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ABSTRACT: A series of baited camera and trap experiments in the eastern Mediterranean Sea
between 1500 and 4264 m depth attracted a variety of opportunistic scavengers, with species com-
position changing with increasing depth. At the shallower stations (1500 to 1800 m), decapod crus-
taceans and fishes, dominated by elasmobranchs such as Hexanchus griseus, were attracted to and
actively consumed the bait. Some of these species were observed at depths exceeding their pre-
viously reported ranges. This was believed to be a result of the absence of deep-water scavengers
from the adjacent Atlantic due to dispersal barriers and elevated temperatures at depth. The diver-
sity of bait-attending fauna declined with increasing depth. Elasmobranchs were not observed below
2500 m, and below 4000 m only the caridean shrimp Acanthephyra eximia and the macrourid Chal-
inura mediterranea were present; at this latter depth, bait consumption was negligible. This shift in
species composition was reflected in changes in first arrival times. Increasing first arrival times of
H. griseus suggested a decline in relative abundance from 1500 to 2500 m, whilst those of C. medi-
terranea indicated an increase in relative abundance from 1800 to 4264 m.
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INTRODUCTION

The deep-sea environment is characterised by distinct
vertical gradients of pressure, light, temperature and
food availability (Carney et al. 1983, Gage & Tyler 1991).
As aresult of these gradients, depth-related changes in
benthic and benthopelagic fauna have frequently been
observed in trawl catches (Merrett & Marshall 1981,
Hecker 1990, Gordon & Bergstad 1992, Fujita et al. 1995,
Moranta et al. 1998). An alternative sampling technique,
using free-fall baited traps and cameras, has also de-
monstrated both depth-related and latitudinal changes
in relative abundance and diversity of opportunistic
scavenging megafauna (Desbruyéres et al. 1985, Priede
etal. 1994, Thurston et al. 1995, Collins et al. 1999, Yau et
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al. 2002). In some of these studies, the relative abun-
dance of species attracted was inferred from differences
in the time taken for the first individual to reach the
baited camera (Priede & Merrett 1996, 1998). Similar
methods have proved successful in shallower habitats
for estimating the abundance of predatory reef fishes
(Ellis & DeMartini 1995, Willis & Babcock 2000, Willis et
al. 2000). Some important assumptions are necessary:
that individuals are evenly dispersed across the sea floor;
that they are mobile; and that the dispersal time of the
odour plume is invariant between stations. The tech-
nique has its biases (see Willis & Babcock 2000), but
offers a relatively low-cost method of sampling mobile
fauna at great depths, as well as providing additional
information on habitat and behaviour.
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Very little is known of the ecology of deep demersal
fauna in the eastern Mediterranean. These waters
constitute a unique environment characterised by un-
usually warm temperatures of 13 to 14°C, and extreme
oligotrophy (Dugdale & Wilkerson 1988, Ignatiades
1998, Psarra et al. 2000). A sharp gradient of availabil-
ity of organic matter exists, related to depth and dis-
tance from the shore (Tselepides & Eleftheriou 1992,
Karakassis & Eleftheriou 1998, Tselepides et al. 2000a).
Compared to other areas of similar latitude and depth,
there is a general scarcity of deep-sea benthos, from
microbes and meiofauna (Soyer 1985, Danovaro et al.
1995) to macrofauna (Fredj & Laubier 1985, Tselepides
& Eleftheriou 1992, Tselepides et al. 2000b). The lack
of food, in combination with high temperatures induc-
ing high metabolic rates, is believed to be the main
reason for the impoverished benthic fauna (Péres
1982). Some limited deep-water trawling in this region
has confirmed the scarcity of ichthyofauna (Tortonese
1960, Klausewitz 1989), and baited trap deployments
have not yielded the familiar scavengers, such as
lysianassid amphipods (Christiansen 1989, Albertelli
et al. 1992).

In this paper we describe the results of a series of
baited camera and trap experiments carried out be-
tween 34 and 36.5°N and 25 and 28.5°E during the
course of 2 research cruises. The results were analysed
in terms of composition and distribution of benthic and
benthopelagic bait-attracted species between regions,
seasons and in relation to the depth gradient. In addi-
tion to simple presence and absence information, the
times of first arrival of species attracted to the camera
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baits were compared between stations for indications
of trends in relative abundance.

