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1. ABSTRACT12

We investigated changes in iodine (
129

I) solubility and speciation in nine soils with contrasting properties (pH,13

Fe/Mn oxides, organic carbon and iodine contents), incubated for nine months at 10
o
C and 20

o
C. Loss of I

-
14

from solution was extremely rapid, apparently reaching completion over minutes-hours; IO3
-
loss from solution15

was slower, typically occurring over time periods of hours-days. For both I
-

and IO3
-

losses were faster in soils16

with greater soil organic carbon contents (%SOC) and low pH and at higher temperatures (10
o
C cf. 20

o
C).17

Instantaneous sorption of IO3
-

was identified in all soils and was greatest in a soil with high Fe/Mn oxide, low18

pH and low SOC content. Evidence for immediate sorption of I
-

was less clear as reaction rates were faster.19

Phosphate extraction (0.15 M KH2PO4) of soils, ~100 hr after
129

I spike addition, indicated that concentrations20

of sorbed inorganic iodine (
129

I) were very low in all soils suggesting that, even if IO3
-

is initially adsorbed onto21

oxide phases, this has little impact on the rate of iodine assimilation into humus.22

23

The transformation of dissolved inorganic
129

IO3
-

and
129

I
-

to sorbed organic forms was modelled using a range24

of reaction- and diffusion-based approaches. Irreversible and reversible first order kinetic models, and a25

spherical diffusion model, adequately described the kinetics of both IO3
-

and I
-

loss from the soil solution but26

only with the inclusion of a distribution coefficient term (kd) to allow for instantaneous adsorption. The27

spherical diffusion model produced the lowest average RSD value for IO3
-

sorption by all soils and all three28

models gave almost identical average RSD values in the case of I
-
. A spherical diffusion model was collectively29

parameterised for all the soils by using pH, soil organic carbon concentration and combined Fe+Mn oxide30

content as determinants of the model parameters (kd and D/r
2
). From the temperature-dependence of the31

sorption data the activation energy (Ea) for
129

IO3
-
transformation to organic forms was estimated to be ~43 kJ32

mol
-1

. The Ea value was independent of %SOC and suggests a reaction mechanism that is slower than pore33

diffusion or physical adsorption but faster than most surface reactions.34



2

2. INTRODUCTION1

2

Iodine is an essential trace element for human and animal health. It is used by the thyroid gland in the3

production of hormones which control a range of physiological processes. Insufficient thyroid hormone levels4

are associated with a range of health issues including problems of growth and development in children, and5

goitre in adults (Trotter, 1960; Underwood, 1977). Collectively, iodine deficiency diseases (IDDs) are a serious6

worldwide health problem, estimated to affect ~35% of the world’s population, and a significant social and7

economic stress on developing countries (WHO, 2004).8

9

Rocks contain little iodine and most soil iodine is derived from volatilization of methylated forms from10

seawater which then enter the soil-plant system via rainfall and dry deposition. IDDs are prevalent in regions11

where people have limited access to food that is naturally rich in iodine (e.g. seafood) or iodized food products12

(Underwood, 1977; Johnson et al., 2002). Availability of iodine in such regions depends largely on transfer13

from soil to food or fodder crops but local produce may not be able to supply the recommended daily intake of14

dietary iodine (Johnson, 2003). There is therefore a need to increase our knowledge of iodine behaviour in soil,15

in particular how added iodine (in rainfall or fertilizers) reacts with soil and the mechanisms by which iodine16

becomes available to plants. Furthermore, understanding the environmental behaviour of long lived iodine17

isotopes (
129

I t½ = 1.6 x 10
7

y) is also essential to the safety case for underground nuclear waste disposal;18

ingestion of radioiodine released from weapons testing, nuclear power stations, medical or research facilities19

may induce thyroid tumours or supress thyroid function (Furhmann et al., 1998; Bonhoure et al., 2002).20

21

Iodine is found in nature in several valence states and in a range of inorganic and organic forms including22

iodide (I
-
), iodate (IO3

-
), elemental iodine (I2) and organic iodine (Radlinger and Heumann, 1997; Schwehr and23

Santschi, 2003; Muramatsu et al., 2004; Gilfedder et al., 2007a,b; Liu et al., 2007; Yang et al., 2007; Yoshida et24

al., 2007). Its form depends on pH and the redox status of the surrounding environment; thus iodide is25

reported as the most prevalent form of iodine in river waters while iodate is most common in the oceans26

(Smith and Butler, 1979; Abdel-Moati, 1999). In rainwater a mix of species including iodate, iodide and organic27

iodine species have been reported (Gilfedder et al., 2008). Inorganic iodine forms may be retained in acidic28

soils by sorption on positively charged hydrous iron and aluminium oxides (Whitehead, 1974a) and possibly up29
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to pH 8 by specific adsorption of iodate (Yoshida et al., 1992). However, strong assimilation of iodine into soil1

organic matter has been widely reported (e.g. Whitehead, 1973a; Francois, 1987a&b; Fukui et al., 1996;2

Sheppard et al., 1996; Yu et al., 1996; Steinberg et al., 2008a&c; Dai et al., 2009) and humus may constitute the3

primary reservoir of iodine in most soils. The fate of inorganic iodine, and the mechanisms governing its4

incorporation into organic matter, have been the focus of a number of investigations. Reduction of iodate by5

soil organic matter may precede conversion of inorganic iodine into organic forms (Whitehead, 1974b, Fukui et6

al., 1996). Steinberg et al. (2008b) confirmed that iodate heated with peat and lignin over a pH range of 3.5-97

was converted to organic iodine forms and iodide; Francois (1987a) observed that the iodine content of humic8

substances increased following incubation with iodate for 5 days. In both cases it was shown that iodate was9

first reduced to reactive intermediate products, I2 or HOI, which then reacted rapidly with the organic matter.10

From a study of reaction kinetics, Warner et al., (2000) concluded that iodination of natural organic matter11

followed the same mechanism as iodination of phenols, through reaction with molecular iodine, I2. The same12

electrophilic substitution mechanism was suggested by Reiller et al., (2006) in their study of iodination of13

humic acids. Bichsel and von Gunten (1999, 2000) also demonstrated that iodide can be oxidised to HOI and14

thereby react with organic compounds (e.g. substituted phenol and methyl carbonyl compounds) similar to15

natural humic matter. Yamaguchi et al. (2010) observed that iodine K-edge XANES spectra of soils spiked with16

iodide and iodate were similar to organic iodine standard spectra after 60 days incubation. They also found17

that iodide was fully transformed into organic forms after 1 day of incubation in highly organic soils, and was18

fully transformed in all soils after 60 days. By contrast, no measureable iodate transformation was observed19

after 1 day of incubation and up to 50% of the added iodate remained in the lower organic matter soils at 6020

days. A comparison of iodine LIII-Edge XANES and EXAFS spectra of iodinated organic compounds with21

naturally iodated humic substances, extracted from a range of soil types, indicated that organic iodine is22

primarily bonded to aromatic rings (Schlegel et al., 2006).23

Metal oxides and hydroxides (eg Fe
III

(OH)3, Al(OH)3, Mn
IV

O2) may play an important role in controlling iodine24

behavior in soils, both through adsorption of inorganic iodine and oxidation of iodide. Ferric and aluminium25

oxides adsorb iodate more strongly than iodide (e.g. Whitehead, 1974a; Kodama et al., 2006). Oxidation of I
-

26

to I2 and then to IO3
-

has been shown to be catalysed by -MnO2 with IO3
-

adsorbing on the -MnO2 surface27
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(Gallard et al., 2009). In the presence of humic substances the oxidation to IO3
-

is limited as I2 can react to1

form organic iodine (org-I) species, especially at lower pH (Gallard et al., 2009).2

In view of the importance of iodine sorption by soils in regulating plant bio-availability and losses to drainage3

water and also considering the current lack of information regarding which soil factors govern reaction4

mechanisms and rates, the aims of this investigation were to:5

(i) measure the dynamics of iodide and iodate (
129

I) transformation in soils, both in the solution and6

solid phases, in order to increase our understanding of the reaction process and rate;7

(ii) account for the effects of soil factors likely to influence the adsorption and transformation of8

iodine species, including temperature, pH value and concentrations of soil organic carbon (SOC),9

Fe/Mn oxides and native iodine.10

(iii) integrate the data from
129

I incubation experiments into a predictive model of iodate and iodide11

sorption kinetics parameterized by soil properties.12

13
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3. MATERIALS AND METHODS1

