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Abstract: The cost effective monitoring of habitats and their biodiversity remains a 

challenge to date. Earth Observation (EO) has a key role to play in mapping habitat and 

biodiversity in general, providing tools for the systematic collection of environmental data. 

The recent GEO-BON European Biodiversity Observation Network project (EBONE) 

established a framework for an integrated biodiversity monitoring system. Underlying this 

framework is the idea of integrating in situ with EO and a habitat classification scheme 

based on General Habitat Categories (GHC), designed with an Earth Observation-perspective. 

Here we report on EBONE work that explored the use of NDVI-derived phenology metrics 

for the identification and mapping of Forest GHCs. Thirty-one phenology metrics were 

extracted from MODIS NDVI time series for Europe. Classifications to discriminate forest 

types were performed based on a Random Forests™ classifier in selected regions. Results 

indicate that date phenology metrics are generally more significant for forest type 

discrimination. The achieved class accuracies are generally not satisfactory, except for 

coniferous forests in homogeneous stands (77–82%). The main causes of low classification 

accuracies were identified as (i) the spatial resolution of the imagery (250 m) which led to 

mixed phenology signals; (ii) the GHC scheme classification design, which allows for 

parcels of heterogeneous covers, and (iii) the low number of the training samples available 

from field surveys. A mapping strategy integrating EO-based phenology with vegetation 

height information is expected to be more effective than a purely phenology-based approach.  
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1. Introduction 

At the 10th world Conference of the Parties to the Convention on Biological Diversity a revised and 

updated strategic plan for biodiversity was adopted [1]. Integral to its main objective of halting and 

reversing trends in biodiversity loss is the need to monitor habitats and biodiversity. In Europe, the 

Council, the executive body defining the general political directions and priorities of the Union, has 

stressed the need to integrate biodiversity concerns into all sectoral policies [2]. In this context, it is 

generally acknowledged that Earth Observation (EO) can provide essential tools to support national 

and international monitoring systems, in order to enable the continuous large scale collection of 

environmental data [3,4]. One of the most crucial sectors where EO can play a key role is land-cover 

mapping, by enabling systematic monitoring of habitats and the derivation of extent and fragmentation 

indicators [5].  

The quality and detail achieved when mapping land cover using EO is primarily limited by the 

manner in which electromagnetic radiation interacts with the physical and chemical properties of the 

land surface. If habitat classes of interest respond similarly across the whole spectrum in terms of 

visible and near-infrared reflectance, thermal emission, and microwave scattering, separating these into 

distinct classes using EO becomes a complex problem. The BioHab habitat classification system [6] 

was intentionally designed with an EO-perspective on habitats, by making the nomenclature more 

amenable to EO’s sensitivity to vegetation physiognomy. The system is based on BioHab General 

Habitat Categories (GHCs) developed from the practical experience of the GB Countryside Survey [7], 

and adapted for continental Europe through a series of validation workshops. The GHC classification 

scheme is an attribute-based scheme using life forms for natural habitats and non-life forms for 

artificial cover. The first dichotomous divisions lead to a set of six super-categories (Urban, Cultivated, 

Sparsely Vegetated, Tree and Shrubs, Herbaceous wetland and other Herbaceous), which determine 

the series of attributes that can be used to identify the appropriate GHC. The BioHab scheme has been 

adopted by the European Biodiversity Observation Network project, EBONE [8], of which the main 

objective is to establish a framework for an integrated biodiversity monitoring and research system 

based on key biodiversity indicators at the European institutional level. Part of the project focused on 

determining the role of EO in this biodiversity monitoring system. One of the options considered was 

to use EO-derived habitat maps to extrapolate sample-based in situ observations. For this to work the 

EO derived map would have to deliver habitat classes which were, at least, thematically linked to or, at 

best, represent the GHC of the BioHab scheme used in situ [9]. Different approaches for delivering 

land cover and habitat maps from EO exist and the choice of approach often depends on the data 

available, e.g., [10,11]. The EBONE study reported here explored whether phenology metrics, as 

derived from currently available medium resolution NDVI time series, could play a role in habitat 

mapping and more specifically in mapping the forest (Phanerophytes) GHCs of the BioHab scheme.  

The use of multi-temporal imagery has already delivered maps of natural vegetation at the biome 

level [12], land cover at national or regional scales [13,14], habitats [15], vegetation types [16,17], and 
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in some cases, species [18]. Also, regular (8, 10, 16-day) time-series of EO-imagery have been 

exploited to derive vegetation phenology characteristics and links with climate [19] and for change 

analysis [20]. The methods used generally involve Principal Component Analysis [21], Fourier 

analysis [22], statistical analysis [23], or phenology metrics. This last approach has been used for 

looking at trends in growing season length in the northern hemisphere [24,25]; for separating 

herbaceous from woody vegetation cover [26]; for crop identification [27], or for continental 

estimations of biophysical parameters, such as Gross Primary Production [28].  

