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SUMMARY 

It is proposed that Loch Fitty will be drained and temporarily removed for a period of 

approximately 7.5 years, while the underlying coal is removed. Comprehensive planning and 

development documents have been prepared by the Scottish Coal Company Limited (SCCL) 

and its development team in relation to this proposal. A clear statement of intent in relation to 

recovery periods and end point water quality targets is now required. This report summarises 

the Water Framework Directive (WFD) targets to be met for the re-instated Loch Fitty to 

attain Good Ecological Status and makes recommendations on a recolonisation strategy 

designed to achieve this. Additional mitigation/monitoring measures that may be required to 

attain and sustain good status, and a likely timescale for recovery, are also discussed. 

WFD ecological water quality targets for the reinstated Loch Fitty 

During the reconstruction phase, Loch Fitty will be deepened in comparison to the existing 

loch. The new loch will have a mean depth of 3.6, whereas the existing loch has a mean depth 

of 2.3 m. This deepening changes the WFD lake type from high alkalinity, very shallow 

(HAVS) to high alkalinity shallow (HAS) and this is associated with more challenging WFD 

water quality targets. However, the benefits of deepening the loch, as explained in the 

planning and development documents, are recognised. 

Total phosphorus: The procedures for setting site specific total phosphorus (TP) targets for 

lakes are well defined. For the re-instated Loch Fitty, these give annual average TP 

concentration targets of 22 μg L
-1

 for the Good/Moderate boundary, 45 μg L
-1

 for the 

Moderate/Poor boundary and 89 μg L
-1

 for the Poor/Bad boundary. 

Nitrogen: There are no agreed nitrogen (N) targets for lakes at the moment. However, a 

recent review by Maberly & Carvalho (2010) suggested a method for setting targets based on 

total nitrogen (TN) concentration. If this method is adopted, it would put the mean annual TN 

concentration of the Good/Moderate boundary for the reinstated Loch Fitty at 0.6 N mg L
-1

. 

Chlorophyll a concentration: Methods for assessing the status of phytoplankton in lakes 

under the WFD have been formally adopted for phytoplankton chlorophyll a. The growing 

season mean chlorophyll a standard for the re-instated Loch Fitty is 13.3 µg L
-1

 for the 

Good/Moderate boundary. The annual mean chlorophyll a value for this boundary is 

7.5 µg L
-1

. 

Phytoplankton: The phytoplankton trophic index (PTI) is still being developed and there are 

no class boundary values available at present. However, in terms of species composition, 

typical High/Good status phytoplankton taxa for high alkalinity lakes such as Loch Fitty 

would include chrysophytes such as Bitrichia, Uroglena and Dinobryon, and the diatoms 

Tabellaria and Urosolenia. In contrast, poor quality taxa, reflecting an “impacted” state, 

would include the green algae Actinastrum and Scenedesmus, and the cyanonbacteria 

Microcystis, Planktothrix and Aphanizomenon. 

Cyanobacterial abundance: This metric is calculated from the total biovolume of 

cyanobacteria in a sample of lake water, and comprises the average value from samples 

collected over the summer period (i.e. July to September). For high alkalinity shallow lakes, 

such as the restored Loch Fitty, it is recommended that values of this metric should be 

< 0.71 mm
3
 L

-1
. 
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Phytobenthos: There is no metric available to assess the status of phytobenthos in lakes at 

present. However, a reference condition can be calculated from its alkalinity type. For the re-

instated Loch Fitty, the reference (High status) lake diatom trophic index value would be 25.  

Macrophytes: Loch Fitty is currently classified as having Good Status under the WFD for its 

macrophyte community according to the results of a survey undertaken in 2008. So, it has 

been assumed that the aquatic plant community in the restored Loch Fitty needs to be as good 

as, or better than, it was in 2008. So, preliminary targets for the restored Loch Fitty are: 

Lake macrophyte nutrient index (LMNI)  ≤ 6.71 

Total species      ≥ 23 

Number of functional groups    ≥ 13 

Plant cover per species    ≥ 1.82 

Relative cover of filamentous algae   ≤ 0.03% 

A Microsoft Excel
©

 based tool has been developed for assessing the ecological status of a 

loch based on its macrophytes by Nigel Willby, Stirling University, and this was used in the 

assessment by SEPA in 2009 (Ross Doughty, pers. comm.). An updated version of this tool 

may be available from either Nigel Willby or SEPA to calculate more accurate quality targets 

for future macrophyte communities in the restored Loch Fitty. 

Macroinvertebrates: European targets for macroinvertebrates are under development, but not 

available yet. So, there are currently two WFD tools that can be used for assessing the 

ecological status of macroinvertebrates in lakes. These are the Lake Acidification 

Macroinvertebrate Metric (LAMM) and Chironomid Pupal Exuvial Technique (CPET). 

LAMM is for assessing the impacts of acidification, which is not a recognised pressure at 

Loch Fitty. So, for the purposes of this review, it is proposed to set targets for the new Loch 

Fitty using the CPET approach. This approach gives a reference value of -0.158, but there are 

no values available at present for the Good/Moderate, Moderate/Poor or Poor/Bad status class 

boundaries. So, all that can be said right now is that the CPET target for the new Loch Fitty 

needs to be close to -0.158. 

Fish: There is no WFD compliant fish classification tool for standing waters at present, or 

formal sets of relevant targets. It has been suggested that only brown trout, eel, stone loach & 

3-spined stickleback should be in the re-instated loch (meaning that minnow, perch, pike and 

roach need to be removed). Due to their negative impacts on water quality through 

zooplankton predation, the case for removing roach is overwhelming. However, the case for 

removing minnow, perch and pike is less clear, especially since the latter have been there for 

more than 200 years. The “brown trout, eel, stone loach & 3-spined stickleback” target seems 

to err on the side of caution in the context of WFD requirements. 

Restoration/recolonisation strategy 

Phosphorus: Meeting P concentration targets can be helped by encouraging colonisation, 

through replanting, of submerged and floating macrophytes as they reduce nutrient release 

from sediments and help establish a clear water state. Although non-invasive, native species 
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could be added – such as white and yellow water lilies – it should be noted that accidental 

introductions of invasive, non-native species could degrade the WFD status of the loch in 

terms of its macrophyte community. 

Phytoplankton/phytobenthos: Phytoplankton and phytobenthos species will recolonise the re-

instated loch naturally from the inflows, via bird transfers and as inoculums associated with 

macrophytes replanting. This process requires no specific restoration/recolonisation strategy 

to be put in place. 

Macrophytes: Macrophytes from the existing Loch Fitty will be transferred to special holding 

ponds and replanted into the re-instated Loch Fitty once it has been refilled. The use of this 

locally sourced material to replant the loch will maintain the integrity of the Loch Fitty 

aquatic plant populations. However, conditions in the holding ponds need to be specified 

more clearly, especially in relation to the availability of suitable depths (0.3-3m) for a range 

of macrophytes to ensure success. Sourcing low nutrient water to refill the ponds with may be 

a problem. Rainwater alone would not be suitable as it would have too low a pH value to suit 

plants from a high alkalinity lake, although this could be adjusted. It is essential that the 

health of the holding ponds is closely monitored, especially over the growing season, to avoid 

loss of important species or contamination by invasive species. 

Macroinvertebrates: The restoration/recolonisation of macroinvertebrate species should focus 

on creating the right conditions (i.e. low nutrients, mixed substrates, native flora) within the 

loch. Then, the species required will recolonise naturally. For this reason, no formal 

recolonisation plans are needed. An important part of creating the right conditions is the 

improvement of the shoreline to provide more diverse habitats. If the right conditions are 

created within the loch, the feeder streams will provide a source of the required 

macoinvertebrate species if the quality of these streams has been improved before the loch is 

re-instated. In addition, many benthic invertebrate species are the juvenile stages of flying 

adults that can readily recolonise the loch by egg deposition if presented with the right 

conditions. Another vector of macroinvertebrates, especially crustacaea, is aquatic birds. 

Experience based on the development of reservoirs suggest that recolonisation by 

macroinvertebrates occurs naturally within a few years. 

Fish: Restoration/recolonisation by fish in the new Loch Fitty is based on the deliberate 

introduction of desirable fish species and numbers by stocking. However, potential 

uncontrolled recolonisation by undesirable fish species, especially roach, from connected 

watercourses needs to be addressed because the eradication of unwelcome species is likely to 

be extremely difficult if they become established in the loch, unless drastic measures are 

taken. Manual capture by netting or electric fishing is highly unlikely to remove the entire 

populations and any remaining individuals are likely to re-establish abundant populations 

within a few years. 

Monitoring and assessment 

A range of monitoring and assessment procedures will need to be carried out over the 

recovery period to ensure that any developing problems are recognised early enough for 

remedial action to be taken. As a minimum, the following should be monitored: 

Catchment nutrient input: Nutrient inputs (N, P, Si) from the feeder streams should be 

monitored at fortnightly intervals during the recovery period. In addition, targeted high flow 
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event sampling should be undertaken to assess event driven inputs, such as sediment 

transport. Quarterly streamwalks along the inflows, at high and low flows, should be 

undertaken to identify any new nutrient source „hotspots‟ within the catchment so that they 

can be addressed before they can affect the water quality of the loch. 

P release from sediments: The amount of release sensitive sediment P and P released to the 

water column should be assessed over the summer period to underpin any follow up 

management action that is needed to control sediment P release during the recovery process. 

Chlorophyll a, N, P and Si concentrations, phytoplankton and zooplankton abundances: 

Samples for the determination of in-lake chlorophyll a, N, P and Si concentrations, and 

phytoplankton and zooplankton species composition and abundance should be collected at 

monthly intervals over the recovery period. This will allow monitoring of progress towards 

WFD targets and provide information to underpin decisions on remedial action if problems 

develop. 

Phytobenthos: Samples of benthic diatoms should be collected annually by brushing or 

scraping the upper surface of cobbles or small boulders obtained from the littoral zone of the 

loch, or from submerged stems of emergent macrophytes in areas dominated by fine 

sediments. 

Macrophytes: Annual surveys of macrophytes species composition, percentage cover and 

growing depth should be undertaken over the recovery period. This will provide information 

on progress towards the WFD targets and early warning of problems that may require 

management intervention. 

Macroinvertebrates: Surveys of the macroinvertebrate communities should be undertaken 

four times a year, between April and October. Sampling should include skimming the surface 

of the lake with a hand net. 