3.1 Soil sampling and preparation2

Topsoil and subsoil were sampled from two areas in the East Midlands of England, chosen to represent3

contrasting land-uses, soil pH values and concentrations of Fe/Mn oxides, organic matter, carbonate and4

iodine. Wick series (sandy loam) soil samples were taken from an arable field, a permanent grassland strip and5

adjacent mature deciduous woodland (Grid Reference 52
o
49’48”N-1

o
14’88”W) on the University of6

Nottingham farm, Sutton Bonington, Leicestershire (UK). Topsoil (0-20 cm depth) and subsoil (30-50 cm7

depth) samples were taken from the arable and woodland sites; only topsoil was sampled from the grassland8

as its associated subsoil was thought to be similar to the arable subsoil. Iodine concentrations in these soils9

were known to be low (2 - 4 mg kg
-1

) from previous analysis. Soils with higher iodine concentrations (c. 8 – 1210

mg kg
-1

, Johnson et al., 2005) were sampled on the Stoke Rochford Estate, Lincolnshire from the Elmton soil11

series, described as shallow, well-drained brashy calcareous fine loamy soils developed over Jurassic12

limestone. Grassland and woodland topsoils (0-20 cm) were collected from a valley with permanent grassland13

(52
o
50’53”N-0

o
40’26”W) and adjacent mature woodland (52

o
50’56”N-0

o
40’22”W); these are Lithomorphic14

Rendzina soils over limestone and thus have no associated subsoil. Arable topsoil (0-20 cm) and subsoil (30-5015

cm) samples were taken from a field nearby (52
o
51’25”N-0

o
38’55”W). Samples were collected with clean16

stainless steel spades, augers and trowels and sealed in plastic bags for transport. Soils were air dried until17

they could be sieved to <4 mm but were not allowed to dry completely so as to maintain microbial activity;18

they were then kept unsealed in a cold room (at 10
o
C) prior to use, to ensure they remained aerobic and to19

preserve remaining moisture content.20

21

3.2 Soil chemical properties22

Approximately 250 g of each soil was air dried and sieved (< 2 mm) for analysis. Soil pH was measured using a23

combined glass electrode after equilibrating 5 g of soil in 12.5 mL of Milli-Q water (18.3 MΩ) for 30 minutes.  24

Carbonate content of soils was estimated by manometric assay using a Collins calcimeter (Piper, 1954). Loss25

on ignition (LOI) was determined gravimetrically after heating soil (c. 5 g) in a muffle furnace at 550
o
C for 1626

hours. Organic carbon content was determined (Elementar VarioMax CN analyser) on samples of finely ground27

soil (agate ball mill, Retsch Model PM400) after acidification with HCl (50% v/v) to remove inorganic carbon.28

The limit of quantification reported for a typical 300 mg sample is 0.18%. The dithionite extraction method of29
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Kostka and Luther (1994) was used to determine reactive iron, aluminium, and manganese hydrous oxides;1

after reaction samples were centrifuged (20 min at 3000 g), filtered (<0.22 µm) and supernatant solutions2

retained for analysis. Total soil iodine was extracted with tetra methyl ammonium hydroxide (TMAH) from3

finely ground soil samples according to the method developed by Watts and Mitchell (2009).4

5

Elemental concentrations were assayed using a Thermo-Fisher Scientific X-Series
II

ICP-MS in standard mode6

(for iodine) and employing a ‘hexapole collision cell’ (7% H2 in He) prior to the analytical quadrupole for Fe, Al,7

and Mn analysis. Samples were introduced from an autosampler (Cetac ASX-520 with 4 x 60-place sample8

racks) through a concentric glass venturi nebuliser (Thermo-Fisher Scientific; 1 mL min
-1

) and Peltier-cooled9

spray chamber (3
o
C). Internal standards were introduced to the sample stream via a T-piece and included 2010

ng mL
-1

In, 20 µg L
-1

Re, and 20 µg L
-1

Rh, prepared in a matrix of 2% TMAH and 4% methanol for iodine analysis11

and Sc (100 µg L
-1

), Rh (20 µg L
-1

) and Ir (10 µg L
-1

) in 2% ‘trace analysis grade’ (TAG) HNO3 for Fe, Al and Mn.12

An iodine stock standard (1000 mg
127

I L
-1

) was prepared from oven-dried analytical grade KI in a matrix of 5%13

TMAH and stored at 4
o
C; dilutions of this stock were used for instrument calibration. Multi-element14

calibration standards (Claritas-PPT grade CLMS-2, Certiprep/Fisher), including Fe, Al and Mn, were all diluted in15

2% Trace Analysis Grade HNO3 in the range 0-100 µg L
-1

. Sample processing was undertaken using Plasmalab16

software (version 2.5.4; Thermo-Fisher Scientific) using internal cross-calibration where required. Limits of17

detection (LOD) were calculated from analysis of 16 blanks (3 x standard deviation of blanks) to be 1.26 g L
-1

18

(~0.008 mg kg
-1

) for
127

I and 0.34 g L
-1

(~ 0.002 mg kg
-1

) for
129

I.19

20

3.3 Soil Incubation21

Samples of
129

I, as sodium iodide solution (SRM 4949C, 0.004 mol L
-1

Na
129

I, 3451 Bq mL
-1

), were obtained from22

the American National Institute of Standards (NIST), Gaithersburg, Maryland, USA. Iodate (
129

IO3
-
) was23

prepared from
129

I
-

by oxidation using sodium chlorite as described by Yntema and Fleming, (1939). Soil24

samples for incubation were prepared by mixing moist sieved soil (< 4 mm) in a food mixer with Milli-Q water25

(controls) or an equivalent volume of
129

I
-

or
129

IO3
-
solution to give a final

129
I concentration of 0.15 mg kg

-1
(in26

dry soil). The water content of the incubated soil is inevitably an arbitrary choice. The total volume of solution27

added to each soil was simply judged from the friability of the aggregated soil rather than being based on a28

fixed proportion of water holding capacity or a specific soil moisture tension. We considered the need to29
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maintain moist but aerobic soils capable of free gas exchange and able to be sub-sampled for periodic analysis;1

the final water contents of the incubated soils are shown in Table 1. Spiked soils were distributed between2

triplicate 500 mL Duran bottles (~180 g dry wt of soil per replicate) with a hole drilled in the lid to allow gas3

exchange, and incubated in the dark at 10
o
C or 20

o
C (± 2

o
C). Moisture loss was monitored regularly and4

restored when necessary by re-mixing the soil in a food mixer with the required volume of Milli-Q water5

before returning the soil to the microcosm bottle and incubator.6

7

3.4 Iodine extraction and analysis8

After incubation for 114, 306, 810 and 3975 hours, samples (~4.5 g) of moist soil were equilibrated with 20 mL9

of 0.01 M KNO3, followed by extraction with 0.15 M KH2PO4 and then 10 % TMAH, in 40 mL polycarbonate10

centrifuge tubes. At each stage soil suspensions were shaken for 16 hours on a reciprocal shaker, centrifuged11

(25 min at 3500 rpm), and filtered through 0.22 m PTFE syringe filters. Calculation of phosphate-extractable12

iodine accounted for carry over from the previous KNO3 equilibration gravimetrically. To follow shorter term13

iodine dynamics (< 72 hours), samples equivalent to ~3.5 g dry soil were taken from control microcosms and14

equilibrated in centrifuge tubes with 20 mL 0.01 M KNO3 spiked with
129

I
-
or

129
IO3

-
(0.15 mg kg

-1
of soil) and15

shaken for a known time before centrifugation and filtration. Nitrate and phosphate extract solutions were16

analysed for dissolved organic carbon (DOC), iodine species (
127

I
-
,

127
IO3

-
,

129
I
-
, and

129
IO3

-
) and total

127
I and

129
I17

concentrations. TMAH extracts were analysed for total
127

I and
129

I only.18

19

DOC was measured using a Shimadzu total organic carbon analyser (TOC-VCPH) with a non-dispersive infrared20

detector in ‘non-purgeable organic carbon’ (NPOC) mode. Carbon standards (1000 g mL
-1

C) were prepared21

from oven-dried potassium hydrogen phthalate in MilliQ water. Iodine species
127

I
-
,

127
IO3

-
,

129
I
-
, and

129
IO3

-
22

were assayed by ICP-MS following in-line chromatographic separation using a Dionex ICS-3000 ion23

chromatography system operated in isocratic mode with a Hamilton PRP-X100 anion exchange column (250 x24

4.6 mm; 5 µm particle size). The mobile-phase (flow rate 1.3 mL min
-1

) was 60 mmol L
-1

NH4NO3, 1x10
-5

mmol L
-

25

1
Na2-EDTA, 2% methanol with pH adjusted to 9.5 with TMAH. Sample processing was undertaken using26

Plasmalab software with peaks of individual species manually integrated. A correction for
129

