kendall 

statistic is simply the relative frequency of increases minus the relative frequency 

of decreases. 

• Mann-Kendall significance calculates the z and p values of the significance of the 

monotonic trend. 

While smoothing removes noises (e.g., due to clouds) thus enabling better 

detection of gradual trends and changes in vegetation cover, it may also remove 

sudden changes in vegetation due to disturbances such as fire. Therefore we identified 

fire scars using the raw unsmoothed spectral bands. Fire scars were mapped using the 

Relative differenced Normalized Burn Ratio (RdNBR; Miller and Thode, 2007), 

which is based on the Normalized Burn Ratio (NBR; Key and Benson, 1999), and was 

computed as following: 
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    (4) 

7.2 Results 

7.2.1 Trends in NDVI values 

Overall the trends identified using the EVI and NDVI time series, whether using the 

raw data or the smoothed times series, were quite similar. The following maps present 

the linear trends identified using smoothed NDVI time series, for those areas where 

the Mann-Kendall significance was less than 0.025 (Figure 1). The non-parametric 

Theil-Sen slope and Mann-Kendall TAU are shown in Figure 2. 

I and NDVI time series, whether using the 

raw data or the smoothed times series, were quite similar. The following maps present 

the linear trends identified using smoothed NDVI time series, for those areas where 

the Mann-Kendall significance was less than 0.025 (Figure 1). The non-parametric 

Theil-Sen slope and Mann-Kendall TAU are shown in Figure 2. 

Whereas there were areas with significant positive and negative trends in NDVI 

values, examining the slopes of the trends (expressing the change in NDVI values 

with time), the overall trend is of a decrease in NDVI values, especially in the 

transition zone south of Jerusalem-Ashdod. 

Whereas there were areas with significant positive and negative trends in NDVI 

values, examining the slopes of the trends (expressing the change in NDVI values 

with time), the overall trend is of a decrease in NDVI values, especially in the 

transition zone south of Jerusalem-Ashdod. 
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Figure 1: Linear trends in smoothed NDVI values 



Figure 2: Non-parametric trends in smoothed NDVI values 

 

Specific examples of gradual changes detected using these images are given below. 

1. Decline in primary productivity as a function of decreasing rainfall 

Within the transition zone between the Mediterranean and desert climate regions, 

two areas were selected in which a significant decrease in vegetation was 

detected: the Nizzana dunes in the west, and South Hebron mountains (Figure 3). 

The observed decrease in vegetation indices values seem to correspond well with 

lagged rainfall (r = 0.73, summed over a period of 2.5 months, for the Nizzana 

dunes area: Figure 4; r = 0.77, summed over a period of two months, for the South 

Hebron mountains area: Figure 5). 
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Figure 3: Linear correlation of NDVI values with time, 2000-2010.  
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Figure 4: Changes in vegetation indices values and in rainfall in the Nizzana dunes 
area 
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Figure 5: Changes in vegetation indices values and in rainfall in the South Hebron 
Mountains area 

 

2. Vegetation recovery following fire. 

Following forest fires vegetation recovers, and these trends are evident from time 
series of vegetation indices. In Figure 6 an area within the 1995 fire of Sha'ar ha Guy 
is delineated. NDVI values increased until 2005, ten years after the fire, and have 
since remained relatively stable, indicating that NDVI became saturated and cannot 
monitor vegetation recovery any longer for that area (Figure 7). Note that the EVI 
didn't perform well as the NDVI, and does not show an increase in vegetation cover. 
Similar patterns of vegetation recovery following fire were observed in other fire 
scars in Israel (not shown). 

3. Vegetation recovery following the stop of grazing and cutting of vegetation 

The Land of Israel was under centuries of human pressures of grazing, clearing 
(cutting of vegetation) and fire. These practices came to their ending with 
afforestation efforts and nature conservation, mostly after the establishment of the 
State of Israel (Carmel and Kadmon, 1999; Kadmon and Harari-Kremer, 1999; Levin 
et al., 2003). The Hermon mountain came under Israel control in 1967, and as evident 
from the vegetation indices time series, vegetation cover on the mountain at 
elevations higher than 1,000 meters. 
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Figure 6: Regions of interest to the west of Jerusalem. 
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Figure 7: Changes in vegetation indices values and in rainfall in the area burnt during 
the forest fire of Sha'ar ha Guy, 1995 

 

Hermon Mt. 

Figure 8: Hermon mountain region of interest. 
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Figure 9: Changes in vegetation indices values and in rainfall in the higher elevations 
of the Hermon Mt. 
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4. Changes in vegetation cover due to development 

Israel's population increases at a rapid rate (compared with OECD countries), and new 
towns and neighbourhoods are constantly built. The city of Modi'in, halfway between 
Tel-Aviv and Jerusalem, was founded in 1996. Within newly built-up areas two 
processes can be observed: at first, vegetation cover decreases abruptly, as natural 
vegetation is removed in order to build roads and buildings (southern part of Modi'in; 
Figure 6, 10). Later on, vegetation cover increases, as public and private gardens are 
developed (northern part of Modi'in; Figure 6, 11). 
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Figure 10: Southern part of Modi'In – a new neighbourhood whose development 
works started in 2004. 
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Figure 11: Northern part of Modi'in – gradual increase in vegetation cover within the 
new city. 
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7.3.2 Supervised classification of MODIS imagery 

Following the approach of dynamic habitat approach of Duro et al. (reference), we 
calculated the minimum, mean, standard deviation and the coefficient of variation 
(CV) from the fourier denoised NDVI time series (Figure 12). 

 

Figure 12: Basic statistics of the NDVI time series 

 

We used these four layers within a Neural Network supervised classifier, using ten 
regions of interest, representing a broad classification of vegetation types in Israel, 
based on their seasonality. In seasonality we mean the temporal variability within and 
between years in NDVI values. Observing the average NDVI time series for the areas 
classified in Figure15 are shown in Figure 13. The seasonal range of NDVI values 
may be similar between Mesic maquis and water bodies, however the mean NDVI 
values of the maquis are much higher than those of the water bodies. To simplify 
these time series, we calculated four statistics for each pixel: the mean, minimum and 
standard deviation of NDVI values. These are shown for the areas mapped in Figure 
15 in the four barcharts of Figure 14. For example, extreme desert areas are 
characterized by low mean, minimum and standard deviation of NDVI values. 
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Figure 13: average NDVI time series for the areas classified in Figure 15. 
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Figure 14a: Average Mean of NDVI values in the areas mapped on Figure 15. 
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Figure 14b: Average Minimum of NDVI values in the areas mapped on Figure 15. 
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Figure 14c: Average Standard deviation of NDVI values in the areas mapped on 
Figure 15. 
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Figure 14d: Average Log CV of NDVI values in the areas mapped on Figure 15. 
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Figure 15: Neural Net classification of MODIS imagery based on four statistics: 
mean, minimum, standard deviation and Log CV of the denoised NDVI time series.  
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7.3.3 Differentiating between planted coniferous forests and Mediterranean 
maquis 

One of the major aims of this study was to examine whether satellite imagery can 
enable us to differentiate between planted coniferous stands and Mediterranean 
maquis. We conducted this part of the study in the following steps: 

3.3.1 Calibration layers 

We used the JNF forest stands layer to identify all stands of coniferous planted 
forests. We used the INPA layer (reference to Amos Sabah) of natural vegetation to 
identify areas of natural vegetation (excluding coniferous trees). These two layers 
were intersected with our unmixed Landsat product (resampled to 250 m), leaving in 
the analysis only those pixels where perennial cover was greater than 75% (within a 
MODIS pixel). We then sieved out patches whose area was less than four MODIS 
pixels to reduce possible spectral mixing within pixels, so as to remain with areas 
where perennial cover is high. We then examined the average time series profiles 
within planted pine forests and within Mediterranean maquis in rainfall belts of 100 
mm (using the rainfall layer used in Kadmon and Danin, 1997; Figure 22). 

