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Abstract 


Nearly 5000 chamber measurements of CH4 flux were collated from 21 sites across 


the UK, covering a range of soil and vegetation types, to derive a parsimonious model 


that explains as much of the variability as possible, with the least input requirements. 


Mean fluxes ranged from -0.3 to 27.4 nmol CH4 m-2 s-1, with small emissions or low 


rates of net uptake in mineral soils (site means of -0.3 to 0.7 nmol m-2 s-1) and much 


larger emissions from organic soils (site means of -0.3 to 27.4 nmol m-2 s-1).  Less 


than half of the observed variability in instantaneous fluxes could be explained by 


independent variables measured.  The reasons for this include measurement error, 


stochastic processes and, probably most importantly, poor correspondence between 


the independent variables measured and the actual variables influencing the processes 


underlying methane production, transport and oxidation. When temporal variation 


was accounted for, and the fluxes averaged at larger spatial scales, simple models 


explained up to ~75 % of the variance in CH4 fluxes.  Soil carbon, peat depth, soil 


moisture and pH together provided the best sub-set of explanatory variables. 


However, where plant species composition data were available, this provided the 


highest explanatory power .  Linear and non-linear models generally fitted the data 


equally well, with the exception that soil moisture required a power transformation.  


To estimate the impact of changes in peatland water table on CH4 emissions in the 


UK, an emission factor of +0.4 g CH4 m-2 y-1 per cm increase in water table height 


was derived from the data. 


Key-words:  meta-analysis; data synthesis; methane; greenhouse gases, static 


chamber, methanogenesis, CH4. 
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Introduction 


Methane (CH4) is the second most important trace gas contributing to the radiative 


forcing of the atmosphere.  The largest term in the global CH4 budget is the emission 


from wetland soils, as a product of anaerobic decomposition of soil organic matter by 


methanogenic micro-organisms (Gorham, 1991; Lelieveld et al., 1993; Denman et al., 


2007), although global-scale estimates of this vary widely (13 - 160 Tg yr-1, Petrescu 


et al., 2010).  Soils can also act as a significant sink for CH4, via oxidation by 


methanotrophic bacteria, and the net efflux is the balance between production and 


oxidation (Dalal &  Allen, 2008; Lai, 2009).  Methane emissions are expected to 


increase in future in a warmer and wetter climate, and in response to changes in land 


management, particularly restoration and re-wetting of peatlands (Denman et al., 


2007; Waddington &  Day, 2007).  With emission reduction targets now in place, 


measures to reduce greenhouse gas emissions through land management are being 


investigated as a potential means to mitigate climate change.  Driven by this, there is a 


strong demand from policy-makers for simple emission factors, which quantify the 


effect of land management activities on the net emission of greenhouse gases, but as 


yet these are poorly developed (Couwenberg et al., 2011; Eggleston et al., 2011).  As 


part of this, we require a better understanding of how the emissions of CH4 (as well as 


CO2 and N2O) respond to changes in environmental factors (Segers, 1998, Conrad, 


2009).  Also, given predictions of climatic change, there is a need to know how CH4 


fluxes will respond in the long term, and emissions may increase in a warmer and 


wetter climate.  Modelling work has shown the potential for positive feedback with 


climatic change (Gedney et al., 2004), particularly in arctic and boreal regions (Koven 


et al., 2011). 
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Measurements of CH4 flux are most commonly made using static chambers, whereby 


a small area of the land surface (typically ~0.1 m2) is enclosed, and the rate of change 


in methane concentration measured in a sequence of gas samples, analysed 


subsequently on a gas chromatograph.  It is commonly observed that these small-scale 


measurements are very variable in space and time, making their interpretation in 


terms of processes difficult.  This is because (i) the balance between CH4 production 


and oxidation is a complex interaction, influenced by biotic diversity and activity, soil 


water, oxygen concentrations within the soil, redox potential, and transport processes 


within the soil-water-plant-atmosphere (diffusion, ebullition, and transport via 


aerenchyma and xylem), and (ii) the driving variables are themselves heterogeneous 


in time and space, and often difficult to measure appropriately.  If these chamber 


measurements are to be used to estimate fluxes at larger scales or over longer time 


periods, a robust method for scaling up is required which accounts for the key 


environmental driving variables and their interactions, that can be calibrated over an 


appropriate range of conditions, and with a suitably large sample size (Baird et al., 


2009a).  Such a method is needed if CH4 emissions from natural wetlands are to be 


included appropriately in IPCC greenhouse gas inventories (IPCC, 2003; Eggleston et 


al., 2011).  Models of CH4 flux range from simple empirical or statistical models (e.g. 


Couwenberg et al., 2011), to detailed mechanistic models which explicitly represent 


many of the processes involved, including CH4 production, oxidation, transport via 


diffusion, ebullition, and plant stems (Arah &  Stephen, 1998, Walter et al., 2001).  


Because of the computation time and coarse spatial resolution in regional- and global-


scale models, relatively simple models of CH4 emissions are better suited in this 


context. 
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Here, we have collated a large number (4831) of existing chamber measurements of 


soil CH4 flux made in the UK, covering a range of vegetation types, and including 


both mineral and organic soils.  The overarching aim of this study was to analyse this 


data set in terms of a number of co-located measurements of environmental and 


ecological variables, in order to assess the appropriate degree of complexity for 


modelling.  Given the explanatory variables that are generally available, we aimed to 


derive a parsimonious model with the least requirements for environmental inputs, 


suitable for calculating national-scale CH4 emissions from ecosystems, or inclusion 


within a regional-scale land surface model (e.g. Clark et al., 2011).  As an example 


application of such a model, we then derived a simple emission factor for peatland 


restoration based on the modelled responses to water table changes.   


