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Abstract  
With an ultimate range up to 1000 km, a maximum operating 
depth of 6000 m, and a generous payload capacity,  
Autosub6000 is well placed to become one of the world’s 
most capable deep diving Autonomous Underwater Vehicles 
(AUVs). Recently, Autosub6000 successfully completed its 
first deep water engineering trials, and in September 2008, 
fitted with a multibeam sonar, will carry out its first science 
missions. This paper will describe how we are tackling the 
design issues that specifically affect a deep diving AUV 
which must be capable of operating with true autonomy, 
independently of the mother ship, namely: carrying adequate 
energy for long endurance and range, coping with varying 
buoyancy, and maintaining accurate navigation throughout 
missions lasting up to several days.  Results from the recent 
engineering trails are presented, and future missions and 
development plans are discussed. 
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Introduction  

There are several scientific survey AUVs now either 
operational or in advanced stages of development. For 
example, the WHOI’s Autonomous Benthic Explorer (ABE) 
has been  operational for over ten years [1], carrying out 
pioneering work in high resolution mapping of mid ocean 
ridge environments and tracing of hydrothermal plumes. 
This is soon to be replaced by the 4500m rated SENTRY 
AUV. Hydroid, with the 6000m rated REMUS 6000, 
MBARI, with the Seafloor Mapping AUV [2],  Altium 
technologies, with BLUEFIN-21, and International 
Submarine Engineering, with its Explorer class AUVs [3],  
all offer AUVs with deep sea science survey capabilities 
However, the field is still in its youth and (with the exception 
of ABE), and there is relatively little published literature on 
the science results of  deep AUV missions beyond 3000m 
deep.  
One of main distinguishing characteristics of the Autosub 
AUV programme, since its conception and first trials in 1996, 
is that we have emphasised the “Auto” part of its name.  
From the early days of the program, we have placed great 
importance upon freeing the mother support ship to carry out 
other operations, routinely operating the vehicle “over the 
horizon”, beyond communication or tracking range. Extreme 
examples of this were the Arctic and Antarctic under ice 

missions (during the UK, Natural Environmental Research 
Council funded Autosub Under Ice programme), illustrated 
by 24 hour missions under sea ice, North East Greenland [4], 
and a 30 km run under an Antarctic ice shelf [5]. In both of 
these missions the AUV operated well beyond any 
communications range, or hope of rescue if anything went 
wrong. For these under ice and other science missions, we 
developed the control, collision avoidance and navigation 
systems for the AUV, and gained experience of operating an 
AUV in extreme environments [6].    
For Autosub6000, this philosophy is continued. Ocean class 
research ship-time is expensive, and should be used 
effectively. For example, while the AUV is carrying out a 
high resolution sonar survey, we may wish to make use of 
the mother ship for taking seabed sediment cores, or for 
carrying out a wide area multibeam bathymetric survey. 
These activities may take up to several days, and hence the 
AUV should be capable of operating unsupervised for long 
periods.  
To achieve the required operating duration and range  
(particularly when we consider that a deep diving AUV will 
take several hours to descend to and ascend from its 
operating depth), we will need to consider carefully the 
energy storage technology. Another potential issue is the 
expected buoyancy variation of the AUV as it descends. 
Unmitigated, this could cause an increase in the effective 
hydrodynamic drag, and hence decrease the useful range of 
the AUV.   
Unassisted navigation of a deep diving AUV is another 
challenge. An AUV fitted with a multibeam sonar is capable 
of bathymetric surveying at a resolution 1 to 5 m (depending 
on the AUV flying altitude). The value of this data will be 
decreased if the AUV is not positioned in absolute 
coordinates with corresponding accuracy,  particularly if the 
AUV is being used to identify interesting seabed features for 
later, more detailed, investigation by itself or another vehicle 
(for example a  Remotely Operated Vehicle).   
Hence there are three issues for an AUV which are specific 
to the deep diving and useful autonomy:  

• Energy storage at high ambient pressures.  
• Accurate autonomous positioning of the vehicle 

throughout its mission.  
• Buoyancy change due to compressibility effects. 