Xe on the
129

I27

signal was applied by measuring
131

Xe and refining the software correction factor, which is based solely on the28

isotope ratio (
129

Xe/
131

Xe), to allow for mass discrimination effects. Stock standards of
127

I
-

and
127

IO3
-

(100029
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mg L
-1

) were prepared from oven-dried analytical grade potassium iodide or iodate in a matrix of 5% TMAH1

and stored at 4
o
C. Mixed

127
I
-

and
127

IO3
-

working standards were prepared from stocks before analysis using2

the mobile-phase as diluent. Concentrations of
129

I
-

and
129

IO3
-

were calculated from
127

I
-

and
127

IO3
-

standard3

curves, according to Equation 1:4

5

129Iconc=
129ICPS x

Kf
127

Isens

(1)6

where,
129

Iconc is
129

I
-
or

129
IO3

-
concentration (µg L

-1
),

129
ICPS is the total counts per second of

129
I
-
or

129
IO3

-
, Kf is a7

measured mass correction factor (typically 1.085),
127

Isens is
129

I
-
or

129
IO3

-
sensitivity (counts per second for a8

concentration of 1 µg L
-1

). A standard was repeatedly analyzed, after every six samples, to correct for9

instrumental drift. Any change in sensitivity between repeated standard analyses was applied linearly to the10

intervening samples. LOD was defined by the reproducibility of integration to be ~0.3 g L
-1

(~0.002 mg kg
-1

).11

12

3.5
129

I recovery13

Approximately 4000 hr after spiking with
129

I
-

or
129

IO3
-

weighed samples of ~3 g (wet weight) of soil were14

extracted with 20 mL 10% TMAH at 70
o
C for 3 hours, centrifuged at 3500 rpm for 25 min and filtered. To15

ensure complete recovery of iodine, the extraction was repeated three times, followed by a further two16

washing steps using 20 mL of MilliQ water with shaking for 3 hours. Filtered supernatant solutions from each17

extraction step, including the two washing steps, were accumulated in 100 mL volumetric flasks and made to18

the mark with milliQ water. Total
127

I and
129

I concentrations were then determined using ICP-MS.19

20

3.6 Modelling
129

I
-
and

129
IO3

-
transformation kinetics21

For each soil, the reduction in solution concentration (in 0.01 M KNO3) of
129

IO3
-

and
129

I
-

as a function of time22

was modeled using a range of kinetic expressions described briefly in Table 2. The ‘first-order’ models assume23

that reaction kinetics proceed either to an equilibrium position with respect to dissolved IO3
-

or I
-

(reversible;24

RFO model) or to zero concentration of inorganic iodine (irreversible; IFO model). In addition, to allow for25

initially instantaneous adsorption, the models were tested with initial concentrations of
129

I
-
or

129
IO3

-
(I0) equal26

to (i) the total amount of
129

I added (i.e. 0.15 mg kg
-1

soil) or (ii) a concentration determined by the application27
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of a partition coefficient (kd). The addition of the coefficient kd allows for instantaneous adsorption of1

inorganic iodine, possibly on metal oxide sites; the value of kd was optimized alongside the kinetic parameters.2

The empirical Elovich equation has been shown to describe the reaction kinetics of a wide range of inorganic3

compounds with soils and soil components (Atkinson et al., 1970; Chien and Clayton, 1980; Martin and Sparks,4

1983). It is characterised by a greater ability to describe kinetics over a wide range of timescales, in contrast to5

other models, because it includes both a constant term which effectively describes instantaneous adsorption6

and an exponential term. Echevarria et al., (1998) and Sinaj et al., (1999) applied an equation based on an7

infinite series of exponential terms to describe the progressive mixing of metal isotopes with the native soil8

metal pool - described here as the ‘ISE’ model.9

Where diffusion or transport-controlled processes are the rate-limiting steps a parabolic diffusion expression10

(Par-diffn model) has been used previously (Chute and Quirk, 1967, Jardine and Sparks, 1984, Havlin et al.,11

1985). Application of the spherical diffusion equation (Sph-diffn model; e.g. Brown et al., 1971) assumes that12

reactions are controlled by diffusion into uniform spherical aggregates of adsorption surfaces (e.g. humic acid).13

It has been applied successfully to describe diffusion-controlled kinetics in minerals and soils (Cliff et al. 2002;14

Altfelder and Streck, 2006; Iznaga et al., 2007). Altfelder and Streck (2006) demonstrated the greater15

consistency of the spherical diffusion approach over a first order kinetic equation when parameterised for16

short time periods and applied to longer reaction times (days-months) because the rate constants of the first17

order approach are strongly time dependent unlike the diffusion approach. Thus predicting long-term18

behaviour on the basis of parameters derived at a shorter timescale using a first-order approach is particularly19

problematic (Altfeder & Streck, 2006).20

All the models were optimised for individual soils by minimising the residual standard deviation (RSD) between21

modeled and experimental data, while systematically changing the values of model parameters, using the22

‘Solver’ function in the software package Excel 2007. In addition, an attempt was made to fit a single spherical23

diffusion model to all soils simultaneously by relating model parameters to soil variables; this is described in24

section 4.6.25

26

27
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4. RESULTS AND DISCUSSION1

2

4.1 Soil Characteristics3

Measured soil characteristics are presented in Table 1. Soils from Sutton Bonington (SB) were typically lower4

in pH (4-7) and total iodine concentration (Itot = 2-4 mg kg
-1

) than those from Stoke Rochford (ST) (pH ~7, Itot =5

7.5-12 mg kg
-1

). Woodland topsoils (SB-WT, ST-WT) and the Stoke Rochford grassland soil (ST-GT) had6

relatively large organic carbon contents (6-10%), and loss on ignition (LOI), than the arable soils. Carbonate7

content was greatest in soils from Stoke Rochford where the underlying geology is limestone. A value of 2.5%8

carbonate in the SB arable topsoil (SB-AT) may reflect liming shortly before sampling occurred. Iron and Mn9

oxide concentrations were typically higher in soils from the ST site.10

11

4.2 Equilibration in 0.01 M KNO3 solution12

The progressive change in
129

IO3
-
,

129
I
-
, and total

129
I concentrations in solution, following equilibration in 0.0113

M KNO3, are shown in Figures 1 & 2 for all nine soils; concentrations are expressed as mg kg
-1

soil. The decline14

in total
129

I concentrations varied with soil type, incubation temperature and the nature of the spiked species15

(
129

I
-
or

129
IO3

-
). Typically, sorption of

129
I from solution was fastest in soils at higher temperatures with lower16

pH and higher organic carbon contents. Sorption was faster for
129

I
-

than for
129

IO3
-
spiked soils;

129
I
-
was17

generally undetectable in the solution phase within ~ 100 hrs of spike addition whereas
129

IO3
-

was still18

detectable in solution for most soils at >300 hr (at 10
o
C). Total

129
I concentrations in solution were always19

greater than those of the inorganic
129

I species, indicating rapid transformation of
129

I
-

and
129

IO3
-
to unknown20

forms of soluble
129

I-org species. Concentrations of
129

I-org species (calculated by subtracting concentrations21

of inorganic species from total iodine) also decreased with time but persisted longer than the inorganic species22

resulting in an increasing proportion of
129

I-org species in the solution phase over time.23

24

Figure 1 shows an apparent instantaneous loss of
129

IO3
-

from solution with measured concentrations below25

0.15 mg kg
-1

in all soils in < 1 hr. Greatest initial
129

IO3
-

adsorption was observed in the low pH, low organic26

carbon content soil (SB-WS, 69% at 10
o
C and 82% at 20

o
C) (Figure 1(i)). High iodate adsorption was also27

observed in soil ST-GT (47% and 52% at 10
o
C and 20

o
C, respectively) (Figure 1(d)) which had the highest28

measured iron-oxide content. For the remaining soils, the apparent adsorption at 1 hr was 20-36% of the spike29
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added. The slowest
129

IO3
-
loss was observed in the arable subsoil (SB-AS, Figure 1(f)) which has a low organic1

content and relatively high pH, with ~ 7% of the
129

IO3
-

spike detectable after 3975 hrs at 10
o
C. Of the

129
IO3

-
2

remaining in solution, 15-20% was converted to
129

I-org forms within 24 hrs. This proportion increased over3

time for most soils. The rate of conversion to
129

I-org was greatest in the low pH, high organic matter soil SB-4

WT where 60-80% of total
129

I remaining in solution after 48 hrs had been converted to organic iodine species.5