 


Methods 


Field sites and measurements 


The measurements analysed here were made at 21 field sites across the UK (Figure 1, 


Table 1).   At most of these sites, measurements were made approximately monthly 


over one or more years, covering all seasons.  The exceptions were Glensaugh, 


Grenstein, Hafren, House O'Muir and Ullapool, where measurements were made in 


only one or two campaigns.  At each site, a similar measurement procedure was 


carried out, as described below.  Where there are important differences in the details 


of the methodology (chamber size, gas sampling method etc.), these are listed in 


Table 1.  A cylindrical PVC collar was inserted into the soil and left in place for a 


number of weeks or months.  On each sampling occasion, a lid was sealed on top, and 


left in place for up to two hours, but more commonly 30 minutes to 1 hour.  Samples 
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were removed by syringe through a 3-way tap or rubber septum, and analysed on a 


gas chromatograph, together with replicates of three or four standard gases with 


known concentrations.  For each sequence of gas samples from a chamber, the flux 


(F, in µmol m-2 s-1) was calculated as: 


                                         F = dC/dt · ρV / A                                                       (1) 


where dC/dt is the rate of change in concentration (C, in μmol mol-1) with time (t, in 


seconds), ρ is the density of air in mol m-3, V is the volume of air within the chamber 


in m3, and A is the surface area within the chamber in m2.  dC/dt was calculated from 


the time sequence of C with t, either from the mean value of dC and dt or by linear 


regression. 


 


Data analysis 


The raw concentration data (i.e. C with t) were not generally available, so the analysis 


here is based on the pre-existing calculated fluxes.  The data from all sites were 


collated into a single data set containing 4831 CH4 flux measurements.  As far as 


possible, we collated a common set of explanatory variables associated with each flux 


measurement.  The explanatory variables obtained were: soil temperature (Tsoil, oC) at 


the depth deemed most relevant in the original study; soil moisture (θ, volumetric 


water content as a fraction), water table depth (zwater, cm), soil carbon stock (Csoil, kg 


C m-2), peat depth (zpeat, m), soil pH, soil bulk density (ρsoil, g dry mass cm-3), and soil 


CO2 efflux (FCO2, μmol m-2 s-1).   


 


Because these data were collected under several different measurement programmes 


and for different purposes, there were missing values for several variables at most 


sites.  Where possible, these gaps were filled by regressing against other explanatory 
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variables.  At most sites, some measurements of both soil moisture and water table 


were available, and where a reasonably clear relationship was present, this 


relationship was used to fill gaps where there were missing values in either variable.  


Soil carbon stock was generally calculated from local measurements of soil carbon 


concentration (g C g-1 dry mass), bulk density (g dry mass cm-3), and soil depth.  For 


the peatland sites, default values for soil carbon concentration and bulk density of 0.5 


and 0.12 respectively, were used where local values were not available (i.e. in these 


cases, soil carbon stock was assumed to be linear with peat depth, assuming 600 kg C 


m-3).   Whilst this is a broad-brush assumption, the results of the analysis are fairly 


insensitive to the exact value used, and this simply converts peat depth into a measure 


of soil carbon stock for comparison with soil carbon stock in mineral soils.  For sites 


with mineral soil, peat depth was set to zero; where a clear water table was not 


apparent, water table depth was given a missing value code.   


 


At three of the sites (containing 70 plots over eight sub-sites), the composition of the 


vegetation within each chamber was identified to species level, including non-


vascular plants, and this was summarised in two ways.  Firstly, the percentage cover 


of species known to possess aerenchyma was calculated (Aer, %).  Secondly, a 


Principal Components Analysis (PCA) was performed, to find the orthogonal axes of 


species cover which correlate best with methane flux.  The first PCA axis (Spp1, 


dimensionless) characterised a gradient in soil moisture, and accounted for 46 % of 


the variance in the species cover data. 


 


From this raw data set, three further data sets were created by averaging, to remove 


temporal and spatial variability.  We calculated means (of all variables) for:  
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1. each individual chamber location (or ‘plot’), thereby removing 


temporal variability but retaining spatial variability, 


2. groups of plots (or ‘sub-sites’), where plots were grouped within sites, 


based on spatial location or experimental treatment, 


3. each site, whereby all the data for each site were averaged, thereby 


removing temporal variability and within-site spatial variability. 


 


Some extreme values were found at several sites, probably resulting from ebullition 


events (Baird et al., 2004) or measurement error (Christiansen et al., 2011), and 


arbitrary thresholds for data exclusion were set at -20 and 200 nmol m-2 s-1.  Given 


these extreme values, simple arithmetic means are an imperfect summary statistic.  As 


discussed by (Baird et al., 2009a), the skewed nature of the distributions should be 


accounted for when extrapolating to larger scales.  This might use measurements or 


simulations of the explanatory variables with high-resolution in time and space to fill 


the gaps between observations and integrate up to larger scales.  This is the subject of 


on-going work, but is beyond the scope of the present analysis. 