The paper describes how we are dealing with these issues at 
a design level, reports on the results of the first Autosub6000 
engineering trials, and looks towards the future and more 
advanced approaches to autonomous navigation.  
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hours of ship time. The continuous use of an Ultra Short 
Base Line (USBL) system from the mother ship is also in 
general ruled out, as it commits the ship to continuously 
tracking the AUV, restricting the ships ability to carry out 
other operations.  
 

Instead we are planning to use range-only acoustic 
transponder fixes from the ship to the AUV, combined with 
the AUVs own dead reckoned navigation and the ships 
navigation, to initially position the vehicle after its descent. 
This approach avoids the main problem with USBL based 
systems – their need for extremely high pointing and attitude 
reference accuracy, necessitating a costly and very precisely 
calibrated system [11]. Using the range-only approach, we 
hope to be able to demonstrate (with the AUV at depths of up 
to 6000m) positioning accuracies as good as standard GPS. 
There remains the challenge of controlling the drift of the 
AUV positioning system during the mission. For straight 
line missions, there is little option other than to hope for 
affordable improvements in the accuracy of the INS and 
ADCP systems, plus more sophisticated sensor integration 
and error modelling. However, for missions where an area is 
to be surveyed by the AUV, using optical or sonar imagery or 
bathymetry, and fixed natural features on the seabed can be 
detected and used  as reference points, then there is much 
interest, and potential benefits in approaches such as 
Simultaneous Localization and Mapping (SLAM) [12] for 
controlling drift in the AUV positioning.  
We are planning to use a similar approach with Autosub6000. 
Autosub6000 is fitted with a Kongsberg Simrad EM2000 
multibeam bathymetric mapping system. We are developing, 
and in the near future plan to test, algorithms based on 
correlation, or Terrain Contour Mapping (TERCOM) 
approaches, using the data recorded from the multibeam 
sonar from an early part of the mission (where navigation 
accuracy is good) to act as a reference for later isonification 
of the same area, to substantially eliminate the uncontrolled 
navigation error growth during area survey type missions.  
A combined USBL and bi-directional acoustic messaging 
system, the Linkquest 10000, is used for real time tracking of 
the AUV from the mother ship, for health monitoring, 

navigation, control, and to provide the ranging  input to the 
range-only position algorithm.  

Buoyancy Change 

The density of sea water varies typically increases by 2.8% 
over a 6000 m depth range. If the materials used in the 
construction of the AUV do not compress at a similar rate, 
the buoyancy of the vehicle will change substantially as it 
descends.  
The largest single solid item on the vehicle is the syntactic 
foam used for buoyancy. Prior to the trials, from 
manufacturers data, and through laboratory tests, we were 
able to get an approximate estimate of the bulk compressive 
and thermal moduli of this material, and also account for the 
other materials used in the construction of the vehicle (which 
generally have a very high compressive modulus, hence 
compress little).  However, the uncertainties implicit in 
being able to test only relatively small samples of materials 
meant that we could not be certain that the buoyancy levels 
on the vehicle would stay within safe (always positive) limits, 
or alternately become so high that the vehicle would not be 
able to control its depth.  Prior to the first ever deep water 
trials, then, we needed to progress with caution.  
The primary issue was vehicle safety: We needed to be sure 
that the vehicle would maintain positive buoyancy at any 
depth, and hence could surface, even if all systems failed 
(the vehicle has two independent ARGOS satellite 
transmitters and flashing lights for relocation on the surface).  
Hence we ballasted the vehicle with a conservative surface 
buoyancy of 20 kg (rather than the typically used 10 kg for 
Autosub - a larger vehicle), and also installed two 
independent emergency weight drop systems, each able to 
increase the vehicle buoyancy by 10 kg, under automatic or 
acoustic communications control.  
This extra surface buoyancy contingency, plus the 
anticipated increase in buoyancy with depth created a 
problem. The vehicle might have difficulty maintaining 
depth control or run with significantly increased effective 
drag due to the need to produce large down forces by 
hydrodynamic lift off the vehicle body.  
The mitigation was to install small wings on the body,         
set slightly pitch down. These help in producing 
hydrodynamic  down force with much greater efficiency 
(hence less induced drag)  than can be produced by the 
vehicle body alone.   

