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Abstract

This study uses tracer experiments in a global eddy-resolving ocean model to examine two

diagnostic methods for inferring effective eddy isopycnicdiffusivity from point release tracers.

The first method is based on the growth rate of the area occupied by tracers (the equivalent

variance). During the period when tracer dispersion is dominated by stirring, the equivalent

variance is found to increase at a rate between the2nd power law (for a pure shearing flow

regime) and the exponential law (for a pure stretching flow regime). The second method is based

on the length of tracer contours. In the framework of equivalent radius, the two methods of

inferring eddy diffusivity can be understood as two different averagings over the tracer patch.

Over a shorter period of tracer dispersion the two methods give different eddy diffusivities and

only over a longer time when tracer dispersion approaches the final stage of diffusion do they give

a similar value of diffusivity. A new diagnostic quantity called stirring efficiency is introduced

to indicate different flow regimes by measuring the efficiency of stirring against mixing. The

new diagnostic quantity has the advantage that it can be calculated directly from the gradients of

tracer distribution without needing to estimate strain rate or background diffusivity.
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1 Introduction

It is well established that a scalar tracer released in a turbulent flow will be subject to stirring by the

shear and mixing by the molecular diffusion. The stirring process is adiabatic with the tracer con-

tours stretched and gradients sharpened. This creates small-scale features that eventually molecular

diffusion acts upon, leading to irreversible mixing and smoother tracer gradients. Thus, the action

of diffusion is enhanced by the shears of advective flow and one seeks an effective diffusivity that

incorporates stirring-enhanced mixing. See Garrett (2006) for a review of stirring and mixing by

turbulence in the ocean.

In the last decade or so, oceanographers have tried to infer eddy diffusivity by releasing inert tracers

such asSF6 into the ocean. Most tracer release experiments focus on estimating diapycnal mixing

in a particular environment such as in the quiet main thermocline of the subtropical gyre (Ledwell

et al. 1998), within the convection region in the Greenland Sea (Watson et al. 1999), over rough

topography in the abyssal Brazil basin (Ledwellet al. 2000), or associated with salt fingers in the

main thermocline of the tropical Atlantic (Schmittet al. 2005). Estimates of diapycnal diffusivity vary

from 0.1 cm2s−1 in the main thermocline to 10 cm2s−1 or more in the presence of rough topography.

Eddy diffusivity along isopycnals is rarely estimated fromthese experiments because it is almost

impossible to recover all the tracer after the release. However, in the North Atlantic Tracer Release

Experiment (NATRE) in 1992, the eddy isopycnal diffusivitywas estimated to be about 1000 m2s−1

(Ledwell et al. 1998). But, it is not clear how robust is such an estimate based on few observations

with long time intervals between them. The purpose of this study is to examine in more detail the

method of determining effective isopycnal eddy diffusivity from a point release tracer.

The dispersion of tracer has three distinct stages (Garrett1983). Initially, tracer diffuses from a point

into a Gaussian distribution. The area increases linearly with time at a rate proportional to small-scale

(background) diffusivity. The second stage begins when thetracer patch reaches a length scale large

enough for the stirring by shear flow to dominate the initial diffusion. Finally, when the length scale

of the tracer patch is larger than that of the eddies, streaksare wrapped around and merged together,

resulting in a more homogenized tracer patch. Thus, at a longer time, the ensemble averaged tracer

diffuse in a Fickian manner with an eddy effective diffusivity. The three-stage tracer dispersion has

been illustrated in a two-layer quasi-geostrophic vorticity model calibrated with the NATRE floats
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data (Sundermeyer and Price 1998).

Some characteristic of flows may be inferred from each stage of the dispersion: the background

diffusivity from the initial stage, strain rate from the second stage and the eddy effective diffusivity

over a longer time. However, the question is how can we identify which stage the tracer dispersion has

reached? The most common measure is the rms distance from thecentre of mass of tracer distribution.

We will compare this with the other two measures: the area occupied by tracers (Joseph and Sender

1958) and the length of tracer contours (Nakamura 1996). These two measures are explained in

details in section 2. Briefly here, the ‘area’ method measures the rate of increase of area enclosed

by tracer contours. The ‘contour length’ method (called equivalent length) measures the length of

interface available for background diffusion. Both are distinctly different from the rms distance to

the center of mass method in their insensitivity to the shapeof tracer distribution.

The equivalent length method is an elegant way of diagnosingstirring-enhanced mixing (Nakamura

1995). It is based on the fact that nondivergent flows are area(or volume) preserving and so advection

alone cannot change the area (or volume) enclosed by tracer contours. However, the shear flow can

deform tracer contours and the available interface for diffusion is elongated. Thus, the more complex

the geometry of tracer distribution is, the more effective diffusion will be. Diagnosis of effective

diffusivity using this method has been applied to quasi-steady chemical tracers in atmospheric models

(Nakamura and Ma 1997; Allen and Nakamura 2001) and passive tracers in an idealised Southern

Ocean model (Marshallet al. 2006). In this study, we apply it to point release tracers andintroduce

two new diagnostic tools (the mean effective diffusivity and stirring efficiency) so the evolution of

tracers can be quantified.

We use a global eddy-resolving model in two horizontal resolutions at 1/12◦ and 1/4◦ with tracer

released at a location as close to the NATRE as possible. The details of the model experiments

are given in section 3 and the evolutions of tracers are in section 4. In section 5 and 6, diagnoses

using each method are illustrated and compared. The possible impact of diapycnal processes on the

methods is discussed in section 7. There is a summary in section 8.
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2 Background

2.1 The equivalent radius variance

Consider a simple 2-dimensional case where the evolution oftracer is controlled by diffusion,

∂C

∂t
= kx

∂2C

∂x2
+ ky

∂2C

∂y2
, (1)

whereC(x, y, t) is the tracer concentration andkx,y are the constant diffusivities in thex and y

directions.

The solution for a tracer initially released at a point(x, y) = (0, 0) is a Gaussian distribution (e.g.

Sanderson and Okubo 1986),

C(x, y, t) =
Q

2πσxσy
e
−( x

2

2σ
2
x

+ y
2

2σ
2
y

)
, (2)

whereQ is the total tracer load andσ2
x,y = 2kx,yt are the variances in thex andy directions. The

quantitiyσxσy is called the mean variance. The peak tracer concentration,Cmax = Q
2πσxσy

, decreases

inversely with time and the contours of constant tracer concentration form a set of ellipses. The

variance in the direction of the principal axes of the ellipses,σ2
x,y, grows linearly in time at a rate

twice the respective diffusivity.

In the ocean, there are spatially-varying flows and so a point-released tracer will no longer evolve

into a simple Gaussian distribution with elliptical tracercontours. Instead, the action of shearing

and stretching by differential advection causes tracer contours to be deformed into irregular shapes

with steep gradients and fine filaments. In such situation, itmay be preferrable to use some kind of

variance without needing to specify any particular direction such as the directions of principle axes.

One way to do this is to use the area enclosed by tracer contours (Joseph and Sender 1958, Okubo

1971), which we describe below.

For a given a tracer concentration valuec, define an equivalent radiusγe(c) that satisfiesπγ2
e = Ac,

whereAc is the area enclosed by the tracer contourC = c. Thus, for any tracer distributionC there

is a corresponding radially symmetrical function̂C such thatĈ(γe(c)) = c. From this function, one

obtains a tracer-weighted average of equivalent radius squared,

σ2
e ≡

∫
γ2

e Ĉ(γe) da
∫

Ĉ(γe) da
, (3)
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where the area element isda = 2πγe dγe. We will call σ2
e the equivalent (radius) variance andσe the

equivalent deviation. A more intuitive interpretation of the equivalent variance is to observe thatπσ2
e

is simply the tracer-weighted average of the area enclosed by tracer contours.

In the case of a Gaussian distribution as in example (2), it isstraightforward to show that the equiva-

lent radius variance is twice the mean variance,σ2
e = 2σxσy, andπσ2

e is equal to the amount of area

enclosed by the contour of tracer concentrationc1 = Cmaxe−1. It is worth noting that the contour

C = c1 encompasses a tracer load ofQ(1 − e−1), which is about 63% of the total amount of tracer.

This may be compared to the contour of tracer concentrationCmaxe−3, which encloses an area of

3πσ2
e that encompasses about 95% of total tracer load. We will use these facts later when comparing

different methods of inferring diffusivity.

The equivalent variance,σ2
e , is different from the conventional distance variance,

σ2
r ≡

∫
r2C(x, y) da∫
C(x, y) da

, (4)

wherer =
√

x2 + y2 is the distance to the center of mass and the area element isda = dxdy. In the

case of the simple diffusion example (2), the conventional distance variance isσ2
r = σ2

x + σ2
y . In this

case, it is clear thatσ2
e 6 σ2

r . It can be shown that this inequality is always true foranydistribution.

The common practice is to infer diffusivities from the growth rate of variance. In theory any variance

can be used, but the inferred diffusivity will depend on the choice of variance for any distribution other

than a symmetrical Gaussian distribution. All the variances mentioned so far except the equivalent

variance strongly depend on the shape of the tracer distribution. For this reason, we would emphasize

the use of equivalent variance and define an apparent diffusivity, as in Okubo (1971),

κa ≡ 1

4

∂σ2
e

∂t
. (5)

Thus, apparent diffusivity is a measure (up to a scale4π) of how fast the tracer-weighted average of

the area enclosed by tracer contours spreads, regardless ofthe geometrical shape of tracer distribution.

The factor1/4 is such thatka gives the same diffusivity for a symmetric Gaussian distribution from

a simple diffusion problem.