 


The data were first analysed using univariate linear regression to examine how much 


variation could be accounted for by each explanatory variable considered 


independently.  Multivariate linear and nonlinear regressions were then used to 


examine how much variation could be accounted for by the complete set of 


explanatory variables considered together.  The data were analysed using the GenStat 


statistical software (ver 12.1, VSN International Ltd., Hemel Hempstead, United 


Kingdom).  
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Results 


CH4 fluxes showed strongly left-skewed distributions at all sites, dominated by low, 


positive (i.e. emission) fluxes (Figure 2a).  Overall, the mean and median fluxes were 


6.3 and 0.23 nmol m-2 s-1, with lower and upper quartiles at -0.1 and 4.5 nmol m-2 s-1.  


Sites with mineral soils tended to have small emissions or low rates of net uptake, 


with site means between -0.3 and 0.7 nmol m-2 s-1 (Figure 2).  Sites with organic soils 


had much larger emissions, with means between -0.3 and 27.4 nmol m-2 s-1.  Sites 


with organo-mineral soils were intermediate, though the sample size was much 


smaller. 


 


Scatterplots of methane flux against the main explanatory variables are shown in 


Figure 3.  Some pattern is apparent with most variables, and this is clearest when the 


data are averaged at site and sub-site level.  The strongest relationships are with soil 


carbon, soil moisture and the measures of plant species composition.  Where 


relationships appeared non-linear, transformations were examined to find a more 


linear relationship with methane flux.  However, only in the case of soil moisture did 


a transformation give a consistently better fit to the data across all averaging levels, 


where θ 4 had the closest linear relationship with methane flux; this transformation 


was used in the statistical modelling. 


 


Figure 4 and Table 3 show that the adjusted r2, effectively the percentage of variance 


explained by the regression model, increases with the extent of averaging; the model 


fit is poorest with the raw data and best when the site means are analysed.  Several 


variables show reasonably close relationships with methane flux, particularly soil 


carbon, peat depth, soil moisture and plant species composition, though the ranking 







 9


varies between averaging levels.  Table 3 shows that the size of the data set (without 


missing values) varies widely between variables, so an exact like-for-like comparison 


is not possible.  Also, much of the variation in explanatory variables is confounded, so 


caution is needed in ascribing cause and effect.  Some variables showed surprisingly 


poor relationships with methane flux when analysed in this simple way, such as water 


table, soil temperature, CO2 efflux, pH and bulk density. 


 


All sub-sets of variables were used in a multivariate regression procedure to identify 


which combinations of variables were most useful in explaining the variation in 


methane flux.  The best-fitting models with each number of terms are shown in Table 


4, ranked by their Akaike Information Criterion (AIC, Burnham &  Anderson, 2002), 


a measure which ranks competing models according to goodness-of-fit with a penalty 


associated with the number of parameters (here, equivalent to the number of 


explanatory variables used + 1).  Other similar measures (Mallow’s Cp and Bayesian 


Information Criterion) were examined but gave essentially the same rankings.  


Comparisons among models becomes difficult when there are missing values for 


some variables, so results are presented for each averaging level, with and without a 


restriction on the data sub-set to those with species composition data.   


 


Where species composition data were available, the first PCA axis, Spp1, came out as 


the best-fitting univariate model at all averaging levels.  The percentage cover of 


aerenchymatous species, Aer, gave additional information, and was the second or third 


term to be added to the model.  Using these two terms alone could account for up to 


53 % of the variance in methane flux, although n was always smaller when restricted 


to samples with species data.  Without the restriction of including species data, peat 
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depth was the best single predictor of methane flux, accounting for 74 % of the 


variance at site level, and 33 % in the raw data.  According to the AIC, the 


parsimonious models included soil temperature, soil moisture and soil carbon, 


although the best combinations of these depended on the averaging level.  When a 


unique identifier for each plot was included as an extra term in the model, the 


adjusted r2 was generally increased by a further 10 %.  In other words, 10 % of the 


variance was explained by something specific to each unique location, but not 


captured by the explanatory variables measured here. 


 


Nonlinear regression was used to test some commonly used models, and the 


goodness-of-fit measures and model parameters are shown in Table 5; for brevity, 


results are only shown for two averaging levels, but the pattern is similar elsewhere.  


The results show that the exponential function of temperature alone has little 


explanatory power for these data.  Water table also performs poorly for the raw data, 


and is less effective than soil moisture at sub-site level.  When the exponential 


response to temperature is combined with a power function for soil moisture and a 


linear function for soil carbon, the explanatory power is much better, and is similar to 


or better than that from the best sub-sets linear modelling. 


 


Discussion 


Our analyses show that some of the expected relationships are present in these data, 


and up to ~74 % of the variance in methane flux can be explained at site level.  


