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Abstract  10 

Phenology models are tools to analyze changes in the timing and duration of the 11 

growing season. During the past three decades different budburst models have been 12 

developed, but, so far, no consensus model has been found to accurately predict 13 

budburst date across different tree species. The aim of this study was to estimate the 14 

performance of six different temperature-driven models of leaf budburst (thermal time, 15 

thermal period fixed, sequential, parallel, alternating, unified) for four temperate tree 16 

species in Belgium (birch, chestnut, oak, beech). The models were parameterized 17 

using a Bayesian approach. The performance of these models was compared using 18 

Bayesian model Comparison (BMC) and Root Mean Square Error (RMSE). 19 

Model comparison showed that the two models that do not include a calculation of 20 

chilling requirement were the best for the studied four tree species. The sequential 21 

model (SM) was the third most plausible model for predicting budburst, having a 22 

higher probability to be correct than the other two-phase models combining a chilling 23 

phase with a forcing phase. This suggested that in our budburst observation dataset, 24 

the chilling requirement was probably always fulfilled, making the date of budburst 25 

controlled by forcing temperature. We cannot rule out that in warmer regions or future 26 

warmer conditions, chilling may become insufficient and a sequential pattern of 27 

chilling and forcing may become most appropriate to simulate budburst date. 28 

Parameter analysis showed that the last month prior to budburst had the greatest 29 

impact on determining the date of bud opening in the case of birch and chestnut, 30 

whereas the last three months were the main determinants for oak and beech, the two 31 
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later flushing species. Validation showed that the models that fitted the 32 

parameterization data well had much poorer performance when tested with 33 

independent data. This indicates that other factors (e.g. photoperiod) might affect the 34 

budburst process and/or model parameterization (determining the sensitivity of 35 

budburst to temperature) substantially change between different localities. 36 

Keywords: Temperate deciduous forest species; Phenology model; Bayesian model 37 

probability; Budburst 38 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 

 

1. Introduction 39 

The timing of tree budburst is a critical phenological event that controls the dynamics 40 

of carbon and water cycling, and establishes a trade-off between capacity adaptation, 41 

i.e. maximum use of the growth resources of the site, and survival adaptation, i.e. 42 

avoidance of damage caused by late frosts (Heide, 1985; Hänninen and Hari, 1996; 43 

Saxe et al., 2001; Leinonen and Hanninen, 2002). Variation in timing of budburst 44 

among species can be attributed to different combinations of these adaptive forces. 45 

The traditional explanation of phenological inter-species variation lies in the 46 

differences in vulnerability to xylem dysfunctions and to damage by late-frosts by late 47 

frosts to leaves (Tyree and Zimmermann, 1983; Wang et al., 1992). However, the 48 

mechanism behind bud development is still unclear and the physiological control of 49 

the early stages of bud development remains poorly understood. Therefore, only 50 

semi-empirical modeling methods have been used to predict the timing of budburst 51 

and explore phenological variation among species.  52 

Since Réaumur suggested that differences in daily temperature could be used to 53 

explain differences in timing of phenological events (Réaumur, 1935), many different 54 

kinds of phenology models based on temperature have been developed. The most 55 

simple models, such as the ‘Thermal Time model’, only involve a forcing temperature 56 

(Cannell and Smith, 1983). While most of other models distinguish two phase: 57 

dormancy and quiescence (Sarvas, 1974; Lavender, 1981; Cannell and Smith, 1983; 58 

Murray et al., 1989). First, chilling temperatures (e.g. between -5 to +10ºC) are used 59 

to determine the date of which bud dormancy break, whereas afterwards forcing 60 
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temperature (e.g. above 0ºC) is assumed to induce budburst. Examples of the 61 

two-phase models are the ‘Parallel model’ (Landsberg, 1974; Hänninen, 1990; Kramer, 62 

1994), the ‘Sequential model’ (Sarvas, 1974; Hänninen, 1987; Kramer, 1994), the 63 

‘Alternating model’ (Cannell and Smith, 1983; Murray et al., 1989; Kramer, 1994); 64 

and the ‘Unified model’ (Chuine, 2000). To date no consensus model has been 65 

accepted, likely because no model accurately predicts budburst date for different 66 

species under all conditions. Most models were developed for single species (Pinus 67 

palustris Mill. (Boyer, 1973); Picea sitchensis (Bong.) Car. (Cannell and Smith, 1983); 68 

Fagus sylvatica L. (Kramer, 1994), and rarely for several species (Hunter and 69 

Lechowicz, 1992; Chuine, 2000). Thus, these models are unlikely to reflect the 70 

different responses of different species to chilling and forcing temperatures. Another 71 

reason for the missing consensus in phenology models may lie in the inadequate 72 

mathematical analyses conducted and inadequate criteria employed in evaluating the 73 

models (Tuomi et al., 2008). Commonly applied goodness-of-fit criteria, such as the r
2
 74 

value or the squared sum of residuals (Kramer, 1994; Chuine et al., 1998; Linkosalo et 75 

al., 2008; Vitasse et al., 2011) do not account for the uncertainty of the estimates 76 

produced by these models.  77 

In this study, our purpose was to estimate the performance of different models 78 

predicting the timing of budburst for four temperate tree species (Betula verrucosa 79 

Ehrn. (Birch), Aesculus hippocastanum L. (Chestnut), Fagus sylvatica L. (beech) and 80 

Quercus robur L. oak) with different time of budburst. We tested six models: the 81 

