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Summary1

Soil monitoring and inventory require a sampling strategy. One component of this strategy2

is the support of the basic soil observation: the size and shape of the volume of material3

that is collected and then analysed to return a single soil datum. Many, but not all, soil4

sampling schemes use aggregate supports in which material from a set of more than one5

soil cores, arranged in a given configuration, is aggregated and thoroughly mixed prior to6

analysis. In this paper it is shown how the spatial statistics of soil information, collected on7

an aggregate support, can be computed from the covariance function of the soil variable on8

a core support (treated as point support). This is done via what is called here the discrete9

regularization of the core-support function. It is shown how discrete regularization can10

be used to compute the variance of soil sample means, and to quantify the consistency of11

estimates made by sampling then re-sampling a monitoring network, given uncertainty in12

the precision with which sample sites are relocated. These methods are illustrated using13

data on soil organic carbon content from a transect in central England. Two aggregate14

supports, both based on a 20-m×20-m square, are compared with core support. It is15

shown that both the precision and the consistency of data collected on an aggregate16

support are better than data on a core support. This has implications for the design of17

sampling schemes for soil inventory and monitoring.18
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Introduction19

There is a growing interest in how to sample the soil most efficiently for purposes of20

inventory and monitoring, spurred by concerns about the impact of human activities on21

soils and their functions (Arrouays et al., 2009). Among the questions that have been22

discussed is the choice of sampling design (Papritz & Webster, 1995) and the sources of23

uncertainty in the resulting estimates (Goidts et al., 2009). Less attention has been paid24

to the question of what should constitute the support of the basic soil observation.25

‘Support’ is a term from geostatistics. It denotes the size and shape of the volume26

of material which is analysed to return a single observation in a sample, so the support for27

a soil observation may be, for example, a vertical cylindrical core of diameter 5 cm and28

depth 0–15cm. A change of support will result in a change in the statistical properties of29

soil observations. In practice a support such as a soil core in the example above is so small30

in comparison to the region of interest that it can be regarded as a point support. The31

covariance function or variogram of observations on an (effective) point support can be32

used to compute the statistical properties of observations on a larger support. This process33

is known as regularization, and is described in standard geostatistical texts (Journel &34

Huijbregts, 1978; Webster & Oliver, 2009). The question of sample support is discussed35

briefly by de Gruijter et al. (2006). In general increasing the extent of the sample support36

reduces the contribution of fine-scale variation to our data, this is the regularization effect.37

It is most readily achieved in soil sampling by bulking.38

When we sample soil, and other materials such as water or grain, it may be possible39

to mix thoroughly a number of specimens (aliquots) from within a specified region, such40

as an experimental plot, so that the properties of the aggregated material correspond to41

the average value of the original individual aliquots. This is known as aggregate, bulk42

or composite sampling. Composite sampling is appropriate for compositional properties43

of the soil such as its clay or water content or concentrations of elements such as carbon44

determined by a total element analysis. Exchangeable species can also be determined45
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from a bulk sample (it is common practice for nutrients) if it can be assumed that the46

adsorption isotherm is effectively linear over the range of concentrations in the aliquots.47

Bulk sampling is not generally suitable for soil pH in conditions where significant frag-48

ments of carbonate are present in some of the aliquots (Webster & Oliver, 1990), and49

obviously is not applicable to soil properties that require the structural integrity of soil50

below some representative elementary volume for laboratory determination (for example,51

for hydraulic conductivity or parameters of the soil water characteristic curve). De Grui-52

jter et al. (2006) discuss sample support and composite sampling separately, but in the53

case of soil sampling it seems appropriate to define the sample support both in terms54

of the size and shape of the aliquots, and their spatial distribution. I refer to this as55

the ‘aggregate sample support’. In the case of the National Soil Inventory (England and56

Wales)(NSI), for example, the aggregate support of the analytical data is 25 cores, each57

2.5 cm in diameter and extracted from depth 0–15 cm, collected from a nodes of a square58

grid of interval 5 m in a 20-m square centred at the nominal sample location (SNIFFER,59

2007).60

The aggregate sample support varies between different soil sampling schemes. In61

the United Kingdom we have already seen that the NSI (England and Wales) uses one62

particular aggregate support. The Geochemical Baseline Survey (G-BASE) of the British63

Geological survey uses a similar aggregate support for soil: 5 cores (depth 0–15 cm) are64

collected at the centre and vertices of a 20-m square centred at the nominal sample loca-65

tion and then aggregated (SNIFFER, 2007). The Representative Soil Sampling Scheme66

(England and Wales) aggregates 20–25 cores collected in a ‘W’-pattern across a sample67

field of no larger than 10 ha. By contrast the Countryside Survey of Great Britain does68

not undertake aggregate sampling and the sample support for analytical data is a single69

core (Emmett et al., 2008). Similarly, any analytical datum from the National Soil In-70

ventory of Scotland corresponds to a horizon in a single soil pit (SNIFFER, 2007). The71

implications of the differences in sample support between these schemes, and the question72
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of what support is most appropriate, has received little attention.73