Within 800 hrs all of the
129

IO3
-

added to grassland and woodland soils had been converted to organic forms6

whereas in arable subsoils only 30% of the total
129

I was present in solution as organic complexes. Conversion7

of inorganic to organic iodine was also high where either pH was low or organic matter content high, seen by8

comparison of soils SB-GT (moderately organic and slightly acidic), ST-WT (highly organic and slightly alkaline),9

and ST-GT (highly organic and slightly acidic) (Figure 1(g),(a) & (d)). No evidence for
129

IO3
-

reduction in10

solution to
129

I
-

was observed but this cannot be ruled out as concentrations of
129

I
-

may be below detection11

limits (< 0.5 g L
-1

).12

13

The rapid initial loss of
129

IO3
-
, may be attributable to a combination of volatilization, electrostatic sorption on14

inorganic soil phases and rapid immobilization by reduction at sites on organic matter e.g. quinone groups.15

Volatilization of
129

I from solution is considered unlikely as such losses have been shown to be small in previous16

studies (e.g. Sheppard et al., 2004; Sheppard et al., 2006). Sorption of iodide and iodate to oxide phases is17

weak at pH>6 where sorption to organic matter dominates (see e.g. Sheppard and Thibault, 1992 and18

references therein) but has been reported up to pH 9.6 (Yoshida et al., 1992; Kaplan et al., 2000). Below pH 619

iodate sorption is predominantly to iron and aluminium oxides with iron oxides becoming increasingly20

important as pH drops (Whitehead, 1974b). Iodate is non-reactive toward organic matter and studies have21

shown that it is reduced to electrophilic species such HOI or I2 before incorporation into the organic structure22

of humus (Francois, 1987a & b; Bichsel and von Gunten, 1999, 2000; Radlinger and Heumann, 2000; Warner et23

al., 2000; Reiller et al., 2006; Schlegel et al., 2006; Steinberg et al., 2008c). The reduction of iodate has been24

shown to be faster under acidic conditions (Brummer and Field, 1979); in soils, humic substances can reduce25

iodate due to their electron-donor characteristic (Wilson and Weber, 1979). In the current study the rate of26

loss of
129

IO3
-

from solution was higher in the low pH soils than in high pH ones where the organic carbon27

content was comparable (e.g. SB-WT/ST-GT and SB-WS/SB-AS) consistent with a mechanism involving iodate28

sorption onto oxide phases at low pH’s as adsorption sites are not occupied by negatively charged soil organic29
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matter (Gallard et al., 2009). In soils with similar pH the rate of
129

IO3
-

loss from soil solution was higher in1

those with greater organic carbon contents, e.g. SB-WS compared to SB-WT and SB-AS compared to SB-GT,2

demonstrating the importance of organic carbon in reducing iodate to a species (e.g. HOI, I2) whereby it can be3

converted into org-I species in solution or in the solid phases. The complete mechanism of each of these4

reactions (illustrated schematically in Figure 3) cannot be fully elucidated as no attempt was made to measure5

intermediate species in the reaction, however the rates of sorption and formation of soluble org-I are both6

rapid (< 1 hr).7

8

Figure 2 shows the rate of conversion of
129

I
-

to
129

I-org and the loss of
129

I from solution as a function of time.9

In the subsoils total iodine in solution remained close to spike levels at ~ 0.15 mg kg
-1

after 1 hr but 20-30% of10

129
I
-

had been transformed to org-I. Highest rates of
129

I
-
loss were observed in the woodland and grassland11

topsoils with high organic carbon contents (ST-WT, ST-GT and SB-WT) where no measurable concentration of12

129
I
-

was observed after 2, 3 and 8 hours respectively, at 10
o
C or 20

o
C. In general, solution phase

129
I
-

13

concentration reduced most rapidly at higher temperatures and in the Stoke Rochford (ST) soils, with higher14

pH, carbonate, and Fe-oxide, compared to soils with comparable land-use from Sutton Bonington (SB). With15

soils sampled at the same location loss of
129

I
-

from solution was fastest in soils with higher organic carbon16

contents. In samples spiked with
129

I
-
, no evidence for oxidation to

129
IO3

-
was observed but formation of

129
I-17

org species was rapid and the proportion of these species in solution increased over time. Conversion was18

most rapid in soils with higher pH and organic matter contents (ST-WT and ST-GT) where 100% was converted19

to
129

I-org within 3 and 8 hr respectively. In soils with a lower pH value conversion to org-I was most rapid in20

the woodland topsoil (SB-WT) taking 8 - 24 hr and slowest in the woodland and arable subsoils (SB-WS & SB-21

AS). In the woodland subsoil total conversion of
129

I
-
to

129
I-org took >300 hr and in the arable subsoil ~ 12% of22

the total
129

I remained as
129

I
-
after 810 hr. Both soils have approximately the same organic carbon and metal23

oxide content but pH values were ~3.9 for the woodland soil and 6.5 for the arable subsoil.24

25

In order to interact with soil organic matter it has been shown that iodide must be oxidised to an intermediate26

such as I2 or HOI (Warner et al., 2000; Reiller et al., 2006; Schlegel et al., 2006). Metal (Fe, Mn, Al) oxide27

phases and soil organic matter are both possible oxidising agents. Soil metal oxides have been shown to28

oxidise iodide in amounts proportional to their concentration, and inversely proportional to pH, in a reaction29
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that is thermodynamically favourable up to pH 7.5 (Allard et al., 2009; Fox et al., 2009; Gallard et al., 2009).1

Humic substances, which contain some electron acceptor sites, also act as oxidising agents for iodide (Blodau2

et al., 2009; Keller et al., 2009). Sheppard and Thibault (1992) described rapid loss of iodide from solution in3

organic soils as a first order reaction. However, they observed no evidence for specific bonding of iodide as4

the majority of iodide was found to be easily desorbable by water within a few days indicating weak retention5

in organic soils.6

7

4.3 Phosphate Extraction8

Phosphate has been effectively used as an extractant for specifically adsorbed anions such as sulphate9

(Delfosse et al., 2005), selenite (Stroud et al., 2010) and iodate (Whitehead, 1973b). In this study extraction10

with 0.16 M KH2PO4 was used to determine the amount of
129

IO3
-

and
129

I
-

adsorbed on Fe/Mn oxides,11

implemented following KNO3 equilibration at selected sampling times. Across all soils, iodine spikes and12

temperatures, the total amount of phosphate-extractable
129

I from spiked soils after ~100 hr was very low,13

between 0.0015 mg kg
-1

(1%) and 0.014 mg kg
-1

(~9%). The largest extractable concentrations were found in14

subsoils with low organic matter contents (SB-AS, ST-AS, and SB-WS), whereas the lowest levels of extractable15

129
I were in the organic-rich topsoils (SB-WT, ST-WT, and ST-GT). Of the total

129
I extracted, the majority was16

inorganic iodine (
129

IO3
-

and
129

I
-
) for most soils. In the higher pH arable subsoil (ST-AS) ~90% was inorganic17

with slightly less in the lower pH arable subsoil (SB-AS). The woodland topsoil with a relatively high pH value18

(ST-WT) had the lowest amount of inorganic iodine (20-40%), perhaps due to greater solubility of humic acid at19

high pH. Over time the proportion of inorganic iodine in the extraction decreased for all soils as the
129

I20

became progressively assimilated into the organic pool.21

22

In iodate-spiked soils, iodate (
129

IO3
-
) was only detected in phosphate extracts of arable subsoils (SB-AS and ST-23

AS), where it represented less than 3% of the initial spike concentration. This provides strong evidence that24

the initial ‘instantaneous’ sorption seen for iodate-spiked soils may not be inorganic adsorption of IO3
-

ions on25

Fe/Mn oxides. Combining phosphate-extractable iodate concentrations with data from equilibration with26

0.01M KNO3 enables calculation of IO3
-

ion distribution coefficients (kd) for the arable subsoils. However,27

values of kd(IO3
-
) were significantly smaller than anticipated from the proportion of added iodate immediately28

sorbed from solution (Figures 1c and 1f). This may indicate that oxide phases are less important in rapid29
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adsorption of iodate than previously assumed. The overall trend seen in Figs 1 and 2 may arise simply from1

rapid organic fixation, until exhaustion of initially available reduction capacity subsequently produces a slower2

assimilation rate.3

4

Whether
129

I was added as either
129

I
-

or
129

IO3
-

measurable concentrations of phosphate-extractable iodide5

(
129

I
-
) were found (0.0025-0.01 mg kg

-1
, 1.6 - 6.6 %) in all the soils. This suggests that iodide may be specifically6

adsorbed to some extent (i.e. adsorbed in the presence of 0.01 M NO3
-
) and is not a wholly conserved solute.7