However, there is a considerable amount of noise in the data, and more than half the 


variance in the raw data is unexplained.  This is similar to other studies which have 


applied statistical approaches, and the primary relationships with explanatory 
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variables are similar.  In peatlands in Canada and Finland, several studies on 


individual sites have found poor correlations between CH4 flux and temperature, but 


reasonable relationships with water table depth (r2 typically ~0.5 using seasonal 


means and log transformation, Liblik et al., 1997 and references therein).  Bubier 


(1995a) found that r2 was increased to 0.84 by adding mean temperature at mean 


water table depth, water chemistry (conductivity, pH, Ca), tree cover and herbaceous 


plant cover to the regression model.  Macdonald et al., 1998 found similar 


relationships with temperature and water table in mesocosms from Northern Scotland 


under controlled conditions, and found a clear effect of plant-mediated transport via 


the stems of bogbean Menyanthes trifoliata L.   Greenup et al. (2000) also found a 


strong relationship between below-ground biomass of an aerenchymatous sedge 


species and CH4 emission in a UK bog.  At sites in Germany, Couwenberg et al. 


(2011) report a close relationship between the number of leaves of two 


aerenchymatous species and CH4 emission.  Kettunen et al. (2000) found reasonable 


plot-specific relationships with temperature (0.33 <  r2 < 0.72) at a fen site in Finland; 


water table depth had less explanatory power, probably because its range of variation 


was small.  The fitted model performed poorly when the data were pooled across 


plots, and did not explain short-term variations well.  Laine et al. (2007) found very 


similar results in a blanket bog in Ireland.  In addition, they measured the leaf area of 


aerenchymatous species, but found little relationship with CH4 flux. 


 


There are several likely causes for the unexplained variation in the raw data.  Firstly, 


there is typically a substantial amount of measurement error in static chamber flux 


measurements, which adds some random noise to the data (Levy et al., 2011), as well 


as possible systematic errors (Christiansen et al., 2011).  Levy et al. (2011) estimate 
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typical 95 % confidence intervals of ±20 % for individual flux measurements, using 


Monte Carlo error propagation.   Secondly, CH4 can be transported by ebullition (i.e. 


via rising bubbles of gas in soil water), rather than diffusion.  This will add a random 


term to the measured flux, if  transport of bubbles is not as a continuous stream of 


small bubbles, but episodic and largely stochastic, influenced by short-term wind-


driven surface pressure fluctuations which are unpredictable (Baird et al., 2004).  


Thirdly, the net efflux of methane is a complex interaction between several 


underlying processes, and several of the variables driving the underlying processes 


are either not measured, or poorly represented by the independent variables which are 


commonly measured.  To give some examples, water table depth or soil moisture are 


used as surrogate variables for soil O2 concentration, and the extent of the anaerobic 


zone.  However, Askaer et al. (2010) show, using high-resolution measurements using 


planar O2 optodes, that water table depth can be a poor proxy for anaerobic status at 


small spatio-temporal scales, as aerobic zones were observed below the water table, 


and vice versa, especially when the water table was dynamic.  The correspondence 


becomes much better when the water table depth remains more stable, and at larger 


spatial scales.  The rate of methane production is affected by soil redox potential and 


the availability of terminal electron acceptors (primarily Fe3+, Mn4+, SO4
2–, NO3


–).  


These are not commonly measured, so variation due to these will be unaccounted for; 


at best, they may correlate with soil pH or pollutant deposition as a proxy.  The 


availability of carbon substrates and the methanogenic microbial biomass and 


diversity are generally assumed not to be limiting, but there is some evidence to the 


contrary (Segers &  Kengen, 1998).  Furthermore, there are two distinct metabolic 


pathways which can produce methane, (based on either acetate or hydrogen/CO2 


substrates, and associated with different bacterial taxa), and their response to 
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environmental variables and relative abundance may differ (Cadillo-Quiroz et al., 


2006; Lai, 2009).  Soil carbon stock and peat depth will provide some proxy for the 


availability of carbon substrates, as well as the extent of anaerobic conditions, but this 


will not include short-term variations.   


 


Model fit was much improved when the raw data were averaged in time and over 


increasingly larger spatial scales, and there were a number of probable reasons for 


this.  If there is substantial random measurement error in the flux data, this will tend 


to cancel out as more measurements are averaged.  Similarly, there will be some 


random measurement error in the independent variables which will again tend to 


cancel out with averaging.  Furthermore, the co-location of measurements of 


independent and dependent variables is not exact, and some independent variables 


were only measured at site or sub-site level, so some mis-match at plot level is 


inevitable.  Several of the independent variables vary only on relatively long time 


scales (e.g. soil carbon, species composition, pH), so cannot account for short-term 


temporal variation.  Only a small number of independent variables vary on short time 


scales (temperature, soil moisture, CO2 efflux etc.), and these do not fully account for 


the variations in methane flux.  Averaging removes this unexplained short-term 


temporal variation 


 


The results show that plant species composition is the best single predictor of mean 


CH4 flux, where data are available.  This may be because of direct effects of particular 


plant species (because some species transport CH4 or provide suitable substrates for 


the production of CH4), as well as indirect effects (because plant species composition 


is a good indicator of environmental conditions, and effectively integrates past 
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conditions over the long term).  For example, Wamelink et al. (2005) showed that 


plant species composition was a very good predictor of soil pH in a large European 


data set.  Bryophytes are particularly sensitive to water table position, and their use as 


predictors of CH4 flux has been noted previously (Bubier, 1995b; Dias et al., 2010).  