One reason for this is that, as De Gruijter et al. (2006) point out, there is no general74

theory of composite sampling. Webster & Burgess (1984) considered the use of a single75

composite sample across a small region to estimate the mean value of soil properties across76

that region, and gave expressions for the error variance. In this case the aggregate support77

of a single composite specimen consists of cores drawn from across the region of interest,78

which might be a field or experimental plot. This does not describe the situation we are79

concerned with here, in which the region represented by the aggregate support of a single80

sample is small compared to the overall domain of interest, which may be very large in81

regional, national or even supra-national soil inventory and monitoring.82

Aggregate sample support influences the variability of our basic soil data when we83

conduct inventory and monitoring across a region, and therefore determines the precision84

with which we can estimate regional means. It is also likely that sample support will85

affect the contribution of spatial variation to the sampling error for estimates of temporal86

change in the soil when monitoring by revisiting a sample network. The aim of this paper87

is therefore to develop some theory for comparing different aggregate sample supports88

(including supports in which a single aliquot is collected). Sample supports are compared89

with respect to the variability of the basic observations made on the support, and so the90

precision of estimates that we draw from them. They are also compared with respect91

to the repeatability, site-by-site, of estimates made by re-sampling the soil with error in92

relocation of the sites, and so the confidence with which we can detect change. Having93

shown how this can be done, the methods will be applied in order to compare some94

sampling supports for the measurement of soil organic carbon content, using data collected95

across a region of lowland England in mixed land-use.96

Theory97

In this section I first show how one can derive the spatial covariance function of a variable98

measured on an aggregate support from the covariance function on core-support. This is99
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a necessary preamble to a demonstration of the effect of sample support on the precision100

of sampling estimates, and on their site-by-site repeatability.101

When we fit covariance functions (or, comparably, variograms) to data on soil and102

then use these to predict by kriging we are undertaking model-based statistical analysis, in103

which the random variation of our target variable is assumed to come from an underlying104

stochastic process, and our data are treated as a realization of a random function which105

is modelled. This is in contrast to design-based analysis in which we have sampled the106

soil according to a probability sample design (such as stratified random sampling) and it107

is this randomized sampling scheme that allows us to analyse our observations as random108

variables (de Gruijter et al., 2006). However, having fitted a model for a random function109

we can compute its variance over some region, and can then treat this as the expected110

value of the variance of the population of values in that region when it is sampled according111

to a randomized design (Cochran, 1977). This approach was taken by Papritz & Webster112

(1995) to compare the variances of model and design-based estimates in soil monitoring,113

and I follow it here. The covariance function on an aggregate support can be used to114

compute both the variance of observations on that support across a region, and, from this115

variance, the standard errors of the estimates made from design-based samples of such116

observations.117

I then consider the problem of how repeatable our observations of soil are, site-by-118

site, in the presence of relocation error. I quantify this by presenting a calculation of the119

correlation between an observation of the soil, and a repeat observation with relocation120

error, assuming no underlying change in the soil.121

Note that in this paper I assume that all samples are drawn from a two-dimensional122

space and aggregate sample supports are defined over two-dimensional regions, although123

the individual aliquots are defined in three dimensions (as with cylindrical cores). The124

principles, however, would extend simply to aggregation of cores on a transect in one125

dimension or over volumes in three dimensions.126

6



The covariance function.127

In the following sections the observations of a soil variable on a point support are modelled128

as realizations of a random function, Z(x). We assume that this random function consists129

of a mean (fixed effect) and a random effect. The mean may be the overall mean of Z130

across the region of interest, in which case the random effect represents the variation of131

Z about that mean. Alternatively, we may have divided the region of interest into classes132

such as soil map units or land-use classes. In this case the mean for Z(x) could be the133

mean value of Z for the class that occurs at location x, and the random effect is the134

within-class variation. For simplicity in this section the overall mean is the fixed effect.135

The random effect is assumed to be a second-order stationary random function which136

means that it has finite variance and so the spatial covariance function exists:137

C(h) = E [{Z(x)− E [Z(x)]} {Z(x + h)− E [Z(x + h)]}] , (1)

where h denotes a separation (lag) in space. The covariance declines as the lag distance,138

|h|, increases and equals zero at lag distances larger than or equal to the range of the139

covariance function. The a priori variance of the random effect is equal to the covariance140

at lag zero. This is the variance of the variable in a region which is large in comparison with141

the range of the covariance function. In practice we must fit some appropriate function to142

describe the covariance of data, and the range (or a related distance parameter) and the143

a priori variance are parameters of this function. One complication that often arises in144

practice is the nugget effect. There is always some minimum separation, larger than zero,145

between observations in a real data set and variation that is not spatially dependent at146

lags larger than this minimum distance cannot be distinguished from spatially correlated147

variation. As a result the covariance function will appear to converge to some value less148

than the a priori variance as the lag distance decreases, the spatially correlated variance,149

c1. The difference between the a priori variance and c1 is the nugget variance, c0 which150

is the variance of all components of the random function with spatial dependence over151

distances smaller than the minimum lag between our observations. A general form of a152
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model for the covariance function, fitted to data, is therefore153