2.2 The time evolution of variances

How does a point-release tracer evolve in a turbulent flow ? Garrett (1983) described the dispersion
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of point release tracers as a three-stage process. Assume the ensemble averaged tracer distribution

over many realisations is a Gaussian distribution and definethe tracer areaΓ to be the area enclosed

by the tracer contour with concentration valuec = peak value×e−1. Note that this way of defining

Γ uses the property of Gaussian distribution and soΓ is a special case of the equivalent varianceσ2
e

becauseσ2
e can be applied to any distribution.

Initially, tracer diffuses from the point of release to a near symmetrical Gaussian distribution by

small-scale diffusion withΓ = 4πkt, wherek is the background diffusivity. The diffusive process

dominates until the length scale of tracerLC is comparable to the length scale of the flowLU and

then stirring by shear flows begins to take effect. This is supposed to take place at the time when

the advective time scaleLU/U (whereU is the velocity scale) is shorter than the diffusive time

scaleL2
C/k (whereLC ∼ 2

√
kt, the radius of the circular area4πkt). This implies a time scale

Ta = (4λ)−1 and a tracer length scaleLC ≥
√

k/λ, whereλ = U/LU is the scale of the strain rate.

During the stirring-dominated stage, the distorted tracerpatch is thought of as a deformed Gaussian

distribution withΓ(t) = Γ0e
αλ(t−Ta), whereα is anO(1) constant andΓ0 = Γ|t=Ta

. This indicates

that the tracer areaΓ increases exponentially in time at a rate proportional to the strain rateλ. Finally,

when the length scale of the tracer is much larger than that ofthe flow, streaks of the tracer are

wrapped around and eventually merged together by diffusion, resulting in a more homogenised tracer

field. The tracer distribution at this final stage is nearly Gaussian withΓ = 4πkht, wherekh is called

the effective eddy diffusivity.

For some simple cases where the flow is steady, the tracer advection-diffusion equation can be solved

explicitly (Okubo 1966). The simplest case is when there is no stretching, no shearing and only

rotation, and so tracer is diffused by background diffusion. In the case ofu = u0 + λy, v = 0 (pure

shearing), the mean varianceσxσy ∼ kλt2 for larget (Novokov 1958). In the case ofu = ηx, v =

−ηy (pure stretching), the mean varianceσxσy ∼ k
ηe2ηt for larget (Townsend 1951). The scalarsλ

andη are the constant shear rate and constant stretching rate, see Appendix B for definition. So, the

mean variance increases in time as a power of 2 for pure shearing flows and exponentially for pure

stretching flows. Therefore, Garrett’s prediction of exponential growth ofΓ is at least consistent with

the case for pure stretching flows. One might expect that in the ocean the variance growth rate is

somewhere between the two flow regimes. In any case, during the second stage of tracer dispersion,

the increase of variance will be faster than linear, so the apparent diffusivity will be time-dependent.
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2.3 The transformed tracer equation

The concept of equivalent radius is very useful in that apartfrom inferring the apparent diffusivity it

can be used as a coordinate to simplify the tracer advection-diffusion equation. The equivalent radius

coordinate has been applied to quasi-steady tracers for studying stirring and mixing in the ocean and

atmosphere (Nakamura 1995, 1996, Shuckburgh and Haynes 2003, Marshallet al. 2006). Here, we

apply it to a point-released tracer and compare to the apparent diffusivity in the previous section.

Consider the advection-diffusion equation of tracer,

∂C

∂t
+ ∇ · (uC) = ∇ · (k∇C), (6)

whereu = (u, v) is the divergence-free velocity andk is the constant background diffusivity. The

derivation for rewriting (6) in equivalent radius coordinate can be found in the literatures. All our

diagnosis uses the isopycnic layer thickness formulation (see the Appendix), but for the convenience

of discussion the following equations omit the layer thickness.

In equivalent radius coordinates, the tracer equation (6) is transformed into a diffusion-only equation

:
∂Ĉ(γe, t)

∂t
=

1

L0

∂

∂γe

(

κeL0
∂Ĉ(γe, t)

∂γe

)

, (7)

whereĈ(γe, t) is the radially symmetric function as before,κe(γe, t) is the effective diffusivity,

κe(γe, t) = k
L2

e(γe, t)

L2
0(γe, t)

, (8)

Le(γe, t) is the equivalent length,

L2
e(γe(c), t) =

∮

C=c

1

|∇C| dl

∮

C=c
|∇C| dl, (9)

andL0(γe, t) = 2πγe is the minimal length that a tracer contour can have for enclosing the same

amount of area.

There is no explicit advective term in (7) since divergence-free flows are area-preserving and soĈ(γe)

can only be changed by diffusion. That is to say, if there is nobackground diffusion (k = 0) then

the value of tracer concentration enclosing a given amount of area will remain unchanged at all time

and so the l.h.s. of (7) will be zero. The crucial point of the transformed tracer equation is that if

there are shears then the diffusion of tracer is much more effective than that given by the background
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diffusivity. The shear-enhanced diffusion is manifested in the effective diffusivityκe, which is the

background diffusivity multiplied by a factor ofL2
e/L

2
0. The Cauchy-Schwartz inequality tells us

thatLe is always greater or equal to the actual length of the contour, L =
∮
C=c dl (Shuckburgh and

Haynes 2003). Clearly,L ≥ L0, the length of a tracer contour is always greater than the minimal

length that a contour can have for the same enclosed area. Thus, the ratioLe/L0 (≥ L/L0) measures

how long a tracer contour is relative to the minimal length that a contour can have for the same

enclosed area. The idea is that as a tracer contour is deformed by shear flow, the ratioLe/L0 increases,

resulting in a longer interface for diffusion to operate andtherefore a shear-enhanced diffusion.

The effective diffusivityκe in (8) is an averaged diffusivity for each tracer contour, i.e., it can vary

across tracer contours but not along the contours. The formulation of (8) implies thatκe can be

calculated at any instant without prior knowledge of the history of a tracer. However, the disadvantage

is that it is necessary to know the value of background diffusivity before one can obtain a realistic

value of effective diffusivity.

To get around this problem, we propose an alternative way of calculating effective diffusivity which

does not require the knowledge of background diffusivity orthe gradients of tracer. Integrating (25)

(from the Appendix) with respect toc to give

∫ c ∂A
∂t

dc = −kL2
e

∂c

∂A = −κeL
2
0

∂c

∂A , (10)

whereA(c) is the area enclosed by tracer concentrationc. The first term is the total diffusive flux

of tracer across a fixed contourC = c and so (10) is a flux-gradient relationship. The effective

diffusivity can be calculated from equating the total diffusive flux (the first term) to the third term in

(10). Interestingly, the first equality in (10) implies thatbackground diffusivity can also be calculated

in a similar way.

At this point, it is worth comparing the effective diffusivity κe to the apparent diffusivityκa discussed

in section 2.1. First of all, the effective diffusivityκe is an averaged value for each tracer contour

and so it can vary from contour to contour. This means thatκe has one degree of freedom in the

horizontal space. In contrast, the apparent diffusivityκa is an averaged quantity for the entire tracer

distribution. Secondly, the effective diffusivityκe in (8) gives an impression of its dependence on

the length. However, if the effective diffusivity is expressed using the flux-gradient relationship (10),

thenκe can be reformulated in the terms of the change of area enclosed by tracer contours. This bears
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some similarities to the apparent diffusivityκa which is related to the rate of change of the mean area

enclosed by tracer contours. Before we compare them further, we need to have some kind of averaged

effective diffusivity for the entire tracer and not just foreach tracer contour.

2.4 The transformed tracer variance equation

To do this, we make use of the transformed equation for tracervariance1. Multiply (7) by Ĉ(γe, t)

and integrate over the tracer domain,

∂

∂t

∫
1

2
Ĉ2(γe, t) da = −

∫
κe

∣∣∣∣
∂Ĉ(γe, t)

∂γe

∣∣∣∣
2

da, (11)

whereda = L0dγe = 2πγedγe is the area element. From (11), the mean effective diffusivity κe can

be defined as,

∂

∂t

∫
1

2
Ĉ2da ≡ −κe

∫ ∣∣ ∂Ĉ

∂γe

∣∣2da. (12)

Thus, the mean effective diffusivityκe is the ratio between the rate of change of total tracer variance
∫

1
2Ĉ2 da and the total tracer gradients squared in equivalent radiuscoordinate. Alternatively, equate

(11) and (12) to obtain

κe =

∫
κe

∣∣∣∣
∂Ĉ(γe,t)

∂γe

∣∣∣∣
2

da

∫ ∣∣ ∂Ĉ
∂γe

∣∣2da
. (13)

Thus, the mean effective diffusivityκe is the average of effective diffusivityκe(γe(c)) weighted by

the squared tracer gradient. The weighted average means that more weight is placed toward the centre

of a tracer patch where the tracer contours are more compact.This interpretation ofκe will help us

to understand the comparison with the apparent diffusivity.

It is also worth comparing the transformed tracer variance equation (11) with the conventional tracer

variance equation,

∂

∂t

∫
1

2
C2(x, y, t) da = −k

∫
|∇C|2 da, (14)

whereda = dxdy. By comparing (14) with ( 12), it can be seen that the effect ofshear on tracers is

embedded in the tracer gradients when using(x, y) coordinates whereas it is automatically included

in the mean effective diffusivity when using equivalent radius coordinates.

