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[1] Effects of density decrease in plasma injection regions and a latitude‐dependent wave
normal angle distribution on the energization of electrons by whistler mode waves at
Jupiter are investigated. Previous work showed that whistler mode waves could enhance
the fluxes of a few MeV electrons by an order of magnitude on a time scale of 30 days.
However, density decrease in plasma injection regions and latitude dependence of the
wave normal angle distribution of waves were not considered. Because this information is
difficult to obtain from available observations, we perform a sensitivity study to
demonstrate that the effect of density decrease on energization of electrons becomes
important when the density inside injection regions is reduced to 25% of that outside. We
also investigate the effect of a latitude‐dependent wave normal angle distribution on
energization of electrons using a ray tracing program and demonstrate that a realistic
latitude‐dependent wave normal angle distribution increases the rate of pitch angle
diffusion near the loss cone, and thus enhances the loss rate, of 1–3 MeV electrons.
However, the flux of 10 MeV electrons is not significantly affected. Results of the work
are useful for understanding energization of MeV electrons at Jupiter, especially when
combined with observations from future missions.
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1. Introduction

[2] Resonant interactions between electrons and whistler
mode waves play a controlling role on terrestrial radiation
belt dynamics [Kennel and Petschek, 1966; Lyons and
Thorne, 1973; Summers et al., 1998; Horne and Thorne,
1998; Horne et al., 2005b]. The resonant interactions occur
when the Doppler‐shifted wave frequency felt by an electron
is equal to a multiple of electron’s cyclotron frequency [e.g.,
Stix, 1992]. These interactions have been shown to be
responsible for the energization of relativistic electrons in the
outer radiation belt after a geomagnetic storm [Horne et al.,
2005b; Shprits et al., 2006], and the refilling of the electron
slot between the inner and outer radiation belts [Thorne et al.,
2007].
[3] Strong whistler mode waves have also been observed

at Jupiter [Gurnett et al., 1996; Thorne et al., 1997; Bolton

et al., 1997; Xiao et al., 2003]. Recently, Horne et al. [2008]
demonstrated that interactions between electrons and whis-
tler mode waves in the Jovian magnetosphere cause signif-
icant acceleration of MeV electrons on a time scale of
30 days. Using wave power spectral density from Galileo
measurements, Horne et al. [2008] calculated quasi‐linear
pitch angle and energy diffusion coefficients and solved a
two dimensional diffusion equation at 10 RJ. They showed
that fluxes of 1–6 MeV electrons increased by more than an
order of magnitude within 30 days.
[4] In the calculation of Horne et al. [2008], an empirical

electron density model was used in calculation of diffusion
coefficients. The empirical electron density model, however,
does not consider the observed density decrease within
plasma injection regions. Jupiter’s magnetosphere, similar to
Saturn’s magnetosphere, is dominated by the centrifugal
force because of its rapid rotation. Inward transport of hot
and tenuous plasma and outward transport of cold and dense
plasma has been proposed theoretically as a result of the
centrifugal force dominated convection and an internal
plasma source [Hill, 1976; Hill et al., 1981]. Inside local
plasma injection regions, electron density is typically smaller
than the average ambient density bymore than a factor of two,
as argued by Thorne et al. [1997] and Kivelson et al. [1997].
Similar density cavities have been observed by Cassini at
Saturn [e.g., Menietti et al., 2008b; Rymer et al., 2009]. A
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decrease in electron density has been shown to favor local
stochastic energization [Horne et al., 2003]. Consequently
taking the density decrease inside injection regions into
consideration would be important to quantify the energiza-
tion time scale.
[5] The wave normal angle distribution of chorus wave

power is another important factor that is hard to determine
from observation, but is required in the calculation of the
diffusion coefficients. Horne et al. [2008] assumed that the
wave power peaks around wave normal angle y = 0°, based
on previous studies on terrestrial whistler mode chorus
waves [Horne et al., 2005a; Li et al., 2007]. However,
several ray tracing studies and observations have shown that
whistler waves tend to become more oblique at higher la-
titudes even when starting parallel from the equator [Bortnik
et al., 2008; Li et al., 2008, 2009; Haque et al., 2010]. Since
the wave power might not always peak around y = 0°, we

will analyze the effect of a different wave normal angle
distribution of whistler wave power on our results.
[6] In this work, we follow the modeling of Horne et al.