Thermal time model (TTM), the Thermal period fixed model (TPFM), the Sequential 82 
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model (SM), the Parallel model (PM), the Alternating model (AM) and the Unified 83 

model (UM). The parameter vectors of the models were calibrated by Bayesian 84 

methods (BC), and the best parameter vector for each model was identified by 85 

Markov chain Monte Carlo (MCMC) sampling of parameter spaces. BC can exploit a 86 

priori available statistical information on unknown parameters, thereby significantly 87 

improving the precision of parameter estimation (Cobelli et al., 2000; Van Oijen et al., 88 

2005). Model performance was evaluated by using the traditional Root Mean Square 89 

Error (RMSE), and Bayesian model comparison (BMC). BMC examines the different 90 

models to quantify their relative probabilities of having the correct structure (Kass and 91 

Raftery, 1995; Van Oijen, 2008). In addition to the model evaluation, we also tested 92 

the influence of different temperature–dependent functions on model performance. 93 

Specifically we explored: 94 

1. What the relative importance of chilling and forcing temperature is among models. 95 

2. Whether different species have similar control mechanisms to drive their budburst 96 

phenology, i.e. can one simple model be applied to all species, with different timing of 97 

flushing or successional strategy? 98 

3. If the estimation of model performance varies when evaluated with different 99 

methods i.e. RMSE vs. BMC.  100 

101 
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2. Materials and methods 102 

2.1 Phenology and air temperature data 103 

Budburst records were obtained from six sites of the Observation Network of the 104 

Belgian Royal Meteorological Institute (RMI), which collected information on 105 

phenological phases of trees and plants in Belgium between the early 1940s and late 106 

1990s. However, in this study we used only the data since 1958 due to the lack of 107 

accurate temperature estimations before then. In the RMI phenological dataset the day 108 

of bud break corresponded to a visible outcome of the top of the leaves and their 109 

contact with the atmosphere for one third of the buds on the tree. 110 

The four species were grouped into two categories i.e. Betula verrucosa Ehrn. and 111 

Aesculus hippocastanum L. with budburst around mid April, Fagus sylvatica L. and 112 

Quercus robur L. with budburst in early May, Table1). These two categories are 113 

indicated as ‘early flushing’ and ‘late flushing’. However, this classification goes 114 

beyond the date of budburst. In fact, the two late flushing species are late successional 115 

species showing one or two leaf growth flush per year, whereas the two earlier 116 

flushing species are earlier successional species with continuous leaf growth or 117 

multiple leaf flushes. The investigated species are common in Belgium(Matteo 118 

Campioli et al., 2012).The details of the sites are shown in Table 2. Values of air 119 

temperature for each site (three-hourly averages) were obtained from RMI weather 120 

stations nearby the sites.  121 

The number of budburst observations for some species at some sites was too limited 122 

to calibrate parameter rich models. Only the site with the highest number of 123 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

8 

 

observations was used to estimate the model parameters. The pooled dataset from 124 

other sites was used as independent dataset to test the models (Table1). We preferred 125 

this way to the reverse (i.e. use the pooled dataset for calibration and one site as 126 

independent dataset for testing) as it is more consistent to calibrate the models with 127 

budburst series collected at one site (thus by the same operator on the same genetic 128 

pool) than with less compatible datasets from multiple sites.  129 

2.2 Models for the timing of budburst 130 

We used six models, which can be divided into two general types. The first type 131 

(thermal time or growing degree days model, one-phase models) represents the 132 

simplest modeling approach to simulate budburst. Accordingly, budburst is triggered 133 

when the buds have undergone a sufficient warming (defined as forcing temperature) 134 

that cumulated from a fixed date or for a fixed period . In this approach, the dormancy 135 

phase is not accounted for, as the environmental conditions required to release 136 

dormancy are supposed to have been met before the fixed starting date. The other type 137 

of models (two-phase models) considers not only the forcing temperature but also the 138 

effect of chilling temperature in breaking the bud’s dormancy. Accordingly, both cold 139 

and warm conditions control the budburst. A short description of the six models 140 

employed (2 of the one-phase and 4 of the two-phase) is given below, whereas their 141 

schematic representation is in Fig.1 and their parameters in Appendices A and B. In 142 

the description below, next to the name of each model, a reference is made to relevant 143 

studies employing the model. 144 

In the models, the effect of the forcing temperature and of the chilling temperature is 145 
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accounted for by calculating (daily) rate of forcing (Rf) and of chilling (Rc), that are 146 

functions of the daily air temperature (T). These functions differ between models. Rf 147 

and Rc determine the rates of change of the state of forcing (Sf) and chilling (Sc), 148 

respectively:  149 

    



D

tt

ff

f

TRDS
1

)()(                        (1) 150 





D

tt

cc

c

TRDS
1

)()(           (2) 151 

where t1f and t1c is the initial day of the forcing- and chilling period, respectively, and 152 

D is the day of the year. Budburst is triggered when Sf reaches a forcing threshold F
*
, 153 

whereas, in the models that account for the chilling temperature, the start of 154 

quiescence (the forcing period) is triggered when Sc reaches the chilling threshold C
*
.  155 

*)( FDSif f    then Budburst induction completed   (3) 156 

  
*)( CDSif c 

    
then Dormancy completed             (4) 157 

2.2.1 Thermal time model (TTM)(Cannell and Smith, 1983) . 158 

In the TTM, the forcing period starts on a fixed day (t1f =t0), and Rf is computed only 159 

when the air temperature is above a critical temperature (Tb):  160 

0

0

0 ( )
=

( ) >

b

f

b b

T D T D tif or
R

T T T D T D tif and

 