Fish: Annual fish surveys should be undertaken over the recovery period. 

Recovery times 

In terms of sediment P concentrations, the old Loch Fitty would be expected to recover 

chemically from nutrient pollution, alone, in about 5 years if external inputs were drastically 

reduced. However, this is not the only problem that needs to be addressed at this site to 

achieve WFD Good Ecological Status. There are many hydromorphological pressures caused 

by the creation of artificial shoreline structures and the dumping/leaching of waste material 

into the loch. In particular, the latter has resulted in significant heavy metal pollution of the 

sediments. There is also a strong presence of invasive non-native fish species that also 

contribute to the downgrading of the ecological status of the waterbody. Draining the loch, 

removing the polluted sediments and non-native fish species, naturalising the shoreline and 

re-instating the loch is probably the only practical way for the loch to be restored to Good 

Ecological Status. The proposal by SCCL to incorporate this into their plans to extend surface 

mining within the catchment, if properly managed, provides a good opportunity for this to be 

achieved. Once re-instated, it is expected that ecological recovery to Good Ecological Status 

will take 5-10 years. 
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Management of the recovery process 

There have been many attempts to restore the ecosystem function of lakes following 

degradation by some type of external pressure. However, there appear to be no examples of 

lakes being restored to particular water quality targets, as has been proposed for Loch Fitty. 

So, this is a challenge in terms of our knowledge and understanding of lake recovery 

processes. To reduce the risk of the desired endpoint not being reached, it is important that 

the recovery process is actively managed. 

The recovery of the re-instated Loch Fitty may be adversely affected by invasive non-native 

species of fish, macroinvertebrates and plants. The risk of this happening needs to be kept to 

a minimum, because eradication is difficult or impossible once infestation has occurred. 

Measures to reduce the risk may include raising public awareness, controlling public access 

and ensuring holding ponds do not become infested, and it is possible that an invasive species 

action plan may need to be drawn up. Care should be taken not to introduce a seed bank of 

unwelcome species as part of the macrophyte rooting medium added to the bed of the new 

loch. In terms of establishing the required macrophyte community, it has been shown that 

pilot investigations into the recruitment/growth rates of the native species that are being re-

introduced can be beneficial in terms of creating an evidence base upon which any necessary 

management plans or mitigation actions can be based. 

As Loch Fitty is a calcareous, hardwater site, it is particularly vulnerable to invasion by 

species such as zebra mussels, signal crayfish and alien gammarids. Invasion by any of these 

species would reduce the WFD ecological status class of the reinstated loch. To avoid this 

problem, source materials used for rebuilding the loch need to be carefully controlled and any 

work/leisure craft used on the loch need to be decontaminated to prevent the spread of these 

animals. It is recommended that guidance documents recently published by the GB non-

native species secretariat be consulted. 

Invasive fish species are extremely difficult to eradicate and it is best to avoid them entering 

the re-instated loch in the first place. One of the key requirements of the restoration process is 

to remove roach from the loch, because these fish feed heavily on zooplankton and, in doing 

so, reduce the capacity of these crustacea to keep algal biomass under control. As a result, the 

water becomes increasingly turbid and high phytoplankton densities outcompete submerged 

macrophytes for available light. This can have a serious impact on the macrophyte 

community, preventing it meeting WFD targets. 

Finally, it is evident from the in-lake data that are available for the existing Loch Fitty, that 

algal growth and biomass accumulation in the lake is limited by both N and P availability 

over the summer months. So, managing N and P sources within the catchment to reduce their 

inputs to the loch would benefit the restoration measures. 

Case studies 

A review of a number of case studies revealed the following general information in relation 

to the proposed restoration work: 

• sediment removal has been widely used in restoration projects 
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• a response in P, chlorophyll a and, to a lesser extent, N concentrations were the most 

commonly reported in-lake responses 

• no studies have been reported that have directly addressed WFD-compliance, or any 

other ecological recovery targets for the restored lakes 

• recolonisation by macrophytes, phytoplankton and zooplankton has been reported for 

a small number of lakes after sediment removal 

• ecological recovery is currently being studied in detail in a range of created lakes and 

practical management lessons may be learned from these 

• a small number of lakes within the Czech Republic have been created on spent brown 

coal mining sites; the recolonisation of the fish community has been managed and 

monitored in these lakes 

• there are number of sites to which visits could be made that would provide useful 

information on recovery processes. 

In terms of practical experience, a number of specific recommendations have been made 

concerning further contacts and site visits. 

Based on the results outlined above, it would appear to be sensible to wait until the 

macrophyte community has established and reached a steady state before introducing the fish. 

This would reduce the likelihood of negative fish impacts in the important early years of 

macrophyte colonisation and allow targeted contingency management to be put in place 

where necessary. Additionally, planting of desirable species will increase the resilience of the 

system to undesirable monocultures, although the end point community structure may not be 

solely dependent on the stocked plant community structure. Finally, as outlined already in 

this document, it is essential that non-native invasive species (especially macrophytes and 

fish), and perhaps also non-native waterfowl species, be excluded from the site during the 

early macrophyte colonisation phase where possible. 

Conclusions 

The proposed surface mining project provides a unique opportunity to restore Loch Fitty. It 

will address some key improvements that are essential for helping the loch meet WFD 

targets, i.e. good water quality and good hydromorphological conditions. 

Good water quality can only be attained by addressing sources of nutrient pollution within the 

loch and its catchment, and by removing heavy metal laden loch bed sediments. This will 

ensure that previous water quality problems at the loch do not re-occur and that the 

improvement in status of the waterbody is sustainable over time. 

Ensuring that invasive non-native species cannot return to the loch requires the ecological 

quality of the inflows and outflow to be improved. This is an additional benefit of the 

proposed loch restoration project. 

Overall, the proposal of SCCL for restoring Loch Fitty has a better chance of delivering the 

required end result of Good Ecological Status than the River Basin Management Plan 

proposal, because failure to meet WFD ecological quality targets at this site cannot be 
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resolved by catchment management, alone. Pressures due to hydromorphological 

modification, non-native species and the accumulation of heavy metals in the sediments also 

need to be addressed. 
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1. Introduction 

1.1 Background 

In March 2011, the Scottish Coal Company Limited (SCCL; contact - Theo Philip) awarded 

the NERC Centre for Ecology and Hydrology (CEH) a contract to report on water quality and 

ecological targets for the restoration of Loch Fitty that were in line with the requirements of 

the European Water Framework Directive (WFD; European Parliament, 2000). CEH were 

also asked to discuss the likelihood of, and timescales for, the recovery, following the 

completion of a range of proposed restoration works. It has been proposed that these works 

will be undertaken both during (catchment management) and on completion (loch 

reinstatement) of surface mining works in the area. The aims and objectives of the project, 

outlined below, were compiled after an initial assessment of the available data and 

information on the loch, and following discussion with the Scottish Environment Protection 

Agency (SEPA), SCCL and Dundee University on 3rd February 2011. 

Currently, Loch Fitty fails to meet the “lake-type specific” water quality standards that are 

specified for the site under the WFD, and it is classified as being of poor status in the 

Scotland River Basin Management Plan for the area (RBMP Water body information sheet 

for water body 100278 in Forth; 15/3/2010). It is widely believed that the recent „poor‟ water 

quality conditions have resulted from elevated nutrient inputs to the loch from sources within 

the catchment in combination with the frequent re-suspension of the loch bed sediments 

(Jarvis & Quinn, 2010). Over the years, Loch Fitty has also undergone some significant 

hydromorphological changes, including hard engineering of the shoreline and re-alignment of 

feeder streams. These have resulted in historical changes to its shape, shoreline and 

hydrology (SCCL, 2010h) that are likely to have contributed to the current water quality 

problems (Rowan, 2010; Moss, 2008).  

SCCL have published an Environmental Statement detailing their proposal to undertake 

development and restoration work at the existing St. Ninians Mine in Fife (SCCL, 2010a). 

These works include the excavation and surface mining of coal reserves that are situated 

beneath Loch Fitty and the subsequent restoration of the loch. In outline, it is proposed to 

combine the further development of the mine with the opportunity to improve the water 

quality and ecological status of Loch Fitty by: 

(i) removing all nutrient and heavy metal laden sediments from the loch, 

(ii) developing and implementing a sediment and nutrient management plan within the 

upstream catchment, 

(iii) removing hard engineered shorelines and false partitions, 

(iv) re-instating the loch with a greater variety of depth zones, and  

(v) creating shorelines with undulations and long shallow zones, together with a number 

of islands. 

The main steps involved in the restoration work are as follows: 

(i) de-water Loch Fitty and provide temporary diversions of surface watercourses around 

the site (months 1-6), 

(ii) create an ecological mitigation corridor to the south-east of the site to compensate for 

temporary loss of wetland habitat (months 1-6), 
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(iii) undertake coaling operations (months 1-72) to include: 

a. temporary storage of overburden together with smaller linear storage areas for 

screening purposes, 

b. temporary storage of topsoil and subsoil for re-use in restoration works, 

c. provision of temporary flood storage and water treatment facilities, 

d. restore Loch Fitty following completion of mining works, 

e. restore Loch Fitty to WFD “good ecological status”, 

f. provide new habitats to help meet the targets of local and national Biodiversity 

Action Plan (LBAP & UKBAP), 

g. reinstate existing land-use and landscapes around the loch, and 

h. re-establish severed links and improve public access and recreational 

opportunities. 

1.2 Main objectives of the CEH study 

It is proposed that Loch Fitty will be drained and temporarily removed for a period of 

approximately 7.5 years, while the underlying coal is removed (SCCL, 2010h). 

Comprehensive planning and development documents have been prepared by SCCL (SCCL, 

2010 a-h) and its development team in relation to this proposal, and a clear statement of 

intent in relation to recovery periods and end point water quality targets is now required. The 

main aim of the CEH study is to provide this information in the form of a report, written in 

association with SCCL and SEPA. 