1The term variance is not to be confused with the variance w.r.t. distribution, such asσ2

r .
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Since the total variance is the same regardless of the coordinates, the l.h.s. of (11) and (14) are

identical. Take the ratio to define the ‘stirring efficiency’as

ζ ≡
∫
|∇C|2 da
∫
| ∂Ĉ
∂γe

|2 da
. (15)

By definition, stirring efficiency measures how much steepertracer gradients are relative to the gra-

dients that the tracer would have if it had not been distortedby shear flows. Thus, it is an indicator

of how efficient differential advection is sharpening the tracer gradients against the background dif-

fusion which acts to smooth the tracer gradient. It is not difficult to see that in factζ = κe/k and

soζ also tells us how much efficient diffusion has become as a result of stirring. However, the real

advantage of defining the stirring efficiency as we did in (15)is that it simply uses the degree of tracer

distortion to tell us something about stirring vs. mixing without needing to calculate strain rate and

small-scale diffusivity separately. This way of using tracers to obtain flow information is particularly

useful for the real ocean where strain rate and background diffusivities are difficult to measure.

2.5 Comparing effective and apparent diffusivities

We are now ready to compare the effective and apparent diffusivities. Using the transformed tracer

equation (7), we can express the apparent diffusivity in thefollowing way. First, we rewrite the time

derivative of the numerator of the equivalent variance (3),

∂

∂t

∫
γ2

e Ĉ da =

∫
γ2

e

∂Ĉ

∂t
da =

∫
γ2

e

1

L0

∂

∂γe
(κeL0

∂Ĉ

∂γe
) da = 4π

∫
∂

∂γe
(κeγ

2
e )Ĉ dγe. (16)

The last equality uses integration by parts twice. UseA = πγ2
e (the area enclosed by the contour

C = c) as a variable to rewrite the r.h.s. of (16),

∂

∂t

∫
γ2

e Ĉ da = 4

∫
∂

∂A(κeA)Ĉ da. (17)

Since the total amount of tracer is constant, the apparent diffusivity from (5) can be written as

κa =

∫
∂

∂A (κeA)Ĉ da
∫

Ĉ da
. (18)

In this way, the apparent diffusivity is interpreted as the tracer-weighted average of∂∂A (κeA). The

unusual outcome is that the quantity∂∂A(κeA) takes into account the across-contour variation of

effective diffusivityκe.
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So, (13) and (18) together tells us that the mean effective diffusivity κe and the apparent diffusivity

κa can be interpreted as two different ways of averagingκe. There is no particular reason to believe

why one should be better than the other. The diffusivitiesκa andκe can be calculated anytime during

the tracer dispersion. During the initial background diffusion dominant stage, the two diffusivities

should give similar values since there is not much tracer distortion. During the stirring-dominant

stage, diffusivitiesκa andκe will deviate from each other since each averaging procedurewill bias

different aspect of the tracer distribution. At much longertimes when tracer contours are merged and

the tracer distribution is close to Gaussian,κa andκe should converge a similar value again since now

the ratioLe/L0 (henceκe) is nearly constant. So, over the longer time, it is expectedall three eddy

diffusivities discussed so far will be similar,kh ∼ κa ∼ κe.

3 Model

The model we use is a global ocean model, the Ocean Circulation and Climate Advanced Model

(OCCAM) (Coward and de Cuevas, 2005). Here we only describe the part of model setup which

is relevant to the passive tracer experiment. Other model details may be found in Leeet al. (2007).

The OCCAM model has a suite of runs with three different horizontal resolutions at 1◦ , 1/4◦ and

1/12◦ . All runs have the same 66 vertical levels and the same six-hourly atmospheric fields (from

NCEP/NCAR) for calculating surface fluxes. Note that the applied surface fluxes depend on the

surface ocean temperature and so may be different in different runs. For our study, we use the runs at

1/4◦ and 1/12◦ resolutions. The horizontal advection of tracers uses the modified split QUICK (MSQ)

scheme. This involves a 4th-order accurate advection scheme together with a velocity dependent

biharmonic diffusion. There is no explicit horizontal diffusion. The vertical advection uses simple

second order centre differences with an explicit diffusivity of 0.1 cm2s−1. In the 1/4◦ run, there is

also Gent and McWilliams parameterization and isopycnic diffusion with both thickness diffusivity

and isopycnal diffusivity set to be 50 m2s−1.

3.1 Tracer releases

To better understand how the diffusivity metrics describedin Section 2 relate to the real ocean, we

perform a series of numerical tracer experiments designed to be as similar as possible to the the
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North Atlantic Tracer Release Experiment. Although we cannot replicate the exact conditions of

NATRE, the general conditions of an open ocean pycnocline tracer release is a useful setting for

better understanding the different measures of diffusivity. The NATRE release site is located in the

southeastern part of the subtropical gyre in the North Atlantic at a depth of about 300 m over a region

about 25 km by 25 km in the horizontal. The tracer in the model is injected into nine grid cells in the

1/12◦ run with (3,3,1) in(x, y, z) direction and into one grid cell in the 1/4◦ run. The centre of each

tracer patch (the triangle marker in Fig. 1) is as close to that in the NATRE as model grids allow.

Despite this, there are still considerable differences between the model and observational releases. At

300 m, the model vertical grid spacing is about 34 m, much greater than the 2 m vertical spread in

the NATRE. The tracer in the models is set to be uniformly 1 throughout the initialization grid cells.

In the NATRE, the tracer is released along cruise tracks and so they are streaky and discontinuous.

When the tracer varies over a length scale,LC = δ∆x, the biharmonic diffusion associated with the

horizontal advection scheme implies a diffusivityk′ = 1/16U(∆x)3/(L2
C) (whereδ is a scalar,U is

the velocity scale and∆x is the grid spacing) (Webbet al. 1998, Leeet al. 2002). The biharmonic dif-

fusion becomes larger than the advection whenk′/L2
c ≥ U/LU , which impliesδ ≤ 1/2(LU /∆x)1/4.

Let U ∼ 4 cm s−1 and the strain rateλ ∼ 10−6 s−1 (these are the averaged values over the tracer

patch in the 1/12◦ model run), then the length scale of the flow isLU = U/λ ∼ 40 km and the scale

of tracer isLC ∼ 1/
√

2∆x. So, the scale-selected biharmonic diffusion ensures thattracer filaments

are marginally resolved at the model grid scale.

The models start from 1985 (see Coward and de Cuevas 2005 for model start-up). Tracer are inte-

grated on-line, but because of the limitation of disk space and computational resources we can only

run one tracer at one time. The model tracers are not releasedat the same year as in the NATRE,

but they were released at the same month whenever possible. For the 1/4◦ run, a test run of tracer

was started in May 1993 and run for 360 days (called EXP1/4test). The tracer was reinitialized in

May 1994 and run until 2002 (called EXP1/4). For the 1/12◦ run, a test run was started in August

1994 and run for 260 days (called EXP1/12test). The tracer was reinitialised in May 1995 and run

until 2000 (called EXP1/12). The two test runs allow us to assess the sensitivity to the release time.

Our main results will be focused on the first three years of twomain runs EXP1/4 and EXP1/12. For

convenience, we use elapsed days since the release without referring to specific months and years.

3.2 Method of binning
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Thez-level data is binned into 10 density layers defined by potential densityσ.3 referenced to 300 m.

The potential density classes are 27.1, 27.3, 27.5, 27.7, 27.9, 28.1, 28.3, 28.5, 28.7, 28.9 (in units of

kg m−3). We use the same binning procedure as in Leeet al. (2007), so ensuring properties (mass,

and tracer substance) are conserved. On the density layer, the tracer concentration is defined to be the

layer-thickness weighted mean̂τ(x, y, t) = τh/h, where the overbar is the vertical integral over the

target density layer. Note that any binning procedure will inevitably create averaged tracer values, so

tracer on a density layer might appear to be more mixed than ona z-level. However, we tested many

different choice of density bins and the results do not change qualitatively. For the rest of paper, we

will use the notationτ rather than̂τ for convenience. The target density surface in the NATRE is

28.05. In the model, the density layer that contains most of the initial tracer substance is the density

layer 27.9, which will be our model target density layer.

Once properties are binned into isopycnic layers, we perform a second binning procedure by binning

properties according to the tracer value on the target density layer. The tracer-based binnings allow

us to calculate quantities such as the area enclosed by tracer contours on the target density layer. As

the tracer concentration is diluted in time, we need to have tracer bins that also vary with time, unlike

the density bins which are time independent. We choose the values for tracer bins according to an

exponential function{Cmax(t)exp(3(n/N − 1)), n = 1,N}, whereCmax(t) is the maximum value

of C(x, y, t) in the target density layer. The number of tracer bins isN = 20 andN = 40 for the

1/4◦ and 1/12◦ runs, respectively. The smaller number of bins for the 1/4◦ run is to avoid too much

noise caused by the tracer occupying very few grid cells initially. Two additional bins−1 and 0 were

added to account for negative tracer values. The negative value tracer typically takes up about 0.2%

of total tracer substance.

In section 2, we have assumed no diapycnal flow. However, models do have diapycnic flows and so

the total tracer substance in the density layer will not be exactly conserved. Between 5-day means,

tracer substance in the target density layer changes by no more than 0.3% in both 1/4◦ and 1/12◦ runs.

By the end of three years about 60% and 70% of the total tracer substance remains in the target density

layer for the 1/12◦ run and 1/4◦ run, respectively. We will discuss how this might affect diagnostic

methods in section 6.4.
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4 Evolution of tracer

As in the NATRE, the tracers in the model were released in a region where eddy kinetic energy

is relatively low compared to that in the vicinity of the GulfStream. Figure 1 (shading) shows

annual mean eddy kinetic energy at 314 m (model level 25) for year 1995 from the 1/12◦ run. The

superimposed contours show the year 1995 annual mean pressure field at 314 m, indicating the large-

scale circulation of the subtropical gyre. However, flows are by no means quiescent. At the time of

release, the pressure at 314 m in the 1/12◦ run is filled with small-scale turbulence (Figs. 2ab, the

relative size of box is drawn in Fig. 1). The eddy-rich structure has a great impact on the initial

spreading of tracer. In EXP1/12test, the release site was near the southwestern edge of a cyclonic

eddy (Fig. 2a). At day 180, the tracer becomes elongated in the east-west direction and the centre of

mass is to the southwest direction following the tailend of the cyclonic eddy (Fig. 2c). In contrast,

the release site in EXP1/12 was near the southwestern edge ofan anticyclonic eddy (Fig. 2b). As a

result of following the anticyclonic eddy, the centre of mass at day 180 is to the northeast direction

(Fig. 2d), opposite to that in the test run EXP1/12test.