The results suggest that there is an effect of plant species composition beyond that of 


transport via aerenchyma, as the multivariate PCA axis has substantially better 


explanatory power, and it seems likely that both direct and indirect effects are 


important.  Using plant species composition may be useful in predicting CH4 fluxes at 


large scales, where vegetation survey data are available.  Further validation of this 


approach is being investigated, and this could form part of a method for obtaining 


national-scale emissions of CH4 from soils.  Plant species composition is hard to 


include in ecosystem or biogeochemical models, and at best is approximated by some 


plant functional type classification (e.g. Couwenberg et al., 2011).  However, these 


classifications are relatively crude, and our mechanistic understanding is still 


incomplete (De Deyn et al., 2008; Kip et al., 2010). 


 


Of the abiotic variables, soil carbon and peat depth have the most explanatory power.  


Again, a component of this will be a direct effect, as deep peats have a larger pool of 


carbon substrate for methanogenesis, but indirect effects probably predominate.  Deep 


peats exist because the waterlogged conditions which inhibit decomposition also 


provide the extensive anaerobic environment which permits methanogenesis.  Both 


soil carbon and peat depth were included in the analyses, even though the two are so 


closely linked, as the former was generally calculated from the latter at peatland sites.  


However, their main difference lies in how they represent the transition between 


mineral and organic soils: soil carbon gives a continuous transition, whereas peat 
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depth (having a zero value in mineral soils) shows a ‘broken stick’ response, with a 


sharp delineation between mineral and organic soils.  The latter commonly fits the 


CH4 flux data slightly better.  Interestingly, there is no apparent influence of 


decomposition rate, measured as soil CO2 efflux, on CH4 flux.  It might be expected 


that this would provide a measure of the size of the labile carbon pool and substrate 


availability, and this effect is included in some models (Clark et al., 2011).  It may 


simply be that the measurements here are not sufficient to detect this effect, and more 


co-located CO2 and CH4 flux measurements would be required to quantify this 


rigorously. 


 


Whilst there is strong evidence that pH affects soil bacterial communities in wetland 


soils (Hartman et al., 2008), the net effect on CH4 fluxes is less clear.  An increase in 


CH4 fluxes with declining pH would be expected from most studies on methanogens 


under controlled conditions; for example, in a study by Taconi et al. (2007) methane 


production from waste water was increased by 30 % when pH was decreased from 7.0 


to 4.5. On the other hand, reduced pH in UK semi-natural soils is often associated 


with (current or historically) elevated inputs of atmospheric sulphate, which has a 


suppressive effect on methanogenesis (e.g. Gauci et al., 2004), potentially countering 


a direct pH effect.  However, methantrophs may have a different responses to pH 


which could complicate the net effect; both methanogens and methanotrophs are 


likely to have bell-shaped response, but with potentially different optima (Dedysh, 


1998).  Indeed, the role of methanotrophs in bog systems may have been substantially 


under-estimated (Kip et al., 2010).  Our results suggest a weak but detectable effect of 


pH, with CH4 fluxes tending to increase with acidity.  Partially, this is attributable to 


the negative correlation between pH and soil carbon, and the regression when this 
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effect is removed is not statistically significant (p = 0.2).  A similar effect is present in 


the relationship between soil bulk density and CH4 flux, which is apparent in Figure 


3.  soil carbon stock is calculated using the bulk density values, and the two closely 


co-vary.  When the correlation with soil carbon is removed, bulk density provides 


little extra predictive information. 


 


Throughout the analysis we have focussed on the explanatory power of the models, 


rather than predicitive power, as the latter is not tested here.  Given the complexity of 


possible feedbacks and interactions between the driving variables and the issues of 


extrapolating to the long term (Norby &  Luo, 2004; Boardman et al., 2011), 


prediction of response to long-term global change is much more difficult.  However, 


in the shorter-term, there is considerable current interest in the impact of peatland 


restoration activities on greenhouse gas emissions (Waddington &  Price, 2000; 


Rochefort &  Lode, 2006; Laine et al., 2006; Eggleston, 2011).  In the UK, there is 


some debate over the merits of restoring water tables by blocking moorland drains 


(Wilson et al., 2010), which may promote Sphagnum growth and re-initiate peat 


accumulation (and presumably, net CO2 uptake), at a potential cost of increased 


methane emissions (Baird et al., 2009b).  There are few pertinent data to quantify 


these effects (Basiliko et al., 2007; Bussell et al., 2010; Fenner et al., 2011; Urbanova 


et al., 2011), but the relationships in Figure 3 could be used as a crude summary of the 


effect of water table on methane flux, if we assume that the long-term effect of water 


table manipulation is the same as the relationship observed in natural variations.  This 


indicates an effect of +0.8 (±0.28 SE) nmol CH4 m-2 s-1 (or +0.4 g CH4 m-2 y-1) per cm 


increase in water table.  To offset this would require an increase in CO2 sequestration 


of  7.3 nmol CO2 m-2 s-1 (or 10.1 g CO2 m-2 y-1) per cm increase in water table 







 17


(assuming that a gramme of CH4 has the global warming potential of 25 grammes of 


CO2 over a 100-year time span).  By comparison, the review of studies in the 


Netherlands, Germany, Sweden and France by Couwenberg et al. (2011) obtained a 


value of +1.7 g CH4 m-2 y-1 per cm increase in water table, around four times larger 


than our value.  However, their value applied only to sites with aerenchymatous 


vegetation and mean annual water tables less than 20 cm from the surface.  Including 


all their data points would give a value more similar to ours, and whether the 


differences reflect real geographic variation, or merely sampling error in a variable 


parameter, is hard to discern.  We note that there are several reasons why the effects 


of manipulated and natural variations in water table might be different, certainly in 


the short term, as the dynamics of the system are complex.  Also, as Frolking et al. 