The main objectives of the present study were twofold. First, to explore the use of MODIS  

NDVI-derived phenology metrics for the identification and classification of Forest GHC, and second, 

to provide general recommendations for the mapping of GHC types using phenology information. 

2. Materials and Methods 

2.1. MODIS NDVI Data and Pre-Processing 

A time-series of MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data was 

prepared. It consists of 10-day NDVI Maximum Value Composites (MVC) built according to 

Holben [29] from daily surface reflectance data (MOD09). The series stretches across six full years 

from 2004 to 2009 and covers the whole of continental Europe. The MODIS NDVI MVC series was 

provided to EC JRC by the Flemish Institute for Technological Research (VITO NV) and includes 

atmospheric correction, cloud detection, and calibration [30–32]. Missing values, clouds, snow and 

rock outcrops were flagged. To complete the time-series, the flagged data points were substituted by 

their seasonal mean (i.e., mean of that 10-day period for the available years). These 10-day composites 

were preferred to the available MODIS 16-day composites of vegetation indices (NDVI, EVI) because 

their higher temporal resolution allows for more detailed and informative vegetation signal curves. 

Outliers were detected by applying the Chebychev’s theorem (95% confidence interval) and were also 

substituted by seasonal means [33]. Pixels for which no seasonal mean could be calculated, for 

example, pixels which are snow-covered throughout the same time periods of each year, were given a 

linear interpolated NDVI value using the nearest existing data points in time. Finally, NDVI data were 

filtered using a Savitzky-Golay smoothing filter [34], using a temporal window size of 6 decades and a 

polynomial function with degree m = 4. These values were found by Chen et al. [34] to represent a 

good trade-off between preserving temporal detail in NDVI time-series and removing potential 

outliers. An aggregated data gap frequency was calculated by adding up all single decadal masks (36) 

and combining the result with a water mask (Figure 1). This layer was used to identify regions with a 

high frequency of data gaps and assess the impact of data loss on our classification (Section 2.3). 

2.2. Extraction of Phenological Information 

A frequent assumption in the analysis of phenology through EO-derived time series of vegetation 

indices (VI) is that the vegetation leaf seasonal cycles can be defined through a regular pattern [35]. 

An annual season cycle can be described in general terms as represented by (a) one component which 

is the permanent signal, or ‘background’ and (b) a variable component which is a function of seasonal 

dynamics [36]. The latter is generally characterized by an initial growing period, during which the VI 
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signal increases, a maturity period when it reaches a maximum at a certain time (tMAX), and a 

senescence period during which the VI signal decreases back towards the background level. An 

idealized scheme is shown in Figure 2(a). 

Figure 1. Frequency of decadal (i.e., 10 day) data gaps in MODIS NDVI across Europe 

caused by missing values, cloud, snow and rock outcrops showing a gradual increase in 

data gap frequency with latitude and problem areas in the mountains. 

 

In reality, this pattern is influenced by a number of variables that shape and modify the VI signal: 

(i) the type of the vegetation contained in the remotely-sensed image pixel; (ii) the environmental 

variables driving the phenology (for example: precipitation, temperature, flooding, irrigation); (iii) the 

degree of spatial heterogeneity (e.g., land cover, vegetation type and topography) contained within the 

pixel; (iv) the changes in cover and condition of the vegetation over time (e.g., land cover change 

processes, health status, drought effects) and (v) the signal noise caused by, for example, aerosols, 

clouds, snow or varying solar-viewing geometry. 

The regular pattern assumption described above forms the basis of the Phenolo model [37,38] used 

in this study, and the many other models and algorithms developed to derive phenology metrics. A lot 

of uncertainty still exists regarding the ‘ecological meaning’ and accuracy of phenology metrics 

derived from EO time-series. A comparison of a single phenology metric ‘start of season’ showed a 

worrying degree of variability of the metric between algorithms which for the temperate latitudes 

could mount up to ~15 days in either direction [39]. Although the absolute values of the metrics may 

be biased and variable between approaches (including their preceding gap filling and smoothing 
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methods), the relative differences detected using a single approach could still remain a powerful means 

of differentiating phenologically different vegetation types. Our choice of the Phenolo model and the 

preceding gap filling and smoothing method is a pragmatic one, based on ease of access and expertise 

in running the model. 

Figure 2. Observed VI values (grey crosses) and seasonal/permanent components of a 

theoretical vegetation cycle, modified from [24] (a). Smoothed curve (blue) and forward 

and backward lagging curves (dotted) defining phenology metrics in Phenolo v.2009 [37] 

(b). Examples of Phenolo productivity phenology metrics (c,d). 