In relation to the above, the key objectives of this project are to: 

(i) review all available data and information on Loch Fitty and its catchment that are 

relevant to the achievement of Good Ecological Status for Loch Fitty following the 

proposed development and restoration works, 

(ii) use existing data and information to further characterise the current chemical and 

ecological status of Loch Fitty and clarify existing nutrient sources following the 

outcome of ongoing sediment analysis work (i.e. catchment cf. in-lake sediments), 

and, where possible, comment on nutrient transformation processes that should be 

taken into account during restoration works, 

(iii) conduct a survey of the literature and of relevant experts across Europe to identify 

similar lake restoration/creation projects; highlight opportunities for site visits to gain 

firsthand experience of related projects, 

(iv) develop type specific, and site specific where applicable, water quality targets for the 

re-instated Loch Fitty, where possible, that will ensure compliance with WFD 

requirements for Good Ecological Status, 

(v) summarise the relevant literature and consult scientific experts to produce a 

recolonisation strategy and estimated timeline for the ecological recovery of the 

target organisms (taking cognisance of the work already undertaken in this regard, 

especially in relation to macrophytes and fish), 
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(vi) use conceptual models to create a list of recovery scenarios and an associated “tool-

box” of management options that can be used to manage the recovery process, if 

necessary, to mitigate against a transition towards undesirable recovery endpoints, 

and 

(vii) highlight any additional issues that may need to be addressed before, during and after 

re-instatement, to ensure that previous water quality problems at the loch do not re-

occur and that the target improvement in status of the waterbody is sustainable over 

time. 

This report summarises the WFD targets to be met by the re-instated Loch Fitty for it to attain 

WFD good ecological status and makes recommendations on a recolonisation strategy 

designed to achieve this. Additional mitigation/monitoring measures that may be required to 

attain and sustain good status, and a likely timescale for recovery, are also discussed. 
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2. The proposed Loch Fitty restoration project 

2.1 Background 

Loch Fitty is a shallow lowland loch in the River Leven catchment, near Dunfermline 

(Figure 2.1). The loch was surveyed by Farrer (1999). In this report, the loch is described as 

a large, mesotrophic loch used for recreational fishing that is subject to periodic algal blooms. 

The most recent such bloom was recorded here in 2010 (Ross Doughty, pers. comm.). 

Historical maps suggest that the shape and hydrology of the loch have been modified many 

times over the last few hundred years (SCCL, 2010h). Twenty five percent of the current 

shoreline of the loch is now hard engineered. 

 

Figure 2.1 Site location (after SCCL, 2010a) 

The loch, which is classified as a shallow, lowland, large, high alkalinity, lake under the 

WFD, has been surveyed by SEPA as part of the River Basin Management Planning (RBMP) 

process. The most recent RBMP classification of the site found the overall status of Loch 

Fitty to be „Poor‟, with high confidence (RBMP Water body information sheet for water body 

100278 in Forth; 15/3/2010). This is because, although the loch passed on its overall 

chemical water quality, its overall ecological status was found to be „Poor‟ (with high 

confidence) due to high phosphorus and chlorophyll a concentrations in the water. Historical 

data supplied by the SEPA suggest that ecological water quality at the site has been steadily 

deteriorating over the last 10 years (Figures 2.2 & 2.3). This, combined with a parasitic 

infection within the fish community, led to the closure of the fishery in 2007. 
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Figure 2.2 Open water total phosphorus (TP) concentrations in Loch Fitty, 1988-2010 

 

Figure 2.3 Open water chlorophylla concentrations in Loch Fitty, 1988-2010. 
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To access 3.4 million tonnes of low sulphur, high quality coal reserves underneath the loch, 

SCCL are proposing to extend the current area of surface mining (Figure 2.4) by temporarily 

draining Loch Fitty and re-instating it when mining is complete. This would involve creating 

a water diversion channel by directly linking the current inflows to the current outflow and 

dewatering the loch. An ecological mitigation corridor would be created to minimise the 

impacts of these activities, and of the proposed surface mining work, on the local ecology. 

This will include translocation habitat for aquatic macrophytes and temporary fish ponds. 

 

Figure 2.4 Current and proposed surface mining at Loch Fitty (after SCCL, 2010a). 

The re-instated Loch Fitty will be a single standing waterbody of similar area to the current 

loch and with all of the main inflows and outflow re-instated to their original position, with 

the exception of the Lassodie Burn, which will be reinstated along its original course, away 

from Loch Fitty and a minor, unnamed watercourse which will be used to supply the 

ecological corridor. It is argued that the proposed project provides a unique opportunity to 

enhance/improve/restore Loch Fitty to meet WFD ecological quality targets. 

2.2 The loch  

When mining is complete, i.e. after about 6 years, a new Loch Fitty will be created over an 18 

month period by backfilling the surface mining area and lining the new loch basin with a 2-

4m thick layer of impermeable clay. The re-instated loch will then be refilled by pumping 

water into it from existing boreholes around the loch. The likely nutrient content of the water 

from these boreholes is unclear from the available documentation. Once full, the natural 
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inlets and outlet will be reconnected to the loch and the Lassodie Burn, which currently flows 

into the loch (Figure 2.5), will bypass it as explained above. 

 

Figure 2.5 Inflows to, and outflow from, Loch Fitty before restoration (after SCCL, 

2010h) 

The bathymetry of the existing loch is shown in Figure 2.6. It is estimated that the volume of 

the reinstated loch will be about 1.69 x 10
6 

m
3
 when the water level is at 126.3 m.a.o.d. This 

is slightly greater than the corresponding value for the current loch, which is 1.54 x 10
6 

m
3
. 

The estimated water retention time of the new loch will be about 60 days (Theo Phillip, pers. 

comm.). 

As it stands, the water level of the current loch is very responsive to changes in the rate of 

flow of its inflows, with the highest loch levels being recorded approximately 6.5h after peak 

flows are recorded in the main inflow stream, Meldrums Mill Burn. This results in the level 

of the existing loch varying by about 1m over the course of a year (Figure 2.7).  
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Figure 2.6 Simplified bathymetric map of Loch Fitty (after SCCL, 2010c). 

 

Figure 2.7 Loch Fitty water level, 1989 – 2008 (after SCCL, 2010c). (NB values before Jan 

2006 are considered to be unreliable.) 
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2.3 The catchment 

The surface water catchment of the new Loch Fitty will be similar to that of the old loch, 

prior to the realignment of the upper Lassodie Burn in 1998. The catchment will drain a total 

land area of 18.43 km
2
 (Table 2.1), comprising sub-catchments drained by the individual 

feeder streams, as shown in Figure 2.8, apart from that of the Lassodie Burn. The loch, itself, 

discharges to the Lochfitty Burn. 

 

Figure 2.8 Catchment and subcatchments of Loch Fitty before restoration (after SCCL, 

2010h). 

 

The catchment is mainly agricultural in nature (arable and livestock grazing), and field 

boundaries and land use in this area seem to have changed little since the mid 1800s, apart 

from the development of some mining activity and the construction of the nearby motorway 

(M90). However, it should be noted that levels of fertiliser usage on farms within the 

catchment and, consequently, levels of nutrient laden runoff from these farms, is likely to 

have increased in recent years in line with national trends. 

Many of the channels that drain into the old Loch Fitty were artificially straightened in the 

early 1800s (SCCL, 2010h). As a result, their banks have become unstable and large 

quantities of fine sediment have been delivered to the old loch from this source. There may 
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also be other sources of nutrients within the catchment, such as septic tanks and slurry pits. 

The problem of elevated nutrient inputs to the loch from these sources need to be solved 

before the new loch is re-instated. 

2.4 The ecology and water quality 

The overall objective for the restoration of Loch Fitty is to create a loch of good ecological 

status that is in accordance with the aims of the WFD and the Scotland River Basin 

Management Plan. In relation to this, the two most important elements in establishing a high 

quality loch habitat and good ecological conditions for the longer term are: 

 good water quality 

 good hydromorphological conditions. 

A key aim for the restored loch is for it to mimic the „natural‟ physical conditions of the old 

loch. This includes the following improvements to its current state: 

 more natural shoreline, 

 varied bathymetry, 

 islands to encourage otters, 

 beach areas for wading birds, and 

 suitable underwater habitat for aquatic plants. 

The extent and location of the features listed above are summarised in Figure 2.9. 

 

Figure 2.9 Habitat features of the restored Loch Fitty (after SCCL, 2010c). 
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The proposed design for the reinstated loch closely resembles that of the existing water body 

in terms of its geographical location, size and volume, but with a less modified and more 

natural shoreline. The main aim of the new design is to ensure the re-colonisation of the loch 

by existing macrophyte assemblages. As such, the following features will be included: 

 a varied loch profile with shallow margins and a wide drawdown zone, underwater bars 

and shoals (undulations), and deep areas, 

 a depth range of a few centimetres to 5.4m, 

 substrates of various grain sizes, 

 improved shoreline habitat, including the removal of concrete and rip rap shorelines and 

partitions, 

 a gravel/pebble „beach‟ along part of the northern loch margin to provide foraging habitat 

for wading wetland birds and waterfowl, 

 a diverse range of habitats within the littoral and marginal zones, and 

 good conditions for the translocation and recolonisation of the reinstated loch by valuable 

aquatic plant species that have been identified in the existing loch. 

Key ecological services provided by the old Loch Fitty include: 

 flood attenuation, 

 nutrient management/retention, and 

 sediment sink. 

The new loch and has been designed to perform these services. A comparison of the key 

features of the old and restored Loch Fitty is shown in Table 2.1. 

 

Table 2.1 Comparison of existing and restored Loch Fitty (after SCCL 2010h) 

Parameter Current status Proposed future status 

Surface area (km
2
) 0.63 0.59 

Maximum depth (m) 5.0 5.4 

Mean depth (m) 2.3 3.6 

Volume (x 10
6
 m

3
) 1.54 1.69 

Catchment area (km
2
)  

   Meldrums Mill Burn            

   Lassodie Burn 

   Unnamed Burn 

   Hot Water Burn 

   Remaining catchment 

   Total 

 

14.29 

2.29 

0.78 

2.00 

1.36 

20.72 

 

14.29 

0.00 

0.78 

2.00 

1.36 

18.43 

Shoreline (km) 3.90 4.10 (+1.5 islands) 

Hard engineered shoreline 

(km) 
0.99 0.00 

% littoral zone 14 29 

Water level (m AOD) 126.10 126.10 

WFD lake type HAVS HAS 
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An ecological “Clerk of Works” (CoW) will co-ordinate and manage the ecological 

mitigation strategy and the ecological recovery of the loch. The CoW will report to a 

Management Committee comprising representatives of SCCL, Fife Council, Scottish 

Environment Protection Agency (SEPA), Scottish Natural Heritage (SNH), and the Forth 

District Salmon Fishery Board (FDSFB). 
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3. WFD good ecological status target for re-instated Loch Fitty: phosphorus  

Total phosphorus (TP) is an important “supporting” physico-chemical parameter for WFD 

classifications. It is a widely used measure of the nutrient enrichment status of a lake and 

often appears to be the main limiting nutrient of phytoplankton production in many lowland 

temperate systems (e.g. Dillon & Rigler, 1974; Schindler, 1977; OECD, 1982; Phillips et al., 

2008). 