 
（D）         (5) 161 

To test for the importance of the formulation of the rate function Rf, a second version 162 

of TTM (named TTM*) was employed. Previous phenological modeling studies have 163 

found that the rates of forcing are either growing degree-days as Eq.5, or sigmoid 164 

functions of the temperature . Therefore in TTM* we used the forcing rate function as:  165 
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0
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D tif
R D a

D tif
e 




 
 

              (6) 166 

where a, b and c are constants. Overall, in TTM, we have 3 parameters (t0, Tb, F
*
), and 167 

5 parameters for TTM* (t0, a, b, c, F
*
). 168 

2.2.2 Thermal period fixed model (TPFM) (Nizinski and Saugier, 1988). 169 

TPFM is similar to TTM, but in TPFM the forcing temperature is computed and 170 

accumulated over a fixed period of N days after the start date t0. The start was fixed 171 

on the February 1
 
when the air temperature is normally above the critical temperature 172 

Tb, i.e. 0℃. If at the end of such period Sf is greater than the forcing threshold F
*
, 173 

budburst is initiated, otherwise the start date of the N-day accumulation period moves 174 

one day forward. In TPFM, we have 2 parameters (N, F
*
) 175 

0

0

0
( )=

b

b

f

b

T TD tif or
R D

T T D tif and T T




  
            (7) 176 

2.2.3 Sequential model (SM. (Sarvas, 1974; Hänninen, 1990; Kramer, 1994).  177 

The SM is similar to the thermal time models in simulating the forcing temperature 178 

and the budburst trigger. However, instead of starting the forcing period on a certain 179 

date, the SM starts to accumulate warmth units when a sufficient amount of chilling 180 

has occurred (Eq. 4). In SM, we fixed t1c on November 1. As in the previous 181 

applications of SM, we define Rc as a triangular function of T (Hänninen, 1990; 182 

Kramer, 1994) 183 
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                       (8) 184 

where Tmin, Tmax, Topt are the minimal, maximal and optimal temperature for chilling 185 

period. Rf is calculated with a similar sigmoid function as used in TTM*: 186 

*
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f
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c

if S C

R D a

if S Ce 
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 
 

                 (9) 187 

As above for TTM, to test for the importance of the rate function formulation, a 188 

second version of SM (named SM*) was employed with different equations to 189 

calculate Rf and Rc as below:  190 

*

*
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( ) >

b c

f

b b c

T D Tif or S C
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      (10)
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                    (11)  192 

where Tc is critical temperature. We have eight parameters in SM (Tmin, Tmax, Topt, a, b, 193 

c, C
*
 and F

*
), and four parameters in SM*(Tb, Tc, C

*
 and F

*
) 194 

2.2.4 Parallel model (PM) (Landsberg, 1974; Hänninen, 1990; Kramer, 1994).  195 

PM assumes that the effect of forcing temperature on budburst can take place even 196 

during the chilling. Rc is calculated as in SM (Eq. 8), whereas Rf is calculated with the 197 

following equation, a modification of Eq. 9 of SM:  198 
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    (12) 199 

where Km is a model parameter. PM has one more parameter (Km) than SM. 200 
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 201 

2.2.5 Alternating model (AM) (Murray et al., 1989).   202 

AM has the same rate of forcing as TTM (Eq. 5) but fixed t0 on the January 1
st
. The 203 

chilling rate equals the number of chilling days (Eq. 13), with start of chilling fixed on 204 

November 1
st
. The start of forcing and chilling did as previous study (Murray et al., 205 

1989) 206 

( )0
( )

( )1

c

c

c

T D Tif
R D

T D Tif


 


                      (13) 207 

The major difference between AM and the other models is the definition of F
*
 (Eq. 3), 208 

which in AM is not a constant parameter but a negatively exponential function of the 209 

state of chilling (Eq.14) (Cannell and Smith, 1983; Hänninen, 1990). In this way, 210 

flexibility is introduced in modeling the budburst process as the forcing period is 211 

controlled by the chilling period.  212 
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D

c c
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f R

a bF f f e

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          (14) 213 

Where fa, fb, fc are fitting parameters. AM has five parameters (Tb, Tc, fa, fb, fc). 214 

2.2.6 Unified model (UM. (Chuine, 2000) 215 

UM combines features of the other models and merges the equations for Rc and Rf 216 

into one sigmoid equation: 217 

2( ) ( )

if a  and b  and c1

if a 0    and b  and c  1

C a b c

a T c b T c
f b c

R C C C

R F Fe   

  
 

   

（D）

（D）
   (15) 218 

where Ca, Cb and Cc are chilling rate parameters, Fb and Fc are forcing rate parameters. 219 

In UM, t1c is assumed on September 1
st
. The forcing units start to accumulate when a 220 

sufficient amount of chilling has occurred (C
*
), and F* is calculated with an 221 
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exponential function of Rc similarly to Eq. 14 from t1c to t2c,  222 

    

2

1

-

*

t
c

c

t
c

k R

F e


 D（ ）                          (16) 223 

where k, w and t2c are model parameters. The unified model has nine parameters (Ca, 224 

Cb , Cc , Fb , Fc ,C
*
, k, w, t2c).  225 

2.3 Parameter estimation and Bayesian Model comparison  226 

Parameters were estimated with Bayesian calibration (BC) using the version of 227 