As can be seen in Figure 16 and 17, as rainfall increases, minimum NDVI values 
increase and the coefficient of variation decreases, especially for planted pine forests. 
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Figure 16: Time series profiles of NDVI within planted pine forests in 100mm rainfall 
belts 
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Figure 17: Time series profiles of NDVI within Mediterranean maquis in 100mm 
rainfall belts 

In addition, we found that in all rainfall belts, the minimum NDVI values are higher 
in the maquis than in the pine stands, and the CV of NDVI values is lower in the 
maquis than in the pine stands (Figures 18-20). 
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Figure 18: Comparison of time series profiles of NDVI between Mediterranean 
maquis and planted pins stands between 150-450 mm/year 

92 
 



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

01
/0
1/
20

00

01
/0
7/
20

00

31
/1
2/
20

00

01
/0
7/
20

01

31
/1
2/
20

01

02
/0
7/
20

02

31
/1
2/
20

02

02
/0
7/
20

03

31
/1
2/
20

03

01
/0
7/
20

04

31
/1
2/
20

04

01
/0
7/
20

05

31
/1
2/
20

05

01
/0
7/
20

06

31
/1
2/
20

06

02
/0
7/
20

07

31
/1
2/
20

07

01
/0
7/
20

08

30
/1
2/
20

08

01
/0
7/
20

09

31
/1
2/
20

09

01
/0
7/
20

10

31
/1
2/
20

10

01
/0
7/
20

11

N
D
V
I maquis 500

maquis 600

maquis 700

pine 500

pine 600

pine 700

 

Figure 19: Comparison of time series profiles of NDVI between Mediterranean 
maquis and planted pins stands between 450-750 mm/year 
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Figure 20: Comparison of time series profiles of NDVI between Mediterranean 
maquis and planted pins stands between 750-950 mm/year 
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7.3.3.2 Decision tree classification 
 
We identified threshold values of minimum and CV of NDVI values 
within each rainfall belt, to differentiate between coniferous forest stands 
(mostly pines in Israel) and mediterranean maquis. These were applied 
within a decision tree in Envi (Figure 21). 
 

 
Figure 21: General scheme of the decision tree classification 
 
The output map containing two classes was intersected with the forest 
areas as identified by the neural network supervised classification (shown 
in Figure 15). The resulting map is shown in Figure 22. 
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7.3.3.3 Accuracy assessment 
 
The accuracy of the classified map of planted coniferous stands and 
Mediterranean maquis was estimated using GIS layers of the JNF and INPA as 
described above (Figure 22). 

 

 

Figure 22: MODIS classification of Mediterranean maquis and planted coniferous 
trees. 

The overall accuracy was 77% with a kappa coefficient of 0.53. While some of the 
errors may be related to misclassification of agricultural areas (e.g., in the northern 
Jordan Valley), it seems that using MODIS time series and rainfall data, coniferous 
trees can be separated from Mediterranean maquis. 
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7. 3.4 Fire mapping using MODIS 

Fires were mapped from MODIS images using the RdNBR index as described in the 
methods above, and thresholds of dNBR, RdNBR and dNDVI values were used to 
create binary images of fire scars for each date. These images were further cleaned 
from noises using the 'closing' morphological filter (3x3) followed by a sieve 
operation leaving only fire scars larger than four MODIS pixels. Figure 23 presents an 
overview of 2010 fire scars in the Golan Heights. A visual comparison with two 
Landsat images from September and December 2010, in which fire scars appear in 
brown colors, indicates that fire scar mapping can be effectively done from MODIS 
imagery, for fire scars of at least 0.5 km2.Further work is needed to refine and validate 
this methodology. 

 

Figure 23: 2010 fire scars in the Golan Heights. The Landsat images are using a false 
color composite of bands 7, 5 and 4 (blue: vegetation, brown: fire scars). 
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8. Discussion 

Overall remote sensing methods using operational passive sensors have been shown 
to enable the monitoring of gradual and abrupt changes in land cover and also enable 
mapping of broad types of Israel's land cover, at reasonable accuracies. 

Within the Mediterranean regions the full breadth of EBONE classes was found to be 
too detailed to be replicated using passive remote sensing, and we therefore had to 
merge some EBONE classes prior to accuracy assessment so they better match with 
the remote sensing classifications. On the other hand, within the desert areas, EBONE 
methodology classified most of the areas as bare soil, whereas satellite imagery 
allowed the detection of seasonal green vegetation. 

 If vegetation height is an important consideration for land cover mapping, then 
LiDAR data should be acquired and used (as in Bar-Massada et al., in press). The 
disadvantage of LiDAR data, at present, is their high cost. LiDAR coverage is not 
available for all Israel, and was acquired once by Ofek Aerial Photography. 

Using phonological data we have shown that perennial vegetation, seasonal 
vegetation and bare soil can be mapped at the sub-pixel level (following a modified 
version of the methodology of Shoshany and Svoray, 2002). This approach provides 
per pixel values of the percent cover of perennial vegetation, seasonal vegetation and 
bare soil, and can be used by INPA to create vegetation classes (e.g., areas with > 
90% perennial vegetation whose areas is > 10 ha can be defined as forest/maquis 
stands). Applying the same methodology to previous or later images (e.g., from the 
1990s or from 2010), changes in vegetation cover can be studied. 

Using detailed time series from MODIS imagery, monitoring of changes can be 
achieved, and the spatial distribution of seasonal vegetation can be mapped, being of 
special interest in the transition zones and the desert, where rainfall is highly variable 
in space and in time. MODIS imagery provides near cloud-free images at no cost and 
a temporal resolution of 16 days (albeit at a spatial resolution of 250 m). Statistically 
significant trends in vegetation cover can then be identified, to direct areas where 
further research and field work may be done, so that the trends identified and the 
factors causing them can be understood. 

One of the challenges in mapping Mediterranean vegetation is that of separating 
between maquis and coniferous planted trees. We have shown that using either high 
spatial resolution or detailed time series, maquis and coniferous trees can indeed be 
separated, at accuracies > 70%. Within QuickBird images, coniferous trees and 
especially cypress trees, were spectrally different from the maquis especially in the 
summer season. Further work is needed here, as maquis areas are also heterogeneous, 
and as the dominant species in maquis may change between areas, so the separability 
of maquis from coniferous stands may change. Maquis areas were found to possess 
less temporal variability in NDVI values, and to have higher NDVI values, especially 
in the summer, compared with coniferous trees. To separate between maquis and 
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coniferous trees on a national scale we used an ancillary layer of average annual 
rainfall, as the temporal profiles of NDVI change as rainfall increases. Additional 
ancillary layers may be further used to aid classification and to separate between 
different classes. For example, the slope can be calculated from a digital elevation 
model, so as enhance the mapping of agricultural areas that have a higher probability 
of being located in flat areas. 

While promising, we would like to note on the following limitations of remote 
sensing, as well as sources for errors in the classifications. While cloud cover over 
Israel is less than in Europe, full coverage cloud-free satellite images of Israel are not 
common, and therefore our analysis of Landsat imagery was confined to the early 
2000s. The acquisition problems of Landsat 7 since 2003 (scan line corrections) and 
low frequency of coverage of Israel by Landsat 5, didn’t allow us to map land cover 
in the late 2000s. The Landsat Data Continuity Mission (LDCM, Landsat 8) is 
scheduled for launch in December 2012. If successful, it will allow cheap monitoring 
of land cover at a national scale at a medium spatial resolution. In the meanwhile, 
purchase of Landsat-type images (e.g., SPOT) may be necessary to offer national 
coverage at a reasonable price (compared with commercial satellites) at spatial 
resolutions of 10-30 m. 

A critical issue when performing an accuracy assessment of classification results, is to 
have reliable reference data. Different data sets of collected by agencies in Israel 
provide a variety of land cover layers, using different classes and codes. While 
EBONE aims to create a uniform method for classification, it too has several 
limitations: (1) it is better suited for Mediterranean landscapes, leaving most of the 
desert areas classified as TER (bare soil); (2) being based on a polygonal 
characterization, within EBONE patches there is a lot of variability in vegetation 
cover; (3) EBONE classes are based on the highest vegetation type, even if it is not 
the dominant type in percent cover, whereas remote sensing methods are more 
affected by percent cover of area by a vegetation type, than by the height above 
ground. Segmentation techniques (as applied in this study as well as by Bar Massada 
et al., in press) allow an objective delineation of polygons and may be a useful aid in 
mapping vegetation classes in the field. 