It also indicates, for the
129

IO3
-
-spiked soils, that iodide may be an intermediate in the overall process whereby8

iodate is assimilated into humus.9

10

4.4 TMAH Extraction11

Tetra methyl ammonium hydroxide (TMAH) has recently been shown to extract quantitatively the total iodine12

content from environmental samples e.g. soils, sediments, plants, and food (Watts & Mitchell, 2009). Alkaline13

extractants such as TMAH mobilise humic acids (and org-I) by negative charge generation and may also cause14

some degree of hydrolysis of org-I compounds. In addition TMAH releases iodate from specific sorption sites15

on Fe/Al hydrous oxides by replacement with hydroxide ions and negative charge generation on the oxide16

surface (Yamada et al., 1996). One advantage of TMAH over inorganic extractants such as NaOH or KOH is that17

high pH values can be achieved without increasing the salt concentration of the extraction solution and hence18

reducing the possibility of precipitation in the ICP torch and nebuliser during analysis.19

20

A single TMAH (10%) extraction was used as a final step for some samples, following phosphate extraction. On21

average, total-
129

I extracted ranged from 0.109 – 0.129 mg kg
-1

(representing 73-86% recovery of the 0.15 mg22

kg
-1

spike). Recovery was generally slightly worse in organic rich soils (e.g. 75-80% in ST-WT) and better in23

those with lower organic matter contents (e.g. arable subsoils, SB-AS and ST-AS, 85-90%). The amount of total24

129
I extracted was unaffected by incubation temperature or the iodine species used for initial spiking.25

Consequently an exhaustive extraction procedure using three sequential extraction steps with 10% TMAH was26

undertaken on two soils (SB-WT and SB-AS) chosen to represent ‘end members’ in terms of soil properties (pH27

and %SOC). This more rigorous extraction produced c. 100% recovery of
129

I spikes and confirms that loss of28

129
I from solution was due to sorption on soil components rather than volatilization.29
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1

4.5 Modelling
129

I
-
and

129
IO3

-
2

Model parameters and residual standard deviations (RSD) for individual model fits are given in Tables 3 and 43

for iodate and iodide respectively. Comparisons of how well individual models fit for iodate and iodide across4

all soils is shown in Figure 4. For iodate, models in which no instantaneous adsorption was allowed (i.e.5

irreversible first order (IFO), infinite exponential (ISE), reversible first order (RFO) and parabolic diffusion) gave6

a poorer fit, with a greater range of RSD values, than those that incorporated a kd value (Figure 4a). The7

reversible first order + kd (RFO-kd), irreversible first order + kd (IFO-kd) and spherical diffusion + kd (Sph-Diffn-8

kd) models generated the best fits and the smallest range of RSD values across the soils. The Sph-Diffn-kd9

model gave marginally the lowest average RSD value overall (6.64 g kg
-1

c.f. 6.68 g kg
-1

for the IFO-kd model10

and 7.15 g kg
-1

for the RFO-kd model).11

12

For iodide, with the exception of the ISE and Par-Diffn models, all models generated a similar average RSD13

value and the influence of instantaneous adsorption and requirement for inclusion of kd in the model was less14

clear. The reasons for this may be weaker adsorption of inorganic iodide on Fe/Mn oxides or a more sustained15

reaction with SOC in which either generation of intermediary iodine species is not limiting or diffusion into16

humic aggregates is faster. Also important to note is that the errors in the fits of iodide models are likely to be17

greater than those for iodate as the faster kinetics resulted in fewer measured values being obtained and18

fitted. The three iodide sorption models that generated the lowest RSD values are the same as those19

indentified as most successful in fitting iodate data i.e. reversible first order + kd (RFO-kd, average RSD 13.5 g20

kg
-1

), irreversible first order + kd (IFO-kd, average RSD 13.6 g kg
-1

) and spherical diffusion + kd (Sph-Diffn-kd,21

average RSD 14.2 g kg
-1

) (Figure 4b).22

23

Reaction rate constants and distribution coefficients (kd values) calculated for all models are given in Tables 324

and 4 for iodate and iodide respectively. Comparison of the reaction rate constants generated by the25

irreversible first order model for soils incubated at 20
o
C with those incubated at 10

o
C showed that rates were26

on average 1.75 times higher at the higher temperature (Q10 = 1.75). The reaction rates for both iodate and27

iodide were greatest in the acidic woodland topsoil and subsoil (SB-WT and (SB-WS) and lowest in the organic-28
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poor, higher pH arable sub soil (SB-AS) from the same location, but there was no clear correlation with any1

individual soil property when reaction rates for individual soils were compared. Reaction rates for iodide were2

typically faster than those of iodate with the half life of iodide ranging from a minimum of 0.38 hr (ST-WT,3

20
o
C) to a maximum of 45 hr (SB-AS, 10

o
C). Iodate half lives were longer, between 9 hr (SB-WT, 20

o
C) and 4124

hr (SB-AS, 10
o
C). Modelled (optimized) kd values showed that instantaneous adsorption was usually greater5

for iodate than iodide.6

7

IFO-kd and RFO-kd approaches described iodate and iodide reaction kinetics well, with the most important8

factor in achieving a good fit for iodate being the inclusion of a kd value to allow for instantaneous adsorption9

occurring at t=0. By contrast, for iodide, these models were only slightly better than those in which10

instantaneous adsorption was not included. An Elovich modeling approach, typically used to describe soil11

processes occurring across a range of timescales, generated a good fit for iodide but was less successful for12

iodate. Overall the best model fits to both iodate and iodide were achieved using a spherical diffusion13

approach. The success of the spherical diffusion model (Sph-Diffn-kd) for iodate appears to confirm its ability14

to describe processes over a relatively wide range of times (Altfelder and Streck 2006). That it also worked15

well for iodide suggests that it is useful for describing faster reaction kinetics as well. A comparison of16

modelled
129

I
-

and
129

IO3
-

concentrations with experimentally measured concentrations for individual soils are17

shown in Figures 5 and 6 as a function of time.18

19

4.6 Parameterising the spherical diffusion model from soil variables20

An attempt was made to describe iodate sorption by all the soils based on a single spherical diffusion model21

parameterised from the soil variables: pH, soil organic carbon concentration (%SOC) and combined Fe+Mn22

oxide content (%Ox). Thus, the two parameters in Equation 8 (Table 2), kd and D/r
2
, were expressed as23

functions of pH, %SOC and %Ox. The only apparent trends from fits of Equation 8 (Table 2) to individual soils24

were a linear relationship between p(D/r
2
) and %SOC and a weak exponential relation between kd and pH. For25

example, for incubations at 10
o
C:26

27

0.67r;0.13(%SOC)3.8
r

D
p 2

2









(9)28
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and1

0.29rpH);0.2817.0exp(kd 2  (10)2

3

The diffusion parameter, p(D/r
2
) was therefore expressed as a linear function of the three soil variables and4

the distribution coefficient (kd) as an exponential function of pH in which the value of kd at pH = 0 (ko) was a5

linear function of %SOC and %Ox:6

7

(%Ox)k(%SOC)k(pH)kk
r

D
p oxCpHO2








 (11)8

9

pH)exp(k(%Ox)]k(%SOC)k[kkd pHOxCO  (12)10

11

A single model fit was made (simultaneously) to all soils at each temperature (10
o
C and 20

o
C). Four12

combinations of the coefficients (kO, kpH, kC and kOx) were tested, in the sequence listed, and overall values of13

RSD calculated (Table 5). In Table 5 the number of model parameters increases by four with each soil variable14

added because both p(D/r
2
) and kd were calculated as dependencies of the soil variables and the two15

temperature datasets are treated separately. Thus, with only kO implemented all the soils at a given16

temperature are effectively ascribed average values for p(D/r
2
) and kd in which case the model fit was then17

optimised with four fitted coefficients. The two model parameters (p(D/r
2
) and kd) were also parameterised18

independently, producing model coefficient numbers between 4, 8, 12 and 16, but this produced broadly19

intermediate RSD values. Sequential addition of pH, %SOC and %Ox produced significant model improvements20