Markov Chain Monte Carlo (MCMC) known as the Metropolis-Hastings random 228 

walk (Robert and Casella, 2004). Bayes’ theorem can be written as a simplified form: 229 

( | ) ( | ) ( )p BB p BB p                (17) 230 

Where BB is the budburst observation, ( | )p BB  is the posterior distribution of the 231 

parameter value θ, ( | )p BB   is the likelihood function for θ and the factor p(θ) is 232 

the prior distribution for θ (Sparacino G, 2000; Van Oijen et al, 2005).   233 

(i) Prior. The prior parameter information can be obtained directly from 234 

measurements or derived from the literature. In our case, the initial values of the 235 

parameters were derived from the literature (Kramer, 1994; Chuine et al., 1998; 236 

Linkosalo et al., 2008) or set subjectively. The initial uncertainty of each parameter is 237 

quantified in terms of a prior probability distribution with lower and upper bounds. 238 

We assumed the distribution as uniform and non-correlated.  239 

(ii) Data likelihood. The data likelihood (Li) function is determined by the model 240 

errors, i.e. the difference between the simulated and observed output variable, in this 241 

case the budburst. The likelihood is computed assuming measurement errors are 242 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sparacino%20G%22%5BAuthor%5D
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Gaussian and uncorrelated (Van Oijen et al, 2005). 243 

2

1,

( )1 1
= exp ( )

22

i i
i

i n ii

M BB
L



 

 
 
 


 

          (18) 244 

Where BBi is the budburst observed in sampling year i, M ( )i is the simulated 245 

budburst value, and i  the standard deviation of the model error. The observed 246 

budburst dates were obtained from the RMI. For this BC, we only used data from the 247 

sites with the most observations (Table 1). 248 

 249 

(iii) Posterior. The posterior distribution was determined using MCMC as follows: 250 

The budburst model was run 10
5
 times with different parameter settings. This was 251 

done by a walk through the parameter space in such a way that the collection of 252 

visited points formed a representative sample from the posterior distribution for the 253 

parameters. The first step in this walk of the MCMC was to run an initial simulation 254 

with parameter values from a fixed starting point, and to calculate the total data 255 

likelihood of that point with Eq. 18. The second step was to generate a proposal for a 256 

new candidate parameter vector value '  by adding a vector of random numbers to 257 

the previous parameter vector  , and then evaluate the data likelihood at that point.  258 

The candidate point was accepted as part of the posterior distributions if the 259 

Metropolis-ratio (equation 19) of the corresponding data likelihood values and the 260 

data likelihood of the previous accepted point was larger than a uniform (0, 1) random 261 

variable u. 262 

( ' | ) ( | ')

( | ) ( | )t t

p D p D

p D p D

 


 
                         (19) 263 

The simplification shown in Eq. 19, with the Metropolis ratio being equal to the ratio 264 
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of likelihoods, is valid because our prior parameter probabilities are from uniform 265 

distributions and thus cancel out. The Bayesian calibration scheme generates two 266 

chains, one with parameter vectors (which represent a sample from the posterior 267 

distribution) and a chain with the corresponding model outputs. The BC does not only 268 

provide the best fit, where the likelihood was highest, but reduced uncertainty about 269 

parameter values, as expressed in the posterior joint probability distribution (Van 270 

Oijen et al., 2005). 271 

After BC, we can use the posterior parameter distribution for model comparison by 272 

means of Bayesian model comparison (BMC). In our case, we divided the database of 273 

available budburst observations into two sub-datasets. We used one sub-dataset to do 274 

BC as described above, and generated the posterior 10
5 

parameter vectors. 275 

Subsequently, the studied models were run using these posterior parameter values and 276 

tested against the second sub-dataset. The first subset is for the most complete and the 277 

second is the remaining data. The model output generated in this second step was 278 

used to calculate the data likelihood for each run using Eq. 18. The average of the 10
5
 279 

likelihoods L  was calculated. After having calculated the average likelihood jL  280 

for model Mj, we calculate the posterior probability for each model as: 281 

 282 

1

( | ) /
n

i j j

j

P M D L L


                      (20) 283 

Where n is the number of models that we compared. Equation 20 presupposes that 284 

there was no prior preference for any of the models, i.e. the prior probabilities for the 285 

different models were all equal. The different values of P (Mj|D) tell us the relative 286 
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probability of model Mj being the correct one, compared with the other models. More 287 

detail can be found in Kass and Raftery (1995) and a simple tutorial is given by Van 288 

Oijen (2008). 289 

2.4 Root Mean Square Error 290 

In addition to BMC, the model performance with best-fit parameters (i.e. the 291 

parameter vectors from the posterior samples with maximum likelihood) was 292 

estimated with the root mean square error (RMSE) between the predicted and the 293 

observed budburst values: 294 

2

1

( ( ) )

1

n

i i

i

M BB

RMSE
m









＝                              (21) 295 

Where M( )i and BBi are defined as in Eq. 18, and m is the number of observations. 296 

The RMSE of predictions was calculated for (i) the same dataset of budburst 297 

observations used for parameter estimation, i.e. for BC (called hereafter internal 298 

RMSE, RMSEinternal,) and (ii) an independent dataset, i.e. the same dataset was used 299 

for BMC (external RMSE, RMSEexternal,).  300 
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3. Results 301 