Additional errors in our mapping may be attributed to (1) Differences in dates, 
seasons and years of the available Landsat images that were used in the different areas 
(Landsat scenes) of Israel; (2) the time gap between the Landsat imagery (early 
2000s) and the time of EBONE field mapping (2009); (3) imperfect preprocessing of 
the imagery, in terms of geometric, atmospheric and topographic corrections; (4) 
spatial differences in the phenology of a vegetation class (i.e. a specific tree species 
may start bloom in different dates as a function of local climatic conditions); (5) 
natural heterogeneity in vegetation cover, within the polygonal EBONE GHC 
reference sites, as well as errors in the delineation of the reference sites.  
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While further research is needed to improve our ability to spectrally separate between 
plant species (see Rud et al., 2006 for a preliminary work in this direction), a question 
to consider is what are the uses for which vegetation mapping is needed. For many 
uses, mapping of vegetation properties such as vegetation cover and height and 
monitoring these properties in time, maybe enough. No type of vegetation 
classification will satisfy all users and needs. Due to the heterogeneity of natural 
vegetation, vegetation classes are necessarily an arbitrary construct imposed by us 
(except in the case of homogeneous planted forest stands). One of the reasons for 
using polygonal mapping in a vector format is that it is easier to manage and to 
comprehend. Nature however is more complex, and monitoring of quantitative 
properties of vegetation seems to better correspond with real world objects. 

 

9. Operational recommendations:  

Following this work we recommend the following: 

1. An annual tasking and acquisition of cloud-free images of all Israel using a 
Landsat type sensor, around March and October, capturing maximum and 
minimum greenness. This should be government funded, therefore allowing 
the free use of these images by all relevant government agencies. 

2. An annual LiDAR coverage of Israel to be freely available for all government 
agencies, for monitoring of changes in vegetation height, coastal erosion (as 
well as urban uses). 

3. Monitoring of large scale changes in vegetation cover in Israel using MODIS 
data, freely available for downloading. This can aid in detecting 
desertification, shrub encroachment, and for mapping disturbance events. 

4. To employ within the GIS unit of INPA a remote sensing technician, that will 
be able to conduct analysis of satellite imagery. 

5. Within the LTER sites, add to the EBONE classification also detailed 
descriptions of percent cover of vegetation types (e.g., perennial, seasonal) 
within 100×100 m quadrats. 
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1. Executive Summary 
In this report we assess 

1) the consequences of implementing different spatial and  thematic resolutions on  the 
resulting data (in-situ or EO derived) for habitat monitoring and 

2) the potential of the EBONE monitoring methodology for identifying and evaluating 
changes in habitat extent, management regime and other parameters recorded.  

The assessment is based on a case study developed using eight test sites in Slovakia. Each of the 
eight test sites covers an area of 1 km x1 km. Changes in habitat extent were estimated for the 
period between 1949 and 2010 and derived from habitat maps produced using three different 
approaches:  one approach is the EBONE method which has a minimal mapping unit of 400 m2 
(0.04ha)  and uses the General habitat category nomenclature which potentially can describe 160 
different habitat classes; a second approach is the BIOPRESS method which has a minimal 
mapping unit of 5,000 m2 (0.5ha)  and uses the CORINE Land Cover nomenclature describing 44 
classes (CLC level  3); and a third approach is the CORINE land cover approach which also uses 
the CORINE Land Cover nomenclature but has a minimal mapping unit of 250,000 m2 (25 ha).  
Because the field data mapped according to the EBONE protocol did not exist for 1949, it was 
simulated.  

The results indicate that the EBONE approach produces more detailed maps (more classes and 
more polygons are being mapped) than the BIOPRESS approach. The EBONE approach 
identifies also more types of habitat changes. However, some changes identified by the 
BIOPRESS approach are not interpreted as change under the EBONE approach - e.g a change 
from CLC category 2.4.2 (complex cultivation patterns) to CLC category 2.1.1 (non-irrigated 
arable land) will remain classed as the GHC category ‘Crops’. As this type of land cover change 
is quite common in the agricultural areas of Slovakia during the studied period, the BIOPRESS 
approach found more area changed than the EBONE approach.    
 
We interpreted the observed changes in land cover/ habitat categories into generic processes of, 
amongst others intensification and afforestation, and found that for some sites the approaches 
would identify the same processes (usually in different quantity) as being dominant, whilst for 
other sites the approaches would identify different dominant processes. These differences arose 
mainly from the different nomenclature used and genuine class identification problems during the 
manual (visual) interpretation of air photos. 
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2. The introduction and background 
In the EBONE project a system for the integrated monitoring of biodiversity in space and time is 
to be developed. This system should be based on existing monitoring methods and particular 
attention is given to the integration of in-situ and remote sensing based methods. In the EBONE 
Description of work (chapter “Concept and project objectives”) are formulated two targets: 

1. The provision of a sound scientific basis for the production of statistical estimates of stock and 

change of key indicators that can then be interpreted by policy makers responding to EU 

Directives regarding threatened ecosystems and species; 

2. The development of a system for estimating past change but also for forecasting and testing 

policy options and designing mitigating management strategies for threatened ecosystems and 

species”. 

The methodology of habitats and landscape monitoring developed in EBONE has the ambition to 
serve as a scientific basis for the above mentioned statistical estimates. For each new 
methodology it is useful to evaluate its contribution through its comparison with other relevant 
available methods used in the same field and we tried to provide such evaluation in this report. 

Both targets above foresee estimation of changes what requires to have results from at least two 
time layers. However, because the EBONE methodology was only developed and tested recently, 
two time layers mapped by the EBONE methodology are currently not available for any site. 
Therefore we decided to develop a case study enabling us to test the potential of the EBONE 
methodology for assessing change using simulated data. 

The case study had the following main objectives: 

1) to quantify improvement in spatial and thematic detail achieved using the EBONE field based 
approach by comparing the EBONE mapping results with land cover/habitat maps obtained 
through remote sensing;  

2) to assess the potential of the EBONE methodology to identify and evaluate changes in habitat 
extent (general habitat categories, GHCs);  

3) to compare the change detection achieved using the EBONE field based approach with 
changes identified through remote sensing. 

We developed the case studies for 8 sites in Slovakia, in which we tested 1) EBONE monitoring 
approach using GHC maps produced on the basis of field mapping and 2) BioPress approach 
using CLC maps developed by manual interpretation of air photos. We selected a long time 
period 1949-2011 to study the landscape/habitat changes in order to guarantee the occurrence of 
significant changes and thus enable us to highlight differences between approaches. 
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3. Material and methods 

3.1 Case study sites 

For the case study we selected 8 sites located in 2 strata of the environmental stratification of 
Europe (Metzger et al. 2005) - in Pannonian (PAN2) and Continental stratum (CON2). Our 
selection we based on regular LUCAS grid 1x1 km covering whole Europe (Martino, Fritz 2008). 
In the first step, we overlaid the CORINE Land Cover (CLC) map 2006 by the LUCAS grid. In 
the next step, we excluded from selection squares where urban (CLC classes 1xx) is >10%; or 
forest (CLC 31x) is > 75 %; or intensive agriculture (CLC 211) > 30%; or water bodies (CLC 
511, 512) > 75%. From remaining squares, 5 squares per environmental stratum were selected by 
random selection. Because of lack of time, field mapping was completed in 2011 for 4 sites per 
stratum, so finally we used 8 sites for the case study. The location of the sites is displayed in 
Figure 1, some details are provided in Table 1. 
 

 
Fig. 1: Location of selected sites in Slovakia 
 
Table 1: Basic information about test sites 

 
No. Code Name Geographic coordinates 

N E 
1 CON2SK01 Klin 49˚ 25´ 45´´ 19˚ 29´ 25´´ 
2 CON2SK03 Gotovany 49˚ 03´ 53´´ 19˚ 30´ 59´´ 
3 CON2SK04 Liptovska Teplicka 48˚ 58´ 45´´ 20˚ 04´ 45´´ 
4 CON2SK05 Tisovec 48˚ 44´ 23´´ 19˚ 55´ 13´´ 
5 PAN2SK05 Tachty 48˚ 09´ 01´´ 19˚ 55´ 33´´ 
6 PAN2SK04 Sudovce 48˚ 12´ 57´´ 18˚ 50´ 21´´ 
7 PAN2SK02 Oponice 48˚ 27 29´´ 18˚ 09´ 37´´ 

Malacky 

Gôtovany 

Lipt. Teplicka 

Tisovec  

Tachty 

Oponice 

Klin 



ANNEX-9 
D5.2.2. The impact of spatial and thematic detail on change detection 

8 EBONE D5.2.2 

No. Code Name Geographic coordinates 
N E 

8 PAN2SK01 Malacky 48˚ 28´ 20´´ 17˚ 02´ 02´´ 
 
 

3.2 Remote sensing data 

3.2.1 CORINE Land Cover standard data 
The standard CORINE Land Cover (CLC) maps were obtained from the European 
Environmental Agency (EEA) data service for year 2000. The CLC data are broadly used as the 
main information source about the land cover and represent thus certain standard. We used these 
data only for illustration of differences in spatial resolution (chapter 4.1) between standard CLC 
data and other 2 types of data described in chapters 3.2.2 and 3.2.3.  
 