MATERIALS AND METHODS

A total of 11 stations were sampled in 1998, 3 in Jan-
uary during a cruise aboard RV 'Meteor’, and a further
8 in June aboard RV ‘Philia’. Fig. 1 indicates the posi-
tions of these stations and Table 1 gives details of each
deployment depth and duration. In the Cretan Sea,
deployments were made from 1500 m down to the
maximum depth of 2490 m (in the Karpathos Basin). In
the Rhodos Basin, 2 stations were sampled; one on the
slope, the other at its base, between 3850 and 4000 m.
Finally, 3 sets of deployments were made in the lera-
petra Basin between 3000 and 4264 m. At each station,
paired deployments of the baited trap and time-lapse
camera were made 1 nautical mile apart. This pro-
vided the opportunity of verifying identification of
photographed species with trap samples, whilst mini-
mising the interference between the 2 food sources.

System components and deployment methods. The
AUDOS (Aberdeen University Deep Ocean Sub-
mersible) vehicle used in this study comprised an
aluminium frame supporting a vertically orientated
time-lapse camera (Umel) with twin flashlights, battery
supply (DSPL, Deep Sea Power and Light) and a dual
acoustic release system (Mors). Underwater, the frame
was suspended between a mooring line providing
positive buoyancy and a 2 m length of wire linked to a
120 kg ballast clump. This ballast, onto which a refer-
ence scale and bait (10 to 20 kg tuna
pieces) were attached, rested on the
seabed in view of the camera above.
Photographs were taken at pre-set
intervals of a 2.5 m area of the seabed.
Ektachrome 200 ASA colour positive
film was used, with a possible maxi-
mum of 800 frames. The time interval
between photographs was set ac-
cording to the deployment duration
(Table 1). At the end of each deploy-
ment, the acoustic release system jetti-
soned the wire attached to the ballast
clump, allowing the frame to return to
the surface for recovery. Further de-
tails of the design and operation of the
AUDOS vehicle used in these experi-
ments can be found elsewhere (Bagley
& Priede 1997, Priede & Bagley 2000).

' At each station, the baited fish trap
was deployed for between 12 and 36 h.

Fig. 1. Study area, showing positions of paired camera and trap deployments.
All January stations have prefix W, June stations prefix S and trap deployments
prefix T

This consisted of a rectangular metal
frame (1000 x 800 x 800 mm) covered
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with a 20 mm wire mesh, with 2 conical-shaped open-
ings on opposite sides, one situated 100 mm above the
bottom with an exterior diameter of 300 mm and an
interior diameter of 150 mm, the other situated 300 mm
above the bottom and with exterior diameter of 400 mm
and an interior diameter of 250 mm. The trap was
deployed and retrieved as a free-fall lander using glass
flotation (Benthos) and an acoustic release (Mors). For
each deployment, approximately 3 to 4 kg of squid and
1 kg of mackerel were used as bait.

Analysis of time-lapse photographs. Following pro-
cessing, film was viewed on a microfilm viewer. Identi-
fication of species observed was made using relevant
literature descriptions (e.g. Whitehead et al. 1984,
Bellan-Santini et al. 1982a,b) and comparison with
trap-caught specimens. Confidence in the identifi-
cation of those species regularly observed in photo-
graphs and caught in the trap was high. However the
identity of species rarely seen and not trapped remains
tentative, but has been included for completeness. For
every camera deployment, the number of each species
observed in each frame was plotted over the duration
of the experiment. The time of first arrival at the bait
(t1s) and maximum number observed in any single
frame (MaxXpecies) Were then compared between region
and depth.

The high numbers of certain fish species attracted
allowed analysis of length frequency distributions
based on total body length measurements (tip of snout
to tail) from the photographs. Only those individuals in
full view and close to the reference scale were chosen,
with a minimum interval of 20 min between measure-
ments to reduce the probability of the same individual
being repeatedly sampled.