3.1 Compilation of available data and information 

Data provided by SEPA indicate that annual mean TP concentrations in Loch Fitty have been 

steadily increasing over the past 20 years, from an annual mean value of 33 µg L
-1

 in 1988 to 

a peak of 111 µg L
-1

 in 2008 (Figure 2.2). Following the widely used OECD (1982) 

classification scheme, this represents a shift from a moderately enriched, mesotrophic state to 

an enriched hyper-trophic state. 

Figure 3.1 comapres the seasonality of TP concentrations for the first (1988-1997) and 

second (2000-2009) 10 year monitoring periods. This reveals that seasonal changes in TP 

concentrations were more pronounced during the earlier period, showing a marked decline 

during spring and summer months. In contrast, this decline is less pronounced during 2000-

2009, with values remaining relatively high throughout the year apart from October. 
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Figure 3.1 Seasonality in TP concentrations in Loch Fitty, 1988-1997 and 2000-2009 

3.2 Current ecological status 

The current typology of Loch Fitty is a very shallow (mean depth 2.3 m), high alkalinity loch. 

UK Environmental Standards (WFD UKTAG, 2008b) set an annual mean TP standard for 

this loch type of 32 µg TP L
-1

 in relation to the Good/Moderate boundary for lakes in 
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northern parts of the UK. Phosphorus concentrations in Loch Fitty are consistently above this 

value throughout the year and the average annual mean TP concentration the site has been 

90 µg L
-1

 for the past 6 years (2004-2009). These values are also in excess of the 

moderate/poor boundary of 64 µg TP L
-1

. This places the loch well within the class of poor 

status. 

WFD-UKTAG (2008b) recommends adopting site-specific TP standards for lakes, where 

possible, as these take account of the individual characteristics of each site, especially in 

relation to alkalinity and mean depth. This is based on the Morpho-Edaphic Index (MEI) 

modelling approach outlined by Cardoso et al. (2007). From this reference value, factors are 

used to identify TP status class boundaries representing increasing degrees of change from 

reference conditions. These factors are ecology-based and include the relationship between 

phytoplankton chlorophyll a and TP concentrations, the growing depth of aquatic 

macrophytes and evidence from palaeolimnological investigations on diatom community 

responses to TP (WFD-UKTAG, 2008b). Based on the equation in Cardoso et al. (2007), the 

site-specific TP standards for the current Loch Fitty are 25 µg L
-1

 for the Good/Moderate 

boundary, 49 µg L
-1

 for the Moderate/Poor boundary and 99 µg L
-1

 for the Poor/Bad 

boundary. Using these site-specific standards, Loch Fitty, with an average annual mean TP 

concentration of 90 µg L
-1

 for the past 6 years (2004-2009), would be classified as having 

Poor status. 

3.3 Targets for the re-instated Loch Fitty compliant with WFD requirements 

The future typology of Loch Fitty is that of a shallow (mean depth 3.6 m), high alkalinity 

loch. Assuming that the alkalinity class remains the same as before, the increasing depth of 

the loch means that it will have more challenging type-specific TP standards than the original 

loch. WFD-UKTAG (2008b) guidance sets a TP standard for the proposed loch type of 

23 µg L
-1

 for the Good/Moderate boundary for lakes in northern parts of the UK, and 

46 µg L
-1

 for the Moderate/Poor boundary. 

With the increase in mean depth planned for the new loch (i.e. from 2.3 m to 3.6 m), the site-

specific TP standards for the future Loch Fitty, based on the equations given by Cardoso et 

al. (2007) are 22 µg L
-1

 for the Good/Moderate boundary, 45 µg L
-1

 for the Moderate/Poor 

boundary and 89 µg L
-1

 for the Poor/Bad boundary. 
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4. WFD good ecological status target for re-instated Loch Fitty: nitrogen 

Nitrogen (N) has been shown to be the primary or co-limiting nutrient for phytoplankton 

production in many lakes within the UK (Moss et al., 1992, 1994; James et al.,. 2003; 

Maberly et al., 2003; May et al., 2010;), Europe (Sommer 1993; van der Molen et al., 1998) 

and elsewhere (Elser Marzolf & Goldman 1990). Nitrogen-limitation of phytoplankton 

production may be particularly significant in lochs that have a plentiful supply of phosphorus, 

especially during summer periods when denitrification rates may peak, converting nitrate 

(NO3-N) to gaseous forms of nitrogen (N2O and N2) that escape to the atmosphere. 

Nitrogen concentrations have also been linked to the diversity of the aquatic plant 

community. James et al. (2005), for example, established a significant correlation between 

declining macrophyte species richness and increasing winter concentrations of nitrate and 

total nitrogen in UK and Polish lakes. The authors suggested that increasing nitrogen 

concentrations may promote the rapid growth of a few competitive species resulting in the 

loss of slower-growing species. While this theory is largely speculative, it has received some 

support from Barker et al. (2008) who found a greater reduction in macrophyte species 

richness in mesocosm experiments where the concentration of nitrate-nitrogen exceeded 

about 1.5 mg L
-1

. 

4.1 Compilation of available data and information 

Data provided by SEPA indicated that annual mean nitrate-nitrogen concentrations in Loch 

Fitty have been steadily declining over the past 5 years (2005-2009), i.e. from 0.69 mg L
-1

 in 

2005 to 0.32 mg L
-1

 in 2009. Concentrations were frequently below the detection limit of the 

analytical technique (0.15 mg L
-1

) from May to August. In analyzing these data, a value of 

half of the detection limit has been assumed when nutrient concentrations were reported to be 

below these levels (i.e. 0.15 mg L
-1

 for NO3-N and 0.004 mg L
-1

 for PO4-P).  

The average (2005-2010) monthly concentrations of NO3-N were plotted and compared with 

values for PO4-P to examine potential for nutrient limitation of phytoplankton (Figure 4.1). 

PO4-P availability fell to concentrations that could potentially limit phytoplankton growth 

from April to June and concentrations remained very low throughout the summer, rising 

again in November. Availability of NO3-N could potentially limit phytoplankton growth from 

July to October, but in 2008 and 2009 concentrations have also been below detection limits in 

May and June. This analysis suggests that both PO4-P and NO3-N concentrations reach 

potentially limiting levels for phytoplankton growth during summer in the existing Loch 

Fitty.  

Nitrate concentrations are consistently below the levels suggested to cause significant 

declines in aquatic macrophyte communities (James et al., 2005; Barker et al., 2008).  This, 

alongside the removal of nutrient-rich sediments, should improve the chances of success of 

re-establishing less competitive plants, such as stoneworts, during restoration. 



18 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

N
it

ra
te

-N
 (

m
g

 L
-1

)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

O
rt

h
o

p
h

o
s

p
h

a
te

-P
 (

m
g

 L
-1

)

NO3-N

PO4-P

Limitation

 

Figure 4.1 Seasonality in nitrate-N (NO3-N) and orthophosphate-P (PO4-P) 

concentrations in Loch Fitty, 2005-2010. 

 

4.2 Current ecological status 

There are currently no UK environmental standards for N for freshwaters within the UK in 

relation to the WFD. In a recent report to Natural England, Maberly & Carvalho (2010) have 

suggested N standards that could be adopted for shallow lakes as supporting standards in 

relation to achieving WFD chlorophyll a standards. In their analysis, WFD chlorophyll a 

targets were used as an ecological target for setting N targets. This was carried out by 

inverting European regression equations relating total nitrogen (TN) concentrations to 

chlorophyll a (Phillips et al., 2008) (Table 4.1). 

 

Table 4.1: Regression equations relating chlorophyll a to total nitrogen (TN) 

concentrations (µg L
-1

) for lake types relevant to Loch Fitty’s current and future 

typology (Modified from Phillips et al., 2008). 

Lake Type Equations 

HAS (future) Log10 (Chl) =  -2.177(±0.35) + 1.096(±0.12) Log10 (TN) 

HAVS (current) Log10 (Chl) =  -2.575(±0.87) + 1.205(±0.30) Log10 (TN) 

 

NO3-N 

PO4-P 
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Currently the WFD chlorophyll a target for the Good/Moderate boundary for the loch is set at 

an equivalent annual mean of 16.5 µg L
-1

 and the future loch would have an equivalent 

annual mean standard of 7.5 µg L
-1

 (Carvalho et al., 2006: Table 7.1). On the basis of the 

equations given in Table 4.1, this gives indicative annual mean Good/Moderate targets of 

1.4 mg L
-1

 and 0.6 mg L
-1

 TN for the current loch (HAVS) and future loch (HAS), 

respectively. Insufficient monitoring data were available with which existing annual mean 

TN concentrations could be assessed against these potential targets. However, as peak winter 

concentrations of NO3-N are, on average, below the annual average target value of 

1.4 mg L
-1

, it may be expected that annual mean TN concentrations are also below this target. 

4.3 Targets for the re-instated Loch Fitty compliant with WFD requirements 

As described in Section 4.2, the indicative TN target for the new Loch Fitty to achieve Good 

Status, based on currently available information, is 0.6 mg L
-1

. It should be stressed, however, 

that the proposed deepening of the loch will result in a change in the lake type category from 

high alkalinity, very shallow (HAVS) to high alkalinity, shallow (HAS). As such, the 

unconfirmed TN target for the new Loch Fitty is much lower than that proposed for the 

current Loch Fitty. It should also be noted that, in its current state, the available data on N 

suggest that the loch is comfortably within the Good Status category at the moment. 

However, when compared to the lower target for the re-instated loch, the current N 

concentrations appear to be borderline. 
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5. WFD good ecological status target for re-instated Loch Fitty: phytoplankton & 

phytobenthos 

Algae (phytoplankton and phytobenthos) are key primary producers in lake ecosystems. They 

are a major component of the base of the food chain and represent an important source of 

food for zooplankton and benthic invertebrates. Consequently, they are important for 

sustaining higher life forms, such as fish, otters and waterfowl. Phytoplankton abundance 

within the water column is widely estimated using a proxy, i.e. chlorophyll a concentrations. 