 

(a)       (b) 

 

(c)       (d) 

Phenolo uses smoothing and moving average algorithms to derive a large set of phenology metrics 

from VI time series. A number of studies investigated vegetation dynamics by exploiting date 

phenology metrics [40,41], the main ones being the timing of the start and end of the growing season. 

To define such parameters, Phenolo (version 2009) proceeds as follows: in the first step the model 

applies to the VI time series a median filter on a sliding temporal window of 5 successive time points. 

This is followed by the calculation of one forward and one backward lagging curve using a moving 

average algorithm. For example, for a forward lag an x-day moving average value of time point p is 

calculated as the average of values for the x time points from (p-x) to p. The resulting averaged values 
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will always reach similar magnitudes as the original p values later in time. The lag distance, defined in 

terms of the number of successive time points x, is defined by applying 1 standard deviation from the 

barycentre of the integral surface of the curve [37], as shown in Figure 2b. This value can be changed 

according to analyses needs.  

Following Reed et al. [40], the start of the growing season (point SOS in Figure 2(b)) was defined 

in Phenolo as the first crossing point between the smoothed curve and the forward lagged curve. The 

same criterion applies for the end of season (EOS), represented by the intersection between the 

backward curve and the smoothed one. The point corresponding to the maximum value of the 

vegetation signal is the Peak of Season (POS). The Growing Season End (GE) is defined as the higher 

intersection point between the forward lagged curve and the signal curve. The EOS, SOS, POS and GE 

points define two metrics each, defined by the correspondent Day and the NDVI value on the Cartesian 

axes. The time interval in days between SOS and EOS defines the Season Length (SL), while the time 

interval between the minima in the phenology curve is referred in the model as the Total Length (ML). 

By combining the above date metrics and the VI curve, the Phenolo model derives a series of 

productivity phenology metrics (Figure 2(c,d)). Particularly relevant among them are: (i) Seasonal 

Permanent Fraction (SPF), defined as the area between the line connecting Start and End of season and 

the x axis; (ii) the Season Integral (SI), the integral under the vegetation signal curve delimited by the 

start and the end of season; (iii) the Total Permanent Fraction (TPF), defined as the area between the 

timeline connecting the vegetation signal minima and the x-axis; (iv) and the Total Integral (TI), the 

integral under the vegetation signal curve delimited by the two vegetation signal minima. TI is a proxy 

that represents an approximation of the Net Primary Productivity [28]. The GE point defines the 

Growing season Integral (GI) and derived integrals (Table 1). Other phenology indicators, obtained by 

the model applying algebraic operations from the metrics listed above, are briefly presented in Table 1. 

For further discussion on phenology metrics construction in Phenolo 2009, see [37,38]. Overall, 31 

metrics were extracted from the 6-year MODIS NDVI time series. The development of Phenolo is still 

in evolution, consequently all derived parameters’ description and their use are related to the model 

version that was available at the beginning of this research (ver. 2009); for this reason the calculation 

of certain variables is not guaranteed in future versions. 

Table 1. Phenology metrics extracted by Phenolo (ver. 2009), with short explanation and 

acronyms defined in the model.  

Phenology Indicator  Acronym in Phenolo 

Start of Season, SOS (Day) SBD 

Start of Season, SOS (Value) SBV 

End of Season, EOS (Day) SED 

End of Season, EOS (Value) SEV 

Season Length (EOS-SOS) SL 

Season Integral: the integral under the vegetation signal 

curve delimited by EOS and SOS 

SI 

Normalized Season Integral SNI 

Seasonal Permanent Fraction: the area below the line 

connecting SOS with EOS, and the x axis. 

SPI 

Season Total Ratio [SI/(SI+SPF)] STR 



Remote Sens. 2012, 4            

 

 

1787 

Table 1. Cont. 

Phenology Indicator  Acronym in Phenolo 

Growing Season End, GE (day) GED 

Growing Season End, GE (value) GEV 

Growing Season Length GL 

Growing Season Integral GI 

Normalized Growing Season Integral GNI 

Growing Season Total Ratio*: [GI/(GI+SPF)] GTR 

Growing Season Permanent Fraction: the permanent area 

fraction below the curve connecting SOS with Growing 

Season End 

GPI 

Minimum before SOS (Day) MBD 

Minimum before SOS (Value) MBV 

Minimum after EOS (Day) MED 

Minimum after EOS (Value) MEV 

Total Length: Length in time between minima (Days) ML 

Total Integral, TI: the area under the vegetation signal curve 

delimited by the two minima. 

MI 

Normalized Total Integral MNI 

Above Minima Total Ratio: above minima integral over TI MTR 

Total Permanent Fraction, TPF: the area below the line 

connecting the vegetation signal minima and the x axis. 