3.1 Root Mean Square Error 302 

The RMSE values of predictions are shown for all the models in Table 3. The details 303 

of parameter values can be found in Appendix B.  304 

According to the RMSEinternal, TTM, TPFM, SM and UM are all reliable models for 305 

the studied four species, with RMSE values all smaller than for NM (Null model, i.e. 306 

using the mean of observations as predictor), except for the TTM for beech and UM 307 

for birch. The smallest RMSEinternal values were obtained with the TTM for birch and 308 

chestnut (3.91for birch, 5.47 for chestnut), and SM for oak and beech (4.53 for oak, 309 

6.92 for beech). For AM and PM, the performance was poor, with RMSEinternal values 310 

being even larger than NM. On average, the RMSEinternal values of the different 311 

models followed the ranking SM<TPFM=TTM<UM<NM<AM<PM across the 312 

studied four species.  313 

The RMSEexternal showed that TTM, TPFM and SM were still the most reliable models 314 

as shown by the RMSEinternal. However, the RMSEexternal of UM is poor. The best 315 

fitting models differed among species. The TTM was still the best model for chestnut, 316 

but not for birch for which the best model was SM. TPFM gave the smallest external 317 

RMSE for oak and beech. For beech, the external RMSE of all models were greater 318 

than the RMSE associated with the Null model, suggesting that none of these models 319 

could effectively reproduce the timing of budburst in beech trees. For two-phase 320 

models, both internal and external RMSE suggested the model performance did not 321 

relate to the model complex, i.e. number of parameters. 322 
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3.2 Bayesian model comparison 323 

The model probabilities calculated with BMC are shown in Table 4. The model 324 

probabilities gave similar results as model comparison using the RMSE. The TTM, 325 

TPFM and SM have high probabilities. For the other models, the probabilities were 326 

close to zero. For beech and oak, the highest probability was associated to TTM, 327 

whereas for birch and chestnut to TPFM. The SM is the third best model for the 328 

studied four species. Across species, the average model probabilities show that TPFM 329 

is the best model, which has a bit better performance than TTM, and SM is still the 330 

best two-phase models. The BMC also suggested model performance did not relate to 331 

the model complex, i.e. number of parameters. 332 

3.3 Impact of different rate function on model performance 333 

The analysis with different temperature rate function was limited to only one (well 334 

performing) one-phase model and one (well performing) two phases model, i.e. TTM 335 

and SM. The TTM*, using a sigmoid function for forcing temperature, had a slightly 336 

larger internal and external RMSE than the simple TTM (Table 3), indicating that the 337 

complicated sigmoid temperature function did not improve model performance. The 338 

SM*, using a linear dependency for both chilling and forcing temperature, exhibited 339 

considerably larger internal and external RMSE values, suggesting that the linear 340 

temperature function did not capture well the response to temperature during bud 341 

dormancy for these species. The BMC model probabilities gave very similar results. 342 

Though the probabilities to be correct of the modified models are not zero (0.1-0.25), 343 

these probabilities were always lower than the ones associated with the original 344 
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models. 345 

3.4 Parameter estimation 346 

TPFM was supposed to be the best model for birch and chestnut, and second best for 347 

oak and beech. Parameter estimations for TPFM showed that the last month prior to 348 

budburst had the greatest impact on determining the date of bud opening in the case of 349 

birch (23days preceding budburst) and chestnut (29days). This period of most 350 

influence extended to the last three months prior to budburst for the later flushing 351 

species, i.e. oak (79days) and beech (88days) (Appendix B). In the SM, chilling was 352 

allowed to occur within a wide range of temperature. The chilling remained close to 353 

unity throughout the entire range of actual winter temperatures. 354 

Parameter estimates are shown in Appendix B. Only the parameters of TPFM and SM 355 

(the best performing models) were further analyzed: their uncertainty, prior and 356 

posterior distributions, best-fit parameters with standard deviation and parameter 357 

correlation are reported in Appendix C. A detailed parameter analysis for UM is 358 

reported in Fu et al. (2012). The ranges of the posterior parameter coefficients are 359 

typically narrower than the prior parameter coefficient ranges, suggesting that the 360 

Bayesian calibration reduced the uncertainty of the parameter coefficients. However, 361 

not all parameter coefficients exhibited a significant reduction.  362 

 363 

 364 
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4. Discussion： 365 

4.1 RMSEinternal vs RMSEexternal 366 

As expected RMSEexternal was always larger than RMSEinternal. The difference of the 367 

two RMSEs shows the ability of a given model to adjust to variation in the data. A 368 

large difference suggests that even though the model can be fitted to one dataset, the 369 

derived parameter values depend on the data used for parameterization (Linkosalo et 370 

al., 2008). Trees of the same species but growing at different sites are exposed to 371 

many different conditions, which are likely affecting the timing of budburst, such as 372 

soil fertility (Wielgolaski, 2001), humidity (Friedel et al., 1993; Kramer et al., 2000; 373 