On the other hand, the tracers in the 1/4◦ run are not as sensitive to the time of release as in the

1/12◦ run. This is because there is no small-scale eddy field in the 1/4◦ run, as shown by the pressure

fields (Figs. 3 ab). For both EXP1/4 and EXP1/4test, the centre of mass at day 180 is to the southwest

and the spatial pattern remains near-circular with only slight deformation (Figs. 3cd).

In the NATRE, the centre of mass moves to the southwest after 6months, similar to EXP1/12test.

However, as we have demonstrated this clearly depends on theflow field at the time of release. Since

the model does not reproduce exactly the same flow in real time, we do not expect the model tracer to

have the same distribution as in the NATRE. Our focus is on thecharacteristics of the spatial pattern.

The tracer in the 1/12◦ run is similar to the NATRE in that after 180 days it has a rich spatial structure

with filaments and pinched tracer contours, which are completely absent from the 1/4◦ run.

The continuous straining by the flow in the 1/12◦ run eventually breaks up the tracer into four or

five patches (Fig. 4, upper panels). After 365 days, it spreads over 10◦ in the east-west direction

and 7◦ in the north-south direction. By the end of 2 years, the tracer has spread over a considerably

wider region (the upper right panel shows part of whole region covered by tracer). In comparison,

tracer in the 1/4◦ run is slow to develop (Fig. 5, upper panels). It begins to stretch in the east-west
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direction after 180 days and becomes more distorted at the end of 2 years. However, it remains as

a self-contained entity without fine filaments or breakups. Such differences between the two model

tracers are due to the different strain rate of the flows, which will be discussed further in later sections.

But first, we present the diagnosis of effective eddy diffusivity.

5 The apparent diffusivity κa

5.1 The equivalent radius variance

Figure 6 shows the time series of the equivalent variance,σ2
e , and the conventional distance variance,

σ2
r . To take a closer examination ofσ2

e , we plot the time series in log-log scale (Fig. 7, left panels).

The initial linear growth period ofσ2
e seems to be reproduced well byσ2

e(0) + 4kt (thin solid lines),

whereσ2
e(0) is the variance at the time of release, and the background diffusivity k is set to be

15 and 60 m2s−1 for the 1/12◦ and 1/4◦ run, respectively. For the 1/12◦ run, there is no explicit

horizontal diffusion and so the background diffusivity arises from the implicit biharmonic diffusion

in the horizontal advection scheme. For the 1/4◦ run, the larger background diffusivity is due to

the additional explicit diffusivity of 50 m2s−1 from the isopycnal diffusion. So the mean numerical

diffusivity is estimated to be of order 10-15 m2s−1. These values are large compared to the estimate

of the NATRE, where the diffusivity is about 2 m2s−1 for the scale between 1 and 10 km.

During the stirring-dominant stage, we compare the growth of σ2
e with two curves: one isλkt2,

corresponding to the pure-shearing flow regime and the otheris σ2
e |t=T eαη(t−T ), corresponding to

the pure-stretching flow regime. We setT = 70 and 360 days for EXP1/12 and EXP1/4, respectively,

and strain rateλ = uy + vx and stretching rateη = ux − vy to be the yearly-averaged values for the

corresponding period (1st year for EXP1/12 and2nd year for EXP1/4, see Appendix B). Although

the parameterα is predicted to be order 1 (Garrett 1983), here the value 0.2 gives us a closer fit to

σ2
e for both 1/12◦ and 1/4◦ runs. We see that in the 1/12◦ run the rate of increase lies between thet2

law (for a pure-shearing flow regime) and the exponential law(for a pure-stretching regime). Using

the observed dye data Okubo (1971) suggested at2.3 law while from the NATRE tracer Ledwellet

al. (1998) diagnosed a law close tot2. It is less clear for the 1/4◦ run because the stirring-dominant

stage is not long enough yet to separatet2 from exponential growth.
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If we assume that variance is controlled by the pure-shearing flow regime,σ2
e ∼ λkt2, thenσe ∼

√
λkt. The quantity∂σe

∂t ∼
√

λk is called diffusion velocity (Okubo 1968). This means that the

rate of increase of equivalent deviationσe is controlled by the combined effects of shearing and

background diffusion. To verify this scaling using the two model runs, we need to choose the period

from each model run when the rate of variance increase is closest to the power of 2 law (the first

year for EXP1/12 and the second year for EXP1/4). From the diagnosedλ andk over these periods,

we estimate the diffusion velocity
√

λk to be about 0.42 cm s−1 and 0.27 cm s−1 for EXP1/12 and

EXP1/4, respectively. These diffusion velocities are comparable to the estimate of 1 cm s−1 by

Joseph and Sender (1958). The time series of equivalent deviationσe (Fig. 8) shows that the increase

of σe is about twice in EXP1/12 than in EXP1/4, which is close to theratio of diffusion velocity

0.42/0.27 ∼ 1.6.

Garrett (1983) estimated that the time scale for tracer dispersion to reach the final stage of diffusion

is about 1 year. His estimate is based on the exponential growth rate during the stirring-dominant

stage andkh = 1000 m2s−1 for eddy diffusivity,k = 10−2 m2s−1 for background diffusivity,10−6

s−1 for strain rate andα = 0.5. For our model, if we take background diffusivityk = 10 m2s−1 and

α = 0.2, then we also obtain an estimated time scale about 365 days. If we instead use the 2nd power

law, then4kht = λkt2 implies t ∼ 4kh/(λk) ∼ 12 years. However, the growth rate of variance in

the model is slower than exponential but faster than2nd power and so it is likely that the time scale

for approaching final diffusion is order of 5-6 years. In any case, it can be seen from Fig. 7 thatσ2
e

has not reached the linearly increasing stage after three years.

So, we cannot estimate the eddy diffusivitykh from the growth of equivalent varianceσ2
e . However,

we can still calculate the apparent diffusivity,κa = 1
4

∂σ2
e

∂t , between two 5-day means (solid line in

Fig. 9). Since the rate of growth ofσ2
e after the initial period is faster than linear, the apparent

diffusivity must be time dependent. During the first 500 daysof EXP1/12,κa increases to 1500

m2s−1 and then fluctuates between 1000 and 1800 m2s−1. Since the tracer in 1/12◦ and 1/4◦ models

evolves at different time scales, one way to compare the corresponding apparent diffusivity is to see

how they vary as functions of equivalent deviation,σe. If we assume the pure-shearing flow regime

(σ2
e ∼ λkt2) , thenκa ∼ λkt ∼

√
λkσe – the diffusion velocity appears again. Figure 10 shows

that whenσe = 250 km (corresponding to 450 days in EXP1/12 and 900 days in EXP1/4), theκa is

about 350 and 180 m2s−1 for each run. The ratio of the diffusivities is again closer to that given by

17



the diffusion velocity. This suggests it may not be unreasonable to scaleκa with a length scale, say,

σe and the diffusion velocity
√

λk.

5.2 Comparison withσ2
r andΓ

Figure 6 shows that the equivalent variance evolves differently from the conventional variance. Dur-

ing the first 300 days,σ2
r increases more rapidly thanσ2

e and afterwards more slowly thanσ2
e . A

seemingly robust feature isσ2
r ≥ σ2

e .

The time series in log-log scale shows that the conventionalvarianceσ2
r in EXP1/12 (Fig. 7, upper

right panel) seems to approach a linear growth after about one year (Note that in the 1/4◦ run,σ2
r has

not reached the final diffusion stage yet). As predicted by Garrett (1983),σ2
r (in the 1/12◦ run) indeed

approaches the final diffusion stage earlier thanσ2
e (or hisΓ). This means while the distance to the

centre of mass is not growing as fast as during the stirring dominant stage, the area covered by tracer

continues the faster than linear growth, implying that the tracers contours are merged to ‘fill in’ the

gaps between contours. This ‘filling in’ can also be seen fromthe time series of areas inside tracer

contours containing 65% and 95% tracer load (Fig. 6). We see thatπσ2
r is close to the 95% curve

near the end of three years, but much greater than 95% over thefirst year because of the much more

irregular tracer distribution during stirring-dominant stage.

From the linear growth ofσ2
r , we estimate the eddy diffusivity according toπσ2

r = 12πkht. Note

that here we use12πkht rather than4πkht becauseπσ2
r is closer to the area with 95% tracer load,

and (see section 2.1) for a Guassian distribution the area containing 95% tracer load is∼ 12πkht.

This implieskh ∼ 1000 m2s−1. On the other hand, the equivalent varianceσ2
e is very close to the

65% curve. Note that neither the 65% nor the 95% curve approaches the final diffusion stage (Fig.

6). Assumingσ2
r reached the final diffusion at year 1, then the radius of the tracer patch would be

2
√

3kht ∼ 660 km. This suggestsσe needs to be about 660 km before tracer dispersion enters the

final diffusion stage. Ifσe follows the2nd power law, then this would take about 5 or 6 years.