[2008], but also take into consideration cross diffusion
terms Dap, which have been shown to be important for
quantifying wave particle interactions in the terrestrial
magnetosphere [Albert and Young, 2005; Tao et al., 2008,
2009; Xiao et al., 2009]. The sensitivity of the main con-
clusions of Horne et al. [2008] to the amount of density
decrease inside the local plasma injection regions is ana-
lyzed in section 3.2. A ray tracing code HOTRAY [Horne,
1989] is then used to trace several whistler wave rays from
the equator to higher latitudes to investigate change of
their wave normal angle. The results are used to construct a
latitude‐dependent wave normal angle distribution model,
which is then used to calculate quasi‐linear diffusion coef-
ficients. The effect of the latitude‐dependent wave normal

Figure 1. Average whistler mode wave intensities measured by Galileo as a function of (a) radial dis-
tance, (b) magnetic latitude, and (c) local time. (d) The Galileo orbits are plotted together with color‐
coded whistler mode wave intensities (power flux).
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Figure 2. Bounce‐averaged diffusion rates (d−1) obtained using a density model outside injection
regions assuming that the wave normal angle distribution is centered around 0°. (bottom right) The sign
of Dap.

Figure 3. Same as Figure 2 but for Dhd (the plasma density is assumed to be half of that used in cal-
culating Do).
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angle distribution on electron flux evolution is described in
section 3.3. Finally, we summarize our work in section 4.

2. Observed Wave Power Distribution and Quasi‐
Linear Diffusion Coefficients

[7] We use a survey of all wave data recorded by the
Galileo Plasma Wave Subsystem (PWS) instrument [Gurnett
et al., 1992] from 27 June 1996 to 5 November 2002. The
wave power distribution of whistler mode waves in Jupiter’s
inner magnetosphere is shown in Figure 1, as a function of
magnetic latitude or local time at 10 RJ, or radial distance.
Also shown in Figure 1d is the wave power flux plotted
together with Galileo orbits. It is seen from Figure 1 that
strong waves are detected between 6 RJ and 18 RJ, peaking
between 8 RJ and 10 RJ. The whistler wave power peaks
between 2° and 4° in latitude, and decreases by an order of

magnitude at the highest latitude (∼12°) sampled by Galileo.
The wave power flux distribution also shows a day‐night
asymmetry and is slightly stronger in the dayside near local
noon. A more detailed analysis of whistler mode chorus
waves observed by Galileo could be found in work by
Menietti et al. [2008a].
[8] As argued by Horne et al. [2008], the preferred

location for strong electron energization is outside the Io
torus, where the electron density is low and wave activity is
strong. The ratio of electron plasma frequency to cyclotron
frequency wpe/wce is about 5 at 10 RJ. Also due to the strong
centrifugal force, plasma is confined to the centrifugal
equator, thus wpe/wce falls to a relatively low value at higher
latitudes. We follow Horne et al. [2008] and use a plasma
density model by Bagenal [1994] for the electron density
distribution along a magnetic field line outside injection
events at Jupiter. Because there are insufficient measure-

Figure 4. Electron fluxes (color coded) at (left) 0 days, (middle) 15 days, and (right) 30 days as a func-
tion of a and E for (a) Do, (b) 0.9Do + 0.1Dhd, (c) 0.7Do + 0.3Dhd, and (d) 0.5Do + 0.5Dhd.
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ments of electron density inside plasma injection regions,
we will assume the electron density inside injection regions
to be either half or one quarter of the electron density out-
side injection events to test the sensitivity of our results to
the density decrease in injection regions.
[9] To calculate quasi‐linear diffusion coefficients, we

assume the wave power to be Gaussian in frequency [Glauert
and Horne, 2005]. Horne et al. [2008] showed that chorus is
strongest near 0.1 ∼ 0.2wce. We follow Horne et al. [2008]
and assume that the wave power peaks at 0.15wce with a
width of 0.05wce. The wave normal angle distribution in
X ≡ tan y is assumed to be Gaussian, similar to chorus
waves at Earth, with a width Xw = tan 30°. The wave power
is first assumed to be centered at Xc = 0°, but we also
investigate effects of a latitude‐dependent wave normal
angle distribution on electron energization in section 3.3.
Using the Full Diffusion Code [Shprits and Ni, 2009; Ni

et al., 2008], we first calculate the diffusion coefficients
outside injection events (hereafter denoted as Do) as shown
in Figure 2.

3. Evolution of Electron Phase Space Densities

3.1. Description of the Numerical Model

[10] A 2‐D bounce‐averaged diffusion equation is used
to model the evolution of electron phase space density ( f )
as a function of equatorial pitch angle (a) and momentum
( p):
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Figure 5. Line plots of electron fluxes of (top) 1 MeV, (middle) 3 MeV, and (bottom) 10 MeV at (left)
15 days and (right) 30 days due to different combinations of Do and Dhd indicated by different colors.
Initial conditions are shown by dashed lines.
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where Daa, Dap and Dpp are bounce‐averaged pitch angle,
mixed and momentum diffusion coefficients. Here G is a
Jacobian factor, G = p2T(a) sin(a) cos(a), and T(a) ≈ 1.30 −
0.56 sin(a) is the normalized bounce period. In work by
Horne et al. [2008], the equation is solved without mixed
terms Dap. However, the importance of Dap has been shown
by previous work and several methods have also been
proposed to solve equation (1) [Albert and Young, 2005;
Tao et al., 2008, 2009; Xiao et al., 2009]. In this work, we
use the numerical method of Albert and Young [2005] to
solve equation (1) with Dap included.
[11] The initial and boundary conditions are chosen to