Wielgolaski, 2001), elevation or climate (Kramer, 1995; Spano et al., 1999). 374 

Moreover, trees at different sites may also differ genotypically, and thus differ in the 375 

phenological response to climate (Kramer, 1995; Myking and Heide, 1995; Leinonen 376 

and Hanninen, 2002). These factors make local adaptation possible and therefore local 377 

populations may leaf out at different days of the year. Furthermore, in our study, the 378 

data of air temperature were unfortunately not available at the sites but were derived 379 

from nearby weather stations, through interpolation. This procedure might have 380 

introduced some further undesired site variability because of small differences in 381 

landscape and topography between the nearest weather stations and the investigated 382 

trees. All these factors probably worsened model predictions and contributed to the 383 

poor external validation when testing the models with independent data from different 384 

sites. Additionally, it is worth to note that the models were not designed for the four 385 

species or not all of them (e.g. TTM was originally constructed for Picea sitchensis r 386 
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(Cannell and Smith, 1983)). Even small species-specific differences in the budburst 387 

process might result in large simulation biases in these rather empirical modeling 388 

approaches.  389 

4.2 The advantage of Bayesian procedure 390 

Bayesian calibration. Bayesian calibration estimates the most likely probability 391 

distributions of the model parameters with regard to the likelihood of the model 392 

output being equal to the observations. Therefore, Bayesian calibration can deal with 393 

a large number of parameters simultaneously, associates prior knowledge on 394 

parameters with measurements of output variables, and can markedly reduce 395 

parameter uncertainty especially when there is insufficient knowledge on the prior 396 

parameter distribution (Fu et al., 2012; Van Oijen et al 2006; 2012). However, the 397 

uncertainty associated to parameters obtained by fitting procedures is generally high 398 

for budburst models because many factors affecting budburst remain unknown or not 399 

fully explained (e.g. the role of the non-structural carbohydrate of reserve (Morin et 400 

al., 2007) and of photoperiod, see below) and direct parameter measurements lack. In 401 

our study, the low number of parameters of the budburst models calibrated (maximum 402 

9 parameters) contributed to obtain a significant reduction in parameter uncertainty 403 

(as shown in Appendix C). The posterior distributions of some parameters did not 404 

follow a normal distribution, introducing difficulties to identify the optimal values. 405 

Hence, we selected as the optimal value the parameter values for which likelihood 406 

was maximum. 407 

Bayesian model comparison. RMSE and BMC give a quantitative assessment of 408 
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model performance, and are a good criterion for comparison of different models. The 409 

traditional Root Mean Square Error method considers only the best fit model 410 

parameter vector. However, BMC does evaluate parameter uncertainty and their 411 

influence on prediction uncertainty. We clarify this with an example. For oak, the 412 

RMSEinternal obtained with SM is smaller than that obtained with TPFM (Table 3). 413 

Thus, intuitively, one would prefer SM over TPFM. However, BMC model 414 

probabilities show that TPFM has a higher probability of being correct than SM. This 415 

is because uncertainty associated to SM is higher than the uncertainty associated to 416 

TPFM. One should therefore prefer the TPFM over the SM.  417 

 418 

4.3 Model comparison 419 

In our study, we found the simple one-phase models (i.e. models without chilling 420 

requirement but only forcing temperature), such as TTM and TPFM, to be the best 421 

models to reproduce the timing of budburst. These results are consistent with other 422 

studies (Hunter and Lechowicz 1992; Linkosalo et al, 2008; Leinonen and Hanninen, 423 

2002). In particular, Leinonen and Kramer (2002) also found that chilling is not so 424 

important for good performance of models. The good predictive capacity of the 425 

Thermal Time model or Thermal period fixed model implies that the buds may be 426 

already sufficiently chilled when the process leading to bud opening is modeled to 427 

start. Among the two-phase models, the sequential model performed better than the 428 

others. This is also consistent with previous studies (e.g. see Kramer 1994 for beech) 429 

and suggests that modeling of chilling and forcing processes in an orchestrated, 430 
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sequential way is closer to reality than parallel, alternating or unified modeling 431 

approaches. However, the two-phase models showed overall a poorer performance 432 

than the one-phase. This is likely to be partially caused by over-parameterization 433 

(Linkosalo et al., 2008).  434 

Previous comparisons of the different models suggested that no model is superior for 435 

all species and should be put forward as consensus model (Hunter and Lechowicz, 436 

1992; Chuine et al., 1998; Fu et al., 2012). However, we observed common pattern 437 

between the two late flushing, late-successional species and the two early flushing, 438 

earlier successional species. In fact, budburst of beech and oak was best simulated by 439 

TTM, whereas budburst of birch and chestnut was best simulated by TPFM. 440 

Furthermore, the parameter analysis suggested that spring temperature correlated with 441 

budburst in a different way for earlier and late flushing / successional species, with 442 

large forcing accumulated for oak and beech than for birch and chestnut. Though the 443 

one-phase model can satisfactory predict the budburst date (see above), the difference 444 

between earlier and late successional species may require different modelling 445 

approaches to improve the model performance. Late successional species are expected 446 

to have a more complex approach to budburst than early successional species (Körner 447 

and Basler, 2010). For instance, good performances of two-phase thermal models 448 

were recently reported for late successional species (Thompson and Clark, 2008; 449 

Morin et al., 2009; Vitasse et al., 2011). Furthermore, the budburst of late successional 450 

species might be more sensitive to environmental cues other than temperature, as 451 

photoperiod. This is described in detail below. 452 
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4.4. Other environmental factors influencing budburst  453 