(P<0.001) in all cases. However, the inclusion of %SOC and %Ox in the calculation of kd value (Equation 12)21

does produce a potential instability in that it is possible to derive negative values for distribution coefficient at22

very large soil humus contents. Also, it was found that kO applied to kd was reduced to zero when both %SOC23

and %Ox were included as variables to give 14, rather than 16, as the number of model coefficients required to24

give the best fit (Table 5). Table 6 shows the values of the soil coefficients used to derive the model25

parameters p(D/r
2
) and kd for each incubation temperature (Equations 11 and 12). For prediction of kd value,26

the soil coefficients are broadly in line with expectation in that kd declined with pH (kpH is a negative27

exponential factor) and increases with Fe/Mn oxide content. This may reinforce the suggestion that the rapid28
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initial adsorption of iodate is as an inorganic species on hydrous oxides. Similarly, the negative values of kc (for1

calculation of kd values) in Table 6 suggest that humus restricts the initial adsorption of iodate – possibly2

through competition for oxide sites and electrostatic repulsion. This agrees with the observation of Dai et al.,3

(2004) who observed iodate adsorption to be positively correlated with free iron oxide content of soils and4

negatively correlated with soil organic matter content.5

6

Figure 7 shows the fit of the soil-parameterised spherical diffusion model to iodate sorption. The overall7

simulation was reasonable across the range of soils examined with most soils falling wholly within ± 1 RSD of8

the 1:1 relation. However, some individual soils produced systematic deviation from the model trend. Thus,9

iodate persisted in solution in the SB-AS, a sandy arable subsoil with low soil organic carbon (%SOC) content,10

for longer than predicted by the model (at low iodate concentrations). The grassland topsoil from the same11

site showed the reverse trend with more rapid sorption from solution than predicted.12

13

Apparent activation energies (Ea, kJ mol
-1

) for each soil were determined from the intercept of a plot ln(D/r
2
)14

against T
-1

. The average value for eight of the soils was 42.7 ±3.4 kJ mol
-1

with no significant relationship15

with %SOC (Figure 8), or soil pH value. The acidic woodland topsoil from Sutton Bonington (SB-WT), had16

extremely rapid reaction kinetics which showed very little temperature-dependence (Ea ≈ zero).  Sparks (1989) 17

presents approximate ranges for activation energies associated with different soil reaction-diffusion processes.18

Thus, a value for Ea just over 40 kJ mol
-1

suggests a reaction process which is slower than simple pore diffusion19

(Ea ≈ 20 – 40 kJ mol
-1

) or physical adsorption (8 – 25 kJ mol
-1

) but at the lower end of surface reaction20

mechanisms. Figure 9a shows the effect of acidic conditions in soil (pH 4 vs pH 7) in causing pronounced21

instantaneous sorption of iodate, whether this is through rapid reduction of iodine to organic forms or22

adsorption of IO3
-

on Fe/Mn oxides. Increasing the (model) Fe/Mn oxide content also causes a greater initial23

fall in soluble iodate. Figure 9b shows (i) the influence of temperature in increasing the kinetic reaction but24

with minimal effect on the level of instantaneous sorption and (ii) in comparison with Fig. 9a, the increased25

rate of assimilation at greater soil humus content.26

27

The main source of iodine to a soil is rainfall. The extent to which iodine in rainfall is retained by a soil will28

therefore depend not only on soil properties but also on factors including (i) distance from the ocean and29
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therefore iodine concentration in the rain, (ii) the speciation of iodine in the rainfall, (iii) the timing, duration1

and intensity of the rainfall, (iv) whether the soil is dry or wet before a rainfall event, (v) the extent to which2

the rainfall infiltrates or drains from a soil, which is dependent upon both the soil texture and its management3

and soil temperature. Uptake by plant roots and microbial processing of the iodine may also be factors (see4

e.g. Whitehead, 1975). Iodine concentration in rainfall is reported to be in the range of 0.5-5 g L
-1

(e.g.5

Truesdale and Jones, 1996, Neal et al., 2007, Hou et al., 2009) but there is little agreement on the mix of6

species present with I
-
, IO3

-
and organic iodine all reported as ‘major species’, the relative proportions of each7

varying with location (e.g. Gilfedder et al., 2007, Yoshida et al., 2007). Low intensity rainfall will infiltrate the8

soil more easily than high intensity rainfall which ‘seals’ the surface of the soil increasing run-off. Coarse9

textured (e.g. sandy) soils will allow easier infiltration (> 50 mm hr
-1

) but will also drain completely within a few10

hours whereas a fine textured (e.g. clayey) soil allows less infiltration (<15 mm hr
-1

) and will take 2-3 days to11

drain. For a shallow sandy soil with low organic matter content and a saturated hydraulic conductivity (Ksat) of12

~10 cm hr
-1

it is possible that during a period of intense rainfall over several hours a substantial proportion of13

rainfall iodine may be lost from the topsoil. Under typical rainfall conditions however, the rate of iodine14

reactions in the topsoil are sufficiently rapid for the majority of the iodine to be retained in this layer. Figure15

10 demonstrates retention of the iodine in the topsoil for the sandy loam soils from the Sutton Bonington sites16

where measured iodine:carbon (I:C) ratios in soil are plotted as a function of depth for the woodland and17

arable soil profiles. The I:C ratio increases with depth for both soils demonstrating that whilst the majority of18

iodine is retained in the top soil the smaller amounts of humus present at depth have a high iodine19

concentration compared to the more abundant organic matter in the topsoil. Thus iodine moving beyond the20

topsoil during rainfall or drainage events appears to be effectively retained in the deeper soil horizons by the21

substantial adsorption capacity provided by relatively small amounts of humus. The capacity of topsoil and22

subsoil to effectively scavenge iodine from drainage water is supported by the low concentrations of iodine23

(typically <5 g L
-1

) reported in river waters and the observation that iodine speciation in freshwater tends to24

be dominated by organic forms (e.g. Reifenhauser & Heumann, 1990).25

26

27

28
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5. CONCLUSIONS1

2

This study demonstrates that iodine added to soil is rapidly transformed from inorganic to organic forms.3

Transformation of inorganic iodine into organic forms occurs rapidly in the soil solution and the rate of loss of4

iodine from the soil solution is dependent upon its speciation, with iodide being lost more rapidly (minutes-5

hours) than iodate (hours-days) especially in high organic matter soils. The ultimate fate of iodine added to6

soil appears to be incorporation into soil organic matter via formation of intermediates e.g. HOI or I2. Abiotic7

reduction of IO3
-
, or oxidation of I

-
by solid or aqueous organic matter are likely to be the main mechanisms by8

which these intermediates are formed (although this work provides no specific evidence for this) as the9

reaction rates observed appear to be too fast for biological processes to play a significant role. It appears that10

inorganic adsorption of iodide and iodate plays only a minor, and probably transient, role in retention of iodine11

in soils. Rates of iodine loss are greater at higher temperatures with the rate almost doubling as temperatures12

increase from 10 to 20
o
C.13

14

Using a spherical diffusion modelling approach with instantaneous adsorption, that has been optimised across15

all the studied soils for iodate and iodide, this work demonstrates that it is possible to predict iodine behaviour16

as a function of pH, soil organic carbon, oxide content and temperature.17

18

19
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Table 1: Summary of soil properties. Standard error for triplicate measurements is shown in brackets after the number.

127I Org-C LOI Carbonate Al(OH)3 MnO2 Fe2O3

Moisture
content of

incubated soil

Mean Mean Mean Mean Mean Mean Mean

Soil Code pH (mg/kg) % % % % % % % dry wt

Stoke Rochford Woodland Topsoil ST-WT 7.2 9.07 (0.04) 5.93 16.8 (0.12) 42.8 (0.99) 0.226 (0.002) 0.063 (0.0004) 1.76 (0.02) 37.6

Stoke Rochford Arable Topsoil ST-AT 7.34 7.48 (0.09) 2.88 9.04 (0.22) 5.37 (0.34) 0.361 (0.004) 0.061 (0.0005) 2.08 (0.01) 19.2

Stoke Rochford Arable Subsoil ST-AS 7.05 9.72 (0.06) 2.41 9.37 (0.19) 6.65 (0.46) 0.481 (0.007) 0.084 (0.0004) 2.80 (0.08) 16.8

Stoke Rochford Grassland Topsoil ST-GT 6.85 11.8 (0.10) 8.39 20.1 (0.15) 1.47 (0.36) 0.505 (0.018) 0.094 (0.0005) 3.56 (0.21) 40.3

Sutton Bonington Arable Topsoil SB-AT 6.98 4.87 (0.10) 2.24 6.56 (0.18) 2.50 (0.12) 0.283 (0.001) 0.040 (0.0002) 1.49 (0.01) 18.5

Sutton Bonington Arable Subsoil SB-AS 6.50 2.35 (0.02) 0.79 3.54 (0.07) 0.00 (0.00) 0.241 (0.003) 0.026 (0.0004) 1.28 (0.02) 11.7