MPI 

Season Exceeding Integral: (TI-SI) SEI 

Growing Season Exceeding Integral: (TI-GI) GEI 

Season Barycentre SBC 

Standard Deviation of the Season vegetation curve SSD 

Peak of Season, POS (Day) MXD 

Peak of Season, POS (Value) MXV 

Output minus Input Length (365 – GL) OMI 

*discarded. 

2.3. Classifications Using Random Forests 

The Random Forests™ classification technique [42] was chosen to classify the extracted phenology 

metrics to map forest habitats as defined in the General Habitat Category scheme. Forests in this 

scheme are categorized as Forest Phanerophytes (FPH), within the supercategory of Shrubs and Trees 

(TRS). For a parcel to be given the FPH code, trees should cover at least 30% of the parcel, where a 

tree is defined as having a minimum height of 5 m. The following (leaf) forms allow for a further 

subdivision: coniferous (FPH/CON), deciduous (FPH/DEC) and evergreen (FPH/EVR) forests. Detailed 

information on the GHC rule-based system adopted to establish which habitat and phyto-sociological 

vegetation associations is represented in the Forest Phanerophytes class is described in [43]. 

Random Forests (RF) was chosen as it has multiple advantages: it is accurate, not sensitive to noise 

and computationally lighter than other classification methods. Also, this approach has been previously 

reported to produce promising results when applied to classify multi-source remote sensing and 

geographical data [44]. Breiman [42] defines Random Forests as a classifier consisting of a collection 

of tree structured classifiers {h(x, k), k=1,... } where the {k)} are independent identically 
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distributed random vectors, and each tree casts a unit vote for the most popular class at input x. The 

collection of trees (‘forest’) classifiers finally chooses the most frequent class (mode) by combining all 

the ‘votes’ from the trees. Split within tree is evaluated using the Gini index, i.e., the attribute with the 

highest index value is chosen for the node split. Each tree is grown as follows [42]: (i) the number of 

cases in the training set being equal to N, then sample at random N cases with replacement; (ii) a 

number m<<M is specified in the way that at each node, m variables are selected at random out of the 

M input variables, and the best split on these m variables is used to split the node (m constant during 

forest growing); (iii) each tree is grown to the largest extent possible (unpruned trees). Using this 

bootstrap replication sampling, on average about a third of training instances (36.8%) is not used for 

building each tree. The M input variables are represented by the 31 phenology metrics extracted from 

the MODIS NDVI time series. The Random Forests needs as input a number of reference samples, 

which are then internally split into a set of training samples and a set of test samples. The former 

provides the ‘truth’ information about the classes investigated, while the latter is a set of points used to 

provide an estimate of error in the classification trees (‘Out Of Bag’ error, or OOB). In this 

classification technique, there is no need for cross-validation or a separate test to get an unbiased 

estimate of the error, which is internally estimated during the run [44]. 

2.3.1. Field Data and Reference Pixels Selection 

Reference pixels were extracted from the 1 km × 1 km field plots which were either surveyed as 

part of the EBONE project or sourced from existing field survey schemes of other projects. For the 

latter field plots, a translation of their habitat nomenclature to the GHC scheme had to be performed. A 

total of 99 field plots were acquired, located in Austria, Italy, south-east France and Sweden. Some of 

the field plots from Sweden had to be discarded from the analysis, as the NDVI time series in these 

regions were affected by very large periods of missing data (prolonged cloud coverage, snow, etc). The 

1 km
2
 field plots were provided as a vector layer containing manually digitized polygons (minimum 

mapping unit of 0.04 ha) and their associated GHC class attributes. Polygons with Forest 

phanerophytes attributes (classes FPH/CON, FPH/DEC) were selected and overlaid with the 250 m 

grid of MODIS NDVI data (Figure 3). A pixel was considered as ‘pure’ and hence suitable as a 

reference pixel, if the proportion of CON or DEC was greater than or equal to 70% in the MODIS 

pixel. A total of 80 pure pixels was extracted (51 CON and 29 DEC). The evergreen forest type 

(FPH/EVR) was not evaluated due to the absence of reference data. Random Forests classifications 

were performed to map the coniferous and deciduous forests types, by using routines developed by 

Liaw and Wiener [45] in the R language. Two test regions were selected, based on the location of the 

reference pixels and to maximize environmental dissimilarity: (i) the territory of Austria and (ii) the 

Mediterranean Environmental Zone (MDN), as defined by Metzger et al. [46]. Forests in Austria are 

mostly coniferous, whilst the MDN zone is mainly characterized by a mixture of coniferous  

and deciduous. 