C(h) = c0 + c1 , |h| = 0,

= c1ρ(h) , |h| > 0, (2)

where ρ(h) is a spatial correlation function such as the spherical154

ρsp(h|a) = 1−

{
3|h|
2a
− 1

2

(
|h|
a

)3
}

for |h| < a

= 0 for |h| ≥ a, (3)

where a is presented after the vertical bar because it is a parameter of the correlation155

function, the range.156

The covariances of bulk samples: discrete regularization.157

Let xi denote the ith sample location, for which a single composite sample is to be158

formed on an aggregate support. A total of ni cores is collected at a local array of sites159

Xi = {xi,1,xi,2, . . . ,xi,ni
}. I assume that the aggregate support is fixed for all sites so160

ni = nj = n ∀i, j and (xi,m − xi) = (xj,m − xj) = am ∀i, j; 1 < m ≤ n. I denote the161

aggregate support by A = {a1, a2, . . . , an|κ} where the vector κ characterizes the size162

and shape of a single aliquot.163

Let Z̆A(xi) denote a random function, the value of soil property z determined on164

the material collected on aggregate support A at location xi. Note that I follow the usual165

convention here of putting random functions in upper case and their realizations in lower166

case. An actual observation of property z on this aggregate support would be written167

z̆A(xi). I assume that Z̆A(xi) is equal to the arithmetic mean of Z at the locations in the168

aggregate support169

Z̆A(xi) =
1

n

n∑
m=1

Z(xi,m). (4)

This ignores any sub-sampling error in extracting material for analysis from the aggregated170

material, but this error is present in all analysis of field soil samples, regardless of their171

basic support, and so is not relevant to a comparison between sample supports.172
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The implication of Equation (4) is that the expectation (mean) of the variable Z173

within our domain is independent of the aggregate support. This requires that there is174

nothing in the process of aggregation that introduces bias. We now require a spatial175

covariance function for the variable on an aggregate support, Z̆A, that is176

CA(h) = Cov
[
Z̆A(xi), Z̆A(xi + h)

]
, (5)

where h is a lag vector. On the assumption that the variable on point support is stationary177

in the variance, it is clear from the covariance of two sample means that this expression178

is given by179

CA(h) =
1

n2

∑
x∈Xi

∑
x′∈Xi+h

Cov [Z(x), Z(x′)] ,

=
1

n2

∑
x∈Xi

∑
x′∈Xi+h

C (x− x′) , (6)

where Xi+h = {xi,1 + h,xi,2 + h, . . . ,xi,n + h} and C (h) denotes the covariance function180

of the point-support variable Z. In practice we will use a suitable function of the form of181

Equation (2), fitted to available data on a small enough support (e.g. cores) to be treated182

as point support.183

Equation (6) is directly analogous to the expression for the regularization of the184

covariance function to a continuous support (Jupp et al. 1988). Let B denote some such185

support (it might be a square raster pixel in a GIS, for example, that takes the mean value186

of some variable, such as vegetation cover, over its extent). If C(h) denotes the point-187

support covariance function of the variable of interest, then the regularized covariance188

function on support B is given by189

CB(h) =
1

|Bs||Bs+h|

∫
x∈Bs

∫
x′∈Bs+h

C (x− x′) dxdx′ (7)

where Bs denotes the sample support centred at location s and Bs+h denotes the support190

with the same size and shape translated to location s + h; and |B| denotes the Lebesgue191

measure of the support (equivalent to its area in two dimensions) and the integrals are192

over the dimensions of B. The difference between the regularized covariance function and193
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the expression in Equation (6) is that the former is the covariance of the mean of some194

variable over a continuous region while the latter is the covariance of the average value195

of a specific set of discrete observations of the variable on some sample array. For this196

reason I call Equation (6) the ‘discretely regularized covariance function’ of the variable,197

for the specified aggregate support.198

The discretely regularized covariance function must be computed from Equation (6)199

using an available covariance function on a point support, that is one fitted to available200

data. There may be bias in the regularized function if the lag distances between the201

individual locations that comprise the support, |a1|, |a2|, . . . , |an|, are smaller than the202

shortest distance in the data set from which the point-support covariance function, C(h)203

is estimated, |hmin|. This is because the fitted model may underestimate or overestimate204

the covariance at lags shorter than |hmin|. If we wish to evaluate possible aggregate205

supports then we require covariance functions based on data which include lag intervals206

shorter than the distances between the aliquots that comprise the aggregate supports of207

interest. Stein (1999) (page 220) showed that adding a small number of additional points208

to a regular sample array can substantially improve the modelling of spatial dependence209

at short distances, and Haskard (2007) showed dramatic improvements in the modelling of210

short range variation by placing just 10 (out of 100) sample locations at short separations211

within a sample grid.212

Variances of discretely regularized variables.213

We have obtained a discretely regularized covariance function for soil data on an aggre-214

gate support. Our next objective is to show how we can compute variances of variables215

measured on this aggregate support. Consider a region R which we intend to sample on216

the aggregate support A at sites selected by simple random sampling. To compute the217

variance of the resulting sample mean of variable ZA, we require the variance of ZA in R218

according to the covariance model, which we treat as the expected population variance219

for random sampling. In geostatistics this is called the dispersion variance (Journel &220
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Huijbregts, 1978) and it can be calculated from the covariance function as:221