3.2.2 More detailed land cover maps – BIOPRESS approach 
The land cover maps on the local level (resolution 0.5 ha what corresponds to the scale 1:10.000) 
represented the basic remote sensing data type for this case study. We developed such maps for 
years 1949 and 2003 using 2 different data sources: black-and-white aerial photographs from 
1949 and otho-photomaps in true colour from 2003.  

In the first step we ortho-rectified the air photos from 1949.  Than we proceed with the manual 
interpretation of air photographs. We followed the manual describing the CLC level 3 classes 
with respect to 1:10,000 and 1:25,000 scale photos (minimum mapping unit of 0.5 ha) and 
providing rules for change detection from photo-to-photo interpretation (Feranec et al. 2004). 
This manual was developed in the EU Framework (FP5) project BIOPRESS (Gerard et al., 2010). 
To ensure consistency of interpretation, all studied sites interpreted the same interpreter. 

The approach adopted was to interpret the most recent aerial photographs first and then backdate 
them to year 1949. The year 1949 was selected because this is only year before 2000 from which 
the air photos are available for whole territory of Slovakia. The first interpretation has polygons 
labelled with the land cover of 2003 (CLC03). In the second interpretation, using the aerial 
photos of 1949 (CLC49), only new lines are added. The newly created polygons receive a label 
with the land cover of 1949 and also 2003. For polygons that did not change, the attributes of 
CLC03 are copied to CLC49. This ensured that the interpreter only added lines and created 
polygons if the land cover had changed. The results are polygons with multiple attributes which 
were used to produce change statistics (Gerard et al. 2010). Two land cover maps – from 2003 
and 1949 – represent result of this task. 
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3.3 EBONE habitat mapping data 

 
The habitat maps from the field mapping in 2010 and 2011 represented the basic data set. These 
maps were developed using the EBONE methodology for habitat monitoring (Bunce et al. 2011).  
The methodology is based on the General Habitat Categories (GHC) that are described below in 
chapter 4.2. The mapping procedure started with the manual interpretation of the aerial 
photographs (ortho-photomaps from 2003) aiming to delineate spatial units that probably 
represent one GHC or GHC combination. The result is the potential GHC map with minimum 
mapping unit 0,04 ha (400 m2) and minimal width of polygon 5 m as defined by the EBONE 
field monitoring methodology. This map was than used as a background for the field mapping - if 
necessary, the polygons were divided, merged, deleted or their boundaries were changed and both 
the GHCs and other attributes required by the EBONE methodology were recorded in the field 
forms. Based on these field data, the final GHC map was prepared in the form of the GIS layer 
with the attribute database.  
Our aim was to test changes detection by the EBONE methodology, therefore we needed at least 
two time layers. However, as the EBONE methodology was recently developed, the field 
mapping did not provide yet the data for any site from two different years. Therefore we decided 
to simulate the older mapping. We selected year 1949 - the same year that was used in remote 
sensing part (chapter 3.2.2). The first step in development of the simulated GHC map for 1949m 
was similar to backdating of the land cover map (chapter 3.2.2) – we used the GHC map from 
2003 as background and using the air photographs from 1949, we modified boundaries of spatial 
units that probably represent one GHC or GHC combination. Than the GHC unit was assigned to 
individual polygons on the basis of interpretation of the air photo from 1949. The expert 
knowledge was used for this step – the interpretation was done by the expert having both 
knowledge from the field EBONE mapping and experience with the historical air photo 
interpretation. No other attributes than the GHC unit were recorded – for addition of other 
attributes, the ancillary data are necessary.  Two habitat (GHC) maps – from 2010(2011) and 
1949 – represent result of this task. 
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4. Results 

4.1 Spatial resolution 

 
In this chapter we compare spatial resolution of 3 different products: standard CLC maps, 
spatially improved CLC maps (BioPress approach) and GHC maps (EBONE approach). The 
standard CLC product is developed for continental scale while two other products in question are 
focused to local scale. Thus it is not fully correct to compare CLC with other two product. We 
included CLC to this analysis only to set the scene – because the CLC is broadly used in Europe, 
it represents certain standard and it is good to show what improvement bring the other two 
products.  
The CLC is based on satellite photos that are manually interpreted using a set of structural criteria 
to identify land cover classes defined in advance. The aim is to receive product consistent across 
Europe is reflected also by target scale (1:100.000), minimal size of mapping unit (25 ha) and 
minimal size of change identified (5 ha).  
The BioPress project (5FP programme) used CLC approach as for legend and interpretation 
methodology, but different data source (air photos) and scale. Thus, we can consider this 
approach as the CLC modification to local scale. Because the EBONE approach is focused to 
local scale as well, we selected BioPress maps as suitable data for assessing improvement that 
brings EBONE approach to habitat monitoring against remote sensing based products at local 
scale.  As mentioned above, the BioPress approach uses the CLC legend at 3-rd level (44 classes) 
and it is based on manual interpretation of air photos. The target scale is 1:10.000, minimum 
mapping unit is 0.5 ha. 
The EBONE methodology uses the air photos for preparation of field mapping. The target scale 
is local, with minimum mapping unit 400 m2 (0.04 ha). The summary of crucial features of three 
above mentioned products are in table 2. 
 

Table 2: Spatial parameters of CORINE Land Cover, BioPress and EBONE maps 
 CORINE Land Cover Spatially improved 

CLC - BioPress 
EBONE 

Target scale Continental local local 
Data sources Satellite air photos air photos, field 
Min.mapping unit 25 ha 0.5 ha 0.04 ha 
Mapped features Polygons polygons polygons, lines, points 
 
For spatial resolution assessment we used 4 indices: number of polygons (NUMP), mean polygon 
size (MPS), edge Density (ED), and mean shape index (MSI). The calculation was done using the 
Fragstat software (McGarigal et Marks 1995). The results are in table 3. Significant differences 
between number of polygons identified by CLC and BioPress could be expected taking into 
account their big difference in target scale and resolution. The difference in spatial resolution 
between BioPress and EBONE approaches is smaller, but differences in number of identified 
polygons are big (see tab. 3, Fig. 2 and 3). The mean polygon size is negatively related to number 
of polygons, therefore we observed strong decrease in the average polygon size in direction from 
CLC to EBONE. The same pattern as for number of polygons occurred also for the edge density 
(tab. 3, fig. 4). These two measures are correlated, the EBONE mapping produced higher density 
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of boundaries than BioPress and much higher density than CLC. The mean shape index was 
lower for CLC than other 2 types of maps, the difference between BioPress and EBONE was not 
big, thus we can conclude that patches of CLC have more regular shape than other two products. 
 

Table 3: Indices of spatial landscape structure calculated for CLC, BioPress and EBONE 
maps from 8 study sites 
No.   1 2 3 4 5 6 7 8 
Site name Klin Gôtovany L. Teplička Tisovec Tachty Súdovce Oponice Malacky 
NUMP CLC 2 3 5 5 10 7 7 5 
NUMP BioPress 11 19 10 26 34 31 28 15 
NUMP EBONE 90 49 73 65 79 88 61 80 
          
MPS CLC 49.987 33.320 19.992 19.991 9.996 14.281 14.280 19.994 
MPS BioPress 9.088 5.261 9.996 3.845 2.940 3.225 3.570 6.665 
MPS EBONE 1.111 2.040 1.377 1.538   1.639 1.254 
          
ED CLC 46.0 72.5 111.6 99.1 139.8 110.2 109.6 108.6 
ED BioPress 155.3 221.9 175.1 294.9 305.7 288.5 270.0 173.6 
ED EBONE 431.4 353.8 404.2 462.6   389.2 420.6 
          
MSI CLC 1.209 1.435 1.543 1.332 1.413 1.381 1.354 1.457 
MSI BioPress 1.625 1.699 1.823 1.849 1.801 1.641 1.681 1.681 
MSI EBONE 1.766 1.760 1.662 1.944 1.705 1.734 1.940 1.738 

NUMP – number of polygons, MPS – mean polygon size /ha/, ED – edge density, MSI – mean shape 
index 
 

Fig. 2: Habitat information obtained for site 8 (Malacky) when implementing the Corine 
Land Cover nomenclature at a 25 ha MMU, a 0.5 ha MMU and when implementing the 
General habitat categories nomenclature at a 0.04 ha MMU.  