RESULTS

A total of 18 putative species were trapped and/or
photographed in this study, and are listed in Table 2
(photographic record) and Table 3 (trapped specimens).
Decapod crustaceans were the only invertebrate fauna
attracted: the caridian shrimp Acanthephyra eximia;
2 brachyuran crabs, Geryon longipes and Chaceon
mediterraneus; a mysid; a leptostracan; and a variety
of amphipods. The numbers trapped are given in
Table 3, although washout of the smaller species is cer-
tain to have reduced these values. In the photographs,
4 shark species and 4 teleost fishes were identified, but
not all of these were trapped. As a result, the identifi-
cation of certain fishes remains speculative. Of the
elasmobranchs photographed, Etmopterus spinax and
Galeus melastomus were trapped and photographed,
whereas Hexanchus griseus was too large to be
trapped, but was easily identifiable in photographs. A

Table 1. Details of baited camera and trap deployments in the
eastern Mediterranean. Stations from '‘Meteor’ Cruise 40/3,
(28 December 1997 to 18 January 1998) have prefix W to
denote winter; stations from ‘Philia’ Cruise (2 to 18 June 1998)
have prefix S to denote summer; all trap deployments have
prefix T. Region, depth and duration of each deployment
are given, and interval between photographs for camera

deployments
Cruise Stn Depth  Duration Interval
Region no. (m) (h) (min)
Meteor 40/3
lerapetra Basin w1 4264 115 10
WT1 4262 20
Ierapetra Basin W2 4172 67 5
WT2 4064 18
Cretan Sea W3 1873 92 5
WT3 1832 25
Philia
Cretan Sea S1 1503 22 2
ST1 1511 22
Cretan Sea S2 1822 48 5
ST2 1831 18
Cretan Sea S3 1750 24 2
ST3 1750 12
E. Cretan Sea S4 2220 23 2
ST4 2230 12
Karpathos Basin S5 2490 24 2
STS 2485 12
Rhodos Basin S6 3850 24 2
ST6 4067 36
Rhodos Basin S7 2307 22 2
ST7 2270 12
Ierapetra Basin S8 3080 24 2
ST8 3028 12

fourth species of intermediate length (estimated at
between 0.5 and 1 m) was observed at 1800 m in the
Cretan Sea and 2307 m in the Rhodos Basin. This was
believed to be either Centrophorus granulosus or Cen-
troscymnus coelolepis. A species of Nettastomatidae
(Anguilliformes) was observed at 1503 m. Nettastoma
melanura Rafinesque, 1810 has been caught further
east in the Levant basin at 1400 m depth (Galil & Goren
1994) and in the western Mediterranean down to
1000 m (Stefanesu et al. 1992a) and was most likely to
be the species photographed in this study.

Regional and seasonal variation

Due to the constraints of the sampling regime, rig-
orous regional and seasonal comparisons were not
possible. The distribution of species numbers by
region is illustrated in Fig. 2. All 18 species recorded
were found in the Cretan Sea, 13 of these were also
found in the Rhodos Basin and 4 species were com-
mon to all 3 regions. The 5 species exclusive to the
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Table 2. Results of the 11 baited camera deployments in the eastern Mediterranean. For the species present at each station, the
maximum number observed in any 1 frame during the first 24 h of the deployment is given in bold, along with the time (min,
in parentheses) of first arrival at the food-fall. Prefixes as in Table 1

Species Camera Stn no. and depth (m)
———— Cretan Sea Rhodos Basin lerapetra Basin
S1 S3 S2 W3 S4 S5 S7 S6 S8 w2 Wi
1503 1750 1822 1873 2220 2490 2307 3850 3080 4172 4264
Crustacea: Decapoda
Acanthephyra eximia Smith, 1886 31 30 191 85 44 18 130 20 13 24 48
6) (10 (<5 (100 (6 (10) 4 (14 6) (<5 (10
Geryon longipes Milne Edwards, 1882 16 4 4 7
(4) (156) (210) (25)
Chaceon mediterraneus Manning, 3 13 9 3 14
Holthuis, 1989 (64) (75) (44) (720) (252)
Elasmobranchii
Etmopterus spinax (Linnaeus, 1758) 5 5 9 6 8 4 4
(Squalidae) (10) (34) (250 (30) (18) (30) (54)
Galeus melastomus Rafinesque, 1810 2 1 1 1
(Scyliorhinidae) (22)  (90) (276) (150)
Hexanchus griseus (Bonnaterre, 1788) 1 1 2 1 2 1
(Hexanchidae) (286) (260) (285) (285) (540) (250)
Centrophorus/Centroscymnus sp. 1 1
(Squalidae) (720) (720)
Teleostei
Nemattostomatidae 1
(166)
Lepidion lepidion (Risso, 1810), L. guntheri 1 2 2 2 2
(Moridae) (256) (36) (15) (60) (36)
Chalinura mediterranea Giglioli, 1893 2 1 6 8 4 26 23
(Macrouridae) (380) (340) (80) (22) (106) (45) (60)