The JRC Forest Cover Map 2006 [47] (hereafter JFM2006) was used for an independent validation 

of the RF classification results. JFM2006 was derived using IRS-P6 LISS-III, SPOT4 (HRVIR) and 

SPOT5 HRG imagery for the years 2005–2007. The overall accuracy of the JFM2006 was reported to 

be between 87% and 88% [48]. The spatial resolution is 25 m. The forest classes include coniferous or 
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broad-leaved type attributes making them comparable with the GHC forest categories when the 

deciduous and evergreen forest classes are merged into a broad-leaf forest class. This choice was based 

on multiple reasons: (1) it has a pan European coverage, thus allowing inter-comparisons across a wide 

range of regions in Europe, (2) it covers the same period included in the MODIS NDVI time series, 

and (3) it is the only recent European-wide dataset holding broadleaved and coniferous forest type 

information. The validation dataset was produced from the JFM2006 as follows:  

• JFM2006 data were re-gridded to match the spatial resolution of the MODIS NDVI data by 

summarizing the proportion of 25 m forest pixels present within each 250 m pixel; 

• The 250 m pixels characterized by a proportion of either coniferous or broad-leaved  

forest ≥ 70% were selected. 

Figure 3. Forest phanerophytes polygons identified in the field plot, FPH/CON (dark 

green) and FPH/DEC (light green), are overlaid with the MODIS NDVI grid (250 m) to 

extract the reference pixels (in transparent red). LAEA projection. 

 

2.3.2. Classifications: Austria 

To establish which of the phenology metrics are likely to contribute the most to the performance of 

the RF classifier, 29 recursive classification tests were performed. At every cycle the phenometric with 

the lowest Mean Decrease Accuracy (MDA) is excluded. MDA is a measure calculated by the RF that 

quantifies the decrease in classification accuracy that occurs when eliminating an input variable (i.e., a 

phenology indicator) from the classifier [42]; in other words, MDA is used to determine the ‘variable 

importance’ in the classification. For each classification the number of random phenometric used at 

each node (m) was set to 4, the number of trees was 500 and 100 runs were performed.  

Using a sample of the reference pixels, OOB error values are calculated by the RF for each of the 

29 classifications. The configurations with the two lowest OOB errors and the higher error were 
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chosen to carry out three final RF classifications on the population of MODIS NDVI pixels that have 

at least 70% proportion of forest cover in the JFM2006.  

The accuracy assessment was performed by carrying out a pixel based comparison between the 

JFM2006 validation data set and the RF forest classifications of the three phenometric configurations. 

For every classification, a confusion matrix is calculated to derive an overall class accuracy value. 

Visual observation of classification results suggested that the areas of major discordance between 

classified and validation data are located in regions of mixed forest formations. To investigate if the 

RF classification accuracy could be improved, a mixed class was introduced in the classification 

scheme. The mixed class is defined with the following rule: a pixel should have a proportion of 

FPH/CON < 70% or FPH/DEC < 70% but their sum should be greater or equal to 70% of forest (FPH). 

A new set of RF reference (pure) pixels representing the mixed class were identified following this 

rule. The phenology metrics configuration which achieved the highest overall accuracy in the previous 

classification exercise was selected and a RF classification performed. The JFM2006 does not provide 

information on mixed forest types. As a consequence, in this case an accuracy measure was derived 

using CORINE Land-Cover 2006 data (CLC2006) at 250 m as reference dataset (downloadable at 

www.eea.europa.eu), considering classes Broad-leaved forest (Class 311), Coniferous forest (Class 

312) and Mixed forest (Class 313).  

2.3.3. Classifications: Mediterranean Environmental Zone 

For the Mediterranean Environmental Zone two phenology metrics configuration were chosen: 

(i) the one configuration which achieved the higher FPH/DEC class accuracy in the Austrian case; and 

(ii) the full set of metrics. RF classifications of FPH Coniferous and Deciduous forests were performed 

(no mixed classes), with tree numbers = 500 and m = 4. Also in this case, the subpopulation of pixels 

on which the classification was performed was defined by selecting the 250 m pixels that have at least 

a 70% share of coniferous and/or broadleaved forest calculated using the JFM2006. The accuracy 

assessment followed the same procedure as described for Austria. A visual inspection of the FPH/CON 

and FPH/DEC training pixels using GoogleEarth
® 

was also carried out to analyze potential sources of 

low classification accuracy.  

2.3.4. Classifications: The Impact of Data Gaps in VI Time Series 

Time series of vegetation indices are often characterized by the presence of data gaps mainly caused 

by clouds, haze and snow. The potential impact of these gaps on classification accuracy was also 

explored. A set of NDVI pure pixels of FPH/CON and FPH/DEC showing absence of data gaps (no 

interpolated values in the series of NDVI MVC decades) were selected. The ‘purity’ criterion is the 

same as applied before. All pixels were chosen with the condition of being located within the MDN 

zone, and to have a correspondent pixel in the JFM2006 validation dataset. Restricting the test to the 

MDN zone was necessary to minimize the influence of bio-geographical variations in forest 

composition. The MDN zone also has a much larger proportion of gap-free time series as the incidence 

of cloud and snow is much lower in the southern latitudes than in the northern latitudes (Figure 1).  