(2006) point out, the relative impacts of CO2 sequestration and CH4 emissions on 


radiative forcing depend largely on the time scale considered.  As the time scale 


considered increases, the relative importance of CH4 emissions decreases, and the 


commonly-used time horizon of 100 years is essentially arbitrary. 


 


The analysis of this data set has demonstrated the potential and limitations of 


commonly-measured environmental variables as predictors of soil CH4 fluxes.  The 


observed variability in instantaneous fluxes will remain difficult to explain or predict 


whilst the explanatory variables are weak surrogates for the underlying driving 


variables.  However, longer-term and larger-scale averages are much better predicted 


by environmental variables, and notably by soil carbon stocks and measures of plant 


species composition.  Given that these variables are often available in national 


vegetation and soil surveys, these could have considerable utility in estimating 


national-scale CH4 emissions from soils.  Detailed vegetation characteristics are 
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generally not represented in land surface models, but given an accurate simulation or 


prescription of soil carbon stock (or peat depth) and hydrology, these have suitable 


explanatory power for predicting CH4 fluxes. 
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Tables 


Table 1.  Location of field sites, number of measurements available,  the sampling 


and fitting methods used, and published references to the data or site. 


In sampling method 1, the chamber was 38 cm in diameter and 23 cm high, sample volume  was 20 ml, two samples were taken 


over 30-90 minutes, gas samples were stored in vials or tedlar bags, and analysis was by gas chromatograph (GC, 5890 series II, 


Hewlett Packard).  In sampling method 2, the chamber was 20 cm in diameter and 10 cm high, sample volume was 20 ml, 3 


samples were taken over 30 minutes, gas samples were stored in vials, and analysis was by GC (Clarus 500, Perkin Elmer).  In 


sampling method 3, the chamber was 30 cm in diameter and 41 cm high, sample volume was 20 ml, 2-4 samples were taken over 


0.5-2 hours, gas samples were stored in vials or tedlar bags, and analysis was by GC (Clarus 500, Perkin Elmer).  In sampling 


method 4, the chamber was 63 cm in diameter and 29 cm high, sample volume was 20 ml, four samples were taken over 30 


minutes, gas samples were stored in vials or tedlar bags, and analysis was by GC (5890 series II, Hewlett Packard).  In sampling 


method 5, the chamber was 30 cm in diameter and 35 cm high, sample volume was 20 ml, two samples were taken over 1-2 


hours, gas samples were stored in Exetainers, and analysis was by GC (Clarus 500, Perkin Elmer).  In fitting method 1, the mean 


values of dC and dt were used to calculate dC/dt in Eqn 1; in fitting method 2, the slope of a linear regression between C and t 


was used. 


Site Lat Lon 


 
Soil 
Class 


Sampling 
method 
used 


Fitting 
method 
used 


References (to site or 
data set) 


Auchencorth 55.79 N 3.24 W Organic 1 1 Drewer et al., 2010 
Clocaenog 53.08 N 3.38 W Organo-mineral 2 1 unpubl. 
Cow Park 55.85 N 3.22 W Mineral 1 1 Jones et al., 2005 
Easter Bush 55.86 N 3.21 W Mineral 1 1 unpubl. 
Forsinard 58.37 N 3.97 W Organic 4 2 Gray, 2007 
Glensaugh 56.90 N 2.52 W Organo-mineral 1 1 unpubl. 
Grenstein 52.73 N 0.81 E Mineral 1 1 unpubl. 
Hafren 52.63 N 3.95 W Mineral 1 1 unpubl. 
House O'Muir 55.86 N 3.25 W Mineral 1 1 unpubl. 
Lincoln 53.32 N 0.55 W Mineral 1 1 Drewer et al., submitted 
Loch More 58.39 N 3.60 W Organic 1 2 Macdonald et al., 1998 
Migneint A 52.99 N  3.80 W Organic 2 2 unpubl. 
Migneint B 52.99 N  3.80 W Mineral 2 2 unpubl. 
Migneint C 52.99 N  3.80 W Organic 3 1 unpubl. 
Moor House 54.65 N  2.45 W Organic 5 1 Ward et al., 2007 
Peaknaze A 53.47 N 1.91 W Organo-mineral 2 1 unpubl. 
Peaknaze B 53.47 N 1.91 W Organic 2 2 unpubl. 
Peaknaze C 53.47 N 1.91 W Mineral 2 2 unpubl. 
Tadham 51.16 N 2.81 W Organic 5 1 Lloyd, 2006 
Ullapool 57.91 N 5.17 W Organic 1 1 unpubl. 
Whim 55.76 N 3.27 W Organic 1 1 Sheppard et al., 2004 
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 Table 2.  Table of means for methane flux (FCH4) and explanatory variables by site.  


The explanatory variables are: soil CO2 efflux (FCO2, μmol m-2 s-1), water table depth 


(zwater, cm), soil moisture (θ, volumetric water content as a fraction), soil temperature 


(Tsoil, oC); soil pH, peat depth (zpeat, m), soil carbon stock (Csoil, kg C m-2), soil bulk 


density (ρsoil, g dry mass cm-3), the percentage cover of aerenchymatous species (Aer, 


%), and the first axis (Spp1, dimensionless) of an ordination of species cover.  n is the 


number of CH4  flux samples.  