Cretan Sea were only found at the shallower depths,
between 1500 and 1800 m, and were not sampled in
the other regions. Deployments between 2000 and
2500 m were made in both the Cretan Sea and the
Rhodos Basin and there was little difference in the
species attracted. Greater numbers of Acanthephyra
eximia and Chaceon mediterraneus were recorded on
the Rhodos slope, and the first arrival time for Hexa-
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Fig. 2. Number of species observed by camera or trapped in
the 3 regions sampled. Numbers of crustaceans, elasmo-
branchs and teleosts in each region are indicated inside bars

nchus griseus was less than half its arrival time in the
Cretan Sea. Comparative camera and trap stations
were also sampled at abyssal depths in the Rhodos
and lerapetra Basins. A. eximia, Chalinura mediter-
ranea and C. mediterraneus were present in both
regions. Comparative winter and summer deploy-
ments were made at 1800 m in the Cretan Sea only.
The scavenger assemblage attracted was similar, apart
from the absence of C. mediterranea and the unknown
shark species.

Bathymetric distribution range of bait-attracted
species

Due to the general similarities in bait-attending
fauna between regions, it was considered feasible to
compare all stations together for the purposes of
analysing bathymetric distributions of the species
observed. These were inferred from presence and
absence in traps and on camera films, and are shown
in Fig. 3. Acanthephyra eximia was photographed at
baits over the entire depth range sampled, from 1500
to 4264 m. Other crustaceans had more limited ranges.
The crab Geryon longipes was trapped between 1500
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Table 3. Results of the 11 baited trap deployments in the eastern Mediterranean. Prefixes as in Table 1; x indicates species
present but numbers not available

Species Trap Stn no. and depth (m)
— CretanSea——— Rhodos Basin Ierapetra Basin
ST1 ST3 ST2 WT3 ST4 ST5 ST7? ST6 ST8 WT2 WT1
1511 1750 1831 1832 2230 2485 2270 4067 3028 4064 4262

Crustacea: Decapoda

Acanthephyra eximia Smith, 1886 X 10 X X X X X X X

Geryon longipes Milne Edwards, 1882 32 3 5

Chaceon mediterraneus Manning & 25 19 53 8

Holthuis, 1989
Scopelocheirus hopei (Costa, 1851) 30 105 19 35 2 1
S. polymedus 1
Bellan-Santini, 1985

Epimeria cf. cornigera (Fabricius, 1779) 19 6 23

Orchomene grimaldii Chevreux, 1890 1 3 3 2

Orchomenella nana (Kroyer, 1846) 8

Nebaliacea 1 14 16 1 5

Mysidacea 1 3 4 11

Elasmobranchii

Etmopterus spinax (Linnaeus, 1758) 1 1

Galeus melastomus Rafinesque, 1810

Teleostei

Lepidion lepidion (Risso, 1810) 1 1 2

Chalinura mediterranea Giglioli, 1893 1 12 13

Rhodos Basin .
Cretan Sea ] , lerapetraBasin
Acanthephyry eximia
Geryon longipes
Chaceon mediterraneus ]

Orchomenella nana

Scopelocherius polymedus
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]

Orchomene grimaldi

Epimeria cf. cornigera S
Mysidacea I
Nebaliacea I

Galeus melastomus
Centrophorus/Centroscymnus Sp.
Etmopterus spinax Elasmobranchii
Hexanchus griseus