σ2
A,R = CA(0)− 1

|R|2

∫
x∈R

∫
x′∈R

CA (x− x′) dxdx′. (8)

If the linear extent of R is large in comparison with the range of the covariance function222

then the double integral in Equation (8) is negligible and the dispersion variance and the223

a priori variance can be assumed to be equal (Journel & Huijbregts, 1978). Otherwise the224

second term on the right-hand side of Equation (8) can be calculated most conveniently225

by a Monte Carlo double integration in which random pairs of locations are drawn from226

within R and the average value of the covariance function for the lag interval between227

them is computed.228

It may be that region R is to be sampled by stratified random sampling. In this case229

the within-stratum variance is required to compute the standard errors of our estimates.230

We may distinguish two situations here. In the first, geometrical stratification, the strata231

are formed by dividing R into equal subregions, within each of which samples are drawn232

independently and at random. If one stratum can be represented by region S then the233

expectation of the within stratum variance can be computed by substituting S for R in234

Equation (8). Provided that the dimensions of S are not large relative to the range of CA235

the within-stratum variance will be smaller than the dispersion variance forR, wherein lies236

the benefit of stratification. In the second situation our strata may be categories such as237

land-use, or soil map units. To obtain the within-stratum variance in this case we require238

the point-support covariance function for the within-stratum variation. The discretely239

regularized covariance function of the within-class variation can then be computed, and240

the expected within-stratum variance is then obtained using Equation (8) evaluating the241

double integral over the region R.242

Some hypothetical examples are presented in Figure 1. Here I considered variables243

which, on a point support, have a spherical covariance function with range 100 or 500244

m and an a priori variance of 1.0, of which some varying proportion from 0 to 0.75245

corresponds to the nugget variance. I then computed the dispersion variance for these246
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variables within a 1×1-km block. The calculation was then repeated for the discretely247

regularized variable, with the support being five aliquots collected at the centre and248

vertices of a 20-m square then bulked. Note that the dispersion variance on the point249

support is very close to the a priori variance when the range of the covariance function is250

100 m, since this is small relative to the dimensions of the block. The dispersion variance251

is smaller when the range is larger, but the discrepancy decreases as the proportion of the252

nugget variance increases. In all cases the dispersion variance on the aggregate support is253

smaller than on the core support. The extent of this reduction in variance by aggregation254

depends in part on the range of the covariance function, but most dramatically on the255

relative importance of the nugget variance since this very short-range variation is most256

susceptible to the regularizing effect of aggregation. If we consider the dispersion variance257

as the expected population variance for a random sample of the region, it is clear that258

substantial reductions in the variances of sample means can be achieved by use of an259

aggregate support. For example, with a nugget variance of 0.25 and a range of 100 m, the260

variance of the sample mean is reduced by 37% by use of the aggregate support rather261

than the core support. To achieve this reduction in variance while retaining the core262

support would require an increase in the number of sample sites of 270%.263

Re-sampling and location error.264

When monitoring the soil we estimate the change that has occurred in the value of some265

property over the time period between successive samplings. When our interest is in the266

change in the spatial mean, then the most efficient sampling design entails revisiting the267

original sample sites (de Gruijter et al., 2006; Lark, 2009). At the limit the exact sample268

site cannot be revisited since soil properties are almost always determined destructively269

by the removal of material for analysis. In practice there is error in the relocation of the270

sample site, the magnitude of which depends on whether the site is permanently marked271

or whether it must be relocated by survey from local landmarks or with a GPS. Defra272

(2003) report studies on the error in locating sample sites for soil monitoring.273
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A surveyor has visited a site at time t1 and recorded its location. Let the true274

location be x1. At time t2 the site is relocated as carefully as possible. Let the true275

location of the identified position be x2, so the location error is d = x1 − x2. In practice276

the surveyor may collect soil at time t2 from x2 + δ where δ is a deliberate offset to avoid277

sampling disturbed ground. I assume that the location error is isotropic (the surveyor is278

no more likely to err in one direction than another) and that relocation is unbiased, so on279

average |d| = 0. I assume that the additive effects of sources of location error result in a280

normal distribution, so that the relocation error is a bivariate normal random variate D281

with probability density function f(D) and distribution282

D ∼ N
(
0, σ2

l I
)
, (9)

where the mean of zero indicates the lack of bias, and the form of the covariance matrix,283

with I the identity matrix, shows that the errors are isotropic, they are uncorrelated and284

their standard deviation in any dimension is equal to σl.285

We may characterize the repeatability of a soil monitoring scheme given location286

error and sampling on a particular aggregate support, A, by calculating the expected cor-287

relation between determinations of a soil property on sampling on the aggregate support,288

and then independently re-sampling on the same support, with location error in each case.289