For completeness, we also calculateΓ (Fig. 6) using the simple relationship
∫

C2 da = Q2

2Γ (Garrett,

1983). It shows that the time evolution ofΓ is very similar to those of the equivalent radius variance,

πσ2
e , and also to the area enclosing 65% tracer load. We mentionedin section 2.1 that if the tracer

distribution is Gaussian, thenπσ2
e is equal to the area containing 65% tracer load andΓ is equivalent
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to πσ2
e . Although these two integral properties seem to hold for ourtracer, it does not necessarily

imply that the tracer distribution is Gaussian for a single realisation. In fact, we foundc∂A
∂c is not

spatially constant as it would be for a Gaussian distribution (not shown).

6 The Effective diffusivity κe

6.1 Examples

Here, we show examples ofκe as a function of tracer contours at a given 5-day mean. The effective

diffusivity κe can be evaluated from (8), but we need to first estimate background diffusivity. We

could have used the background diffusivityk obtained from the initial linear growth of the equivalent

varianceσ2
e in the previous section, but for an independent estimate we will use the tracer variance

equation (14). The three years time series of the backgrounddiffusivity is shown in Fig. 11 (the thick

dashed lines). The large spikes at the beginning of the 1/4◦ run are due to the steep gradients resulting

from the tracer taking up very few grid points initially. The3-yr average value is about19.6 ± 4.8

m2s−1 and90 ± 22 m2s−1 for EXP1/12 and EXP1/4, respectively (where± means one standard

deviation). Thus, the background diffusivity estimated previously from the initial growth rate ofσ2
e

lies near the lower bound of the present estimate. As we expected, the background diffusivities for

the two test runs (the thin dashed lines) do not differ significantly from those in the main runs.

We also calculate how the background diffusivity varies as afunction of tracer contours using the first

equality in (10). We choose one example from EXP1/12 at day 360 and one example from EXP1/4

at day 730 and plot them as functions of the equivalent radius(the dashed lines in Fig. 12). The

background diffusivity does not seem to vary much across tracer contours.

We now present the equivalent length,Le, the minimum length,L0, and the actual length,L, as

functions of tracer contours from EXP1/12 at day 360 (Fig. 13). Note that in calculating lengths

all the line integrals are replaced by area integrals using the identity (26) to avoid integrating along

curves. The equivalent lengthLe is longer than the actual lengthL as expected from the Cauchy-

Schwartz inequality. The equivalent lengthLe is closer to the minimum lengthL0 near the centre of

the patch and increases to at least 10 times longer towards the edge of the tracer patch. This is due to

the fact that the tracer contours at the outer edge of the tracer patch cover wider areas and so allow
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more stirring by the shear flow. This may be explained by the following scaling. The equivalent length

may be scaled asLe ∼ A
√

λ/k, whereA is the size of the mixing region with strain rateλ and
√

k/λ

is the width scale of filaments (Shuckburgh and Haynes 2003).Let A ∼ γ2
e , thenLe ∼ γ2

e

√
λ/k,

suggestingLe varies as the square of the equivalent radiusγe. So,Le/L0 ∼ γe

√
λ/k. This means

that a larger area enclosed by contours (or, equivalently, alonger tracer contour) corresponds to a

higher ratio of equivalent length to minimal length. The example in EXP1/12 shows thatLe indeed

increases faster thanγe but slightly slower thanγ2
e (Fig. 13). Similarly,Le/L0 increases withγe.

In Fig. 12 (the dotted lines), the effective diffusivityκe = kL2
e/L

2
0 is shown as a function of equiva-

lent radius. For the background diffusivity, we should use the spatial-mean value at the specified day

rather than the time-mean value. That is,k = 15.7 and 62 m2s−1 for the 1 /12◦ run at day 360 and

for the 1/4◦ at day 730, respectively. The largerκe towards the edge of the patch reflects the fact that

there is a larger ratioLe/L0 as explained in Fig. 13. From the scalingL2
e/L

2
0 ∼ γ2

eλ/k, we can scale

κe ∼ λγ2
e . So, at a givenγe, the effective diffusivityκe is scaled by the straining rate. If we compare

κe in the 1/12◦ and 1/4◦ at the same equivalent radiusγe, say, at 200 km, then the ratio ofκe is about

3 although the ratio of strain rate gives about 6-10 (Fig. 12).

The alternative way of calculatingκe using the flux-gradient relationship (10) is shown by the solid

lines in Fig. 12. They show thatκe from (10) is similar to that from (8). Since this method does

not depend on the background diffusivity, the similarity between the two reassures us that the spatial-

mean choice of background diffusivity for (8) is fairly good. However, such similarity will not hold

if we were to use the time-mean background diffusivity for (8), especially for the 1/4◦ run where the

background diffusivity varies considerably with time.

The effective diffusivity can be mapped onto the horizontalplane using the value of tracer at each

point in space (lower panels in Figs. 4 and 5). The mapping is purely for visualization: recall that

κe does not vary along the contour of constant tracer concentration. Within each time frame, it can

be seen that more deformed tracer contours correspond to larger effective diffusivity. Looking at the

tracer patch as a whole, the overall effective diffusivity increases in time, reflecting more distortion

of tracer as time increases. It is worth noting that the effective diffusivity in the 1/4◦ run at day 730

has a similar order of magnitude to the 1/12◦ run at day 180. Since the background diffusivity in

the 1/4◦ run is about four times larger than that in 1/12◦ run, this means that theL2
eq/L

2
o is much

smaller in the 1/4◦ run than that in the 1/12◦ run. One can see that the tracer in the 1/12◦ run at day
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180 has steeper gradients with fine filaments. Thus, the same value of effective diffusivity does not

necessarily imply the same effect of eddy stirring on the tracer. Different parts of the ocean may

have different background diffusivities at different times, thus one needs to be cautious about how to

quantify the effect of eddies on the dispersion of tracer. Inthis sense, the ‘stirring efficiency’ζ in

(15) may turn out to be a useful quantity. We discuss this after we consider the time series of mean

effective diffusivity.

6.2 The mean effective diffusivityκe

The time series of the mean effective diffusivityκe using (13) is shown in Fig. 11 (the thick solid

lines). The effective eddy diffusivity increases in time asthe tracer evolves into a more complex

distribution. The diffusivity in EXP1/12 starts at about 20m2s−1 initially and increases to about 254

m2s−1 at day 180. After this, the large fluctuations continue and reach 500 m2s−1 at day 500 and

850 m2s−1 at day 700 or 800. The increase carries on until the end of 3 years. EXP1/4 shows a sharp

transition at first 40 days, which is due to steep gradients caused by the initial tracer occupying only

one grid cell. After the initial period, there is a gradual increase from 50 m2s−1 to about 250 m2s−1 at

day 600. The time series ofκe from the two test runs EXP1/12test and EXP1/4test are also shown (the

thin solid lines). They exhibit slightly different patterns from those in the main runs. In particular,κe

in EXP1/4test is consistently lower than in EXP1/4. This can be explained by the different amount of

stretching of tracer as shown in the Figs. 3cd at day 180.

The stirring efficiencyζ in (15) (Fig. 14) is shown as a function of equivalent deviation,σe. In theory,

ζ should be at least 1 since effective diffusivity cannot be smaller than the background diffusivity. In

our models, this is only true after a certain number of days since initially there is no substantial

straining/stretching of the tracer contours and so the tracer patch is small with large gradients at the

grid scale. For the 1/12◦ run ζ is consistently greater than 1 after 70 days and for the 1/4◦ run after

285 days. Therefore, we can set the time whenζ ≥ 1 to be the time when straining by shear flows

begins to operate. This time scale also corresponds well with the time scales when the growth rate of

equivalent variance switches from linear to faster than linear.

In the following, we attempt to explain why the stirring efficiency is 10 times larger in the 1/12◦ run

than in the 1/4◦ run (Fig. 14). If we scaleκe ∼ κa ∼
√

λkσe (from section 5.1), thenζ ≡ κe/k ∼
√

λ/kσe. This implies that at a given equivalent deviation,σe, the stirring efficiency is scaled as
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√
λ/k, representing the competition between stirring and mixing. In our experiments, the ratio of

√
λ/k between the 1/12◦ run and the 1/4◦ is about 6.3.

As stated in section 2.4, the true advantage ofζ is that it can be calculated directly from the tracer

fields without needing to estimate strain rate or backgrounddiffusivity. This may be useful as a way

to separate different flow regimes in the ocean by applying totracers in the different locations. To

get some idea of the order of magnitude ofζ in the ocean, we can in theory estimateζ from kh/k.

Assumekh ∼ 103 m2s−1, then the stirring efficiency in the real ocean could vary from ∼ 104 to

500, depending what background diffusivity is considered (according to Lewellet al. 1998,k = 0.07

m2s−1 for the scale 0.1 - 1 km andk = 2 m2s−1 for the scale 1 - 10 km).

6.3 Comparing to the apparent diffusivity

The apparent and mean effective diffusivities plotted together in Fig. 9 shows thatκa is twice as large

asκe. As explained in section 2.6, these two diffusivities are two different ways of averaging effective

diffusivity κe. Here, we illustrate this difference using an example from EXP1/12 at day 730. The

diffusivity κe is an average weighted by the squared tracer gradient in equivalent radius coordinate.

It puts more weight toward the centre of the tracer patch where tracer contours are bunched together

and so tracer gradients are larger (dashed line in the upper panel of Fig. 15a). Near the center of the

patch the effective diffusivity is relatively smaller (solid line in Fig. 15 a) and so the result of tracer

gradients weighting is a nearly uniform diffusivity acrossthe tracer contours (dotted line in Fig. 15a).

In this example, whileκe increases from 0 near the centre of the tracer patch to 2500 m2s−1 toward

outer edge, the mean diffusivityκe is only about 450 m2s−1, which is about the value of diffusivity

at the tracer contour containing 10% of the tracer load.