Sutton Bonington Grassland Topsoil SB-GT 6.63 2.57 (0.07) 2.44 5.89 (0.10) 0.00 (0.00) 0.195 (0.001) 0.022 (0.0002) 1.00 (0.01) 17.7

Sutton Bonington Woodland Topsoil SB-WT 4.38 4.41 (0.12) 10.14 23.4 (0.39) 0.00 (0.00) 0.286 (0.003) 0.011 (0.0002) 1.07 (0.004) 57.0

Sutton Bonington Woodland Subsoil SB-WS 3.86 1.98 (0.06) 1.66 4.4 (0.73) 0.00 (0.00) 0.243 (0.001) 0.007 (0.0001) 1.02 (0.01) 13.5
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Table 2: Equations used to model the transformation kinetics of
129

I
-
or

129
IO3

-

Model Equation Reference

Irreversible First Order (IFO) It = I0 e-kt

and I0 =
Itot

1 + Kd(0)
W

V

(2)

(3)

It is the concentration of
129

I
-
or

129
IO3

-
in solution at

time t (mg kg
-1

soil), k is the reaction rate constant
(hr

-1
), t is time (h) and I0 is the total concentration of

129
I
-
or

129
IO3

-
at time t =0.

Itot is the total concentration of
129

I
-
or

129
IO3

-
(amount

added,mg kg
-1

soil), W is the soil mass (g), V is the
solution volume (mL) and kd(0) is apparent distribution
coefficient of

129
I
-
or

129
IO3

-
at time t = 0

see e.g. Sparkes (1989)

Reversible First Order (RFO) It = It-1 (1-kF) + kR (I0 - It-1) (4) It-1 is the concentration of
129

I
-
or

129
IO3

-
(mg kg

-1
soil) in

solution at time t-1, and kF and kR are the forward and
reversible reaction rate constants (hr

-1
), respectively.

Empirical

Elovich
It = I0 - ൬

1

b
ln a b +

1

b
ln t൰

(5)  and  are constants see e.g. Chien and Clayton (1980)

Infinite series exponential (ISE) It = I0൫t+ I0
ଵ/a൯

ିa (6) is a constant see e.g. Sinaj et al. (1999)

Parabolic Diffusion (Par-Diffn) It = I0 (1 - RD +ݐ√ a) (7) RD is the overall diffusion coefficient and  is a constant see e.g. Sparkes (2003)

Spherical Diffusion (Sph-Diffn)

It= I0൭
6

π2


1

n2

n=∞

n=1

exp -ቆ
n2π2Dt

r2
ቇ൱

(8) n is an integer, D is the intra-aggregate diffusion
coefficient (m

2
hr

-1
) and r is the aggregate radius (m)

see e.g. Brown et al. (1971)
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Table 3: Summary of iodate model outputs for each soil type at 10
o
C and 20

o
C. For a definition of each parameter please see Table 2. Quoted residual standard deviations are the average

for both temperatures.

ST-WT ST-GT ST-AT ST-AS SB-WT SB-WS SB-AT SB-AS SB-GT

10oC 20oC 10oC 20oC 10oC 20oC 10oC 20oC 10oC 20oC 10oC 20oC 10oC 20oC 10oC 20oC 10oC 20oC

Parabolic Diffusion

RD - overall diffn coeff 0.021 0.021 0.017 0.018 0.010 0.010 0.009 0.009 0.016 0.016 0.004 0.004 0.012 0.012 0.008 0.010 0.027 0.028

Constant 0.529 0.577 0.603 0.624 0.488 0.527 0.530 0.536 0.694 0.705 0.821 0.815 0.396 0.448 0.466 0.446 0.361 0.383

RSD (g kg-1) 23.37 17.14 25.08 17.40 24.49 13.22 29.11 15.30 21.98

Elovich

 0.574 0.610 5.785 2.835 0.284 0.370 2.093 0.719 4.560 6.191 948404 48898 0.085 0.078 1.189 0.223 0.115 0.097

 65.812 62.437 85.088 75.376 74.089 72.727 94.896 80.816 74.085 76.126 175.144 151.576 67.495 60.177 100.097 76.886 59.066 53.846

RSD (g kg-1) 9.40 6.84 15.44 8.61 12.30 5.89 19.36 9.24 17.56

Irreversible 1st order + Kd

kd (L kg-1) 3.514 3.163 5.776 4.863 3.008 2.735 5.015 3.635 4.094 4.368 13.759 11.615 2.122 1.579 4.259 2.910 2.180 1.857

Rate const (hr-1) 0.017 0.028 0.014 0.023 0.006 0.009 0.003 0.007 0.069 0.069 0.013 0.017 0.005 0.009 0.002 0.004 0.010 0.014

RSD (g kg-1) 6.24 6.12 6.46 9.10 3.40 4.90 6.84 8.98 8.09

Irreversible 1st order

Rate const (hr-1) 0.041 0.275 0.413 0.381 0.015 0.018 0.018 0.020 0.282 0.302 0.959 0.851 0.010 0.014 0.013 0.013 0.017 0.021

RSD (g kg-1) 26.68 25.39 28.64 35.35 16.78 16.96 23.00 33.23 24.36

Reversible 1st order + kd

kd (L kg-1) 3.487 3.161 5.682 4.843 2.965 2.735 4.811 3.466 4.035 4.350 7.194 11.580 2.122 1.579 3.526 2.748 2.180 1.857

Forward Rate constant (hr-1) 0.018 0.028 0.014 0.023 0.006 0.009 0.003 0.008 0.069 0.067 0.224 0.017 0.004 0.009 0.004 0.005 0.010 0.014

Reverse Rate constant (hr-1) 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.054 0.000 0.000 0.000 0.001 0.001 0.000 0.000

RSD (g kg-1)) 6.78 6.53 6.85 9.04 3.61 8.17 7.39 7.16 8.86

Reversible 1st order

Forward Rate constant (hr-1) 0.263 0.254 0.389 0.341 0.229 0.231 0.310 0.253 0.271 0.287 0.660 0.621 0.189 0.014 0.274 0.015 0.201 0.021

Reverse Rate constant (hr-1) 0.049 0.028 0.072 0.042 0.085 0.071 0.117 0.081 0.014 0.015 0.065 0.057 0.096 0.000 0.147 0.002 0.075 0.000

RSD (g kg-1) 20.12 18.81 33.28 24.92 16.62 12.36 31.26 26.20 30.10

Inf-exp + kd

kd (L kg-1) 2.395 2.228 4.285 3.627 1.725 2.039 2.799 2.191 3.440 3.705 10.745 9.254 1.086 0.809 2.249 1.557 1.424 1.176

Constant (n) 0.312 0.399 0.277 0.358 0.204 0.219 0.174 0.212 0.486 0.490 0.282 0.317 0.181 0.234 0.141 0.178 0.228 0.271

RSD (g kg-1) 12.30 10.32 21.56 13.97 9.90 6.16 26.26 15.05 24.50

Inf-exp

Constant (n) 0.441 0.565 0.511 1.335 0.271 0.297 0.279 0.300 1.102 1.251 2.609 2.466 0.222 0.267 0.223 0.237 0.289 0.325

RSD (g kg-1) 22.47 28.09 26.84 25.05 21.37 17.30 26.75 24.72 26.59

Spherical Diffusion + kd

kd (L kg-1) 2.328 1.814 4.420 3.358 2.116 1.925 3.816 2.698 2.218 1.156 11.449 9.325 1.337 0.819 3.285 2.086 1.360 0.987

D/r2 0.001 0.002 0.001 0.002 0.000 0.001 0.000 0.000 0.005 0.005 0.001 0.001 0.000 0.001 0.000 0.000 0.001 0.001

RSD (g kg-1) 5.11 4.72 8.88 6.75 2.67 4.44 10.72 5.69 10.80
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Table 4: Summary of iodide model outputs for each soil type at 10
o
C and 20

o
C. For a definition of each parameter please see Table 2. Quoted residual standard deviations are the average

for both temperatures.