We assume that no change occurs between the two samplings, so the differences between290

the determinations simply reflect spatial variability on the aggregrate support. The mean291

covariance between the determinations is C1,2
292

C1,2 =

∫ ∞
−∞

f(D)CA(D + δ)dD, (10)

where the integral is over both dimensions of the variate D. This can be scaled to a293

correlation, ρ1,2 by294

ρ1,2 =
C1,2

CA(0)
. (11)

The stronger this correlation the greater the repeatability of our observations of the soil,295

site-by-site, on the specified aggregate support.296
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If there is a substantial nugget effect in the point-support covariance function model297

which is largely attributable to fine-scale soil variation, then Equation (11) may under-298

estimate the correlation between successive re-samplings of a site because the correlation299

of the variable over very short distances is underestimated. To compute an upper bound300

on the correlation ρ1,2 I propose that the empirical covariance function in Equation (2) is301

replaced by302

C ′(h) = c0 + c1 , |h| = 0,

= c0ρsp(h||hmin|) + c1ρ(h) , |h| > 0, (12)

where ρ(h) is the fitted correlation function and ρsp(h||hmin|) is a spherical correlation303

function with range equal to |hmin|, the shortest distance between observations in the data304

set from which the empirical model is obtained. Since the spherical correlation function is305

zero at distances greater than the range this modified covariance function and the fitted306

one are identical over lag distances larger than |hmin|, and it is assumed that all the307

variation attributed to the nugget is spatially correlated at distances up to |hmin|. I used308

a spherical correlation function here because its correlation goes exactly to zero at the309

range. Other functions with this property (e.g. the circular model) could be used and the310

choice of function will have a small effect on the computed upper bound.311

If it is possible to estimate the independent measurement error for the soil variable312

of interest, σ2
m, which is a component of the nugget variance, c0, then Equation (12) may313

be replaced by314

C ′(h) = c0 + c1 , |h| = 0,

=
(
c0 − σ2

m

)
ρsp(h||hmin|) + c1ρ(h) , |h| > 0, (13)

I propose that ρ1,2 is estimated initially with the discretely regularized form of the315

fitted covariance function for the target soil property, but that the modified covariance316

function, Equation (12) or (13) is also used to indicate how much stronger the correlation317

between site-by-site repeated observations might be if the fine-scale variation is spatially318
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dependent up to lag |hmin|.319

Case study320

It has been shown above how the covariance function of a soil property on a point support321

(approximated in practice by a soil core) can be used to compute the discretely regularized322

covariance function for observations on an aggregate support. This, in turn, can be used to323

compute expected values of the variances of the variable on an aggregate support, and to324

assess the susceptibility of repeated observations of the soil property at a site to relocation325

error. In this case study I use these methods to calculate, for different sample supports,326

the variances of means for topsoil organic carbon, obtained by stratified random sampling327

with land-use classes as strata. I also compute the correlation of repeat samplings of this328

variable given possible distributions of location errors.329

Data and Analyses330

The data used here were collected on core support in an agricultural landscape in Bed-331

fordshire, eastern England. The collection of the data is described in detail elsewhere332

(Haskard et al., 2010, Milne et al., 2011). In summary, the transect was approximately333

7.5 km long. The transect started at 508329, 237450 on the UK Ordnance Survey grid334

(units in metres) and was on a line of bearing 173.5 degrees from grid north, ending at335

OS grid reference 509182, 229991. There were 256 sample locations at regular intervals336

(29.45 m) along the transect. To allow analysis of spatial dependence at short distances337

an additional ten pairs of points were added, each pair comprising one point at 3 m and338

and one at 6 m along the transect from one of the regular sites. Any variation spatially339

correlated at distances less than 3 m would therefore contribute to the nugget variance340

of fitted covariance functions. The soil was sampled at each of the 276 locations to depth341

150 mm with a cylindrical gouge auger of internal diameter 44 mm. Milne et al. (2011)342

describe the soils of the transect in more detail. The northernmost point was over the343

Lower Greensand and the transect intersected the boundary between this formation and344
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outcrops of the Gault Clay and the Chalk. The southernmost point was at the top of the345