This may be compared to a simpler average where the weightingis just tracer concentration rather

than tracer gradients,κs =
∫

κeĈ da/
∫

Ĉ da. This average puts more weight away from the centre

of the tracer patch (dashed line in Fig. 15b). As a result, theweighted diffusivity maintains a similar

shape as the un-weighted one and the averaged value is about 1400 m2s−1, which is about the value

of diffusivity at the contour containing 50% of tracer load.

For the apparent diffusivity, the quantity to be averaged is∂(κeA)
∂A . Although it varies the same way

asκe, it has a much larger value towards the outer edge of tracer patch (compare solid lines in Fig.
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15bc). This is becauseκe is not constant – it increases toward the outer edge. The weighting for κa

also put more weight near the outer edge of the tracer and so the combination gives a valueκa about

1900 m2s−1. This is about the value of diffusivity at the contour containing 75% of tracer load.

Using the tracer contour,C.65, enclosing 65% tracer load as a guide, the mean effective diffusivity

κe puts 93% of weight inside the contourC.65, whereas the apparent diffusivityκa by definition

has exactly 65% of weight inside the 65% contour. The problemwith κa is that the quantity to be

averaged is twice of the originalκe which leads to a much larger average value. Intuitively, thesimple

averageκs seems to give an fairly representative average, although itis not clear how to linkκs with

some equation to give it a physical meaning.

7 The possible effect of tracer loss on estimating diffusivity

The tracer in the model is not conserved on the target densitylayer. The transfer of tracer across den-

sity layers can be due to both vertical diffusivity (explicit and implicit) and the horizontal advection

scheme. In order to separate the effect of each process, the details of tracer budget at each grid cell

would need to be calculated which we are not able to do for thisstudy. However, there are clues that

may help us to estimate the likely impact of diapycnal processes on our results.

To give an estimate, we consider an simple approximation where the loss of tracer substance is pro-

portional to the tracer concentration (e.g. assume the tracer concentration on either side of the target

density layer is negligible and so higher tracer concentration corresponds to larger vertical tracer

gradient and larger diffusive flux divergence):

Ċ ∼ −µC, (19)

whereĊ is diapycnal flux of tracer across a density layer and1/µ is an spatially averaged time scale.

In reality,µ could vary from point to point. From (19), we estimate the additional tracer loss term in

the variance equation (11) as

S =

∫
ĊC da ∼ −µ

∫
C2 da = −C∗

∫
Ċ da, (20)

whereC∗ =
R

C2 da
R

C da
is the mean tracer concentration in the density layer. Usingthe r.h.s. of (20), the

tracer loss termS can be calculated using the two integral quantities, the mean tracer concentration,

C∗, and the total loss of tracer substance in the density layer,
∫

Ċ da.
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Thus, an adjusted effective diffusivity including the effect of the tracer loss term can be defined

asκadjust
e = κe + κS

e whereκS
e = S/

∫
|∂Ĉ(γe,t)

∂γe
|2da. Similarly, the adjusted mean background

diffusivity is κadjust = κ + κS whereκS = S/
∫
|∇C|2 da.

The adjusted effective diffusivityκadjust
e is shown by the dotted lines in Fig. 11. For the 1/12◦ run,

the tracer loss term is about 16% of the rate of change of the tracer variance. The adjustment for the

effective diffusivityκS
e is−82±88 m2s−1. For mean background diffusivity, the adjustment is about

κS = −3.6 ± 2.9 m2s−1 (not shown). For the 1/4◦ run, the tracer loss term is about 14% of the rate

of change of the variance. This corresponds to the adjustment of κS
e = −16.9 ± 17 m2s−1 to the

effective diffusivity andκS = −6.9 ± 5 m2s−1 to the background diffusivity.

How does the diapycnal diffusion affect the equivalent variance ? Take the solution for a point release

tracer in a three dimensional uniform-shear flow withu = u0+λyy+λzz, v = w = 0 (whereλy,z are

the constant shears in they andz direction) (Okubo 1968). For a time long enough that the stirring

dominates the background diffusion, the mean variance on a horizontal slice can be approximated as

σxσy ∼ kyλyt
2
√

1 + 1
4(λz

λy
)2 kz

ky
(whereky,z are the constant diffusivities in they andz direction).

This implies that the variance can be affected by the combination of vertical shear of horizontal

flow and vertical diffusivity, i.e. the tracer is diffused vertically to different levels and advected

horizontally before being diffused vertically back to the original level. Letλz/λy ∼ Ly/Lz ∼ 3×102

(whereLy ∼ 100 km andLz ∼ 300 m are the horizontal and vertical length scale of eddies) and

kz/ky ∼ 10−6 (wherekz ∼ 0.1 cm2s−1 andky ∼ 10 m2s−1 are the estimates of model vertical and

horizontal numerical diffusivities). Using these estimates, the additional term would change the mean

variance by 1%. This implies that in our model the influence ofvertical shear/diffusivity is small. It

would not be unreasonable to expect the equivalent varianceto have a similar behaviour. For the real

ocean, if takeky = 2 m2s−1 for the scale 1 to 10 km, then the vertical shear term can altervariance

by 5%. If takeky = 0.07 m2s−1 for the scale 0.1 to 1 km then the ratiokz/ky becomes much larger.

However, at this scale eddies becomes smaller so the ratioλz/λy becomes smaller. Thus, it is not

clear that at the scale of 0.1 to 1 km what would be the impact ofthe vertical shear/diffusiviity on

the variance over a horizontal slice. Futher investigationis needed in order to properly quantify the

effect of vertical processes on the variance. This is however beyond the scope of our study.

24



8 Summary

Lagrangian observations such as tracers and floats are frequently used to estimate eddy diffusivity.

Because of the sparse spatial-temporal coverage of the data, these estimates are inevitably uncertain.

In addition, the relationship between different methods ofinferring diffusivity is often not clear which

makes it difficult to interpret the meaning of eddy diffusivity. This study examined two diagnostic

methods that are applied to point release tracers.

The tool used in this study is based on the concept of equivalent radius,γe. It allows us to bypass

x andy coordinates and to concentrate on the intrinsic nature of tracer dispersion. The variance of

equivalent radius,σ2
e , for example, is related to the average of area enclosed by tracer contours. The

apparent diffusivity,κa, is thus defined as the growth rate of equivalent variance. The initial tracer

dispersion is dominated by small-scale background diffusion with σ2
e increasing linearly. From this,

we diagnose a mean numerical diffusivity associated model’s advection scheme to be about 10-15

m2s−1. After the initial diffusion stage, the tracer dispersion is dominated by the stirring due to shear

flows. In our 1/12◦ run the growth rate of equivalent variance during this stageis between the pure

shearing flow regime (power of 2 growth) and the pure stretching flow regime (exponential growth).

In the ocean, earlier studies suggested that the variance increases with time between 2nd and 3rd

power law (Okubo 1971) and more recent result from NATRE alsofound a close to 2nd power law

(Ledwell et al. 1998).

Another way of using equivalent radius is to use it as a coordinate to transform the advection-diffusion

tracer equation (Nakmura 1996). The result is a simple diffusion equation with an effective diffusivity

κe = κL2
eq/L

2
0. As a tracer contour is distorted by shear flows, the available interface for small-scale

diffusion increases and so gives a higher value of effectivediffusivity. In this context, effective diffu-

sivity is a function of tracer contours and it reflects the geometrical complexity of tracer distribution

regardless of the history of the tracer dispersion.

We take a step further to propose a new way of evaluatingκe by relating the diffusive flux of tracer

across tracer contours to the gradients of tracer w.r.t the area enclosed by tracer contours. In this

way, the effective diffusivity has a physical meaning (the flux-gradient relationship) in addition to the

geometric one. The new way of calculatingκe also has the advantage that it does not require prior

knowledge of background diffusivity, which is difficult to obtain. On the other hand, it does require

25



tracer fields between short time intervals which may be difficult to acquire for tracers released in the

ocean.

Previous studies (e.g. Allen and Nakamura 2001, Marshallet al. 2006) applied effective diffusiv-

ity diagnosis to quasi-steady tracers. For such tracers, the tracer contours can be associated with

geographical locations and so the spatial pattern of effective diffusivity can be linked to the spatial

characteristics of the flow such as the region of strong mixing. A point release tracer is always evolv-

ing in time and so it is not meaningful to follow a given tracercontour. Thus, we introduce a new

quantity called the mean effective diffusivityκe which assigns an effective diffusivity at any instant

time for the whole tracer patch rather than for individual tracer contours. It also represents an average

of κe weighted by the tracer gradients, c.f. (13).

The mean effective diffusivityκe may be compared to the apparent diffusivityκa. First we interpret

the apparent diffusivity as the tracer-weighted average ofa quantity that takes into account variations

of κe across tracer contours, c.f. (18). So, the mean effective diffusivity κe (based on the tracer

variance,
∫

C2) and the apparent diffusivityκa (based on the equivalent variance,σ2
e ) are in fact two

different ways of averagingκe. It is not clear which averaging is more meaningful except that κe

represents an average that puts more weight over the area inside a tracer contour containing 65% of

total tracer load. The two diffusivities have a similar value only when tracer dispersion reaches the

final diffusion stage.

A more traditional approach is to infer an overall eddy diffusivity from the evolution of variance at

a later time. The idea is that during the final stage of tracer dispersion the variance converges to

a linear growth rate (Garrett 1983). In our models, after three years the traditional distance (to the

center of mass) varianceσ2
r seems to approach a linear growth stage which would give an overall

eddy diffusivity kh = 1000 m2s−1. However, the equivalent varianceσ2
e has not reached the final

diffusion stage. We estimate it would take about 5 or 6 years for σ2
e to converge to linear growth. The

point is that distance-based variance, e.g.σ2
r , always reaches the final linear growth stage sooner than

area-based variance, e.g.σ2
e . So, when inferring diffusivity one needs to be cautious andnote that the

time scale associated the final stage of tracer evolution is different for different methods.