Nematto stomatidae

Lepidion spp. |
Teleostei
Chalinura mediterranea [
I | I | I | I | I | I 1
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Fig. 3. Bathymetric distributions below 1500 m of crustaceans, elasmobranchs and teleosts inferred from their occurrence at
baited camera and/or trap deployments. Depth ranges sampled in the 3 regions are also indicated
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Fig. 4. Variation in first arrival time at the bait with station
depth for 3 elasmo-branch species and the macrourid Chali-
nura mediterranea

and 1830 m. A second geryonid, Chaceon mediterra-
neus, was only found deeper, from 2230 m down to
3028 m. This was also the assumed identity of crabs
observed on the films from the concurrent camera
deployments. Although not trapped at Stn 6 (4067 m),
this species was observed at the paired camera station
(3850 m). A succession of amphipod species were
trapped between 1500 and 3028 m (shown in Fig. 3),
1 of which, Epimeria cf. cornigera, was found in all
3 regions.

Sharks dominated the fish assemblage between 1500
and 2500 m. The catshark Galeus melastomus was ob-
served from 1500 to 1830 m only. The sixgill shark
Hexanchus griseus was by far the largest scavenger.
Both H. griseus and the small lantern shark Etmo-
pterus spinax were attracted at every station between
1500 and 2490 m. No sharks were observed at greater
depths.

Between 1500 and 3080 m, 4 species of teleosts were
identified, although the numbers attracted were
low. The 1 species of Nemattostomatidae was photo-
graphed at 1500 m only. A morid, Lepidion lepidion,
was photographed and trapped at the 2 shallowest
stations (1503 and 1750 m). Between 1800 and 2300 m,
L. Iepidion and a second species were photographed
but not trapped. This second species was thought to be
L. guentheri. The only fish attracted to bait below
2500 m was the macrourid Chalinura mediterranea,
which had the widest depth range of all vertebrates
(from 1822 to 4264 m).

Relative abundance inferred from first arrival times

The time of first arrival (f15;) for 3 elasmobranch spe-
cies and Chalinura mediterranea are plotted against
depth in Fig. 4. For Galeus melastomus and H. griseus
there was a clear trend of increase in t;y as depth
increased. From this, a decline in relative abundance
was inferred for these species with increasing depth. In
contrast, a decrease in t4 (Fig. 4) and corresponding
increase in maximum numbers (Table 2) of C. mediter-
ranea was observed with increasing depth, suggest-
ing a higher abundance at greater depths. The
maximum numbers given in Table 2 are for the first
24 h of these 2 deployments in order to be comparable
with the other results. However, fish numbers contin-
ued to increase at the deepest station, reaching 49
individuals after 115 h.

Bathymetric trends in size

Length estimates of photographed fishes were made
where possible. For Etmopterus spinax and Chalinura
mediterranea, sufficient data were collected to allow
frequency distributions to be plotted at different
depths (Fig. 5). No significant change in size was
detected for either species over their observed depth
range. For C. mediterranea, the overall mean length of
198 mm (n = 328, SD = 30 mm, range = 120 to 296 mm)
compared favourably with the mean length of 191 mm
for trapped specimens (n = 25, SD = 27 mm, range =
155 to 260 mm). For E. spinax, the mean length was
332 mm (n =125, SD =40 mm, range = 247 to 450 mm).
A limited number of length estimates were obtained
for Galeus melastomus: mean length was 439 mm (n =
11, SD = 46 mm, range = 370 to 500 mm). Estimated
total lengths for Hexanchus griseus ranged from 1.15
to at least 3.0 m. As a consequence of the change in
species dominance with increasing depth, the average
length of fishes at stations 2500 m and shallower was
greater than that of fishes observed at the deeper
stations.