 
 

CLC, 25 ha    CLC, 0.5 ha    GHC, 0.04 ha 
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Fig. 3: Number of patches in 8 sites produced by different mapping methods 
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Fig. 4: Edge density in 8 sites obtained by different mapping methods 
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4.2 Thematic resolution 
 
In this report, we are working with two different classifications: the land cover classification 
CORINE Land Cover (used in CLC and BioPress) and EBONE classification of habitat types 
based on General Habitat Categories (GHCs). 

4.2.1 CORINE Land Cover (CLC)  
CLC is hierarchical system of the land cover categories that distinguishes 5 classes in level 1 
(artificial surfaces, agricultural areas, forests and semi-natural areas, wetlands, and water bodies). 
Level 2 includes 15 classes (table 5) and level 3 contains 44 classes (Annex I., Heymann et al. 
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1993). We worked with the CLC data at the level 3 with 44 classes individual classes are coded 
by digits – in third level, 3-digit codes are used. 
 

Table 5: CORINE Land Cover units on levels 1 and 2 
Level 1 units Level 2 units and number of level 3 units 

Artificial surfaces Urban fabric (2), industrial, commercial and transport (4), mine, 
dump, construction (3), artificial vegetated (2) 

Agricultural areas Arable land (3), permanent crops (3), pastures (1), heterogeneous 
agricultural areas (4) 

Forests and semi-natural areas Forests (3), scrubs, herbaceous vegetation (4), open spaces with 
little or no vegetation (5) 

Wetlands Inland wetlands (2) maritime wetlands (3) 
Water bodies Inland waters (2), marine waters (3) 

 

4.2.2 General Habitat Categories (GHC) 
At European level, the General Habitat Categories (GHCs) have been developed as the primary 
structure for recording ecosystems or habitats (Bunce et al., 2012). The system of GHCs is 
mainly based on plant life forms (sensu Raunkiaer 1934), but it includes non-life form habitats as 
well in order to cover whole spectrum of habitats that need to be mapped. For coding of basic 
GHCs are used 3-character codes, for combinations of GHCs the combination of the basic codes 
is used (e.g. URB/ART – urban artificial). In total, 160 GHCs are identified by Bunce et al. 
(2011), their overview is in Tab. 6 and full list in Annex 2. From table 6 is visible that category 
trees/shrubs represent more than half of distinguished GHCs (81 categories). The main reason is 
that several criteria were used for division of this group: life form, height and character of leaves.  
 

Table 6: Overview of the GHC system 
GHC group Basic GHC Combinations 
Urban 5: artificial, non-vegetated, crops, herbaceous, woody 10 
Cultivated 3: bare ground, herbaceous crops, woody crops 1 
Sparsely vegetated 5: sea, tidal, aquatic, terrestrial, ice and snow 6 
Terrestrial 6: bare rock, boulders, stones, gravel, sand, earth/mud   15 
Herbaceous 
wetland 

3: submerged hydrophytes, emerged hydrophytes, helophytes 3 

Herbaceous 6: leafy hemicryptophytes, caespitose hemicryptophytes, 
therophytes, geophytes, chamaephytes, cryptogams 

15 

Trees/shrubs 31 combinations 51 
6: dwarf chamephytes, 
shrubby chamaephytes, 
low-, mid-, tall-, forest-, 
mega forest phanerophytes 

7: winter deciduous, summer 
deciduous, evergreen, coniferous, 
spiny cushion,  non-leafy 
evergreen, canes and tree grasses, 
succulents 

 
In previous paragraphs we reviewed quite high number of CLC and GHC categories/classes that 
could potentially occur in the landscape. In real landscapes, the number of occurring categories is 
much lower – depending mainly on climate, other biophysical parameters of landscape and 
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degree of habitats modification by activity of man. Based on much higher number of GHC 
categories (160) than CLC classes (44), it is possible to expect that in real mapping, the EBONE 
approach will identify higher number of classes than CLC mapping. Results of the case studies 
showed in table 7 and figure 5 generally confirm this expectation – CLC mapping produced 
lowest number of classes, followed by BioPress approach and the EBONE mapping used highest 
number of categories. There are some exceptions, e.g. in site 5 (Tachty) the BioPress approach 
identified higher number (10) classes than EBONE mapping (9).    
 
Tab. 7: Thematic diversity indices in 8 sites obtained by different mapping methods 
No.   1 2 3 4 5 6 7 8 

Site name Klin Gôtovany L. Teplička Tisovec Tachty Súdovce Oponice Malacky 

N_Class CLC 2 2 3 4 4 5 6 3 

N_Class BioPress 7 4 4 4 10 9 8 5 

N_Class EBONE 13 8 9 11 9 15 13 12 

   

SDI CLC 0.413 0.608 0.964 1.359 1.263 1.535 1.488 1.037 

SDI BioPress 1.531 1.100 1.257 1.109 1.783 1.884 1.503 1.361 
SDI EBONE 1.922 1.690 1.432 1.832 1.739 1.987 2.024 1.833 

   

SEI CLC 0.596 0.877 0.877 0.981 0.911 0.954 0.831 0.944 

SEI BioPress 0.787 0.793 0.907 0.800 0.774 0.857 0.723 0.845 

SEI EBONE 0.749 0.813 0.652 0.764 0.792 0.734 0.789 0.738 

N_Class – number of classes, SDI – Shannon´s Diversity Index, SEI - Shannon´s Eveness Index 
 
Fig. 5: Number of classes in 8 sites mapped by different methods 
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We calculated also two biodiversity indices – Shannon´s Diversity Index SDI and Shannon´s 
Eveness Index SEI. Although also SDI showed usually highest values for EBONE mapping and 
lowest for CLC, the differences were not so noticeable as the number of classes exhibited. In case 
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of SEI, in some sites we found relationship opposite to the SDI, but in some other sites other 
pattern was found.  
 
Fig. 6: Shannon´s diversity index in 8 sites mapped by different methodology 
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4.3 Change detection and interpretation 

4.3.1 Change detection 
Each transfer from one CLC class in 1949 to another CLC class in 2003 was considered as a 
change. For changes of GHCs between 1949 and 2010, we took into account the nature of data. 
While 2010 data were obtained by field mapping , 1949 data represent simulated maps – both 
delineation of patches and assignment of the GHC class to patches was done by manual 
interpretation of black-white air photos of not sufficient quality to distinguish some GHCs. Thus 
we did not consider as change any transfer among categories of herbaceous vegetation 
(caespitopse hemicryptophytes, leafy hemicryptophytes, and their combination) and among 
neighbouringh height categories of shrubs and trees (low-medium-tall-forest phanerophytes).  
The summary of change analysis are in table 8. While BioPress approach identified 6-24 change 
types per site (average 13.5 types), the EBONE approach identified 27-82 types of changes 
(average 49.75) for the same sites. These figures clearly demonstrate consequences of the higher 
thematic resolution of EBONE approach – the number of changes types identified is much higher 
(in average by 36.25) than number of change types identified by the BioPress approach.  
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Tab. 8: Summary of changes detected by BioPress and EBONE approaches  

Site 
No of change types Changed area /%/ 

BioPress EBONE Difference BioPress EBONE  

1 Klin 7 27 20 93.07 47.99 45.08 

2 Gôtovany 11 33 22 74.87 37.43 37.44 

3. Lipt. Teplička 6 27 21 74.85 48.79 26.06 

4. Tisovec 6 57 51 65.19 62.96 2.23 

5. Tachty 22 51 29 73.54 63.32 10.22 

6. Súdovce 24 82 58 79.03 61.21 17.82 

7. Oponice 24 67 43 54.78 63.83 -9.05 

8. Malacky 8 54 46 66.92 59.36 7.56 

Average 13.5 49,75 36.25 72.78 55.61 17.17 
 
 
When analysing changed area, the relationship between these two approaches are opposite.  
BioPress approach identified changes in 54.78-93.07 % of the area of studied sites (the average 
72.78 %), the EBONE approach identified changes in 37.43-63.83 % of the area of studied sites 
(the average 55.61 %). The reason why we detected more changes by BioPress approach than by 
EBONE lies in nature of the dominant change and its different reflection by both approaches.  
We studied changes of mainly agricultural landscape during quite long time period 1949-2010. 
The main change during this period was linked to the collectivisation of agricultural land that 
started in Slovakia in early 50-ties of XX. century. In this process the narrow strips of fields, 
grasslands and eventually permanent cultures were merged to larger fields of arable land (mainly) 
or grasslands. This process represents the change in the CLC classification – transfer from class 
242 (Complex cultivation patterns) usually to class 211 (Non-irrigated arable land), eventually to 
class 231 (Pastures) or rarely to other class (e.g. 221 Vineyards or 222 Fruit trees and berry 
plantations).  
Because of finer spatial resolution, EBONE approach usually allows to identify individual narrow 
strips or small patches as separate polygons (what is not case of the BioPress approach and CLC 
methodology). Using classification of EBONE, merging narrow fields of arable land to large 
blocks of arable land does not represent change – both narrow fields of arable land and large 
blocks of arable land are classified in one GHC category (cultivated/crops - CUL/CRO). The 
same is valid also for grasslands – narrow strips of grasslands and large blocks of grasslands are 
classified in the same way.  
 