However, their abundance can also be measured in terms of the volume of algae present in a 

water sample (biovolume). 

Cyanobacteria are a particular type of algae that naturally occur in freshwaters and play a key 

role in nutrient cycling; however, they can also present hazards to the health of humans and 

other animals if large populations flourish and produce blooms. This is especially 

problematic when these blooms accumulate as scums on lake surfaces or along shorelines, 

because they frequently produce potent toxins that can result in adverse health effects ranging 

from mild (e.g. skin irritations and gastrointestinal upsets) to fatal (Codd et al., 1999; Codd et 

al., 2005). 

Phytoplankton also interact with macrophytes, mainly through competition for light, and 

there is a tendency for very shallow lochs to exist in either a turbid phytoplankton-dominated 

state or a clear-water macrophyte-dominated state. For the reasons outlined above, increasing 

abundance of phytoplankton, and of cyanobacteria in particular, are considered to have a 

negative impact on the potential recreational and amenity value of lochs. 

The phytobenthos community includes algae that are attached to stones and plants, and those 

living on the sediments and sands. Diatoms are often the dominant form of phytobenthos and 

species within this group of algae are widely used as indicators of the impact of nutrient 

pollution (Kelly et al., 2007; WFD-UKTAG, 2008a). 

The WFD requires the ecological status of water bodies to be assessed on the condition of 

their biological quality elements (European Parliament, 2000: Article 8, Annex V). For lakes 

this includes phytoplankton and phytobenthos. 

 

The WFD outlines three features of the phytoplankton quality element that need to be taken 

into account in this assessment. These are: 

 

1. composition, 

2. abundance, and its effect on water transparency 

3. bloom frequency and intensity. 

 

Classifications for phytoplankton abundance and its effect on transparency conditions have 

been established for this purpose (Carvalho et al., 2006; 2008; 2009) and UK and European 

standards have been adopted (see Table 7.1 in Carvalho et al., 2006; Poikane et al., 2010).  A 

preliminary classification scheme for phytoplankton community composition has also been 

proposed (Carvalho et al., 2007) and a preliminary metric has been developed based on the 

percentage of cyanobacteria present. More recently, these metrics have been refined and new 
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classification schemes for species composition and phytoplankton blooms are currently under 

consideration at both UK and European levels (Phillips et al., 2010; Mischke et al., 2010). 

The phytobenthos community is considered to be a quality element, together with 

macrophytes, in Annex V of the WFD. It is intended that the composition and abundance of 

the community should be used to assess the status of lakes. More specifically, it is stated that 

the phytobenthic community should not be “adversely affected by bacterial tufts and coats 

present due to anthropogenic activity”. A classification scheme for phytobenthos composition 

has been established for UK lakes based on benthic diatom species (Kelly et al., 2007; WFD-

UKTAG, 2008). 

5.1 Compilation of available data and information 

Data provided by SEPA indicate that annual mean phytoplankton chlorophyll a 

concentrations have increased in Loch Fitty over the past 20 years, and especially rapidly 

since 2005 (Figure 2.3). Annual mean concentrations have increased from 4 µg L
-1

 in 1988 to 

a peak of 66 µg L
-1

, which was recorded in 2008 (Figure 2.3). 
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Figure 5.1 Seasonality in chlorophyll a concentrations in Loch Fitty, 1988-1997 and 

2000-2009. 

 

Figure 5.1 compares the seasonality of chlorophyll a concentrations in the loch for the first 10 

years (1988-1997) and the last 5 years (2005-2009) of monitoring. This reveals that 

chlorophyll a concentrations are now much higher than before throughout most of the year.  

In addition, seasonality is more pronounced during 1988-1997 than 2005-2009. The earlier 
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period is characterised by a spring maximum followed by a decrease in chlorophyll a 

concentration that are characteristic of the spring „clear water‟ phase. This phenomenon is 

observed in many productive lakes, and is generally driven by nutrient limitation and 

zooplankton grazing pressures. It is unclear why the spring clear water phase is absent from 

during later period, but this may reflect the reduction or loss of the zooplankton community. 

This can occur due to a range of pressures, most notably increased predation from 

planktivorous fish (e.g. roach, Rutilus rutilus) or in response to pollution events (May & 

Spears, submitted). 

Monthly phytoplankton composition data were available for the months July to September in 

2008 (Table 5.1). These showed that, over the summer, cyanobacteria (Cyanonophyceae) 

were the dominant algal class, especially in July. Diatoms (Baccillariophycae) were also very 

abundant and these were the dominant class in September. The World Health Organisation 

(WHO) guidelines for safe recreational waters (WHO, 2003) outline three health risk 

categories for cyanobacteria: low, medium and high. High risk is assigned when surface 

scums are present, as cell densities and toxin concentrations tend to be very high under these 

conditions. Medium and low risk waters are those where cyanobacteria cells are at, or above, 

100,000 and 20,000 cells ml
-1

, respectively. These thresholds can be converted to a 

biovolume (mm
3
 L

-1
) by multiplying by a typical cyanobacterial cell volume. Based on a 

typical cyanobacterium from this lake type (Microcystis aeruginosa) having a cell diameter 

of 4.5 µm, the recalculated WHO thresholds are equivalent to about 2 mm
3
 L

-1
 for the low 

risk threshold and 10 mm
3
 L

-1
 for the medium risk threshold. It is clear from these results that 

cyanobacteria were above the low risk threshold for 2 of the 3 months monitored and above 

the medium risk threshold in July. This indicates that, in 2008 at least, the loch should not 

have been used for recreational purposes and that warning signs of health hazards to the 

public should have been in place over that summer of 2008. Indeed, the loch had been closed 

to the public, due to concerns about water quality, since 2007. 

 

Table 5.1 Phytoplankton data from Loch Fitty in 2008, summarised by algal class.  

Values are expressed as biovolume (mm
3
 L

-1
) in columns 3-5 and as % relative abundance in 

column 6. 

Algal Class July August September Average % Average

Bacillariophyceae 0.052 0.330 10.317 3.566 28%

Chlorophyceae 5.050 0.638 1.174 2.287 18%

Chrysophyceae 0.197 0.190 0.255 0.214 2%

Cryptophyceae 0.454 0.344 0.963 0.587 5%

Cyanophyceae 10.065 0.050 6.203 5.439 43%

Dinophyceae 0.005 0.159 0.082 1%

Euglenophyceae 0.318 0.308 0.313 2%

Klebsormidiophyceae 0.020 0.020 0%

Unknown 0.506 0.057 0.021 0.195 2%

Total Biovolume 16.661 1.613 19.401 12.704 100%  
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Phytoplankton samples collected from Loch Fitty July, August and September 2010 for WFD 

purposes were found to be densely packed with phytoplankton taxa (Pauline Lang, pers. 

comm.). Samples were analysed according to standard SEPA procedures using an inverted 

microscope.  At low or medium magnification (i.e. x10, x20 or x40), Pandorina morum 

(colonies), Gymnodinium helveticum (cells), Pediastrum duplex (colonies), Snowella sp. 

(colonies), Anabaena spp. (cells), and Aulacoseira spp. (cells) were relatively abundant.  At 

high magnification (i.e. x63) the most common species were Monoraphidium minutum 

(cells), Monoraphidium contortum (cells), Lagerheimia genevensis (cells), Tetrastrum 

triangulare (cells) and Tetrastrum staurogeniaeforme (cells). These morphologically small 

taxa were a particularly abundant component of the samples, suggesting a low level of 

zooplankton grazing on the phytoplankton community. A number of other taxa (not listed) 

were also found to be present in the loch, but these were generally of lesser abundance than 

the taxa listed above. 

Recent analysis for the development of WFD cyanobacterial bloom metrics (Mischke et al., 

2010) show that, at a TP concentration of 19 µg L
-1

, there is a 90% likelihood of a lake being 

below the WHO low risk threshold for cyanobacteria. At 30 µg L
-1

, this risk reduces to 75% 

likelihood, and at 78 µg L
-1

 it reduces to only a 50%. These calculations provide some helpful 

TP targets that could be used for the management of cyanobacterial blooms at Loch Fitty. 

No data on phytobenthos from Loch Fitty were accessible to the authors.  Information may be 

available from Martyn Kelly at Bowburn Consultancy, who was the lead author of a report 

outlining the development of phytobenthos-based classifications for UK freshwaters (Kelly et 

al., 2007). 

5.2 Current ecological status 

The chlorophyll a standards for the current and future Loch Fitty are given in Table 5.2.  

These relate to „growing season‟ means (i.e. April to September). Currently the loch is 

classified as a high alkalinity, very shallow loch, and the Good/Moderate boundary set for the 

growing season mean is 22.9 µg L
-1

 (Table 5.2). This is equivalent to an annual mean value 

of 16.5 µg L
-1

 (Carvalho et al., 2006: Table 7.1). 

 

Table 5.2 WFD chlorophyll a standard concentrations (µg L
-1

) for status class 

boundaries in high alkalinity shallow and very shallow lakes; H/G = High/Good, G/M = 

Good/Moderate, M/P = Moderate/Poor, P/B = Poor/Bad. Values are growing season 

means (i.e. for April-September). 

Status class boundary H/G G/M M/P P/B 

High alkalinity, shallow loch (HAS) 5.8 13.3 30.4 70 

High alkalinity, very shallow loch (HAVS) 10.8 22.9 48.6 103 
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Figure 5.2 Trend in growing season (Apr-Sep) chlorophyll a concentrations in Loch 

Fitty in relation to Good/Moderate (G/M) and Moderate/Poor (M/P) status class 

boundaries. 

The trend in the average chlorophyll a concentrations during the growth season (April to 

September) are shown in relation to the Good/Moderate and Moderate/Poor status class 

boundaries for the current Loch Fitty in Figure 5.2. Whereas in many previous years the loch 

would have been classified as Good or even High status (the growing season mean in 1990 

was 4.8 µg L
-1

), chlorophyll a concentrations in the loch in 2008 and 2009 were well above 

the Moderate/Poor boundary and the loch would have been classified as having Poor status. 

WFD metrics for phytoplankton composition and blooms are still being developed. For this 

reason, the classifications are currently too preliminary for current status to be assessed as no 

status class boundary values have been agreed for the UK or the rest of Europe. 