The fact that the performance of the models was overall not outstanding indicates that 454 

environmental factors other than temperature might play an important role in the 455 

budburst process of the investigated species. Although many factors remain unknown 456 

in our understating of tree phenology, experimental evidences and modeling exercises 457 

have indicated that photoperiod might be an important regulator of budburst in certain 458 

tree species (Linkosalo et al., 2006; Chuine et al., 2010; Körner and Basler, 2010). In 459 

general, a ‘short photoperiod’ threshold may inhibit budburst in extreme warm spring 460 

conditions (to avoid trees to have budburst too early), whereas a ‘long photoperiod’ 461 

threshold may stimulate budburst in extreme cold spring conditions (to avoid trees to 462 

have budburst too late). This photoperiod sensitivity might be species-specific, with 463 

again similarities between late flushing late successional species and earlier flushing 464 

earlier successional species. For instance, Fu et al. (unpublished) found that budburst 465 

progressively advances with spring warming intensity in early successional species as 466 

birch, whereas it does not for late successional species as beech and oak, which seem 467 

to have a ‘short photoperiod’ threshold’. Nevertheless, as photoperiod-driven budburst 468 

models do not always improve the model performance of temperature-driven models 469 

(e.g. see for beech Kramer 1994) and more experimental studies are needed to provide 470 

sound modeling ground for this matter, the lack of photoperiod control in the models 471 

used for this methodological comparison does not represent a major drawback.  472 

 473 

4.5 Budburst shift under climate warming 474 
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A future increase in temperatures is more than likely (IPCC, 2007) and earlier dates of 475 

budburst are already commonly observed in many plant species (Menzel et al., 2006; 476 

Linkosalo et al., 2008). However, this shift might not occur in all species, because of 477 

the different requirements for chilling and forcing temperature to release winter 478 

dormancy (Cannell and Smith, 1986). If climatic warming implies insufficient chilling, 479 

then the buds will remain partially dormant in spring and will require a larger thermal 480 

time to initiate budburst (Murray et al., 1989; Linkosalo et al., 2008; Harrington et al., 481 

2010). The date of budburst in a warmer climate could thus remain unchanged or even 482 

be postponed. On the other hand, if the chilling requirement of a species is currently 483 

far exceeded, then the required chilling will likely also be easily reached under 484 

conditions of climatic warming, and budburst will occur much earlier than at present 485 

because of the enhanced temperature during forcing. In our study, we found that the 486 

timing of budburst for the studied four species can be successfully reproduced using 487 

the one-phase models in which only forcing temperature was involved. This suggested 488 

that the chilling may be sufficient in the present climate for each species. However, 489 

further research on chilling requirement is needed to evaluate whether climate 490 

warming will induce an advancement of budburst (chilling requirements low and met 491 

even in warmer climate) or not (chilling requirements high and not met in a warmer 492 

climate).  493 

 494 

495 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

26 

 

5. Conclusion 496 

(1) Our results suggest that the one-phase models (only considering forcing) have 497 

higher probabilities of being correct than the two-phase models (accounting for both 498 

forcing and chilling) for all the four studied species. Furthermore, these results 499 

suggest that the chilling requirement is easily met in Belgium, and therefore 500 

predicting budburst may rely only on the forcing temperature. However, this might 501 

change with global warming. 502 

(2) The probability of TTM is the highest for the late flushing and late successional 503 

beech and oak, whereas TPFM is the most plausible model for the earlier flushing and 504 

earlier successional birch and chestnut. The SM is the third best model for the studied 505 

four species. For the other models, the probabilities were close to zero. As expected 506 

more complex (two-phase) models performed better for late flushing / late 507 

successional species but this effect was minor. Addition of photoperiod might further 508 

improve budburst simulation for late flushing / late successional species.  509 

(3) Model performance varies when evaluated with BMC or RMSE. Bayesian model 510 

probability is however the best criterion for model comparison since both accuracy 511 

and uncertainty are evaluated, in contrast to the Root Mean Square Error which only 512 

compares observations with model results achieved with the best-fitting parameter 513 

vector.  514 

515 
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Figure1. A schematic representation of (a) the basic different modelling approaches 

concerning the periods when buds are affected by forcing temperature (dashed line) 

and chilling temperature (continuous line), (b) the chilling rate function and (c) the 

forcing rate function (figure modified from Chuine 2000). BB is budburst. A dot 

means the day is fixed. TTM is Thermal Time model, TPFM is Thermal Period Fixed 

model, SM is Sequential model, PM is Parallel model, AM is Alternating model and 

UM is Unified model. 
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Table 1. Characteristics of the studied species. The numbers in parentheses following 1 

the observation site names are the number of observational years in the study sites 2 

(not all species-site combinations have data for the entire period considered). Period 3 

considered was from 1958 to 1998.  4 

 5 

Table 2. Characteristics of the studied sites. Annual temp is the mean annual 6 

temperature, calculated at each site from 1958 to 2002. 7 

 8 

Table 3. Root mean square error for the validation using the same dataset used for 9 

calibration (RMSEinternal) and using an independent dataset (RMSEexternal) of 8 10 

budburst models and a null model (NM) which assumes that budburst occurs on the 11 

average DOY of observed budburst in the fitting dataset. The symbol n indicates the 12 

number of observations used to fit and validate the models. The best model 13 

performance per species is shown in bold. Average is the numerical mean of RMSE 14 

across species. TTM is Thermal Time model, TTM* is Thermal Time model using 15 

sigmoid forcing rate function, TPFM is Thermal Period Fixed model, SM is 16 

Sequential model, SM* is Sequential model using linear chilling and forcing rate 17 

function, PM is Parallel model, AM is Alternating model and UM is Unified model. 18 
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Table 4 Conditional probabilities (ranging between 0 and 1) of different models 20 

calculated using Bayesian model comparison. Details on the studied models can be 21 

found in the text. Average is the numerical mean of conditional probabilities across 22 

species. TTM is Thermal Time model, TTM* is Thermal Time model using sigmoid 23 

forcing rate function, TPFM is Thermal Period Fixed model, SM is Sequential model, 24 