4.3.2. Changes interpretation 
The changes that we identified could be linked to certain processes. We used similar approach as 
described in Gerard et al. (2010) and distinguished following processes:  
 
Urbanisation: includes the transformation of non-urban classess to urban covers, but also to 

related covers (road systems, leisure areas, construction sites, etc).  
De-urbanisation: is opposite process – transformation of urban classes to other land cover 

categories. 
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Agricultural intensification: includes conversion of non-agricultural classes to agricultural land 
cover classess, but also cases in which agricultural areas become transformed into classes of 
more intensive agricultural practice. 

Agricultural extensification: includes agricultural areas that were transferred to classes of less 
intensive agricultural utilisation. 

Land abandonment: includes the cropping cessation, grassland abandonment and conversion into 
early successional, herbaceous or woody habitats.  

Afforestation: includes the conversion of open (more or less natural) habitats into forests. 
Deforestation is conversion of forest areas to non-forest classes. We did not consider 

transformation of forest to shrub areas as deforestation – this change in Slovakia usually 
correspond to forestry management practice – clear-cutting of forest followed by natural or 
artificial reforestation.  

Drainage: in a broad sense, includes all changes affecting aquatic or wetland habitats that are 
transformed into more terrestrial ones: disappearance of wetlands, but also changes in rivers 
and in estuarine areas.  

Wetllands increase (Irrigation?) is the opposite process to drainage – transfer from terrestrial to 
more wet habitat – either wetlands or water bodies.    

Not relevant change – transfer between classes that do not correspond to the above listen 
processes. 

No change – the same class was recognised in both periods. 
 
The classification of changes of the CORINE land cover classes to processes is summarized in 
table 9, similar classification for GHC units is in Annex 3. 
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Tab. 9: CORINE Land cover changes interpreted as processes 

1949/2003 112 121 122 132 142 211 221 222 231 242 243 311 312 313 321 324 332 412 512 
112   U     DU DU DU DU DU DU DU DU DU DU DU DU DU Ir Ir 
121         DU DU DU DU DU DU DU DU DU DU DU DU DU Ir Ir 
122   U     DU DU DU DU DU DU DU DU DU DU DU DU DU Ir Ir 
132 U U U     DU DU DU DU DU DU DU DU DU DU DU DU Ir Ir 
142 U U U U   DU DU DU DU DU DU DU DU DU DU DU DU Ir Ir 
211 U U U U U   Ex Ex Ex   Ex Af Af Af Ab Ab Ab Ab Ir 
221 U U U U U I     Ex   Ex Af Af Af Ab Ab Ab Ab Ir 
222 U U U U U I     Ex   Ex Af Af Af Ab Ab Ab Ab Ir 
231 U U U U U I I I     Ex Af Af Af Ab Ab Ab Ab Ir 
242 U U U U U I     Ex   Ex Af Af Af Ab Ab Ab Ab Ir 
243 U U U U U I I I Ex     Af Af Af Ab Ab Ab Ab Ir 
311 U U U De U De De De De De De       De   De De Ir 
312 U U U De U De De De De De De       De   De De Ir 
313 U U U De U De De De De De De       De   De De Ir 
321 U U U U U I I I I I I Af Af Af   Af   Ir Ir 
324 U U U U U I I I I I I Af Af Af De   De De Ir 
332 U U U U U I I I I I I Af Af Af   Af       
333 U U U U U I I I I I I Af Af Af   Af   Ir Ir 
412 U U U U U I I I Dr I I Af Af Af Dr Dr Dr   Ir 
512 U U U U U I I I Dr I I Af Af Af Dr Dr Dr Dr   

 
U Urbanisation  Ab Agriculture abandonment  Ir Irrigation?  

DU De-urbanisation  Af Afforestation    No relevant change 
I Agriculture intensification  De Deforestation    No changes 

Ex Agriculture extensification  Dr Drainage    

 
 
The results of change interpretation in terms of processes are summarised in table 10. Very 
similar results provided both approaches in site 4 (Tisovec), but EBONE mapping identified 
much higher number of change types. Results achieved in sites 7 (Oponice) and 8 (Malacky) are 
quite similar. In other sites we recorded higher differences between results provided by BioPress 
mapping using remote sensing and EBONE mapping based on field survey.  
The dominant intensification of agriculture identified by BioPress approach in site 1 (Klin) 
correspond to the change from complex cultivation patterns (242) to arable land (211) – this 
issues was discussed above in chapter 4.3.1. In site 2 (Gôtovany) main processes identified by 
BioPress approach are based on transition from complex cultivation patterns (242) to arable land 
(211 – classified as agriculture intensification) and to pastures (231 – classified as agriculture 
extensification). The EBONE approach did not identify change on main part of this area 
(classified either as crops or as grasslands in both periods). Afforestation was identified as the 
main process in site 3 (Liptovská Teplička) by both approaches, however, BioPress approach 
identified this process in much larger area. Main reason is that transfer from transitional 
woodland-shrub (324) to forest (here 312 – coniferous forest) is consider as change in BioPress 
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approach, but in EBONE classification both classes represent phanerophytes and thus no change 
is identified. 
 

Table 10: Processes identified by BioPress and EBONE approaches 

Process 1 Klin 1 Klin   2 Gôtovany 
3 

Gôtovany   
3. Lipt. 

Teplička 
3. Lipt. 

Teplička   
4. 

Tisovec 
4. 

Tisovec 
  BioPress EBONE   BioPress EBONE   BioPress EBONE   BioPress EBONE 

Urbanisation 6.16 6.26     1.59     0.14     0.96 
De-urbanisation   0.16                 1.38 
Agr. intensification 65.2 14.56   28.88 9.24    6.82     1.03 
Agr. extensification 4.06 18.12   36.93 2.32           1.64 
Agr. abandonment 0.82 1.14   4.53 13.78     3.2   7.98 0.39 
Afforestation   5.94   4.53 8.7   41.45 16.8   56.19 56.32 
Deforestation   0.17     0.5   0.08 0.09   1.02   
Drainage 14.24 1.65     1.18     1.05     0.2 
Irrigation?          0.11             
No relevant change 2.59       0.01     20.69     1.05 
No changes 6.89 52.01   25.13 62.57   58.47 51.21   34.81 37.04 
Total changed 93.07 47.99   74.87 37.43   74.85 48.79   65.19 62.96 
 

Tab. 10 continues 

Process 
 5. 

Tachty  
5. 

Tachty   
6. 

Súdovce 
6. 

Súdovce   
7. 

Oponice 
7. 

Oponice   
8. 