be the same as those of Horne et al. [2008]. To minimize
effects of wave particle interactions in the initial distribution
at 10 RJ, the average electron flux from Pioneer and Voyager
data at 15.75 RJ is used to calculate the initial electron flux
at 10 RJ, assuming a dipole magnetic field and loss‐free
inward radial diffusion to 10 RJ. The electron flux is then
converted to phase space density using f = j/p2. We fix phase
space density at the lower energy boundary at E = 300 keV
and set f = 0 at E = 100 MeV. We also assume that electrons
scattered into the loss cone (aLC = 1.5°) precipitate into the
Jovian atmosphere within a quarter of the bounce time. At
a = 90°, we assume ∂f/∂a = 0.

3.2. Sensitivity to Density Decrease During Local
Plasma Injection Regions

[12] Within plasma injection regions, the total plasma
density is decreased by at least a factor of two, as inferred
from enhancement of magnetic field inside the injection
region and the requirement of the total pressure balance
[Thorne et al., 1997; Kivelson et al., 1997]. A decrease in

total electron density will affect both the resonance energy
of electrons and the pitch angle and energy diffusion coef-
ficients. A smaller electron density will result in larger wave
phase speed and correspondingly will enhance energy dif-
fusion. Thus including density decrease in the modeling
may be important to calculate the time scale of electron
energization.
[13] However, as far as we are aware, there is no density

model for plasma injection regions and no direct measure-
ment of the fraction (ci) of plasma injection regions in terms
of local time. To investigate the effects of local plasma
injections on the average rate of energization of electrons
by whistler mode waves, we assume different values for ci

and average densities ri of plasma injection regions. The
drift‐averaged diffusion coefficient used in equation (1) is
D = ciDi + (1 − ci)Do, where Di is the diffusion coeffi-
cient inside an injection region.
3.2.1. Case 1: ri = (1/2)ro
[14] We calculate the diffusion coefficients using the

wave model described in section 2 but with the electron
density ri half of that outside (ro) and three values for ci.
The resulting diffusion coefficient Di = Dhd is shown in
Figure 3. The evolution of electron fluxes is shown in
Figure 4 with Figure 4a showing the results of using the
diffusion coefficientDo discussed in section 2, and Figures 4b–
4d exhibiting changes due to the increasing probability of
observing an injection event. Corresponding line plots of
fluxes of 1 MeV, 3 MeV, and 10 MeV electrons are shown
in Figure 5, which indicated that increasing ci will increase
fluxes at 3 MeV and 10 MeV electrons, mainly because of
the increase of energy diffusion. However, fluxes at 1 MeV
at larger pitch angles are slightly reduced because of the

Figure 6. Same as Figure 2 but for Dqd (the plasma density is assumed to be a quarter of that used in
calculating Do).
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increased pitch angle diffusion near loss cone. Overall, when
ri = (1/2)ro, including density decrease inside injection
regions will slightly decrease fluxes of 1 MeV electrons at
higher pitch angles and increase fluxes at 3 MeV and 10MeV
electrons by a factor of 1.5. Consequently the density
decrease inside injection regions in the case of ri = (1/2)ro
does not seem to significantly affect the time scale of
energization.
3.2.2. Case 2: ri = (1/4)ro
[15] For the case of ri = (1/4)ro, the diffusion coefficient

Di = Dqd is presented in Figure 6, which shows both higher
energy and pitch angle diffusion coefficients at higher
energies (E > 1 MeV), compared with Figure 2. The evo-
lution of 2‐D electron fluxes due to different ci with Dqd is
shown in Figure 7, and the line plots of fluxes at 1 MeV,
3 MeV and 10 MeV are shown in Figure 8. Significant
effects of including Dqd occur even when ci = 0.1, where

the electron flux at 10 MeV is increased due to increased
energy diffusion, while that at 1 MeV is decreased due to
increased pitch angle diffusion near the loss cone. When ii
is increased to 0.5, the electron flux at 10 MeV around 55°
is increased by a factor of 5 at t = 30 days, and the
electron flux at 1 MeV is decreased by a factor of 3 for
pitch angles larger than about 20°. Overall, a density decrease
by a factor of 4 inside injection regions would appear to
have an important effect on the time scale of electron
energization.