No information on the phytobenthos community was available. So, it was not possible to 

assess the current status of Loch Fitty in relation to this quality element. 

5.3 Targets for the re-instated Loch Fitty compliant with WFD requirements 

Methods for assessing the status of phytoplankton in lakes under the WFD have been 

formally adopted for phytoplankton chlorophyll a.  The growing season mean chlorophyll a 

standards for the future Loch Fitty (a high alkalinity, shallow loch) are given in Table 5.2; the 

good/moderate boundary is set at 13.3 µg L
-1

. This is equivalent to an annual mean of 

7.5 µg L
-1

 (Carvalho et al., 2006). 

Metrics for phytoplankton composition and blooms are still being finalised, but it is expected 

that the final UK method will be very different from the preliminary UK metric, which was 
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based on percentage of cyanobacteria. Two metrics are currently under consideration. These 

are: 

1) Phytoplankton Trophic Index (PTI).  This metric is calculated as the average of the PTI 

scores for all phytoplankton taxa found in a sample of water from the loch during summer. 

PTI scores are an indication of the preference of each phytoplankton taxon in relation to a TP 

gradient. These scores have been calibrated from a large dataset consisting of data from more 

than 6000 European lakes (Phillips et al., 2010). Typical High/Good status taxa for high 

alkalinity lakes include chrysophytes such as Bitrichia, Uroglena and Dinobryon, and the 

diatoms Tabellaria and Urosolenia.  Poor quality taxa, which reflect and “impacted” state, 

include the green algae Actinastrum and Scenedesmus, and the cyanonbacteria Microcystis, 

Planktothrix and Aphanizomenon. 

2) Cyanobacterial abundance. This metric is calculated from the total biovolume of 

cyanobacteria in a sample of lake water, and comprises the average value from samples 

collected over the summer period (i.e. July to September).  Details of this method are given 

by Carvalho et al. (2010). For high alkalinity shallow lakes, such as the restored Loch Fitty, it 

is recommended that values of this metric should be below 0.71 mm
3
 L

-1
, the threshold for

 

High status. 

There is no metric available to assess the status of phytobenthos in lakes at present. However, 

a reference condition can be calculated from its alkalinity type. For the re-instated Loch Fitty, 

the reference (High status) lake diatom trophic index value would be 25.  
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6. WFD good ecological status target for re-instated Loch Fitty: macrophytes  

The status of the macrophytes community in Loch Fitty has been reviewed in a 

comprehensive report by Stewart (2010). This report contains a detailed restoration plan that 

describes the practical measures required to maintain stocks of key macrophyte species 

during the coal extraction phase so that these can be reinstated into the new loch when 

coaling and re-instatement is complete The existing review is augmented, here, by focusing 

on the achievement of WFD Good Ecological Status in the new Loch Fitty. Current lake 

macrophyte evaluation systems in use within the UK, and the latest research from other 

European countries, have been used for this purpose. The findings of Stewart (2010) 

concerning the current ecological status and the proposed recolonisation strategy are also 

briefly described and critiqued, below. 

6.1 Compilation of available data and information 

Unlike some of the other biological elements, the aquatic macrophyte community of Loch 

Fitty has been well studied, especially over the last 30 years (Stewart, 2010). Loch Fitty was 

first surveyed between 1905 and 1909 by G. T. West (West, 1905; West 1910a; West 1910b). 

West‟s surveys form an invaluable baseline against which changes in Loch Fitty‟s water 

quality status over the intervening period can be assessed. 

Loch Fitty, and other larger lochs in Fife from the original surveys by West (1905, 1910a, 

1910b), were re-surveyed in 1982 (Young & Stewart, 1986), 1991 and 1995 (Bell, 2006). 

Further aquatic macrophyte surveys were also carried out in Loch Fitty in 1982 by the Nature 

Conservancy Council (Stewart, 1982), in 1997 by Scottish Natural Heritage (SNH, 1997) and 

by the in 2008 Scottish Environment Protection Agency (SEPA, 2008). In addition, a specific 

survey of the hybrid pondweed species Potamogeton x suecicus was undertaken between 

1992 and 1994 (Preston et al., 1999). Although a very detailed survey of Loch Fitty was 

undertaken in September 2010 by Stewart (2010), to identify colonies of key species and the 

location of areas of diverse aquatic macrophytes, the results from this survey were 

unavailable to the authors of this report. 

6.2 Current ecological status 

Stewart (2010) summarised all of the aquatic and wetland macrophyte species recorded from 

various surveys that have been carried out at Loch Fitty since 1905. During the period 1905-

1909, a total of 28 submerged and floating-leaved species (including five charophytes and ten 

pondweeds – Potamogeton spp.) were recorded (West, 1905; West 1910a; West 1910b). In 

the most recent survey that is accessible to the authors, 20 submerged and floating-leaved 

species (including two charophytes and ten pondweeds) were recorded (SEPA, 2008). 

Stewart (2010) noted that, in addition to the species recorded in the 2008 survey, a further 

five species had been recorded in Loch Fitty over the last twenty years. These included 

additional pondweeds and charophytes. Stewart (2010) also identified a number of key 

aquatic and wetlands macrophyte species that, if still present, may need specific strategies to 

be developed for them to be conserved at this location. This was either because they were 

uncommon locally and/or nationally, or because of their limited ability to colonise new areas. 

These key species were Callitriche hermaphroditica, Chara virgata, C. globularis, C. 

vulgaris, Carex aquatilis, C. diandra („Near Threatened‟), Potamogeton alpinus, P. filiformis 

(„Nationally Scarce‟), P. gramineus, P. obtusifolius, P. x zizii (hybrid between P. gramineus 
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and P. lucens), P. x suecicus  (hybrid between P. filiformis and P. pectinatus), and Tolypella 

glomerata („Nationally Scarce‟).  

Stewart (2010) concluded that a number of aquatic species had been lost since the 1900s, 

especially several species that are known to be sensitive to nutrient enrichment. This was 

demonstrated by the use of Mean Trophic Ranking Scores (TRS) and Plant Lake Ecotype 

Index (PLEX) scores as indicators of change under different nutrient conditions. Stewart 

(2010) calculated that, during the period 1905-1909, Loch Fitty had a TRS score of 7.6 and a 

PLEX score of 6.5, while by 2008 those scores had risen to 8.4 and 7.5, respectively. 

However, these analyses also showed that there had been little or no overall change in Loch 

Fitty‟s aquatic macrophyte community since at least the early 1980s. Stewart (2010) 

suggested that small inter-annual variations may have occurred as a response to variations in 

algal blooms over this period. Nevertheless, despite these apparent changes in the aquatic 

macrophyte community since 1905, Loch Fitty still has a relatively high diversity of species 

compared with other lochs in the same geographical area. 

In terms of the WFD, Loch Fitty has been classified as having good ecological status (with a 

high degree of confidence) in relation to its macrophyte communities (SEPA, 2009). In 2008, 

SEPA surveyed the aquatic macrophyte community using four survey sectors and a 

combination of boat, wader and perimeter transects (SEPA, 2008). In 1997, Scottish Natural 

Heritage (SNH) surveyed the aquatic macrophyte community using a partial boat survey and 

shoreline sampling (SNH, 1997). Based on the results of these surveys, Loch Fitty is 

currently classified as a Type 10A eutrophic loch (Palmer, 1992) and as belonging to a 

Group I lake type (Duigan et al., 2006). These are mostly moderately large, base-rich lowland 

lakes, with Chara spp., Myriophyllum spicatum and a range of Potamogeton species. This 

classification is in contrast to the 1905-1909 period, when the list of recorded submerged and 

floating-leaved macrophyte species suggests that Loch Fitty was more mesotrophic in 

character than at present. 

6.3 Targets for the re-instated Loch Fitty compliant with WFD requirements 

Methods for assessing the status of macrophytes in lakes under the WFD have progressed 

further than for some of the other biological quality elements, but are still undergoing some 

revision. There has, for example, been a change in the method since Loch Fitty was assessed 

in 2008, as the method used by SEPA (2009) does not match the current published guidance 

(WFD-UKTAG, 2009). Since the WFD intercalibration exercise has not yet been completed, 

it is expected that the final method may be modified again before the new Loch Fitty is 

created. 

At the time of writing, the current method for assessing the status of macrophytes is defined 

by the United Kingdom Technical Advisory Group (WFD-UKTAG, 2009; Nigel Willby, 

pers. comm.). This method includes assessment of five parameters (described below) to 

produce Ecological Quality Ratios (EQRs) for each, then subsequent combination of the five 

EQRs to produce a single EQR for macrophytes. 

1. Lake Macrophyte Nutrient Index (LMNI). This is the average of the LMNI scores for 

all taxa found in the lake. LMNI scores are an indication of the preference of each 

plant for particular nutrient environment, such that taxa that „prefer‟ less rich, 

oligotrophic waters have lower scores than taxa that „prefer‟ richer, more eutrophic 
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waters. The average LMNI score is, therefore, an indicator of the nutrient 

environment of a lake, as experienced by the plants. 

2. Number of Functional Groups (NFG). This is the number of distinct functional groups 

found in the assembly of macrophytes. Functional groups are groups of taxa that have 

similar morphology and habitat preference, so this is a measure of habitat diversity, or 

the number of potential types of habitat available to plants. 

3. Number of Taxa (NTAXA). This is the total count of distinct species found in the lake 

and is a direct measure of richness. 

4. Cover (COV), This is the proportion of the surface area of the lake that is covered by 

plants, expressed as a percentage. This is an indication of the overall suitability of the 

lake for macrophyte occupancy. 

5. Relative cover of filamentous algae (ALG), This is the proportional cover of 

filamentous algal taxa in relation to the total cover of all macrophyte taxa. This 

parameter is included because filamentous algae are perceived to be both an indicator 

of nutrient enrichment and an undesirable element in their own right. 

Values for the LMNI scores, membership of functional groups, and the taxa considered to be 

filamentous algae, are all included in the guidance document (WFD-UKTAG, 2009). 

Using the UKTAG methodology, lake-specific reference conditions for each of the five 

parameters above can be calculated on the basis of altitude, mean depth, surface area, 

alkalinity, conductivity, freshwater sensitivity class and distance from the nearest coast. 

Ecological quality ratios (EQRs), which are values of between 0 and 1, are then calculated for 

each of these parameters, generally as the ratio of the observed value and the reference 

condition value. The five EQRs are then combined using some logical rules to create a single 

EQR for the macrophyte quality element of a lake. This final EQR can be used to assign a 

status class as outlined in Table 6.1. 