Bait consumption and variation in numbers over time

The pattern of variation in numbers of individuals
attracted to the bait over the course of each deploy-
ment differed between species and according to the
scavenging activity of Hexanchus griseus; some ex-
amples are given in Fig. 6. Acanthephyra eximia was
attracted to every deployment within 10 min. Typi-
cally, numbers reached a peak within the first 1 to 2 h.
At shallow deployments, where the bait was attacked
by H. griseus, shrimp numbers fluctuated until the bait
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was consumed. At deeper stations, where the bait was
not fully consumed or remained intact, numbers de-
clined and remained low for the rest of the deployment
(Fig. 6¢). A similar pattern was observed for the smaller
shark Etmopterus spinax: peak numbers of up to
5 individuals were reached in the first few hours prior
to the arrival of the sixgill sharks, declining to intermit-
tent sightings thereafter. In contrast, the arrival rates of
the 2 crab species were much slower, with numbers
increasing steadily over the course of the deployment
(Fig. 6b) unless the bait was completely consumed
(Fig. 6a). The macrourid Chalinura mediterranea was
only observed in any numbers at the deeper stations
(2490 m and greater) and showed a similar pattern of
steady build-up of individuals over the course of the
deployment (Fig. 6b,c).

At all stations where sixgill sharks were attracted,
the bait was consumed, although not always com-
pletely within the 24 h period. Their

pared with 8 species recorded in this study. However,
they found that 85 % of the specimens captured came
from 3 families: Chlorophthalmidae (Bathypterois
mediterraneus), Moridae (Lepidion lepidion and L.
guentheri) and Macrouridae (including Chalinura
mediterranea). Hexanchus griseus dominated in terms
of biomass and Macrouridae, Squalidae and Moridae
were found to be the most important families in terms
of species.

Camera and trap deployments encompassed 3 differ-
ent regions and differing depth ranges. However,
where station depths were similar the fauna attracted
was broadly similar. The comparison between the
Cretan Sea and Rhodos Basin suggested higher abun-
dance of benthic and benthopelagic fauna in the latter.
This was thought to be a consequence of higher pro-
ductivity in this region due to a localised upwelling
(Krom et al. 1992).

attacks dispersed chunks of the bait 12 7 .

i : Etmopterus spinax 1500 m
and stirred up the sediment, often 9 n=15
attracting increased number of smaller meen = 343

scavengers once they had departed. At ®7

SD =46
3080 m, swarms of amphipods were 37
visible on the surface of the bait, 0

although the exact amount consumed 12 -
was unknown since retrieval was not
possible. At the 3 deeper stations,
where only Acanthephyra eximia 61
and Chalinura mediterranea were 3 1
attracted, the bait appeared mostly
untouched, with no indication of skin
removal or reduction in size, despite
the high numbers of fish and shrimp
present.

9
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DISCUSSION

The benthic and benthopelagic 97
megafauna attracted to baited camera
and trap deployments in this study con-
sisted of decapod crustaceans and
elasmobranch and teleost fishes. These
taxa also dominate trawl catches in
this and other regions in the Medi- 9 1
terranean (Kallianiotis et al. 2000,
Cartes et al. 2001). Greater species

6

diversity is found by trawling, although
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mass and numbers are similar for both
methods of sampling; Stefanescu et al.
(1992a) recorded 16 species of de-
mersal fishes in the western Mediter-
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Bathymetric distribution

Much of the fauna of the Mediterranean Sea is
believed to have originated from the Atlantic Ocean
(Fredj & Laubier 1985, Bouchet & Taviani 1992). How-
ever, many of the species characteristic of baited cam-
era experiments in the abyssal NE Atlantic were
not observed here in the Mediterranean, e.g. Cory-
phaenoides armatus, zoarcids, liparids, ophidiids,
deep-water eels and lysianassid amphipods such as
Eurythenes gryllus and Paralicella sp. (Armstrong et
al. 1992, Thurston et al. 1995, Jones et al. 1998, Hen-
riques et al. 2002). Their absence is generally thought
to be due to a combination of dispersal barriers includ-
ing the shallow sill at Gibraltar, deep outflowing cur-
rent, and the high temperatures at depth (13 to 14°C
compared to 2 to 4°C in the Atlantic). As a con-
sequence, some bathyal species have apparently
extended their depth range into the abyssal environ-
ment. The geryonid crab Chaceon mediterraneus was
previously noted only in the western Mediterranean

Chalinura mediterranea

| bl
0

0 6
Time after arrival of bait on seafloor (h)