The following processing steps were followed: 
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• Introduction of 10 consecutive data gaps (i.e., 10 contiguous no-data decades) per year across the 

full 6 years of MODIS NDVI time series; 

• Extraction of the FPH/CON and FPH/DEC reference (pure) pixels from the NDVI time series with 

added data gaps; 

• RF classifications, using all the phenology metrics, of the NDVI time series with added data gaps; 

• Accuracy assessment and comparison with classification accuracy using the original gap-free 

NDVI data.  

3. Results and Discussion 

In the classification tests performed in Austria, the Mean Decrease Accuracy parameter shows that 

the four most relevant variables in the RF classification are all date phenology metrics (Figure 4): day 

of peak of season (MXD), minimum values before SOS and after EOS (respectively MEV and MBV) 

and start of season value (SBV). Figure 5(a) shows a marked difference in NDVI minima values 

between the FPH/CON class and the FPH/DEC class in the reference data set used, explaining the 

RF classifier’s output. This difference in minima is also observed between ground based NDVI 

series collected from deciduous (broadleaved) and evergreen (coniferous and broadleaved) forests in 

France [49]. This study also showed marked differences in maximum values which is not so evident 

from our reference plots. When evaluating the time series of a different sample set, for example a 

random set selected from CLC2006 (Figure 5(b)), the differences in maximum NDVI values are more 

prominent and it is likely that the RF, using this reference set, could have identified ‘NDVI value at 

peak of season’ (MXV) as a relevant phenology metric.  

Figure 4. Mean Decrease Accuracy values from the first iterative RF classification 

(FPH/CON, FPH/DEC) using all phenology metrics (Austria).  
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Figure 5. Average NDVI time series for pure 250m MODIS pixels in Austria of 

FPH/CON, FPH/DEC and MIX classes identified through (a) the GHC forest reference set 

of 1 km
2
 field plots in Austria; (b) a random set extracted from the CLC2006 map. 

 

(a) 

 
(b) 

The OOB error generally decreases when performing classifications with sets of phenology metrics 

listed at the top of the MDA graph. OOB errors varied from 0.092 to 0.128, showing very good 

accuracies for the classification of the pure pixels set. The RF classification results using the 

phenometric configurations that produced the two lowest (hereafter ‘A’ and ‘B’) and the highest OOB 

(‘C’), produced variable accuracies when compared with the JMF2006 validation data, Only the 

FPH/CON forest class reached good accuracy results (82%–77%), while FPH/DEC did not achieve 

acceptable accuracy levels: 37%–30% (Table 2). 
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Table 2. Class accuracies (%) in different phenology metrics configurations (Austria). 

 Phenology Metrics Configuration  

Forest Class  A B C 

Coniferous – FPH/CON 82.18 82.39 76.70 

Deciduous – FPH/DEC 37.31 36.55 29.65 

Forest Class  - B - 

Coniferous – FPH/CON - 79.03 - 

Deciduous – FPH/DEC - 44.54 - 

Mixed – MIX - 21.31 - 

The area with the highest discordance between the RF classifications and the JMF2006 validation 

dataset is located in south-east Austria in the Graz region (Figure 6). Here forest types are characterized 

by mixed formations, as observed in the CLC2006 map and Austrian regional maps. Despite the 

inclusion of the mixed forest class, the RF classification continued to produce poor accuracy results, 

with the exception of the FPH/CON forest class (Table 2). A study by Dokter et al. [50] showed how a 

gradual shift in pixel area proportion from pasture to deciduous forests was matched with a gradual 

shift in the EO derived date of SOS. A similar effect is to be expected for any pixels containing a 

mixture of covers with distinct phenological behaviors. A visual analysis of the NDVI time series of 

the pure pixels representing the three forest classes showed an unexpected trend in the NDVI values of 

the MIX forest class: in the summer period NDVI values are frequently, but only slightly, higher than 

both pure pixel groups representing the coniferous (FPH/CON) and deciduous (FPH/DEC) forest class. 

The potential for differentiation between all three classes is more towards the end of the summer, 

however the differences in NDVI values are very small. This behavior is not observed in a random set 

of CLC2006 points extracted in Austria for the same classes (Figure 5(b)), where mixed forests, as 

expected, show intermediate NDVI values between the two homogeneous forest classes. Also, the 

differences in NDVI values among the three classes are more distinct. 