A Microsoft Excel
©

 based tool has been developed for assessing the ecological status of a 

loch based on its macrophytes by Nigel Willby, Stirling University, and this was used in the 

assessment by SEPA in 2009 (Ross Doughty, pers. comm.). An updated version of this tool 

may be available from either Nigel Willby or SEPA to calculate more accurate quality targets 

for future macrophyte communities in the restored Loch Fitty. 

The method used to classify Loch Fitty in 2008 (SEPA, 2009) differs from the WFD-

UKTAG guidance in that an additional parameter (the relative cover of invasive taxa) was 

also used. Now, the abundance of invasive macrophyte species is considered separately from 

the assessment of the macrophyte quality element (Willby, pers. comm.). 
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Table 6.1. Use of macrophyte EQRs to assign status boundaries in lakes.  

Value of EQR Status class 

< 0.2 Bad 

≥ 0.2 and < 0.4 Poor 

≥ 0.4 and < 0.6 Moderate 

≥ 0.6 and < 0.8 Good 

≥ 0.8 High 

 

Given the complexity of the above, it is clear that the task of setting target presence and 

abundance for macrophytes in the new Loch Fitty to meet WFD Good Status, is almost 

impossible. Indeed, the only target that can be provided with authority is that consistent with 

meeting „the requirements of Good Status using the methodology defined at the time of 

assessment‟. In the absence of specific targets, the following (relatively) simple guidance is 

provided: 

- the macrophyte status in the lake in 2008 was defined as „good‟ by SEPA (SEPA, 

2009); it is, therefore, reasonable to assume that a plant community that is as good as, 

or better than, that found in 2008, will result in „good‟, or better, status in the re-

instated Loch Fitty. 

- in this context „as good as, or better than‟ means: 

o having the same or a lower LMNI (6.71), which can be achieved by having the 

same or more species with lower LMNI scores, and/or the same or less species 

with higher scores 

o having the same (23), or a higher number, of total species  

o having the same (13), or a higher number, of functional groups  

o having the same (1.82%), or more, plant cover per species  

o having the same (0.03%), or less, relative cover of filamentous algae 

- some caveats presented in Section 12.1.6, below, should be taken into account, 

especially in relation to keeping Elodea canadensis out of the new lake for as long as 

possible. 

The taxa found in the 1905 and 2008 surveys are shown in Table 6.2. This includes functional 

group (FG) membership and LMNI score according to the WFD-UKTAG methods. PLEX 

and TRS scores are also provided for historical context. It is suggested that some of the 

species found in 1905 should be added to the target list for reinstatement, especially since it 

may not be possible to re-establish all of the species that were found in 2008. The species in 

Table 6.2 are arranged in ascending numerical order in relation to their LMNI score, so 

species at the top of the table should be considered for addition to the target list before those 

that are lower down. 
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Table 6.1 Submerged plant taxa found in Loch Fitty in 1905 and 2008 (Stewart, 2010), 

with associated scores from three assessment systems, i.e. Lake Macrophyte Nutrient 

Index (LMNI), Functional Groups (FG), PLEX and TRS (see text for details. NB. The 

TRS score for Potamogeton x zizii is the average of its parents, as this hybrid does not 

have its own score. 

Name 1905 2008 LMNI FG PLEX TRS 

Potamogeton polygonifolius +  3.5 16 3.08 3 

Juncus bulbosus +  3.72 4 3.08 3.7 

Myriophyllum alterniflorum +  4.54 7 4.23 5.5 

Littorella uniflora +  4.7 4 4.23 6.7 

Potamogeton natans + + 5.16 16 4.23 6.7 

Potamogeton gramineus  + 5.51 16 7.31 7.3 

Nymphaea alba +  5.54 12 3.08 6.7 

Chara virgata + + 5.55 2 7.69 8.5 

Nitella flexilis agg. +  5.6 2 5.38 5.5 

Potamogeton x zizii + + 5.69 16 7.69 8.6 

Potamogeton praelongus +  5.77 17 5.38 7.3 

Potamogeton alpinus + + 5.79 16 5.38 5.5 

Potamogeton perfoliatus + + 5.83 17 7.69 7.3 

Callitriche stagnalis +  5.98 6 7.69 7.7 

Potamogeton berchtoldii  + 6.07 14 7.69 7.3 

Potamogeton filiformis + + 6.16 15 7.69 10 

Chara aspera +  6.39 2 7.69 8.5 

Hippuris vulgaris +  6.4 7 7.88 7.7 

Ranunculus peltatus +  6.48 18 7.69 8.5 

Sparganium emersum + + 6.59 13 7.5 10 

Ranunculus hederaceus  + 6.6 11 7.69 8.5 

Callitriche hermaphroditica + + 6.71 5 7.69 8.5 

Potamogeton obtusifolius + + 6.72 14 6.54 7.3 

Eleocharis acicularis +  6.75 4 7.95 8.5 

Nuphar lutea  + 6.92 12 6.92 8.5 

Elodea canadensis + + 7.14 5 7.95 8.5 

Chara globularis +  7.18 2 7.69 8.5 

Chara vulgaris + + 7.2 2 7.69 8.5 

Persicaria amphibia + + 7.25 10 7.95 9 

Potamogeton pusillus +  7.61 14 7.95 8.5 

Potamogeton crispus  + 7.64 17 7.95 8.5 

Lemna trisulca  + 7.82 1 8.85 10 

Myriophyllum spicatum + + 7.84 7 8.85 10 

Potamogeton pectinatus + + 8.25 15 8.85 10 
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7. WFD good ecological status target for re-instated Loch Fitty: 

macroinvertebrates  

As far as the authors are aware, the status of the benthic macroinvertebrate community in 

Loch Fitty has not been subject to any scientific study prior to the recent investigations 

prompted by the proposed development and restoration plans for the loch (Perfect, 2010). 

This study is reviewed within the context of setting site-specific targets for the 

macroinvertebrate community in the restored Loch Fitty to ensure compliance with WFD 

requirements for Good Ecological Status. Reference is made to current developments in this 

field across Europe and the available scientific literature has been reviewed.  

7.1 Compilation of available data and information 

The benthic macroinvertebrate community of Loch Fitty and its associated watercourses were 

surveyed in September 2010 (Perfect, 2010). Three locations on the Meldrums Mill Burn (the 

main inflow) and three locations on the Lochfitty Burn (the main outflow) were sampled 

mainly using a standard three minute kick sampling technique (ISO 7828: 1985, 1994), 

although in those areas of stream habitat where water flow was entirely still, timed sweep net 

samples were collected instead. In Loch Fitty itself, benthic macroinvertebrate samples were 

collected from six littoral sites using timed sweep net sampling techniques through marginal 

vegetation and substrate, and from three deeper water areas using an Ekman grab sampler. 

7.2 Current ecological status 

Perfect (2010) found a fairly uniform littoral benthic macroinvertebrate community in the 

loch, with a relatively restricted species richness (in comparison with the streams that were 

sampled). This was dominated by a few groups of animals, mainly Asellus aquaticus, 

Gammarus pulex and Sigara fallen. Only small numbers of the more sensitive EPT 

(Ephemeroptera, Plecoptera and Trichoptera) taxa were present. This probably partly reflects 

the relatively sheltered and uniform littoral habitats that were sampled, but is also indicative 

of a benthic macroinvertebrate community that is typical of a nutrient-enriched, shallow lake 

where species that can process and digest organic matter are favoured. No macroinvertebrate 

species of particular conservation interest, in terms of rarity value or restricted local or 

national distribution, were found. 

Unfortunately, there are no historical macroinvertebrate data with which to assess any long-

term trends in these communities within Loch Fitty. Although the loch has been classified as 

being of High ecological status for the benthic macroinvertebrate parameter in SEPA‟s 

current WFD classification (SEPA, 2009), neither of the two techniques listed for assessing 

macroinvertebrate quality elements under the WFD (i.e. Lake Acidification 

Macroinvertebrate Metric [LAMM] and Chironomid Pupal Exuvial Technique [CPET]) have 

been applied to the loch. In reality, this „high‟ status reflects the fact that, as currently 

applied, SEPA‟s WFD classification scheme defaults to High status when there are no data 

for a particular quality element available. 

It is highly unlikely that SEPA will ever apply the LAMM tool (WFD-UKTAG, 2008c) to 

Loch Fitty, as there is no known acidification pressure at this site (Ross Doughty, pers 

comm.). However, the CEPT assessment technique, which is based on using chironomid 

pupal exuviae as indicators of lake ecological quality, may be applied to the loch in the future 

to assess the impact of nutrient pressures (Ross Doughty, pers comm.). The CPET technique 
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has been developed within the UK as a method for monitoring, assessing and classifying 

lakes in relation to the requirements of the WFD (WFD-UKTAG, 2008c) and its potential use 

at Loch Fitty is discussed in more detail, below. 

7.3 Targets for the re-instated Loch Fitty compliant with WFD requirements 

The UK have not yet developed a comprehensive (all groups) WFD-compliant classification 

tool for lake macroinvertebrates that detects the impact of nutrient enrichment on these 

communities. Neither have they published a formal set of relevant targets for achieving Good 

Ecological Status for this group. Targets that are specifically related to hydromorphological 

(and implicitly also to eutrophication) pressures, are currently being developed within Europe 

and it is hoped that these may be available within the next year or so (Martin Pusch, pers 

comm.). 

 

In relation to the current proposal, it is not possible at present to set specific and robust 

targets for the benthic macroinvertebrate community, as a whole, for the re-instated Loch 

Fitty. However, reference values can be set using the group specific CPET methodology, 

which is compliant with WFD requirements and is designed to detect the impact of nutrient 

enrichment (WFD-UKTAG, 2008c). The advantage of using this technique is that it is based 

on chironomid pupal exuviae, which are ubiquitous, species rich, exhibit high ecological 

diversity and occur at high densities (Wilson & Ruse, 2005). They also provide an integrated 

sample of the whole lake, are simple and quick to sample, and their identification to genus 

level is relatively straightforward using the key of Wilson and Ruse (2005). 
 