Chalk escarpment. The soil on the transect is formed in parent materials derived directly346

from the country rock, and from varied superficial material including alluvium, drift of347

varied texture and calcareous colluvium below the scarp of the Chalk. Milne et al. (2011)348

also describe land-use along the transect. For purposes of this paper we describe three349

land-use classes, and assume that these would be used as strata in stratified random sam-350

pling of the soil. The classes are arable land (including some land recently set aside, but351

still under stubble from a recent crop) with 176 observations, woodland (predominantly352

broadleaf) with 39 observations and uncultivated land (permanent grass, paddock, some353

waste ground on field margins and some sports grass) with 60 observations.354

One sub-sample of the soil from each location was oven-dried to a constant weight355

to determine the gravimetric water content. Another sub-sample of the soil from each356

location was air-dried and sieved to pass 2 mm. A sub-sample of the air-dried material357

was then analysed to determine the total carbon content by combustion in a LECO358

analyser (LECO CNS 2000 combustion analyser, LECO, St Joseph, Michigan, USA).359

The carbonate content was determined by the water-filled calcimeter method of Williams360

(1949) and the organic carbon content (OC) was calculated by subtracting this value361

from the total carbon content. Soil organic carbon content was then expressed in units362

of grammes of organic carbon per 100 g dry soil.363

One outlying observation was removed from the data set (19 g OC 100 g−1 soil).364

It was very different from the remaining data (the next-largest value was 8.5 g 100g−1)365

and would have an undue influence on estimated covariances. Table 1 provides sum-366

mary statistics on the remaining 275 observations, and on the residuals from the land-use367

means. These include the octile skewness coefficient (Brys et al., 2003). It was clear that368

the residuals were reasonably symmetrically distributed, and can plausibly be treated369

as a realization of a normal random function. The empirical covariance function of the370

residuals, estimated by the standard methods of moments estimator described by Box &371
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Jenkins (1976), is shown by the solid symbols in Figure 2. This shows continuity of the372

covariance down to the shortest lag distance (3 m), and a substantial nugget effect.373

A linear mixed model was then fitted to the data (Stein, 1999) by residual maximum374

likelihood using the lme procedure from the nlme library (Pinheiro et al., 2010) for the R375

statistical platform (R Development Core Team, 2010). In this model, the land-use was376

treated as a fixed effect. The empirical covariance function of the residuals suggested that377

a covariance model with a spatially correlated component (spherical or exponential) and378

a nugget effect would be appropriate. Both spherical and exponential models were fitted.379

These can be compared directly with respect to their residual log likelihoods. The log380

likelihood for the exponential model (−338.5) was larger than that for the spherical model381

(−341.7) so the exponential model was selected. The estimated fixed and random effects382

for this mixed model are presented in Table 2. Since the data were on a transect it had to383

be assumed that the random effect was isotropic. Figure 2 shows the covariance function384

for the random effects (the covariance of the residuals from the land-use means) with the385

covariance parameters given in Table 2 (solid line). The modelled covariance is smaller386

than the empirical covariance function at longer lag distances and the modelled a priori387

variance is larger than the empirical estimate, which is consistent with theory, indicating388

the bias entailed by estimating the covariance from ordinary least squares residuals (Lark389

et al., 2006).390

I then computed discretely regularized covariance functions for soil organic carbon391

on different supports, treating the estimated covariance function given in Table 2 as the392

point-support function. Functions were computed for the NSI (England and Wales) and393

the British Geological Survey G-BASE soil sample aggregate supports that are described394

earlier. In both cases the shortest distance between aliquots in the sample support (5 m in395

NSI and 14 m in G-BASE) is larger than the shortest distance between observations from396

which the covariance parameters have been estimated (3 m). The difference between the397

discretely regularized covariance function for these two aggregate supports was negligible398
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(the a priori variances differed by 0.13%). This is of interest because it suggests that399

collecting as many as 25 individual cores from a 20-m square may not be justified (unless400

it is necessary to ensure sufficient soil for the planned analyses). To investigate this further401

I computed the a priori variance for data on an aggregate support based on a 20-m square402

with varying numbers of cores. The variances are plotted against the number of cores in403

Figure 3, which also shows the disposition of cores within a single square. This confirms404

that the variance drops rapidly as the number of aliquots is increased to five, but adding405

further aliquots has little effect.406

I then computed dispersion variances by Monte Carlo integration for soil organic407

carbon on the point support and G-BASE aggregate support within square domains with408

sides of various lengths between 1 and 10 km. These are plotted on Figure 4, including409

the a priori variances which are very close to the dispersion variances for regions length 5410

km or more. The a priori variance of the variable on an aggregate support is 32% of that411

on the point support. The dispersion variances on the aggregate support within a 1-km412

square block is 36% of that on the point support.413

Assume that a sample is drawn from a region of 10-km×10-km or larger, with soil414

variability comparable to the landscape investigated here. Stratified random sampling415

is used with the land-use classes as strata. The a priori variances of the point-support416

and aggregate support covariance functions computed from the estimated parameters in417

Table 2 would be the expected pooled within-stratum variance, σ2
w (there are not sufficient418

data here to estimate separate variance parameters for the different classes). The standard419

error of the mean SOC estimated from N observations distributed in proportion to the420

areas of the different strata would be
√

σ2
w

N
. If we wanted the 95% confidence interval on421

an estimate of the mean to be approximately ± 10% of the mean (which is 2.7 g 100g−1422

soil) then calculations show that we would require about 62 samples on a core support,423

but because of the smaller variance on the aggregate support only 42 aggregate samples424

would be required. This would be a substantial saving of field effort and analytical costs.425
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I used Equations (10) and (11) to compute the expected correlation between data426

obtained by two samplings of the same set of locations, assuming that the location error427