The two RF classifications performed in the MDN Environmental Zone also showed low 

classification accuracy, with values generally lower than the ones for Austria (Table 3). These results 

can be explained by the following three factors. Firstly, the thresholds used to select the MODIS 

reference pixels were based on the forest class proportion estimated from the GHCs field plot 

observations (Figure 3). Visual analysis of the FPH/CON and FPH/DEC training pixels, using high 

resolution imagery from GoogleEarth
®

, revealed high intra-class heterogeneity with respect to the 

spatial arrangement of the vegetation. As an example, polygons of FPH/DEC forest overlaid on the 

high resolution images showed large differences in terms of tree density and the amount of non-forest 

background (soil and/or understorey vegetation) present. These differences will have an impact on the 

pixel spectral signatures and their temporal evolution. For example, large NDVI inter-annual 

differences in the winter period of two FPH/DEC points within the same 1 km
2
 field plot are visible in 

Figure 7(a). In contrast, visual observation of FPH/CON forest parcels in Austria often showed dense 

and homogeneous forest stands. As demonstrated by Doktor et al. [50] for SOS, these variations in 

percentage of forest cover and background reflectance values are expected to increase the within class 

variability of a large number of date and productivity metrics, which could potentially decrease their 
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effectiveness. Secondly, using validation data also derived from spectral information (JFM2006) to 

calculate classification accuracy is likely to lead to misleading accuracy results. This is especially true 

when the non-forest component is high, and forest density low (as observed in the MDN zone). 

Figure 7(b) shows mismatches between the JFM2006 data and the FPH/DEC field polygons. Finally, 

another factor which is expected to lower the classification accuracy is the absence of RF reference 

pixels for the FPH/EVR class (evergreen broadleaved). This was due to the small number of available 

GHC field plots. For a successful classification all relevant phenological classes potentially found in 

the area of interest should be represented by the reference data. 

Figure 6. Maps of (a) Random Forest classification with best accuracy values; (b) forest 

layer derived from the JRC Forest Cover Map 2006 (LAEA projection). The blue circles 

indicate the area of major disagreement. 

 

 

a) 

b) 
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Table 3. Class accuracies (%) for two phenology metrics configurations (MDN Zone). 

 Phenology Metrics Configuration 

Forest Class A All 

Coniferous – FPH/CON 34.84 47.65 

Deciduous – FPH/DEC 52.96 58.01 

Figure 7. FPH/DEC polygons (transparent green) (a) over GoogleEarth® images, with 

NDVI trends of two pure pixels. (b) FPH/DEC over JFM2006 data at 25 m (dark green). 

 

a) 

1 

2 

. 2 
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Our case studies suggest that the combined phenology metrics—RF approach may not be best 

suited for dealing with mixed/heterogeneous pixels, whether these are a mixture of forest GHCs or a 

mixture of forest and non-forest GHCs. Phenology metrics are designed to capture the general shape of 

the time-series whilst at the same time deliver measures which describe meaningful physiological 

events in the plant life cycle. These may not be sufficient to detect the subtle differences resulting from 

cover mixtures. Other approaches have been developed which could offer a solution: the use of Fourier 

analysis to characterize and subsequently map the full shape of a time-series of cover classes which 

represent a mixture of vegetated and non-vegetated attributes [22]; and temporal unmixing where a 

standard linear spectral unmixing procedure is applied on a pixel time-series instead of spectra [51,52]. 

Although the former has the advantage of being able to capture the full shape of a time-series it has the 

same disadvantage of our method. It requires the training for mixed classes. As mixtures represent a 

gradient between two or more homogeneous covers, the exact definition and identification of a mixed 

class is a rather ambiguous task. The latter method was tested on crop landscapes where the phenology 

between classes is very distinct and unlike the subtle differences we observed between FPH/DEC and 

FPH/CON. Without a comprehensive comparison it is not clear which of these methods would be the 

most effective in differentiating forest types. 

Figure 8. Pre-processing chain applied to the NDVI time series of a 250 m pixel representing 

a deciduous broadleaved forest (FPH/DEC): the original time series (left column) and the 

time series with added data gaps (right). Original NDVI data (a); substitution with seasonal 

means and outlier analysis (b); interpolated no data values between nearest existing points in 

time (c); Savitzky-Golay filtering (d). 

 
(a) 

 
(b) 
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Figure 8. Cont. 

 
(c) 

 
(d) 

The impact of data gaps in the NDVI time series on the classification results was also explored. 