Chalinura mediterranea

12 18 24 0 6 12 18 24

from 1990 to 2830 m (Cartes 1993a), and has been
trapped in the present study for the first time in the
eastern Mediterranean (Koukouras et al. 2000). The
specimens collected from 3028 m and observations at
3850 m extend the known depth range of this species
by 1000 m. Geryonid crabs occur widely in the world's
oceans, but are rare below 2000 m (Attrill et al. 1990).
Temperature is believed to be the limiting factor to
their distribution (Gage & Tyler 1991), and this may
explain their presence here in the eastern Mediter-
ranean, where the water is unusually warm at abyssal
depths. The amphipods Epimeria cornigera and
Orchomenella nana have been recorded previously in
the Mediterranean down to 430 and 460 m respectively
(Bellan-Santini et al. 1982b). In this study they were
trapped as deep as 3028 and 2270 m respectively. The
elasmobranch Galeus melastomus was rarely found in
trawl catches below 1400 m in the western Mediter-
ranean (Carrasson et al. 1992), but in this study it was
regularly observed and also trapped down to 1830 m.
Both Etmopterus spinax and Hexanchus griseus were



Jones et al: Baited camera experiments in deep Mediterranean 83

observed at 2490 m, at the known limit of both their
depth distributions. The fourth shark species observed
at 1800 and 2300 m could not be identified with cer-
tainty. Centrophorus granulosus has been caught in
this region as deep as 1000 m (Kallianiotis et al. 2000)
and further east at 1490 m (Gilat & Gelman 1984), but
is not thought to occur much deeper. Although not pre-
viously recorded in this region, Centroscymnus coelo-
lepis was found as deep as 2251 m further west in the
Catalan Sea (Carassoén et al. 1992) and was thought to
be the most likely identity of the shark observed in this
study. Lepidion lepidion was observed from 1500 to
2490 m, in the Cretan Sea. Between 1822 and 2490 m a
second, larger teleost, thought to be L. guentheri, was
also photographed at the baits, but not trapped. This
pattern of occurrence agrees with observations in the
Catalan Sea where L. guentheri is rare but overlaps
with L. lepidion over 1600 to 2239 m (Carrassén et al.
1997, Moranta et al. 1998). Below 4000 m, only Acan-
thephyra eximia and Chalinura mediterranea were
attracted to bait. Both species have a bathyal distribu-
tion elsewhere: A. eximia from 200 to 2500 m in the
Atlantic and Indo-Pacific (Crosnier & Forest 1973); C.
mediterranea from 1750 to 2250 m in the NE Atlantic
(Mauchline & Gordon 1984), and 1400 to 2500 m
in the western Mediterranean (Stefanescu et al. 1993,
Moranta et al. 1998). In the eastern Mediterranean,
both species are widespread at 3000 to 4500 m, as evi-
denced by this and previous studies (Christiansen
1989, Albertelli et al. 1992, Della Croce & Albertelli
1995).

Bathymetric trends in number of species, relative
abundance and size

There was a clear decline in number of species ob-
served with increasing depth: 18 recorded at 1503 m
compared with 2 at 4264 m. Amongst the fishes at-
tracted, elasmobranchs dominated between 1500 and
2500 m, but below this depth the macrourid Chalinura
mediterranea was the only fish present. The relationship
between t;; and depth for a number of fishes and deca-
pod species reflected this change. Although lack of in-
formation on current speed variation and swimming and
walking speeds for each species prevented actual abun-
dance estimates being calculated, the trends suggested
a decline in relative abundance for elasmobranchs but
an increase for the macrourid. The pattern of bathy-
metric change in bait-attending species observed in this
study has similarities to observations made in the Bay
of Biscay, NE Atlantic, where Centroscymnus coelo-
lepis was replaced by the macrourid Coryphaenoides
(Nematonurus) armatus as the dominant species with
increasing depth (Desbruyéres et al. 1985).

Due to the stability of physical environmental factors
such as temperature, it is believed that reduced food
availability with increasing depth is the principal fac-
tor responsible for the decline in species diversity. This
has been demonstrated for macrobenthos in the Cretan
Sea (Tselepides & Eleftheriou 1992, Tselepides et al.
2000b) and is likely to be the case for the megafauna as
well. As a consequence of this decline in trophic re-
sources and resulting change in species composition
with increasing depth, a decline in fish size was appar-
ent. This has been noted in the western Mediterranean
for both fishes (Stefanescu et al. 1992b, 1993) and
decapod crustaceans (Sarda & Cartes 1993). Ste-
fanescu (1992b, 1993) found a distinct fish assemblage
above 1200 m, consisting of large gadiiform fish spe-
cies characterised by higher energy requirements, that
were replaced at greater depths by smaller species
such as Chalinura mediterranea with lower energy
requirements.