D is normally distributed with mean zero and different standard deviations, and that428

the offset δ to avoid re-sampling disturbed sites is 10 cm. The point-support covariance429

function with parameters in Table 2 was used. The results are plotted in Figure 5 for430

point, G-BASE and NSI support. An upper bound for the correlation was also obtained431

by substituting a spherical covariance function for the nugget as in Equation (12) with432

|hmin| = 3 m, and this is also shown in Figure 5.433

Defra (2003) reports estimates of relocation error in revisiting soil sampling sites.434

On enclosed land it was estimated that the relocation error was less than 10 m in 61%435

of trials. If the relocation error is assumed to be bivariate normal then this implies a436

standard deviation in any one dimension of about 7 m. On open land it was estimated437

that the error was less than 10 m in 33% of cases, which implies a standard deviation in438

any one dimension of about 11 m. When the standard deviations of the location error439

are of this magnitude the difference between the calculated correlation of the sampled440

and re-sampled observations and the upper bound of this correlation are negligible. The441

calculated correlations with the standard deviation (one dimension) of 7 m were 0.62,442

0.89 and 0.89 for the core, G-BASE and NSI supports respectively, and were very little443

different for a standard deviation of 11 m (0.61, 0.87, 0.88).444

Discussion445

A geostatistical analysis allows us to make some plausible inferences about the relative446

merits of different sample supports for soil inventory and monitoring, provided that we447

have robust spatial covariance functions for the soil variable of interest from data sets448

which allow us to model spatial dependence over distances less than the intervals between449

aliquots of any proposed aggregate support. There is a general awareness that robust450

planning of soil inventory and sampling requires some exploratory data on soil variability,451

and this paper shows that information on fine-scale variation is also needed. This should452
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be a priority for future work on soil variability for planning soil surveys. Short-range453

variability of soil properties may differ markedly between soils on different parent materials454

and with different histories of land-use. It is therefore unrealistic to expect that a general455

purpose covariance model will describe the effects of aggregation on the statistics of soil456

data across a country or even a large region. This is true of any decisions on sampling457

strategy based on observed statistics, some degree of generalization is unavoidable. In458

practice two options are possible. One could identify areas where the fine-scale variation459

of the soil is likely to be largest, and sample that region to obtain a covariance function460

at fine scales to plan the sampling support. This would ensure that the precision of461

measurements in the most variable regions was adequate. Alternatively, one might obtain462

covariance functions for general regions which are expected to differ in their variability (for463

example, lowland arable soils and upland grassland) and plan different sample supports464

for these regions so that the precision in each is similar.465

There are potentially large differences between the a priori variances of soil data on466

point and aggregate supports, since in the latter case short-range variation is removed by467

the process of bulking. The extent of this advantage depends on the spatial covariance468

function of the variable on the point support. Nonetheless, it is clear that there are469

potential advantages in using an aggregate support when the objective is to sample to470

characterize a large region. While we cannot generalize from the results presented here on471

soil organic carbon, from one particular data set, it is notable that the a priori variance472

on the aggregate support is some 30% less than that on a core support, and about 30%473

fewer samples were required to meet a reasonable quality standard for estimating regional474

mean soil carbon content by stratified random sampling.475

Given the interest in soil monitoring, the results on the effect of sample support on476

the repeatability of sampling are important. These show considerable improvements in477

the correlation between independent determinations of soil properties over sites when an478

aggregate support is used. This is plausible since, with even quite large relocation errors,479
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the region of the aggregate support for the baseline and re-sampled observations will often480

overlap, and aggregation reduces the short-range variation which contributes most to the481

uncertainty in site-by-site comparisons over time. Figure 5 shows that the differences482

in correlation can be large even when the relocation standard deviation is small, which483

suggests that this is an significant consideration even as the performance of GPS or other484

technology to aid relocation improves.485

The aggregate sample requires more effort to collect at the local site than a single486

core. The local grid must be marked out, and the samples collected, physically mixed and487

sub-sampled. However, it is likely that the additional cost of these operations within each488

sampling site will be less than that of adding additional sites to a randomized scheme,489

with the administrative overheads, travel and analytical costs that each additional site490

entails. It is also of interest in this case that the benefits of increasing the number of491

aliquots within a 20-m square beyond five were negligible. By calculating the a priori492

variance of observations on aggregate supports with different numbers of aliquots we can493

make a rational decision as to how many are required to achieve target precision (although494

there must also be enough to provide sufficient material for the planned analyses and for495

archiving).496

As noted earlier, there is considerable variation in the sample support used in differ-497

ent schemes for soil inventory and monitoring, even within the United Kingdom. These498

results suggest that it is advantageous to use an aggregate support where this is possible499