The pre-processing applied to the NDVI time series is partly able to cope with data gaps, especially if 

they are short in length. For longer gaps, the latter may imply serious problems, especially if the 

significant phenological changes are expected to occur within the missing time gap. Statistics of NDVI 

decades showed that the majority of no data flags occur, as expected, in the winter period (January 

and December are the most affected months). This winter time interval was chosen as the more 

adequate to introduce the artificial no data sequences in order to simulate a real-like situation for 

Europe. The length of no data segments introduced is equal to 10 decades each. A comparison of the 

pre-processing steps carried out for a sample point using the original NDVI time series and the same 

with added data gaps is shown in Figure 8. Class accuracies derived from the RF classification using 

all phenology metrics for FPH/CON and FPH/DEC showed accuracies decreasing by only <1% 

for both forest types. The insertion of data gaps, contiguous and located in the same temporal 

windows, did not significantly change the classification outcome. Pre-processing operations dealt 

effectively with data gaps, producing plausible NDVI time series. This result is important in 

suggesting that data gaps correctly processed are not among the main factors influencing the 

classification performance. An analysis to test the statistical significance of change in phenology 

metrics from original data and with data gaps added, carried out using a random subset of 4,085 points, 

showed statistically significant changes. Nevertheless, these changes were not sufficient to 

significantly change the classification results. 
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4. Conclusions 

The combined use of the Phenolo model with the Random Forests classification technique allowed 

for the extraction and classification of large sets of phenology metrics from MODIS NDVI time series 

for the whole of Europe in a fast and effective way. The provision by the Random Forests classifier of 

an unbiased internal error (Out Of Bag error) and a measure of variables importance (Mean Decrease 

Accuracy) helped to identify the most effective phenology metrics for forest type discrimination and 

classification. In the tests performed, the phenology date metrics (i.e., dates and NDVI values of 

specific points on the time series) were found to be more important than the productivity metrics (i.e., 

below time series area metrics). The most relevant Phenolo metrics were associated to the Peak of 

Season points (dates and NDVI values) and the curve absolute minima. Nevertheless, further analyses 

across a variety of landscapes and biogeographical zones are needed to infer general conclusions on 

the importance of single phenology metrics for forest type classification.  

The Random Forest approach produced satisfactory classification accuracy in areas where pixels 

and field parcels are spectrally homogeneous (e.g., coniferous forest in Austria). Where these were 

commonly heterogeneous, the approach failed to achieve adequate mapping accuracies. The habitat 

classification scheme used (BioHab-General Habitat Category) is an attribute-based system, which 

allows for habitat parcels to consist of heterogeneous covers. In the case of the Phanerophytes class, 

tree cover can range from 30% to 100%. These types of classification systems are the preferred 

approach for continental and global land cover or habitat mapping. The result, however, is that within a 

parcel, heterogeneity is common and it translates into a variable set of training pixels and associated 

NDVI time-series. Introducing a bio-geographical zonation to reduce within attribute variability is one 

way forward. Creating a reference training set from homogeneous pixels that are representative of the 

attributes on which a classification system is another. However, the coarse size of the image pixels 

(250 m to 1,000 m) at which time-series are currently available do not allow for the retrieval of a 

sufficient number of homogeneous reference pixels required to take into account the large variability 

in phenology signals found across the different environmental zones. Also, when we describe 

heterogeneous or mixed pixels, we are referring to horizontal mixtures, whilst in this context the 

vertical layering of vegetation showing different phenological behaviors is as important as the 

horizontal one. Whilst the delivery of time series at substantially reduced pixel sizes (e.g., 10–20 m) 

would greatly reduce the incidence of heterogeneous pixels and so enhance the Earth Observation 

mapping performance, we still need to better understand (i) how spatially and temporally variable 

phenology signals integrate into a single signal, and (ii) how the temporal gradient of phenology 

changes observed in situ across species translates into the vegetation index signal. Making operational 

use of time series of vegetation indices to differentiate land cover or habitat types will require 

procedures which deliver consistent outputs across space and time. At the moment, without a 

comprehensive comparative assessment, it is not clear which phenology-based methods would be the 

most effective in differentiating forest and other habitat types.  

Training and validation of Earth Observation-derived national to continental scale cover or habitat 

maps often suffer from a lack of suitable reference data, and our case reaffirms this issue. Earth 

Observation is considered to be a cost effective alternative to field-based monitoring. However, to 

achieve a reliable and well validated Earth Observation product, a fit-for-purpose field survey has to be 
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an integral part of the mapping exercise. Here, the training and validation sites formed part of a field 

plot sampling framework designed to deliver zonal statistics on habitat extent for Europe. The option 

of using these field plots (10,000 across Europe) as a source of training and validation sites for Earth 

Observation habitat mapping requires further investigation. 

In our analyses the introduction of artificial data gaps in the NDVI time series did not impact the 

classification accuracy and, although changes in gap configuration (e.g., number of missing data points 

and relative timing of the gaps) could potentially introduce more noise in the signal and eventually 

significantly affect the classification outcome, our results suggest that winter data gaps are not a major 

source of misclassification.  

Finally, other habitat type elements taken into account by the BioHab-General Habitat Category 

(e.g., vegetation height) can provide valuable information to be considered in a classification using  

EO-derived information. A mapping strategy which integrates phenology metrics with, for example, 

vegetation height estimates from LiDAR or high resolution radar, could be potentially more effective 

than a pure phenology-based approach. 
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