Results  - Autosub6000 sea trials  

Autosub6000’s first test cruise, and first time in water (apart 
from a brief dip in its fresh water test tank to measure the 
initial buoyancy), was in September 2007, onboard the RRS 
Discovery.  Following a short test mission in Falmouth Bay, 
England, to test the basic vehicle control and navigation 
systems, we headed for a conveniently flat part of the deep 
abyssal Atlantic near 47⁰ N, 11⁰ W, 250 miles way, with a 
water depth of 4680m.  

Safely testing an AUV for the first time  

Despite the design safety features  already described, we still 

Figure 3. The Navigation System for 
Autosub6000.  



needed to proceed with great caution as we sent the vehicle 
down to the test depth of 4556 m.  It was important to 
monitor the vehicle buoyancy as it descended, and abort the 
mission if the buoyancy started to reduce to dangerously low 
levels.  Our approach was  to make use of the acoustic 
telemetry and command system to monitor and control the 
vehicle as it descended.  But how could we do this safely 
when the acoustic command and telemetry system had never 
been tested (beyond 2 m range in a test tank)?  
At 0655 on September 22nd 2008, Autosub6000 was 
launched, the wind speed was 25 knots, the sea state was 3m. 
Following system checks via the radio Wi-Fi link, we sent 
the command to start the missions. The vehicle dived and 
spiralled down to  1000 m depth,  and then begin circling 
beneath the ship. We interrogated the AUV via the acoustic 
communications system, and received engineering data 
which included  the vehicle pitch, forward speed, and stern 
plane angles. These variables are a function of the vehicle 
buoyancy (Equation 1) and hence can be used to monitor the 
change of buoyancy as the vehicle descends.   
 

ܤ                  ൌ ଵ
ଶ
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Where B = AUV Buoyancy, ρ=density of water, U =AUV 
speed through the water, CLbody= lift slope of AUV body, 
CLsplane=lift slope of sternplane, φ=pitch angle,    
δ=sternplane angle.  
This  data, collected while the AUV circled at 1000 m depth, 
served as a calibration for the system (to estimate CLbody), as 
we were confident that the buoyancy of the vehicle at 1000 
m depth would not be significantly different from the 
(known) buoyancy at the surface. Having collected sufficient 
data, and satisfied that the vehicle was operating correctly, 
we sent an acoustic command for the vehicle to continue its 
descent to 2500 m. If the AUV had not received this 
“continue” command within a period of 1 hour of it starting 
to circle, it would have automatically aborted its mission, 
dropping its 20 kg ballast weights and surfaced. This mode 
of behaviour was necessary to ensure that the vehicle would 
behave in safe manner even if we had not been able to 
establish any acoustic communication. 
Unfortunately, the data received at 2500 m depth revealed a 
problem.  The AUV’s speed through the water is measured 
by the ADCP, which relies on acoustic backscatter off 
particles (usually zooplankton) in the water,  but at depths 
greater than about 1000m there was an insufficient 
population of zooplankton, and consequently the speed 
estimate had high variance and was biased towards zero. 
However, the consistency of the vehicle pitch angle while 
circling at depth convinced us that the buoyancy was not 
decreasing significantly as the vehicle descended, and hence 
we proceeded with the descent, with further circling and data 
telemetry stops, at 4000 m, and finally 4500m.  
We still needed to find a method of accurately monitoring the 
buoyancy variation of the vehicle with depth, over time, and 
over a number of pressure cycles (it is well known that 
syntactic foam has a tendency to lose buoyancy over time 

and pressure cycles, due to collapse of a portion of its 
microspheres). The method we chose for subsequent 
missions was based on a steep angle, continuous free ascent 
from depth with alternately medium and very low propulsion 
power.   
Figure 4 is a simplified force diagram which illustrates the 
principle.  