3.3. Effects of a Latitude‐Dependent Wave Normal
Angle Distribution

[16] The wave normal distribution of chorus waves was
assumed to be centered around 0° [e.g., Horne et al., 2008]
in the above wave model used to calculate Do. However,
several ray tracing studies [Bortnik et al., 2008; Li et al.,

Figure 7. Same as Figure 4 but due to combinations of Do and Dqd.
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2008] have shown that the wave normal angle of an initially
parallel propagating ray normally increases during its
propagation away from the equator. Here, we use a ray
tracing code HOTRAY [Horne, 1989] to show the propa-
gation of whistler mode waves in the Jovian magnetosphere
and subsequently take the effects of the latitude‐dependent
wave normal angle distribution into account in the calcula-
tion of quasi‐linear diffusion coefficients.
[17] The HOTRAY code was developed by Horne [1989]

to trace electromagnetic and electrostatic waves in a hot
magnetized plasma. We use HOTRAY code to trace rays of
whistler mode chorus waves of several frequencies, starting
with y = 0° from the equatorial plane at L = 10. The
resulting variation of the wave normal angle with respect to
latitude l is shown in Figure 9, which shows that from l =
0° to 10°, the wave normal angles of all rays ( f = 0.05fce to
0.25fce) change from 0° to about 40°. Consequently, we use
a latitude‐dependent wave normal distribution in the cal-

culation of diffusion coefficients based on the ray tracing
result (yc = −0.36 + 5.04l − 0.06l2 and Xc = tan(yc)). Other
parameters of the wave model are the same as the one
described in section 2. The resulting diffusion coefficient
Dyc(l) is shown in Figure 10. The evolution of electron
fluxes calculated usingDyc(l) at 1 MeV, 3 MeV, and 10 MeV
is shown in Figure 11, compared with that due to Do. The
fluxes of 10 MeV electrons calculated using Dyc(l) and Do

are almost the same. However, the pitch angle diffusion at
lower pitch angles near the loss cone is increased when
using Dyc(l), resulting in more losses of 1 MeV and 3 MeV
electrons and a decrease in their fluxes.

4. Discussion and Summary

[18] We used a wave power distribution obtained from a
survey of Galileo PWS wave records between 27 June 1996
and 5 November 2002 to investigate the effects of density

Figure 8. Same as Figure 5 but due to combinations of Do and Dqd.
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decrease in injection regions and a latitude‐dependent wave
normal angle distribution of whistler mode waves on ener-
gization of electrons. We assumed two different average
densities (ri) of the injection regions and we demonstrated
that if ri is half of the density outside (ro), the effects of
density decrease on the time scale of electron energization
are negligible. However, if ri is a quarter of ro, the effect of
density decrease on the time scale of energization of higher‐
energy (10 MeV) electrons is important when the fraction
(ci) of plasma injection regions in local time is larger than

0.3. Also, including the injection regions will also enhance
pitch angle diffusion of lower energy (1 MeV and 3 MeV)
electrons near loss cone, thus reducing their fluxes. One
thing that is missing from our model is the enhancement of
whistler mode wave activity during plasma injection regions,
which will be left to future work.
[19] The effect of a latitude‐dependent wave normal angle

distribution of whistler waves on evolution of electron phase
space density was also investigated with the aid of a ray
tracing code HOTRAY. We showed that rays of whistler
waves initially parallel to local magnetic field have a wave
normal angle of about 40° when reaching 10° in latitude.
The latitude‐dependent wave normal angle distribution has
no obvious effect on 10 MeV electron fluxes. However, it
increases pitch angle diffusion of 1 MeV and 3 MeV elec-
trons near the loss cone and reduces their fluxes by about a
factor of 3. Thus the change of wave normal angle of chorus
waves during propagation should be taken into account
when quantitatively modeling electron flux evolution of
Jovian electrons.
[20] Other parameters that are potentially important but

not discussed in this study are, e.g., initial conditions [Xiao
et al., 2010], the width of the frequency and wave normal
angle distributions. We used initial conditions calculated
from observations, but it might also be possible to use
kappa‐type distributions [Xiao et al., 2008], which have
been shown to fit very well with observed electron dis-
tributions at Earth. Investigating the importance of these
parameters are left to future work. Overall, better informa-
tion of these parameters might be provided by future mis-
sions to Jupiter, and the results of this work should be useful
to understand relativistic electron dynamics at Jupiter when
combined with more observations.

Figure 9. Evolution of the wave normal angle (y) of rays
at different frequencies, indicated by different colors, as a
function of latitude. The black dashed line is y = −0.36 +
5.04l − 0.06l2.

Figure 10. Same as Figure 2 but for Dyc
(l) (the wave normal angle distribution is latitude dependent).
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Figure 11. Evolution of electron fluxes at 15 and 30 days using Do (blue) and Dyc
(l) (red) for (top)

1 MeV, (middle) 3 MeV, and (bottom) 10 MeV.
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