for the soil properties of interest. Is it appropriate for existing surveys to change the sup-500

port that they use? A change in the support of soil data can, in principle, influence all its501

statistics. It would clearly be undesirable to change the support of soil data if this would502

change the mean. If the depth in the soil from which individual aliquots are extracted503

remains unchanged then a change of support should not affect the mean of a compo-504

sitional property expressed gravimetrically such as organic carbon content or available505

nutrients. Provided that the size and shape of the aliquots (as determined by sampling506
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tins or augers) as well as sample depth are unchanged then introducing an aggregate507

support would have no effect on the mean of volumetric properties such as porosity or508

bulk density. A change in the variance of soil data caused by a change in support need509

not cause problems for the statistical analysis of the resulting data and their comparison510

with earlier observations on a different support. There are quite standard expressions, for511

example, to compute a standard error on the difference between two independent samples512

of a variable when the samples cannot be assumed to have the same variance (Snedecor513

& Cochran, 1989).514

Conclusions515

To conclude, provided that we have a sound model of the spatial covariance of a soil516

property on point support, it is possible to compute the discretely regularized covariance517

function for that same property on a range of aggregate supports. This function can be518

used to compute the variance of the soil property on those supports within regions of519

any size or shape, and to calculate how consistently the soil can be re-sampled on the520

particular support, given relocation error.521

In the case of soil organic carbon in a lowland environment, it was shown that the522

variance of observations on the aggregate supports used by the National Soil Inventory523

(NSI) of England and Wales, and the British Geological Survey’s Geochemical Baseline524

Survey (soils) is substantially smaller than on a single core support, and that the con-525

sistency of re-sampling is also greater. To form robust conclusions across a range of526

conditions and soil properties would require further sampling to allow us to model the527

spatial covariances of these properties at fine (within-support) scales.528
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Table 1. Summary statistics for data on soil organic carbon from the Bedfordshire

transect (after removal of one outlier).

Soil organic carbon Residual from land-use mean
/g carbon 100g−1 soil. /g carbon 100g−1 soil.

Mean 2.66 0.00
Median 2.39 0.00
Standard deviation 1.30 1.02
Skewness 1.84 0.27
Octile skew 0.17 0.004
Minimum 0.12 -2.89
Maximum 8.52 3.97
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Table 2. Estimated parameters for a linear mixed model fitted to data on soil organic

carbon from the Bedfordshire transect.

Fixed effects Mean soil organic
carbon content
/g 100g−1 soil

Arable 2.20
Wood 4.11
Uncultivated 3.04

Random effects Parameter values

Correlation
function type. Exponential
c0 0.392 g2 100 g−2.
c1 0.738 g2 100 g−2.
a 215.8 m
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Figure Captions.

1. Dispersion variances within a 1×1-km block for data with point support (solid symbol)

or aggregate support (open symbol) on random functions with a spherical variogram,

a priori variance 1.0, differing nugget variances (abscissa) and a range of 100 or 500

m.

2. Empirical covariance function (solid symbols) of soil organic carbon residuals from

land-use mean. The solid line is the (point-support) exponential covariance function

with parameters estimated by REML for the linear mixed model for soil organic

carbon with land-use as a fixed effect.

3. Expected a priori variances of measurements of soil carbon for measurements on

seven different sample supports (illustrated). Each support is based on a 20×20-m

square and has differing numbers of aliquots (indicated by solid symbols).

4. Dispersion variances for soil organic carbon (within land-use) on point support or

aggregate support (G-BASE) within square blocks with differing lengths.

5. Correlation between two independent re-samplings of soil carbon on point and ag-

gregate supports plotted against standard deviation (in any one dimension) of the

relocation error. For each support the lower line is the correlation calculated from

the fitted covariance function, and the upper line is an upper bound on the correla-

tion calculated with the covariance function given in Equation (12).

29



0.4

0.6

0.8

1

on
 v

ar
ia

nc
e 

w
ith

in
 1

-k
m

2
bl

oc
k

0

0.2

0 0.25 0.5 0.75

D
is

pe
rs

io

Nugget variance

Point support, range = 100 m

Aggregate support, range = 100 m

Point support, range = 500 m

Aggregate support, range = 500 m



0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

C
ov

ar
ia

nc
e

Lag distance /m



n = 1 n = 4 n = 25

n = 2 n = 5

n = 3 n = 16

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

A
 p

rio
ri 

va
ria

nc
e 

of
 a

gg
re

ga
te

d 
va

ria
bl

e

Number of aliquots aggregated



0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15

D
is

pe
rs

io
n 

va
ria

nc
e

Block side /km

Point support

Aggregate support

//

∞



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

C
or

re
la

tio
n

Standard deviation /metres

Point support

G-BASE aggregate support

NSI aggregate support

Series4

Series5

Series6


	SampleSupport3
	NewFig1
	NewFig2
	Sheet1

	NewFig3
	Sheet4

	NewFig4
	Sheet3

	NewFig5
	Sheet3