Malacky 8. Malacky 
  BioPress EBONE   BioPress EBONE   BioPress EBONE   BioPress EBONE 

Urbanisation 1.65 2.14   2.48 6.15   2.21 2.45   3.49 2.69 
De-urbanisation   1.14   0.14 1.48     1.2       
Agr. intensification 17.82 7.46   30.95 5.99   29.17 31.3   31.97 13.49 
Agr. extensification 16.25 6.41   4.7 13.75   9.73 3.35     0.85 
Agr. abandonment 1.82 1.41   1.77 0.19   3.05 1.95   1.19 2.31 
Afforestation 20.06 34.93   29.62 24.26   10.19 10.2   29.52 24.88 
Deforestation 1.15 0.07   1.62 0.02   0.43 0.67   0.74 1.21 
Drainage   0.91           0.27       
Wetlands increase? 10.48 8.85                   
No relevant change 4.3     5.38 9.36     12.44     13.93 
No changes 26.46 36.68   23.34 38.79   45.22 36.17   33.08 40.64 
Total changed 73.54 63.32   76.66 61.21   54.78 63.83   66.92 59.36 
 
In site 5 (Tachty) both approaches identified afforestation as a main process, followed by other 
processes identified by both approaches: agriculture intensification, agriculture extensification 
and wetland increase. However, there are differences in area in which both approaches identified 
individual processes. In site 6 (Súdovce) the agriculture intensification identified as a main 
process by BioPress approach represent mainly transfer from complex cultivation patterns (242) 
to arable land – this transfer is not considered as change by EBONE approach as mentioned 
above. Afforestation - the second most abundant process – identified both approaches in similar 
amount.  
We can summarise that the main differences in identification of processes by two different 
approaches arose mainly from different definition of classes in CLC and GHC classifications. 
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These differences are related mostly to class 242 Complex cultivation pattern that includes 
(together with 243) heterogeneous land cover classes. Identification problems during manual 
(visual) interpretation of air photo represent other sources of differences in assessment of 
processes – this is linked especially to problems to distinguish arable land from grasslands as well 
transitional woodland shrubs from forest types. 

5. Conclusions  
 

In this report, we tried to compare results of two different mapping methodologies: spatially 
refined CORINE Land Cover mapping operating on landscape level and EBONE mapping 
focused more to habitats. Our work in the case studies had several limitations, including quite 
low quality of historical black-white air photos from year 1949 and the lack of EBONE mapping 
data from 2 time horizon that leaded to necessity to “simulate” historical GHC map. Therefore 
the “change” part of this report (chapter 4.3.) should be considered as test of possible assessment 
of changes in land cover and habitat cover respectively in time. Nevertheless, we tried to keep 
our estimates as close to reality as possible.  

We can conclude that the GHC (EBONE) approach produced spatially more detailed maps and 
distinguished more classes than CLC (BioPress) approach. Interpretation of changes and 
comparison of results needs knowledge of both CLC and GHC classifications and methodologies 
and in addition, also local knowledge of the site. When assessing the change detection, we can 
observe that GHC approach identified more types of changes than CLC approach. Changes 
detected by air photo interpretation (CLC) and EBONE field mapping (GHC) are often different 
and refer to different processes. The differences in thematic resolution, different definition of 
classes and limitations of manual air photo interpretation represent main reasons of differences in 
changes and processes identification. 
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Annex 1: Corine Land Cover Legend 

LEVEL1 LEVEL2 LEVEL 3 

1.
 A

R
TI

FI
C

IA
L 

SU
R

FA
C

ES
 

1.1Urban fabric  1.1.1 Continuous urban fabric  
1.1.2 Discontinuous urban fabric  

1.2 Industrial, commercial and transport 
units  

1.2.1 Industrial or commercial units  
1.2.2 Road and rail networks and associated land  
1.2.3 Port areas  
1.2.4 Airports  

1.3 Mine, dump and construction sites  1.3.1 Mineral extraction sites  
1.3.2 Dump sites  
1.3.3 Construction sites  

1.4 Artificial, non-agricultural vegetated 
areas  

1.4.1 Green urban areas  
1.4.2 Sport and leisure facilities  

   

2.
 A

G
R

IC
U

LT
U

R
A

L 
A

R
EA

S 2.1 Arable land  2.1.1 Non-irrigated arable land  
2.1.2 Permanently irrigated land  
2.1.3 Rice fields  

2.2 Permanent crops  2.2.1 Vineyards  
2.2.2 Fruit trees and berry plantations  
2.2.3 Olive groves  

2.3 Pastures  2.3.1 Pastures  
2.4 Heterogeneous agricultural areas  2.4.1 Annual crops associated with permanent crops  

2.4.2 Complex cultivation patterns  
2.4.3 Land principally occupied by agriculture, with 

significant areas of natural vegetation  
2.4.4 Agro-forestry areas  

   

3.
 F

O
R

ES
T 

A
N

D
 S

EM
I-

N
A

TU
R

A
L 

A
R

EA
S 

 

3.1Forests  3.1.1 Broad-leaved forest  
3.1.2 Coniferous forest  
3.1.3 Mixed forest  

3.2 Scrub and/or herbaceous vegetation 
associations 

3.2.1 Natural grasslands  
3.2.2 Moors and heathland  
3.2.3 Sclerophyllous vegetation  
3.2.4 Transitional woodland-shrub  

3.3 Open spaces with little or no vegetation  3.3.1 Beaches, dunes, sands  
3.3.2 Bare rocks  
3.3.3 Sparsely vegetated areas  
3.3.4 Burnt areas  
3.3.5 Glaciers and perpetual snow  

   

4.
 W

ET
LA

N
D

S 
 

4.1 Inland wetlands  4.1.1 Inland marshes  
4.1.2 Peat bogs  

4.2 Maritime wetlands  4.2.1 Salt marshes  
4.2.2 Salines  
4.2.3 Intertidal flats  

   

5.
 W

A
TE

R
 

B
O

D
IE

S 

5.1 Inland waters  5.1.1 Water courses  
5.1.2 Water bodies  

5.2 Marine waters  5.2.1 Coastal lagoons  
5.2.2 Estuaries  
5.2.3 Sea and ocean  
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Annex 2: General Habitat Categories – full list 