In summary, the apparent diffusivity,κa, and the effective diffusivity,κe, represent different averag-

ings over the tracer patch. Over a longer time when tracer contours are merged and the tracer patch
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is nearly Gaussian, all three diffusivitieskh, κa andκe are expected to converge to a similar value. In

our experiment, this value could be about 1000 m2s−1.

The tracer dispersion is ultimately an interplay between the stirring due to shear and mixing due

to background diffusion. In our opinion, the fundamental quantity is the equivalent radius (which

gives rise to the equivalent varianceσ2
e and the equivalent lengthLe). The effective diffusivity is a

secondary quantity as it is not uniquely defined (e.g.κe, κa andkh) and during the stirring-dominating

stage the diffusivity will be time dependent. If the radius of a tracer patch is scaled asσe, then the

rate of increase of the radius of tracer is scaled∂σe

∂t ∼
√

λk, indicating that stirring and mixing work

together to increase the size of tracer patch.

We have introduced a new diagnostic quantity called the stirring efficiency,ζ. It simply measures

the degree of deformation (in terms of gradients) of the tracer patch relative to it otherwise would be

without shear flows. Thus, it is an indicator of how efficient the stirring is against mixing. Like Péclet

number, stirring efficiency characterises the flows in termsof advection versus diffusion. However,

the advantage ofζ is that it can be calculated from tracer fields without needing to estimate the length

scale of flow or the background diffusivity. The stirring efficiency may be scaled asζ ∼
√

λ/kσe,

which is consistent with the intuition that the efficiency ofstirring is a result of the competitions

between stirring and mixing.

The stirring efficiency may be useful as a way of assessing models’ simulations of tracer evolution.

For example, the comparison between the stirring efficiencyfor the tracers in the 1/12◦ and 1/4◦ runs

suggests that the 1/12◦ model is about 10 times more efficient than the 1/4◦ model in terms of stirring

tracers. If the stirring efficiency in the real ocean is estimated to be about102 − 104, depending on

the length scale considered for mixing, then much lower values of stirring efficiency in the models

indicates the deficiency of the models. Such deficiency may bedue to model’s large numerical dif-

fusion (e.g. the 1/12◦ run), or due to the combination of weak strain rate and large explicit diffusion

(e.g. the 1/4◦ run).

This leads to the question of what impact the 50 m2s−1 explicit isopycnic diffusivity in the 1/4◦ model

has on the tracer simulation. From the perspective of equivalent varianceσ2
e ∼ λkt2, the explicit

isopycnic diffusivity compensates for the smaller strain rate. For example, the diffusion velocity
√

λk in the 1/4◦ model is half of that in the 1/12◦ model rather than ten times smaller as it would

27



be implied by the strain rate alone. Thus, one can argue larger isopycnic diffusivity is necessary in

order to rectify smaller strain rate. On the other hand, the stirring efficiency is greatly reduced with

the presence of explicit diffusion (as explained in the previous paragraph). Thus, one might argue

that smaller explicit isopycnic diffusivity for the 1/4◦ model is preferrable. On top all these, it is not

clear to what degree the explicit isopycnic diffusivity affects the strain rate in the 1/4◦ model. Since

the time scale for the onset of stirring-domination is determined by the strain rate, it would always

take longer for the 1/4◦ tracer to catch up to the same effective diffusivity in the 1/12◦ model. Even

when tracers in the two model resolutions give a similar value of effective diffusivity, they will be

achieved through different mechanisms. For example, we seein the Figs. 4 and 5 that tracer in

the 1/12◦ model (day 365) has fine filaments with pinch-off whereas tracer in the 1/4◦ model (day

735) remains as a coherent structure. It remains a difficult issue to decide what values of isopycnic

diffusivity should be used in the lower resolution model. The answers depend on the criteria for

assessing model performance.

9 Acknowledgements

We thank Alberto Naveira Garabato for the motivations and discussions of this work. We are espe-

cially grateful to the referees whose constructive comments on the earlier drafts helped to improve

the manuscript.

10 Appendix

A The transformed tracer equation

Here, we give a layer formulation and all our diagnostics aredone in the layer format accordingly.

The evolution equation for a passive tracer in an isopycnal layer between isopycnalsσ andσ + δσ is

∂(τh)

∂t
+ ∇ · (uhτ) +

∂

∂σ
(σ̇hτ) = τ̇h, (21)

whereτ is the tracer concentration,h is the isopycnal layer thickness per unit of density,∇ is the

isopycnal gradient, andu is the isopycnal velocity.τ̇ ≡ dτ/dt and σ̇ ≡ dσ/dt are the material

derivatives ofτ andσ, respectively, representing diffusion and source/sink.
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Following Nakamura (1995), a control volume bounded by a tracer contourτ and lying between

isopycnalsσ andσ + δσ can only be changed through the nonadvective nature of tracer flux across

the tracer contour and through the nonadvective nature of density flux across isopycnals. This is

expressed as
∂

∂t

∫

Aτ

hda +
∂

∂τ

∫

Aτ

τ̇h da +
∂

∂σ

∫

Aτ

σ̇h da = 0, (22)

whereda is the area element andAτ is the area inside the tracer contourτ .

For simplicity, we assume that cabelling and diffusive density flux may be ignored (̇σ ∼ 0). Thus,

the volume can only be changed through nonadvective processacting on the tracer,

∂

∂t

∫

Aτ

hda = − ∂

∂τ

∫

Aτ

τ̇h da. (23)

Since there is no forcing of the tracer,τ̇ can be only due to diffusive flux of tracer. This diffusive

flux consists of the horizontal divergence of horizontal diffusive flux and the vertical divergence of

diapycnal component of diffusive flux,

τ̇h = −∇ · (D2h) − ∂

∂σ
(D · n), (24)

whereD = −κ∇3τ is the three-dimensional diffusive flux in(x, y, z) coordinate,D2 is the horizon-

tal component ofD, κ is the background diffusivity which can be either moleculardiffusivity (in the

real ocean) or numerical diffusivity (in models) andn is the unit vector normal to the isopycnal.

For simplicity, we further assume the diapycnal component,D·n, is small compared to the horizontal

component. Thus, from (23) and (24), we have

∂

∂t

∫

Aτ

hda = − ∂

∂τ

∫

Aτ

∇ · (κh∇τ) da =
∂

∂τ

∮

τ
κ|∇τ |hdl = − ∂

∂τ

∂

∂τ

∫

Aτ

κ|∇τ |2hda, (25)

wheredl is the line element and soda = dldτ/|∇τ |. The second equality uses Gauss’ theorem. The

third equality uses the identity

∮

τ
(·)h dl

|∇τ | = − ∂

∂τ

∫

Aτ

(·)hda. (26)

Note that the sign convention is such thatτ increases towards the centre of the tracer patch, as it

would be for a point-released tracer.

To really appreciate the essence of tracer-based coordinates, we need to use the volume enclosed by

the contours of tracer as a coordinate. DefineVτ =
∫
Aτ

hda andτ(V, t) such thatτ(Vτ∗ , t) = τ∗(t).
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Following Nakamura (1996) and use the equality∂τ(V ,t)
∂t = −∂τ(V ,t)

∂V
∂V
∂t , (25) can be transformed to

∂τ(V, t)

∂t
=

∂

∂V

(
κL2

eq

∂τ(V, t)

∂V

)
, (27)

where

L2
eq =

∮

τ

1

|∇τ |hdl

∮

τ
|∇τ |hdl. (28)

In (27),κL2
eq does not yet have units of diffusivity. To make it more transparent, we use ‘equivalent

radius’ instead of volume as a coordinate. For simplicity, we assume the region of interest is on a flat

plane rather than on a sphere. For a given volumeV, define the ‘equivalent radius’γeq to be such that

V = πγ2
eqh whereh is the mean isopycnal layer thickness forV.

B The strain rate and stretch rate

The strain rate in the model was calculated using two different expressions: the rms of strain rate

λ = ∂u/∂y + ∂v/∂x, representing the shearing deformation, and the rms of stretching rateη =

∂u/∂x − ∂v/∂y, representing the extension (or contraction) deformation. The rms is the average

over the region occupied by tracer.

The three annual mean strain rates in units of10−6 s−1 are 1.18, 0.77, 0.88 for the 1/12◦ run and 0.08,

0.12, 0.17 for 1/4◦ run. The annual mean stretching rates in the same units are 0.95, 0.75, 0.85 for the

1/12◦ run and 0.08, 0.12, 0.16 for 1/4◦ run.
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Figure captions

Fig.1

The shading gives the mean eddy kinetic energy (cm2s−1) at depth 314 m (model level 25) for year

1995 from the 1/12◦ run. The highest eddy kinetic energy (indicated by darker shading) is in the

region of the Gulf Stream. The contours (in units of104 Pa) gives the mean pressure field at the

same depth for the same year. The triangle indicates the siteof tracer release in the model and the

rectangular box corresponds to the plots shown in Figs. 2-5.

Fig.2

Five-day mean fields from the 1/12◦ run. The left panels (a) and (b) are the pressure fields at 314

m. The color scale is on the left with the units of104 Pa and contour interval is80 Pa. (a) is at

the time of tracer release for EXP1/12test. (b) is at the time of tracer release for EXP1/12. The right

panels (c) and (d) are the tracer concentration on the targetdensity layer after the 180 days (each right

panel corresponds to the release on the left panel). The tracer concentration is normalised to have the

maximum value 1. The color scale is on the right with the magenta color showing the negative tracer

value. The release site is marked by the triangle. For comparison, the domain of plots is also drawn

in Fig.1.