Within-species depth-size trends have been a much-
debated topic, with some believed to be an artefact
of sampling techniques (Haedrich & Merrett 1990,
Macpherson & Duarte 1991, Merrett & Haedrich 1997).
Previous studies in the western Mediterranean have
concluded that, in contrast to the adjacent Atlantic, the
majority of demersal fish species between 1000 and
2250 m, including many macrourids, do not show any
clear depth-size trend (Stefanescu et al 1992b). In this
study, no significant difference in the size distribution
of Chalinura mediterranea was observed between 2490
and 4264 m. A similar result was obtained for Etmo-
pterus spinax, contradicting the bigger-deeper trend
observed in the western basin (Carrassén et al. 1992).

Bait consumption

Although bait was visibly consumed at shallow sta-
tions, it is unlikely that necrophagy is an important
feeding mode for any of the species observed. The
most active scavenger of the bait was Hexanchus
griseus, the diet of which has yet to be documented in
the eastern Mediterranean. However, in the produc-
tive waters off South Africa, it is a eurytrophic predator
feeding on cephalopods, crustaceans, teleosts and
other elasmobranchs, with marine mammals forming
an increasing part of the diet as the shark grows larger
(Ebert 1994). The preferred prey of Galeus melastomus
below 1000 m in the western Mediterranean were
cephalopods, teleost fishes and decapods such as
Geryon longipes (Carraséon et al. 1992). Scavenging
was not thought to be important in its diet. Etmopterus
spinax has a strong pelagic habit and preys mainly
on cephalopods (Macpherson 1980). The diets of the
teleost fish species observed have been studied in the
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western basins, and all have been found to be eury-
trophic predators, with natantian decapods such as
Acanthephyra eximia, A. pelagica, mysids, copepods
and amphipods comprising important prey items
(Carrassén & Matallanas 1990, 2002, Carrasén et al.
1997). It is therefore feasible that many of the fishes
may have been preying on the crustaceans attracted to
the bait rather than on the bait itself. The success of A.
eximia and Chalinuara mediterranea at depths where
the other species were absent is thought to be due to a
combination of their small size, mobility and oppor-
tunistic and euryphagic feeding strategy. A. eximia
itself has been shown to have a varied diet including
natantian decapods and hyperiid amphipods (Cartes &
Maynou 1998), but with an increasing trend towards
scavenging and detritivory at greater depths (Cartes
1993b). This was certainly the first species to arrive at
baits in almost every deployment, but numbers often
declined once fishes began to arrive. This does not
explain the lack of bait consumption at the deeper sta-
tions, but this may have been due to the inability of A.
eximia to penetrate the intact skin on tuna carcasses.
This phenomenon has been noted elsewhere with
baited camera experiments using cetaceans (Jones et
al. 1998) and mackerel (I. G. Priede pers. obs.).

This study has provided valuable new information on
composition, distribution and depth ranges of natatory
benthopelagic megafauna in the eastern Mediter-
ranean. Such fauna can be difficult to catch with other
sampling techniques. Whilst clearly a versatile tech-
nique for research vessels working in deep waters
without the size or capability for deep-water trawling,
the fauna which can be sampled is limited to suffi-
ciently mobile opportunistic scavengers. It is possible
that other species may have been observed if, for in-
stance, the deployments had been made for longer
periods with protected bait. In the NE Atlantic, long
deployments with large bait attracted opportunistic
scavenging echinoderms and crustaceans not observed
at short 24 h deployments (Jones et al. 1998). It is also
possible that some species may have been deterred by
the presence of other, more aggressive scavengers,
such as the larger sharks. Trawling samples a much
broader range of species, although this method also has
its limits and biases, and ideally a combination of these
2 techniques would allow a thorough survey of the
deep fauna of this little-studied region.
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