ST-WT ST-GT ST-AT ST-AS SB-WT SB-WS SB-AT SB-AS SB-GT

10oC 20oC 10oC 20oC 10oC 20oC 10oC 20oC 10oC 20oC 10oC 20oC 10oC 20oC 10oC 20oC 10oC 20oC

Parabolic Diffusion

RD - overall diffn coeff 0.6606 0.4923 0.4740 0.4592 0.1580 0.3944 0.1201 0.1773 0.2594 0.1462 0.0294 0.0832 0.1092 0.1410 0.0295 0.0273 0.1145 0.1261

Constant 0.0386 0.3329 0.0728 0.2121 0.2554 0.1176 0.2376 0.1355 0.2070 0.3137 0.3901 0.1315 0.2914 0.4062 0.3570 0.4446 0.2067 0.2796

RSD (g kg-1) 4.84 14.01 23.80 24.17 13.68 24.13 23.50 30.12 20.27

Elovich

 0.437 1.075 0.338 0.564 0.148 0.366 0.146 0.090 0.308 0.332 0.065 0.048 0.188 0.530 0.066 0.100 0.096 0.174

 20.01 26.51 25.01 25.77 31.02 30.16 40.76 27.86 32.78 39.07 46.89 40.50 42.31 38.89 50.11 49.05 36.22 38.10

RSD (g kg-1) 4.68 14.90 20.09 16.39 11.23 15.53 17.12 18.84 13.33

Irreversible 1st order + Kd

kd (L kg-1) 0.214 0.958 1.133 1.693 0.460 1.532 1.892 0.000 1.801 1.995 1.416 1.357 1.193 1.867 1.631 1.690 1.685 1.113

Rate const (hr-1) 1.2721 1.8129 0.5999 0.8722 0.2509 0.4448 0.0804 0.2139 0.2940 0.2085 0.0219 0.0228 0.1455 0.3512 0.0156 0.0259 0.0660 0.1680

RSD (g kg-1) 6.27 14.09 17.57 16.83 9.95 9.47 18.05 11.50 18.28

Irreversible 1st order

Rate const (hr-1) 1.3213 2.0751 0.7682 1.1638 0.2872 0.6474 0.1839 0.2139 0.5013 0.4168 0.0323 0.0331 0.2281 0.5764 0.0236 0.0408 0.1467 0.2458

RSD (g kg-1) 5.39 14.24 16.95 17.10 15.94 19.65 18.89 22.15 19.51

Reversible 1st order + kd

kd (L kg-1) 0.214 0.958 1.217 1.780 0.346 1.473 0.516 0.000 1.698 1.892 1.417 1.357 0.196 1.977 1.631 1.690 0.723 0.274

Forward Rate constant (hr-1) 0.9412 1.1921 0.5055 0.6948 0.2497 0.4168 0.1813 0.2056 0.2878 0.2102 0.0217 0.0226 0.2516 0.3093 0.0154 0.0256 0.1234 0.2392

Reverse Rate constant (hr-1) 0.0000 0.0000 0.0000 0.0000 0.0153 0.0429 0.0603 0.0175 0.0197 0.0154 0.0000 0.0000 0.0772 0.0000 0.0000 0.0000 0.0211 0.0533

RSD (g kg-1) 8.87 17.23 22.40 8.91 11.01 10.37 13.76 12.42 16.17

Reversible 1st order

Forward Rate constant (hr-1) 0.9670 1.2914 0.6891 0.9017 0.2770 0.6557 0.2197 0.2056 0.4872 0.4089 0.0332 0.0382 0.2690 0.5121 0.0240 0.0416 0.1697 0.2615

Reverse Rate constant (hr-1) 0.0000 0.0000 0.0810 0.0265 0.0185 0.1709 0.0679 0.0175 0.0745 0.0533 0.0008 0.0035 0.0795 0.0245 0.0005 0.0009 0.0300 0.0567

RSD (g kg-1) 6.60 16.16 18.43 7.25 15.71 20.95 15.56 23.61 13.47

Inf-exp + kd

kd (L kg-1) 14.54 29.91 7.47 13.27 1.63 6.16 1.72 0.78 4.94 4.22 0.47 0.54 1.85 5.87 0.74 0.76 1.13 1.88

Constant (n) 1.2483 1.8208 0.6439 0.8730 0.6857 0.4699 0.3793 0.6279 0.4494 0.4202 0.3316 0.2991 0.4223 0.5469 0.2750 0.3551 0.4321 0.4905

RSD (g kg-1) 9.87 18.60 20.26 11.56 15.60 22.19 17.34 24.57 13.78

Inf-exp

Constant (n) 4.2156 5.4323 3.3219 4.2523 1.0241 3.1066 0.5759 0.7549 2.7232 2.4484 0.3577 0.3329 0.6787 2.9768 0.3124 0.3994 0.5426 0.7989

RSD (g kg-1) 15.84 34.34 38.61 19.20 48.64 21.40 36.63 24.38 20.53

Spherical Diffusion + kd

kd (L kg-1) 0.000 0.000 0.000 0.000 0.000 0.000 0.585 0.000 0.144 0.385 0.329 0.300 0.724 0.079 0.659 0.501 0.270 0.043

D/r2 0.0847 0.1440 0.0436 0.0741 0.0146 0.0343 0.0054 0.0100 0.0232 0.0160 0.0017 0.0016 0.0062 0.0290 0.0011 0.0020 0.0051 0.0105

RSD (g kg-1) 10.31 15.33 19.19 17.86 10.02 10.44 16.97 13.42 14.29
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Table 5: Residual standard deviations for the single spherical diffusion model implemented with all soils simultaneously and parameterised from the soil variables: pH, %SOC and %Ox.

Soil variables Number of model coefficients RSD (mg kg
-1

)
(x 10

-2
)

kO 4 1.98
kO, kpH 8 1.56

kO, kpH, kC 12 1.09
kpH, kC, kox 14 0.0850



32

Table 6: Values of optimised soil coefficients (kO, kpH, kC, kOx) for the single spherical diffusion model implemented with all soils simultaneously and parameterised from the soil variables:
pH, %SOC and %Ox.

Soil coefficients 10
o
C incubation 20

o
C incubation

kd; Equ. 12 p(D/r
2
); Equ. 11 kd; Equ. 12 p(D/r

2
); Equ. 11

kO 0 4.13 0 4.11
kpH -0.814 -0.0876 -0.878 -0.113
kC -38.4 -0.181 -47.4 -0.160
KOx 419 0.253 478 0.179
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FIGURE CAPTIONS

Figure 1: Stacked plots where the total height of the bar represents total 129I in solution after equilibration with 0.01

M KNO3 at 10oC, with associated error bar. Dark grey bar represents amount present as 129IO3
-, again with

associated error. The difference between the total 129I and 129IO3
-, given by the light grey bar represents the

amount of 129I-org in solution.

Figure 2: Stacked plots where the total height of the bar represents total 129I in solution after equilibration with 0.01

M KNO3 at 10oC, with associated error bar. Dark grey bar represents amount present as 129I-, again with

associated error. The difference between the total 129I and 129I-, given by the light grey bar represents the amount

of 129I-org in solution.

Figure 3: Schematic diagram showing proposed reaction paths of iodine in soils.

Figure 4: Modelling kinetics of (a) iodate and (b) iodide 129I sorption: box and whisker plots showing the distribution

of residual standard deviations (RSD; µg kg-1) across nine contrasting soils for each of the nine models tested.

The mean value () and outliers (*) are shown.

Figure 5: Comparison of the measured loss from solution of a 0.15 mg kg-1 129IO3
- spike added to soils and

incubated at 10oC and 20oC with model predictions for that soil fitted using a spherical diffusion model with kd

(Sph-Diffn+kd).

Figure 6: Comparison of the measured loss from solution of a 0.15 mg kg-1 129I- spike added to soils and incubated

at 10oC and 20oC with model predictions for that soil fitted using a spherical diffusion model with kd (Sph-

Diffn+kd).

Figure 7: Iodate concentration in solution (mg kg-1 soil) modelled for all soils incubated at 10oC with a spherical

diffusion model (Equation 8, Table 2). Model parameters (p(D/r2) and kd) were estimated from the soil variables
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pH, %SOC and %Ox (Equations 11 and 12). The solid line as a 1:1 relation and the dashed lines represent a

displacement of one residual standard deviation (RSD).

Figure 8: Apparent activation energies (Ea, kJ mol-1) from spherical diffusion model as a function of soil organic

carbon content (%); solid line represents the average value.

Figure 9: Simulation of iodate sorption as a function of % soil organic carbon (SOC), pH and temperature using the

parameterised spherical diffusion model. The proportion of iodate remaining in solution is shown for a

hypothetical soil with 5% Fe(OH)3 and 1% MnO2 at pH 4 or 7 and at a temperature of 10oC or 20oC.

Figure 10: Mole ratio (x 10-6) of iodine to organic carbon as a function of depth in woodland () and arable () soil

profiles from the Sutton Bonington site; solid lines are logarithmic fits – i.e. ln(ratio)=(depth-k1)/k2.
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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