

UNIVERSITY BIRMINGHAM

Future impacts on pan-European environmental flows

Cédric L.R. Laizé^{1,3} (clai@ceh.ac.uk), M. Acreman¹, M. Dunbar¹, H. Houghton-Carr¹, M. Flörke², C. Schneider², D.M. Hannah³ (presenting); (1) Centre for Ecology and Hydrology, UK; (2) Kassel University, Germany; (3) University of Birmingham, UK

1 Introduction

This poster presents a large-scale assessment of a set of climate and socio-economic scenarios for Europe's freshwater futures up to 2050, covering EU countries and neighbours, Mediterranean rim countries of north Africa and the near East. The study aim: (1) to map the severity of potential future impacts of these scenarios on aquatic and riparian ecosystems in the region; and (2) to identify which scenarios have most/least influence. The methodology is based conceptually on the Range of Variability Approach (RVA) using the Indicators of Hydrological Alteration (IHA): a desk-top technique for assessing environmental flow requirements. Major rivers and their tributaries are represented as ~35,000 contiguous cells (0.5' longitude x 0.5' latitude) within the WaterGAP (Water - Global Assessment and Prognosis) model. For each cell, monthly flows were generated for an ensemble of 10 future change scenarios consisting of combinations of two climate scenarios (IPCM4 and MIMR) and four socio-economic water-use scenarios for 2040-2069. Given the high number of sites and scenarios, the IHA/RVA was adapted to use monthly flows and results aggregated using a simple colour coding system to aid mapping and interpretation.

2 Data and Method Flow Chart

Acknowledgements Financial support from the project water SCenarios for Europe and NEighbouring States (SCENES) from the European Commission (FP6 contract 036822), and from the Natural Environment Research Council (NERC) through its core funding to CEH. Views expressed are those of the authors, and not necessarily of the coordinating or funding bodies of the SCENES project.

Table 1 Environmental flow indicators				Table 2 Distribution of impact levels per runs (% of cells)							IPCM4	IPCM4	IPCM4	IPCM4	IPCM4	MIMR	MIMR	MIMR	MIMR	MIMR
Regime characteristic	Parameter monthly	Indicator			None	Low	Med	High			Natural	EcF	FoE	PoR	SuE	Natural	EcF	FoE	PoR	SuE
	(one value per year)	(one value per record)							IPC Nat	LIVI4 tural		21	20	18	17	35	37	36	36	36
Flood Magnitude & Frequency	Number of times that monthly flow exceeds threshold (all-data naturalised Q5 from 1961-1990)	Median & Interquartile Range		IPCM4 Natural	5	28	51	15	IPC	CM4	21		5	7	9	37	34	35	37	37
Flood Timing	Month of maximum flow (as number 1 to 12)	Mode		EcF	5	21	53	21	IPC	CM4	20	_			6	26		24	26	26
Seasonal Flow	January flow (mm runoff)	Median & Interquartile Range		FoE	5	21	54	20	F	ToE	20	5		5	6	36	33	34	36	36
	April flow (mm runoff)	Median & Interquartile Range		PoR	5	22	54	19	IPC P	CM4 PoR	18	7	5		4	35	33	33	34	35
	July flow (mm runoff)	Median & Interquartile Range		SuE	5	23	54	19	IPC	CM4	17	9	6	4		34	32	33	34	34
	October flow (mm runoff)	Median & Interquartile Range																		
Low Flow Magnitude &	Number of months that flow is less than threshold	Median & Interquartile Range		MIMR Natural	5	29	53	13	MI Nat	tural	35	37	36	35	34		10	8	5	3
Frequency	(thresholds = all-data haturalised Q95 from 1961-1990)			EcF	5	27	53	16	MI	IMR	37	34	33	33	32	10		5	8	9
Minimum Flow Timing	Month of minimum flow (as number 1 to 12)	Mode		FoE	5	27	53	15	MI	IMR	36	25	3/	22	22	8	5		5	7
Low Flow Duration	Number of times that two consecutive months are less than	Median & Interquartile Range		PoR	5	28	53	14	F	FoE	50		54		55	0				/
	threshold (all-data naturalised Q95 from 1961-1990)			SuE	5	29	53	14	MI P	IMR PoR	36	37	36	34	34	5	8	5		4
									MI S	IMR buE	36	37	36	35	34	3	9	7	4	

CE

• Climate models are primary drivers, socio-economic scenarios are secondary drivers • Differences between models and scenarios relate mainly to the location of impacts

Centre for Ecology & Hydrology

NATURAL ENVIRONMENT RESEARCH COUNCIL

Table 3 Differences in impact levels between runs (% of differing cells)