General Habitat Category  Code 
URBAN  URB  
Artificial  ART  
Non Vegetated  NON  
Crops  VEG  
Herbaceous  GRA  
Woody vegetation  TRE  
Artificial / Non-Vegetated  ART/NON  
Artificial / Crops  ART/VEG  
Artificial / Herbaceous  ART/GRA  
Artificial / Woody  ART/TRE  
Non Vegetated / Crops  NON/VEG  
Non Vegetated / Herbaceous  NON/GRA  
Non Vegetated / Woody  NON/TRE  
Crops / Herbaceous  VEG/GRA  
Crops / Woody  VEG/TRE  
Herbaceous / Woody  GRA/TRE  
CULTIVATED  CUL  
Bare Ground  SPA  
Herbaceous Crops  CRO  
Woody Crops  WOC  
Herbaceous/Woody Crops  CRO/WOC  
SPARSELY VEGETATED  SPV  
Sea  SEA  
Tidal  TID  
Aquatic  AQU  
Ice and Snow  ICE  
Terrestrial  TER  
Sea/Tidal  SEA/TID  
Sea/Ice  SEA/ICE  
Sea/Terrestrial  SEA/TER  
Tidal/Aquatic  TID/AQU  
Tidal/ Terrestrial  TID/TER  
Aquatic/Terrestrial  AQU/TER  
TERRESTRIAL  TER  
Bare Rock  ROC  
Boulders  BOU  
Stones  STO  
Gravel  GRV  
Sand  SAN  
Earth, Mud  EAR  
Rock/Boulders  ROC/BOU  
Rock/Stones  ROC/STO  
Rock/Gravel  ROC/GRV  
Rock/Sand  ROC/SAN  
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General Habitat Category  Code 
Rock/Earth  ROC/EAR  
Boulders/Stones  BOU/STO  
Boulders/Gravel  BOU/GRV  
Boulders/Sand  BOU/GRV  
Boulders/Earth  BOU/EAR  
Stones/Gravel  STO/GRV  
Stones/Sand  STO/SAN  
Stones/Earth  STO/EAR  
Gravel/Sand  GRV/SAN  
Gravel/Earth  GRV/EAR  
Sand/Earth  SAN/EAR  
HERBACEOUS WETLAND  HER  
Submerged Hydrophytes  SHY  
Emergent Hydrophytes  EHY  
Helophytes  HEL  
Submerged Hydrophytes / Emergent Hydrophytes  SHY/EHY  
Submerged Hydrophytes / Helophytes  SHY/HEL  
Emergent Hydrophytes / Helophytes  EHY/HEL  
HERBACEOUS  HER  
Leafy Hemicryptophytes  LHE  
Caespitose Hemicryptophytes  CHE  
Therophytes  THE  
Geophytes  GEO  
Chamaephytes  HCH  
Cryptogams  CRY  
Leafy Hemicryptophytes / Caespitose Hemicryptophytes  LHE/CHE  
Leafy Hemicryptophytes / Therophytes  LHE/THE  
Leafy Hemicryptophytes / Geophytes  LHE/GEO  
Leafy Hemicryptophytes / Herbaceous Chamaephytes  LHE/HCH  
Leafy Hemicryptophytes / Cryptogams  LHE/CRY  
Caespitose Hemicryptophytes / Therophytes  CHE/THE  
Caespitose Hemicryptophytes / Geophytes  CHE/GEO  
Caespitose Hemicryptophytes / Herbaceous Chamaephytes  CHE/HCH  
Caespitose Hemicryptophytes / Cryptogams  CHE/CRY  
Therophytes / Geophytes  THE/GEO  
Therophytes / Herbaceous Chamaephytes  THE/HCH  
Therophytes / Cryptogams  THE/CRY  
Geophytes / Herbaceous Chamaephytes  GEO/HCH  
Geophytes / Cryptogams  GEO/CRY  
Chamaephytes / Cryptogams  HCH/CRY  
TREES/SHRUBS  TRS  
Dwarf Chamaephytes Winter Deciduous  DCH/DEC  
Dwarf Chamaephytes Evergreen  DCH/EVR  
Dwarf Chamaephytes Coniferous  DCH/CON  
Dwarf Chamaephytes Winter Deciduous / Evergreen  DCH/DEC/EVR  
Dwarf Chamaephytes Winter Deciduous / Coniferous  DCH/DEC/CON  
Dwarf Chamaephytes Evergreen / Coniferous  DCH/EVR/CON  
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General Habitat Category  Code 
Shrubby Chamaephytes Winter Deciduous  SCH/DEC  
Shrubby Chamaephytes Evergreen  SCH/EVR  
Shrubby Chamaephytes Coniferous  SCH/CON  
Shrubby Chamaephytes Non-Leafy Evergreen  SCH/NLE  
Shrubby Chamaephytes Summer Deciduous and/or Spiny Cushion  SCH/SUM  
Shrubby Chamaephytes Winter Deciduous / Evergreen  SCH/DEC/EVR  
Shrubby Chamaephytes Winter Deciduous / Coniferous  SCH/DEC/CON  
Shrubby Chamaephytes Winter Deciduous / Non-Leafy Evergreen  SCH/DEC/NLE  
Shrubby Chamaephytes Winter Deciduous / Summer Deciduous  SCH/DEC/SUM  
Shrubby Chamaephytes Evergreen / Coniferous  SCH/ EVR/CON  
Shrubby Chamaephytes Evergreen / Non-Leafy Evergreen  SCH/EVR/NLE  
Shrubby Chamaephytes Evergreen / Summer Deciduous  SCH/EVR/SUM  
Shrubby Chamaephytes Coniferous / Non-Leafy Evergreen  SCH/CON/NLE  
Shrubby Chamaephytes Coniferous / Summer Deciduous  SCH/CON/SUM  
Shrubby Chamaephytes Non-Leafy Evergreen / Summer Deciduous  SCH/NLE/SUM  
Low Phanerophytes Winter Deciduous  LPH/DEC  
Low Phanerophytes Evergreen  LPH/EVR  
Low Phanerophytes Coniferous  LPH/CON  
Low Phanerophytes Non-Leafy Evergreen  LPH/NLE  
Low Phanerophytes Summer Deciduous  LPH/SUM  
Low Phanerophytes Winter deciduous / Evergreen  LPH/DEC/EVR  
Low Phanerophytes Winter deciduous / Coniferous  LPH/DEC/CON  
Low Phanerophytes Winter deciduous / Non-Leafy Evergreen  LPH/DEC/NLE  
Low Phanerophytes Winter Deciduous Summer  LPH/DEC/SUM  
Low Phanerophytes Evergreen / Coniferous  LPH/ EVR/CON  
Low Phanerophytes Evergreen / Non-Leafy Evergreen  LPH/EVR/NLE  
Low Phanerophytes Evergreen / Summer Deciduous  LPH/EVR/SUM  
Low Phanerophytes Coniferous / Non-Leafy Evergreen  LPH/CON/NLE  
Low Phanerophytes Coniferous / Summer Deciduous  LPH/CON/SUM  
Low Phanerophytes Non-Leafy Evergreen / Summer Deciduous  LPH/NLE/SUM  
Mid Phanerophytes Winter Deciduous  MPH/DEC  
Mid Phanerophytes Evergreen  MPH/EVR  
Mid Phanerophytes Coniferous  MPH/CON  
Mid Phanerophytes Non Leafy Evergreen  MPH/NLE  
Mid Phanerophytes Summer Deciduous and/or Spiny Cushion  MPH/SUM  
Mid Phanerophytes Winter Deciduous / Evergreen  MPH/DEC/EVR  
Mid Phanerophytes Winter Deciduous / Coniferous  MPH/DEC/CON  
Mid Phanerophytes Winter Deciduous / Non-Leafy Evergreen  MPH/DEC/NLE  
Mid Phanerophytes Winter Deciduous / Summer Deciduous  MPH/DEC/SUM  
Mid Phanerophytes Evergreen / Coniferous  MPH/EVR/CON  
Mid Phanerophytes Evergreen / Non-Leafy Evergreen  MPH/EVR/NLE  
Mid Phanerophytes Evergreen / Broadleaved / Summer Deciduous  MPH/EVR/SUM  
Mid Phanerophytes Coniferous / Non-Leafy Evergreen  MPH/CON/NLE  
Mid Phanerophytes Coniferous / Summer Deciduous  MPH/CON/SUM  
Mid Phanerophytes Non-Leafy Evergreen / Summer Deciduous  MPH/NLE/SUM  
Tall Phanerophytes Winter Deciduous  TPH/DEC  
Tall Phanerophytes Evergreen  TPH/EVR  
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General Habitat Category  Code 
Tall Phanerophytes Coniferous  TPH/CON  
Tall Phanerophytes Non-Leafy Evergreen  TPH/NLE  
Tall Phanerophytes Summer Deciduous  TPH/SUM  
Tall Phanerophytes Winter Deciduous / Evergreen  TPH/DEC/EVR  
Tall Phanerophytes Winter Deciduous / Coniferous  TPH/DEC/CON  
Tall Phanerophytes Winter Deciduous / Non-Leafy Evergreen  TPH/DEC/NLE  
Tall Phanerophytes Evergreen / Coniferous  TPH/EVR/CON  
Tall Phanerophytes Evergreen / Non-Leafy Evergreen  TPH/EVR/NLE  
Tall Phanerophytes Evergreen / Summer Deciduous  TPH/EVR/SUM  
Tall Phanerophytes Coniferous / Non-Leafy Evergreen  TPH/CON/NLE  
Tall Phanerophytes Coniferous / Summer Deciduous  TPH/CON/SUM  
Forest Phanerophytes Winter Deciduous  FPH/DEC  
Forest Phanerophytes Evergreen  FPH/EVR  
Forest Phanerophytes Coniferous  FPH/CON  
Forest Phanerophytes Summer Deciduous  FPH/SUM  
Forest Phanerophytes Winter Deciduous / Evergreen  FPH/DEC/EVR  
Forest Phanerophytes Winter Deciduous / Coniferous  FPH/DEC/CON  
Forest Phanerophytes Evergreen / Coniferous  FPH/EVR/CON  
Forest Phanerophytes Evergreen / Summer Deciduous  FPH/EVR/SUM  
Forest Phanerophytes Coniferous/ Summer Deciduous  FPH/CON/SUM  
Mega Forest Phanerophytes Deciduous  GPH/DEC  
Mega Forest Phanerophytes Evergreen  GPH/EVR  
Mega Forest Phanerophytes Conifer  GPH/CON  
Mega Forest Phanerophytes Summer deciduous  GPH/SUM  
Mega Forest Phanerophytes Winter Deciduous / Evergreen  GPH/DEC/EVR  
Mega Forest Phanerophytes Winter Deciduous / Coniferous  GPH/DEC/CON  
Mega Forest Phanerophytes Evergreen / Coniferous  GPH/EVR/CON  
Mega Forest Phanerophytes Evergreen /Summer Deciduous  GPH/EVR/SUM  
Mega Forest Phanerophytes Conifer /Summer Deciduous  GPH/CON/SUM  
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 Annex 3: Changes of GHC interpreted as processes (continues on the next page) 
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