Site FCH4 FCO2 zwater θ Tsoil pH zpeat Csoil ρsoil Aer Spp1 n 


Auchencorth 0.4 1.6 -13.1 0.91 9.0 4.4 0.5 33.0   595


Clocaenog 0.1   0.32 8.1 3.9 0.1 15.1   130


Cow Park 0.1   0.45 12.2 6.4 0.0 13.9   290


Easter Bush 0.1   0.30 10.2 5.0 0.0 12.1   704


Forsinard 15.9  -8.7 0.36 9.9 4.0 2.9 189.9  28.6 0.8 615


Glensaugh 2.2 2.5  0.91 7.3 4.5 0.7 0.6   18


Grenstein 0.7 1.2  0.60 3.0 0.22  69


Hafren -1.4 2.9  0.06 8.6 4.5 0.6 0.5   29


House O'Muir -0.3 3.5  0.73 12.0 6.0 0.0 5.0 0.27  80


Lincoln -0.1 1.7  0.23 0.0 8.3   229


Loch More 27.4  -5.6 0.93 14.5 4.0 264.0   188


Migneint A 16.9 0.1 -10.1 8.0 4.3 2.0 130.9   251


Migneint B 0.0 0.4  8.4 4.4 0.2 14.8   261


Migneint C 12.7  -5.8 12.6 4.0 2.0 132.0   160


Moor House 11.3 2.1 -10.3 0.90 7.3 3.8 1.5 85.0  32.4 -0.4 208


Peaknaze A 0.0   0.49 9.9 4.1 0.1 5.0   75


Peaknaze B 5.5 0.3 -15.0 8.3 3.9 2.3 153.0   249


Peaknaze C  -0.3 0.4 -1.0 8.4 4.1 0.2 13.7   239


Tadham -0.4  -32.7 11.1 6.4 2.0 132.0   197


Ullapool 7.2 2.0  0.77 8.1 4.5 0.7 0.4 0.14  15


Whim 22.2  -2.6 0.95 8.0 3.6 6.0 396.0 0.10 48.5 0.5 229
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Table 3.  Results of univariate linear regression, showing the variance explained by 


each explanatory variable, and the sample size available (n).  The explanatory 


variables are: soil carbon stock (Csoil, kg C m-2), peat depth (zpeat, m), the first axis 


(Spp1, dimensionless) of an ordination of species cover, soil moisture (θ, volumetric 


water content as a fraction), the percentage cover of aerenchymatous species (Aer, %), 


soil pH, soil bulk density (g dry mass cm-3), water table depth (zwater, cm), soil 


temperature (Tsoil, oC), and soil CO2 efflux (FCO2, μmol m-2 s-1). 


 Adjusted r2 n 


Variable All data Plot 
Sub-
site Site All data Plot 


Sub-
site Site


Csoil 26 48 58 72 4764 279 54 21
zpeat 26 50 59 74 4764 279 54 21
Spp1 24 44 60 33 1016 85 17 3
θ 14 41 40 25 3000 254 46 21
θ 4 13 59 71 30 3000 254 46 21
Aer 11 29 39 33 1016 85 17 3
pH 7 30 13 23 4171 235 45 21
bulk density 5 13 14 0 292 28 16 5
zwater 5 25 23 15 2517 130 24 10
Tsoil 4 3 9 0 3950 302 54 21
FCO2 0 4 4 1 2055 173 26 12
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Table 4.  Results of best sub-sets regression, which identifies the best combination of 


variables, for each averaging level, in the data sets with and without species 


composition data. The candidate models are ranked by the Akaike Information 


Criterion (AIC), which identifies the models which explain the most variance in the 


data with fewest terms in the model.   


 Terms Adjusted r2 AIC 
Raw data, with species composition data, n = 974 


 Spp1 + T + Aer + zpeat + Csoil + pH + θ 4 43.6 982.0 
 Spp1 + T + Aer + zpeat + Csoil + pH 43.6 982.5 
 Spp1 + T + Aer + zpeat + Csoil 43.4 984.5 
 Spp1 + T + Aer + zpeat 41.9 1008.5 
 Spp1 + T + Aer 40.3 1035.1 
 Spp1 + T 35.4 1118.8 
 Spp1  24.3 1308.8 


Raw data, n = 2095 
 zpeat + T + θ 4 + Csoil 38.5 2099.5 
 zpeat + T + θ 4 + Csoil + pH 38.5 2101.0 
 zpeat + T + θ 4 38.3 2104.8 
 zpeat + T 37.7 2126.4 
 zpeat 32.9 2288.1 


Plot means, with species composition data, n = 70 
 Spp1 + Aer + zpeat 57.7 72.2 
 Spp1 + Aer + zpeat + pH 57.5 73.6 
 Spp1 + Aer + zpeat + pH + Csoil 57.8 74.2 
 Spp1 + Aer + zpeat + pH + Csoil + θ 4 57.1 76.1 
 Spp1 + Aer + zpeat + pH + Csoil + θ 4 + T 56.5 78.0 
 Spp1 + Aer 53.2 78.1 
 Spp1  45.3 89.6 