 

 
 
There are two main benefits of this method: 

• It gives a near continuous measure of how the 
buoyancy varies with depth as the vehicle ascends. 

• The vertical speed of the AUV can be measured 
accurately by differentiating the output of the 
Digiquartz depth sensor (which itself has an 
inherent accuracy of 0.01% ).  

By resolving forces along and across the AUV axis, and 
assuming that the induced drag increment due to Lift is  Lγ, 
we can find an expression for the buoyancy (Equation 2). 
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where Cd = vehicle drag coefficient,  ݖሶ  = the vertical 
measured speed, V = AUV volume. As γ, the drag due to lift 
coefficient, is known only approximately, it is desirable to 
ascend at as steep an angle as possible (we ran these ascents 
at 60 degree pitch up angles).  Any steeper then there would 
be possibility of losing control over the vehicle roll. 
Figure 5 shows the ascent velocity of the AUV as a function 
of time for mission #3. The propulsive power of the AUV 
was alternately set at 10 W (just enough to keep the propeller 
turning, and hence not increase the vehicle drag) and 300 W 
(from the powered flight data, we could also estimate the 
coefficient of drag).  
From the variation in ascent rate we were able to estimate 
that the AUV buoyancy increased from 20 kg to 26 kg, from 
the surface to 4500m depth. The AUV was able to correctly 
control its depth with this level of buoyancy, even at lowest 
tested speeds of 1.3 ms-1.  
During the 5 dives during the cruise, with over 36 hours and 
210 km at depths beyond 4000 m, there was no evidence of 
loss of buoyancy. 

Figure 4. A force diagram for the AUV in free ascent.
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will from the RRS James Cook, as part of a geology and 
geophysics cruise to investigate potential geo-hazards (such  
as Tsunami generating landslides) on the European margin. 
In the spirit of true AUV autonomy, while the AUV is 
deployed, we plan to use the ship for seabed coring 
operations. 
For this cruise, the range only navigation will be 
implemented in “near real time”. The navigation data needed 
from the AUV to process the position fix will be telemetered 
via the acoustic telemetry link, and once sufficient data has 
been received to calculate the navigation correction (this is 
expected to take between 30 minutes and 1 hour), the 
navigation offset will be sent by the acoustic link to the AUV. 
This will give us the ability to position the AUV at precisely 
the right starting point, so that the interesting geological 
features (such as scars in the sediment due to past sea bed 
slippage) can be surveyed efficiently with the EM2000 
multibeam  system. 
As well as providing bathymetric data for the science 
missions, we are planning to apply algorithms to the 
EM2000 multibeam data to aid in the AUV navigation post 
processing. The area  survey missions will be planned with 
sufficient area overlap to allow TERCOM type techniques to 
be applied to the bathymetry data, hence helping to constrain 
the navigation drift.  
Autosub6000 has also recently been fitted with a Seabird 
SBE 52MP CTD. The CTD data will be available for general 
oceanographic purposes, but also will provide engineering 
data, improving the quality of the navigation data and 
bathymetry data, particularly through measurements of the 
depth averaged density profile (for more accurate pressure to 
depth conversion), and measurement of the depth averaged 
sound velocity (providing more accurate multibeam 
bathymetry, and sound velocity range correction for the 
range-only navigation algorithm).  
These developments are the near term. For our longer term 
goals, as part of the NERC funded Oceans 2025 programme, 
we are planning to develop further the capabilities of the 
AUV, improving the collision avoidance and 
manoeuvrability (including hover mode), the autonomous 
navigation, and the onboard intelligence,  giving it the 
capability of carrying out missions  more effectively in 
complex environments. 
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