SM* is Sequential model using linear chilling and forcing rate function, PM is 25 

Parallel model, AM is Alternating model and UM is Unified model.26 
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Table 1. Characteristics of the studied species. The numbers in parentheses following 1 

the observation site names are the number of observational years in the study sites 2 

(not all species-site combinations have data for the entire period considered). Period 3 

considered was from 1958 to 1998.  4 

Species Latin name 
Budburst 

period 

Fitting 

dataset 
Validation dataset 

Site Site 

Birch 
Betula verrucosa 

Ehrn. 
18Apr. ±10 

Blanmont 

(31) 

Bastogne (10) 

Dinant( 13) 

Leopoldsburg (3) 

Xhendremael (10) 

Chestnut 
Aesculus 

hippocastanum L. 
17Apr. ±12 

Blanmont 

(36) 

Bastogne (17) 

Leopoldsburg (9) 

Xhendremael (2) 

Oak Quercus robur L. 5May.±8 
Blanmont 

(22) 

Bastogne (9) 

Leopoldsburg (5) 

Xhendremael (9) 

Beech Fagus sylvatica L. 1May. ±9 
Bastogne 

(19) 

Dinant (11) 

Leopoldsburg (5) 

Xhendremael (12) 

 5 

6 



Table 2. Characteristics of the studied sites. Annual temp is the mean annual 1 

temperature, calculated at each site from 1958 to 2002. 2 

site coordinates Elevation (m) Annual temp.(ºC) 

Bastogne 50º00'22''N, 5º43'14''E 476 8.42 

Blanmont 50º37'21''N, 4º38'20''E 125 12.19 

Dinant 51º15'42''N, 4º54'35''E 163 9.60 

Leopoldsburg 51º07'03''N, 5º15'42''E 31 10.41 

Xhendremael 50º42'16''N, 5º28'43''E 120 12.71 

 3 

4 



Table 3. Root mean square error for the validation using the same dataset used for 1 

calibration (RMSEinternal) and using an independent dataset (RMSEexternal) of 8 2 

budburst models and a null model (NM) which assumes that budburst occurs on the 3 

average DOY of observed budburst in the fitting dataset. The symbol n indicates the 4 

number of observations used to fit and validate the models. The best model 5 

performance per species is shown in bold. Average is the numerical mean of RMSE 6 

across species. TTM is Thermal Time model, TTM* is Thermal Time model using 7 

sigmoid forcing rate function, TPFM is Thermal Period Fixed model, SM is 8 

Sequential model, SM* is Sequential model using linear chilling and forcing rate 9 

function, PM is Parallel model, AM is Alternating model and UM is Unified model. 10 

Species RMSE n TTM TTM* TPFM SM SM* PM AM UM NM 

Birch 
RMSEinternal 31 3.9 5.7 4.6 5.6 6.5 12.1 7.6 8.9 5.7 

RMSEexternal 23 10.7 11.8 12.0 9.7 11.6 12.3 10.7 15.9 12.0 

Chestnut 
RMSEinternal 36 5.5 6.3 6.3 6.8 7.7 10.3 7.0 5.6 8.8 

RMSEexternal 19 10.6 10.7 11.9 12.5 10.9 13.9 11.2 12.6 15.7 

Oak 
RMSEinternal 21 4.8 5.9 5.6 4.5 7.1 7.1 8.4 4.8 5.8 

RMSEexternal 23 8.7 8.6 8.1 9.6 10.8 25.9 9.3 10.3 10.0 

Beech 
RMSEinternal 19 9.9 10.7 8.7 6.9 8.5 8.6 11.2 7.9 9.8 

RMSEexternal 28 8.9 11.2 8.5 11.0 11.4 24.4 15.4 12.9 7.3 

average 
 RMSEinternal 6.4 7.2 6.3 6.0 7.4 9.5 8.5 6.8 7.5 

 RMSEexternal 9.7 10.6 10.1 10.7 11.2 19.1 11.6 12.9 11.2 

 11 

12 



Table 4 Conditional probabilities (ranging between 0 and 1) of different models 1 

calculated using Bayesian model comparison. Details on the studied models can be 2 

found in the text. Average is the numerical mean of conditional probabilities across 3 

species. TTM is Thermal Time model, TTM* is Thermal Time model using sigmoid 4 

forcing rate function, TPFM is Thermal Period Fixed model, SM is Sequential model, 5 

SM* is Sequential model using linear chilling and forcing rate function, PM is 6 

Parallel model, AM is Alternating model and UM is Unified model. The best model 7 

performance per species is shown in bold. 8 

Models Beech Oak Birch Chestnut average 

TPFM 0.18 0.20 0.35 0.41 0.29 

TTM 0.28 0.25 0.23 0.23 0.25 

TTM* 0.26 0.22 0.18 0.13 0.20 

SM 0.13 0.16 0.14 0.10 0.13 

SM* 0.11 0.10 0.06 0.08 0.09 

PM 0.01 0.01 0.00 0.00 0.01 

AM 0.04 0.05 0.03 0.05 0.04 

UM 0.01 0.01 0.01 0.00 0.01 

 9 

 10 
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