Plot means, n = 188 
 zpeat + θ 4 58.9 190.0 
 zpeat + θ 4 + T 59.1 190.2 
 zpeat + θ 4 + T + Csoil 58.9 192.0 
 zpeat + θ 4 + T + Csoil + pH 58.7 194.0 
 zpeat 55.9 202.5 


Sub-site means, with species composition data, n = 8 
 Spp1 + θ 4 69.1 10.3 
 Spp1  53.5 11.7 
 Spp1 + θ 4 + Aer 62.7 12.1 
 Spp1 + θ 4 + Aer + Csoil 54.4 13.8 
 Spp1 + θ 4 + Aer + Csoil + WT 63.7 14.0 


Sub-site means, n = 35 
 θ 4 + Csoil  66.8 36.5 
 θ 4 + zpeat + T  67.5 37.0 
 θ 4 63.4 38.7 
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 θ 4 + zpeat + T + pH 66.4 39.0 
 θ 4 + T + zpeat + pH + Csoil  65.2 41.0 


Site means, n = 21 
 zpeat 73.8 19.9 
 zpeat + θ 4 73.1 21.5 
 zpeat + θ 4 + T 72.2 23.1 
 zpeat + θ 4 + T + Csoil 70.7 25.0 
 zpeat + θ 4 + T + Csoil + pH 68.8 27.0 
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Table 5.  Comparison of linear and non-linear model fits to the data for some 


commonly used models. The table lists the sample size available (n) in either the sub-


site means or the raw data, the adjusted r2 obtained, the Akaike Information Criterion 


(AIC), and the fitted model parameters (B0 … 3). 


 


Model n Adj r2 AIC B0 B1 B2 B3 
 


Sub-site means     
B0 + B1*zwater 23 23.1 136 22.660 0.804   


B0 + B1*exp(B2*Tsoil) 54 7.0 328 -10.400 10.100 0.064  
B0 + B1* Csoil *exp(B2*Tsoil)*( θ B3) 38 66.0 291 2.070 0.036 0.094 4.770


 
Raw data        


B0 + B1*zwater 2516 5.1 34773 15.023 0.334   
B0 + B1*exp(B2*Tsoil) 3940 4.8 54946 2.378 1.011 0.149  
B0 + B1*exp(B2*Tsoil)*( θ B3) 2350 36.0 30989 -1.060 11.695 0.076 4.531
B0 + B1* Csoil *exp(B2*Tsoil)*( θ B3) 2295 41.6 30041 0.667 0.044 0.074 3.609
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Figure captions 


 


Figure 1. Location of field sites within the UK where methane flux measurements 


were made and included in the analysis.  The background colour scale shows the soil 


carbon stock to 1-m depth in kg C m-2 (from Bradley et al., 2005). 


 


Figure 2.  Histograms of CH4 flux, classified  by (a) site and (b) soil type. 


 


Figure 3. Relations between methane flux and explanatory variables for (a) raw data 


and (b) data averaged at sub-site level.  The explanatory variables are: water table 


depth (zwater, cm), soil carbon stock (Csoil, kg C m-2), soil temperature (Tsoil, oC); soil 


moisture (θ, volumetric water content as a fraction), soil CO2 efflux (FCO2, μmol m-2 s-


1), the first axis (Spp1, dimensionless) of an ordination of species cover, soil pH, soil 


bulk density (ρsoil, g dry mass cm-3), and the percentage cover of aerenchymatous 


species (Aer, %). 


 


Figure 4. Percentage of variance in methane flux explained by univariate linear 


regression with each independent variable, at each of the four averaging levels.  The 


variables are: peat depth (zpeat, m), soil carbon stock (Csoil, kg C m-2), soil moisture (θ, 


volumetric water content as a fraction), the first axis (Spp1, dimensionless) of an 


ordination of species cover, the percentage cover of aerenchymatous species (Aer, %), 


water table depth (zwater, cm), soil pH, soil bulk density (ρsoil, g dry mass cm-3), soil 


temperature (Tsoil, oC) and soil CO2 efflux (FCO2, μmol m-2 s-1). 
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Supplemental Information (online only) 


 


Figure S1. Relations between methane flux and explanatory variables for data 


averaged at plot level.  The explanatory variables are: water table depth (zwater, cm), 


soil carbon stock (Csoil, kg C m-2), soil temperature (Tsoil, oC); soil moisture (θ, 


volumetric water content as a fraction), soil CO2 efflux (FCO2, μmol m-2 s-1), the first 


axis (Spp1, dimensionless) of an ordination of species cover, soil pH, soil bulk density 


(ρsoil, g dry mass cm-3), and the percentage cover of aerenchymatous species (Aer, %). 


 


Figure S2. Relations between methane flux and explanatory variables for data 


averaged at site level.  The explanatory variables are: water table depth (zwater, cm), 


soil carbon stock (Csoil, kg C m-2), soil temperature (Tsoil, oC); soil moisture (θ, 


volumetric water content as a fraction), soil CO2 efflux (FCO2, μmol m-2 s-1), the first 


axis (Spp1, dimensionless) of an ordination of species cover, soil pH, soil bulk density 


(ρsoil, g dry mass cm-3), and the percentage cover of aerenchymatous species (Aer, %). 


 