Fig. 3

As in Fig. 2, but for the 1/4◦ run. The tracer fields on the right panels are 360 days after releases.

Fig. 4

For EXP1/12. The upper panels are the normalised tracer concentration on the target density layer

(color scale on the left). The lower panels are effective eddy diffusivity κe (m2s−1) (color scale on

the right). The left, middle and right panels correspond to day 180, 365 and 730 days, respectively.

Fig. 5

As in Fig. 4 but for EXP1/4.

Fig. 6
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The three years time series of areas from EXP1/12: from the equivalent variance,πσ2
e (thick solid

line), from the conventional distance variance,πσ2
r (dashed line), the tracer area containing 65%

tracer load (dotted line), the tracer area containing 95% tracer load (dot-dashed line), the tracer area,

Γ (thin solid line).

Fig. 7

Left panels: the time series of the equivalent variance,σ2
e (thick solid lines), in log-log scale for

the run of (a) 1/12◦ and (b) 1/4◦ . The three triangles mark 180 days, 1 year and 2 years. The thin

solid lines showσ2
e(0) + 4kt (wherek = 15 and60 m2s−1 in 1/12◦ and 1/4◦ run, respectively) (thin

solid lines). Theσ2
e(0) is the variance at the time of release. Note the thin and solidlines almost

overlap. Also plotted are curves of the2nd power law,λkt2 (dashed lines), and the exponential law,

σ2
e(T )e0.2η(t−T ) (dotted lines), relevent to the stirring-dominated stage.σ2

e(T ) is the value ofσ2
e at

the timeT (70 days and 360 days for 1/12◦ and 1/4◦ runs, respectively). See text for the values of

straining rateλ and stretching rateη. Right panels: the conventional distance variance,σ2
r (thick

solid line). The superimposed line in EXP1/12 is12kht, wherekh = 1000 m2s−1 (thin solid line).

Fig. 8

The time series of the equivalent deviationσe from EXP1/12 (solid line) and EXP1/4 (dashed line).

Fig. 9

The time series of apparent diffusivityκa (solid line) (smoothed with 30-day filter) and mean effective

diffusivity κe (dashed line) from EXP1/12.

Fig. 10

The time series of apparent diffusivityκa (m2s−1) plotted as a function of equivalent deviationσe for

EXP1/12 (solid line) and EXP1/4 (dashed line).

Fig. 11

The diffusivity (m2s−1) over three years. The left panel is for the 1/12◦ run and the right panel is

for the 1/4◦ run. The background diffusivityk is given by the dashed lines and the mean effective

diffusivity κe is given by the solid lines. The thick lines are from the main runs and thin lines are
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from the test runs. The dotted lines areκadjust
e = κe + κS

e .

Fig. 12

The diffusivity (m2s−1) as a function of equivalent radiusγe (km). The dashed lines are the back-

ground diffusivities. The dotted and the solid lines are theeffective diffusivities calculated from (8)

and (10), respectively. The left panel is from EXP1/12 at day365 and the right panel is from EXP1/4

at day 730.

Fig. 13

Length for the contours of tracer from EXP1/12 at day 365 as a function of equivalent radiusγe

plotted in log-log scale: the equivalent lengthLe (thick solid line), the actual lengthL (dashed line),

the minimal lengthL0 = 2πγe (thick dotted line). The superimposed lines areγ2
e (thin solid line)

andLe/L0 (thin dotted line).

Fig. 14

The eddy efficiencyζ plotted against equivalent deviationσe. The solid line is from EXP1/12 and the

dashed line is from EXP1/4.

Fig. 15

Quantities contribute to mean diffusivities at day 730 of EXP1/12. (a) mean effective diffusivityκe,

(b) for comparisonκs =
∫

κeC da/
∫

C da and (c) apparent diffusivityκa. Thex-axis is the nor-

malised tracer load encompassed by tracer contours with 1 corresponding to total tracer load enclosed

by the lowest tracer concentration. In (a),κe (solid line), weighting
∣∣ ∂Ĉ
∂γe

∣∣2da/
∫ ∣∣ ∂Ĉ

∂γe

∣∣2da (dashed

line) and the multiplication of the two (dotted line). In (b), κe (solid line), weightingC da/
∫

C da

(dashed line) and the multiplication of the two (dotted line). In (c), ∂
∂A(κeA) (solid line), weighting

C da/
∫

C da (dashed line) and the multiplication of the two (dotted line).
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Figure 1: The shading gives the mean eddy kinetic energy (cm2s−1) at depth 314 m (model level 25)
for year 1995 from the 1/12◦ run. The highest eddy kinetic energy (indicated by darker shading) is in
the region of the Gulf Stream. The contours (in units of104 Pa) gives the mean pressure field at the
same depth for the same year. The triangle indicates the siteof tracer release in the model and the
rectangular box corresponds to the plots shown in Figs. 2-5.
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Figure 2: Five-day mean fields from the 1/12◦ run. The left panels (a) and (b) are the pressure fields
at 314 m. The color scale is on the left with the units of104 Pa and contour interval is80 Pa. (a) is at
the time of tracer release for EXP1/12test. (b) is at the time of tracer release for EXP1/12. The right
panels (c) and (d) are the tracer concentration on the targetdensity layer after the 180 days (each right
panel corresponds to the release on the left panel). The tracer concentration is normalised to have the
maximum value 1. The color scale is on the right with the magenta color showing the negative tracer
value.
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Figure 3: As in Fig. 2, but for the 1/4◦ run. The tracer fields on the right panels are 360 days after
releases.
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Figure 4: For EXP1/12. The upper panels are the normalised tracer concentration on the target density
layer (color scale on the left). The lower panels are effective eddy diffusivityκe (m2s−1) (color scale
on the right). The left, middle and right panels correspond to day 180, 365 and 730 days, respectively.
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Figure 5: As in Fig. 4 but for EXP1/4.
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Figure 6: The three years time series of areas from EXP1/12: from the equivalent variance,πσ2
e (thick

solid line), from the conventional distance variance,πσ2
r (dashed line), the tracer area containing 65%

tracer load (dotted line), the tracer area containing 95% tracer load (dot-dashed line), the tracer area,
Γ (thin solid line).
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Figure 7: Left panels: the time series of the equivalent variance,σ2
e (thick solid lines), in log-log

scale for the run of (a) 1/12◦ and (b) 1/4◦ . The three triangles mark 180 days, 1 year and 2 years. The
thin solid lines showσ2

e(0) + 4kt (wherek = 15 and60 m2s−1 in 1/12◦ and 1/4◦ run, respectively)
(thin solid lines). Theσ2

e(0) is the variance at the time of release. Note the thin and solidlines almost
overlap. Also plotted are curves of the2nd power law,λkt2 (dashed lines), and the exponential law,
σ2

e(T )e0.2η(t−T ) (dotted lines), relevent to the stirring-dominated stage.σ2
e(T ) is the value ofσ2

e at
the timeT (70 days and 360 days for 1/12◦ and 1/4◦ runs, respectively). See text for the values of
straining rateλ and stretching rateη. Right panels: the conventional distance variance,σ2

r (thick
solid line). The superimposed line in EXP1/12 is12kht, wherekh = 1000 m2s−1 (thin solid line).
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Figure 8: The time series of the equivalent deviationσe from EXP1/12 (solid line) and EXP1/4
(dashed line).
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Figure 9: The time series of apparent diffusivityκa (solid line) (smoothed with 30-day filter) and
mean effective diffusivityκe (dashed line) from EXP1/12.
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Figure 10: The time series of apparent diffusivityκa (m2s−1) plotted as a function of equivalent
deviationσe. EXP1/12 (solid line) and EXP1/4 (dashed line).
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Figure 11: The diffusivity (m2s−1) over three years. The left panel is for the 1/12◦ run and the right
panel is for the 1/4◦ run. The background diffusivityk is given by the dashed lines and the mean
effective diffusivity κe is given by the solid lines. The thick lines are from the main runs and thin
lines are from the test runs. The dotted lines areκadjust

e = κe + κS
e .
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Figure 12: The diffusivity (m2s−1) as a function of equivalent radiusγe (km). The dashed lines
are the background diffusivities. The dotted line and the solid lines are the effective diffusivities
calculated from (8) and (10), respectively. The left panel is from EXP1/12 at day 365 and the right
panel is from EXP1/4 at day 730.
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Figure 13: Length for the contours of tracer from EXP1/12 at day 365 as a function of equivalent
radiusγe plotted in log-log scale: the equivalent lengthLe (thick solid line), the actual lengthL
(dashed line), the minimal lengthL0 = 2πγe (thick dotted line). The superimposed lines areγ2

e (thin
solid line) andLe/L0 (thin dotted line).
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Figure 14: The eddy efficiencyζ plotted against equivalent deviationσe. The solid line is from
EXP1/12 and the dashed line is from EXP1/4.
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Figure 15: Quantities that contributes to mean diffusivities at day 730 of EXP1/12. (a) mean effective
diffusivity κe, (b) for comparisonκs =

∫
κeC da/

∫
C da and (c) apparent diffusivityκa. Thex-axis

is the normalised tracer load encompassed by tracer contours with 1 corresponding to total tracer load

enclosed by the lowest tracer concentration. In (a),κe (solid line), weighting
∣∣ ∂Ĉ
∂γe

∣∣2da/
∫ ∣∣ ∂Ĉ

∂γe

∣∣2da

(dashed line) and the multiplication of the two (dotted line). In (b), κe (solid line), weighting
C da/

∫
C da (dashed line) and the multiplication of the two (dotted line). In (c), ∂

∂A(κeA) (solid
line), weightingC da/

∫
C da (dashed line) and the multiplication of the two (dotted line).
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