The CPET methodology is described in detail by WFD-UKTAG (2008c) and involves 

deriving ecological quality ratios (EQRs) by comparing the list of chironomid pupal exuviae 

with known nutrient sensitivities found at a lake (in four samples collected from April to 

October) with a site-specific reference value for the lake that is derived from spatial data. The 

value for the reference condition parameter applicable to the lake is calculated as follows:  

 

Reference value for parameter =         -1.13 – (0.357 x Log
10

S) – (0.455 x Log
10

D
mean

)  

+ (0.376 x Log
10

RT
mean

) + (0.364 x log
10

CA) 

 

where:  

Dmean  = mean depth of the lake (metres)  

S = surface area of the lake (hectares)  

CA = catchment area of the lake, excluding the surface area of the lake (hectares) 

RT
mean

 = mean length of time in that water is retained in the lake (days) 

 

Using the environmental data in Table 7.1, which includes a designed retention time provided 

by SCCL (Theo Phillip, pers comm.) the CPET reference value for the restored loch was 

calculated to be -0.158. 
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Table 7.1 Environmental data used to calculate the reference CPET value for the 

restored Loch Fitty. 

 

Variable Value 

Surface area (S) 59 hectares 

Mean depth (Dmean) 3.6 m 

Retention time (RTmean) 60 days 

Catchment area (CA) 1843 hectares 

 

 

When Loch Fitty is restored, chironomid pupal exuviae can be collected using the 

methodology given by WFD-UKTAG (2008c) and the observed value of the parameter can 

be calculated using the sum of the nutrient sensitivity scores of the different chironomid taxa 

recorded and the total number of taxa found (see WFD-UKTAG, 2008c for details). The 

ecological quality ratio (EQRCPET) for the parameter can then be calculated by comparing the 

observed value of the parameter with the derived reference value (i.e. -0.158), as follows: 

 

 
EQR

CPET  =
 {[2 - (observed value of parameter + 1)] ÷ [2 - (reference value for 

parameter + 1)} ÷ 1.18 

 

In principal, the closer the EQRCPET value is to 1, the better the ecological status of the loch. 

However, at this stage, it is unclear what band range of EQRCPET values will correspond to 

WFD Good Ecological Status. It is expected, however, that the re-instated Loch Fitty, with 

improved water quality and better hydromorphological conditions, will support a more 

diverse macroinvertebrate community than at present and that this will be reflected in an 

increase in EQRCPET values. 
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8. WFD good ecological status target for re-instated Loch Fitty: fish  

In contrast to other biological aspects of the loch, the fish community of Loch Fitty, and its 

future management, have already been specifically addressed within the context of the 

proposed development and restoration works by Bull (2010a), Bull (2010b), Bull (2011a) and 

Bull (2011b). For the fish community, these studies overlap significantly with a number of 

the objectives of the present study. Where overlap occurs, reference has been made to these 

earlier findings, allowing effort here to be focused on the remaining objectives.  In particular, 

effort has been focused on the specific objective of identifying similar projects elsewhere in 

Europe and, thus, recommending opportunities for appropriate further contacts and site visits. 

8.1 Compilation of available data and information 

As is frequently the case for European freshwaters, the earliest information available on the 

fish community of Loch Fitty originates from before its earliest scientific studies. Peter S. 

Maitland (Fish Conservation Centre, U.K., pers. comm.) holds fish occurrence records dating 

back to 1791 which note the local presence of eel (Anguilla anguilla), perch (Perca 

fluviatilis) and pike (Esox lucius). Brown trout (Salmo trutta) have almost certainly been 

present since soon after the loch‟s formation many thousands of years ago, although small-

bodied species such as minnows (Phoxinus phoxinus) and stone loach (Barbatula barbatula) 

were typically overlooked in such non-scientific records. Based on a study of the loch carried 

out in 1969, MacKenzie (1975) reported „excessive numbers‟ of perch and pike alongside 

more desirable brown trout. In relation to the latter, he noted that spawning gravels in the 

inflowing Meldurms Mill Burn were badly silted as a result of mining activities in the 

upstream catchment. MacKenzie (1975) went on to describe the use of rotenone, a plant-

derived piscicide, to kill and remove the entire fish community of the loch in 1970, prior to it 

being redeveloped as a trout fishery by the subsequent successful introduction of yearling 

brown and rainbow trout (Oncorhynchus mykiss) in early 1971.  Although the source of these 

two trout species was not specified, it is clear that it was not the loch itself for the rainbow 

trout, as this is native to North America, and it was unlikely to have been so for the brown 

trout. Consequently, if the original Loch Fitty brown trout population had any unique genetic 

characteristics, it is likely that these were lost at this time. The loch was subsequently 

operated as a trout fishery for many years until its closure in late 2007, during which time 

other fish species were also introduced to three ponds created to the south and east shores of 

the loch. Note that, with the reasonable assumption that the rainbow trout did not establish a 

locally reproducing population and the absence of any stocking for a number of years, this 

species can now be assumed to be no longer present in the system. 

The only scientific survey of the fish communities of the loch and the immediately adjacent 

areas of its primary inflowing and outflowing streams is that of Bull (2010a), which used the 

combined techniques of electric fishing, gill netting, fyke netting and seine netting during 

August 2010. Notably, this investigation found no brown trout in the loch itself, which was 

dominated by perch and roach with much lower numbers of eel and pike. The main inflowing 

stream was found to contain eel, minnow perch, roach, stone loach and three-spined 

stickleback (Gasterosteus aculeatus), but no brown trout or pike.  The main outflowing 

stream contained brown trout, minnow, perch, pike, roach, stone loach and three-spined 

stickleback, but no eel. One inflowing stream site and one inshore loch site were specifically 

sampled for larval lampreys (Lampetra sp.), but none were found.  A sub-sample of fish was 

examined for general health, including parasites, and a relatively high prevalence of the fish 
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louse, Argulus foliaceus, was noted on perch, pike and roach.  Finally, a survey of potential 

brown trout spawning habitats in the system confirmed that the sedimentation problems noted 

by McKenzie (1975) still persisted. 

In addition to the above study, Bull (2011a) describes plans for further gill netting to be 

undertaken at sites within the loch during 2011, to provide data appropriate for use by SEPA 

to classify the fish community for the purposes of the WFD. The aim is to use a classification 

tool that is apparently still in development. This 2011 sampling programme will also use gill 

netting and fyke netting in the ponds immediately adjacent to the loch to ascertain if 

additional undesirable species have been introduced to these habitats by the now closed 

fishery. Electric fishing and habitat assessment of the system‟s flowing waters will also be 

included in the survey. Depending on the results, netting may also be undertaken in the 

standing waters of the Lassodie Burn. The data to be produced by this 2011 sampling are 

critical for both a robust assessment of the current ecological status of the fish community 

and for detailed aspects of the recolonisation strategy, recovery scenarios and management 

options. 

Further relevant information concerning the proposed scheme‟s Ecological Mitigation 

Corridor and the re-instated Loch Fitty itself are available in Bull (2010b) and Bull (2011b), 

respectively, but its detailed consideration here is considered to be unwarranted. 

8.2 Current ecological status 

As reviewed above, the surveys of Loch Fitty and its immediate watercourses reported by 

Bull (2010a) have, amongst other things, documented an apparent absence of native brown 

trout from the loch itself and from its main inflowing stream, together with an abundant 

population of introduced roach in the loch itself, its main inflowing stream and its outflow.  

Other species recorded comprised eel, minnow, perch, pike, stone loach and three-spined 

stickleback, with several fish species bearing considerable loads of the parasite Argulus 

foliaceous. In the absence of detailed historical surveys it is impossible to determine which of 

these species are truly native to the loch. However, even if the data to be produced by the 

further sampling described by Bull (2011a) are necessary to produce a WFD-compliant 

formal assessment, on the basis of the information already available it is clear that the fish 

community of Loch Fitty is currently of poor ecological status under any reasonable 

definition of the term. 

8.3 Targets for the re-instated Loch Fitty compliant with WFD requirements 

Within the U.K., to the best knowledge of the authors, the appropriate competent authorities 

have not yet developed a WFD-compliant classification tool for fish in standing waters, nor 

have they published a formal set of relevant targets. Consequently, specific and robust targets 

for the fish community of the re-instated Loch Fitty cannot be given at present.  However, in 

this absence of authoritative guidance, Bull (2011b) has described a restoration strategy with 

the target of achieving a fish community comprising only brown trout, eel, stone loach and 

three-spined stickleback. Achievement of such a target requires the removal of minnow, 

perch, pike and roach from the system. Roach is clearly an introduced species and this factor, 

together with its potential negative impact on water quality, mean that the case for its 

eradication is overwhelming. The case for the removal of minnow, perch and pike is less 

clear, given that at least the latter two species have been present for at least 200 years.  

However, the new and simplified community proposed by Bull (2011b) errs on the side of 

caution in terms of appropriate composition in a WFD context and so it can be readily 
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supported. In practice, the successful eradication of minnow, perch, pike and roach from the 

upstream system using only netting and electric fishing is likely to prove difficult, as 

discussed elsewhere in the present report. 
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9. WFD good ecological status target for re-instated Loch Fitty: zooplankton  

Although not presently covered by the WFD, it is also recommended that zooplankton 

community composition is taken into account, too, because it has a very strong influence on 

algal species composition and abundance. Predation by fish such as roach can reduce 

zooplankton numbers to a level that results in increases in algal abundance, chlorophyll a 

concentrations and nutrient levels. If chlorophyll a levels increase, the water becomes turbid 

and this has a negative impact on macrophytes, which may also cause failure to meet WFD 

targets. 
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10. Recolonisation strategy 

10.1 Phosphorus and nitrogen 

Achieving the WFD TP standards, and any N standards that are set in the future, will be aided 

by encouraging macrophyte recolonisation through re-planting of submerged and floating 

aquatic plants. This is because aquatic plants play an important role in reducing nutrient 

release from sediments and establishing a stable clear-water state in shallow lakes (Scheffer 

1998). Non-invasive native macrophytes species, such as white and yellow water lilies, could 

be actively planted, although care should be taken to prevent accidental introduction of 

invasive, non-native species that could degrade the ecological status of the loch. 

10.2 Phytoplankton and phytobenthos 

Algae, both phytoplankton and phytobenthos, will naturally recolonise from inflowing 

streams and from dispersal through the air and attached to water birds. Re-planting of 

macrophytes will also introduce an inoculum for re-colonisation. No specific strategy, 

therefore, needs to be developed for the recolonisation of these groups. 

10.3 Macrophytes 

Stewart (2010) suggests a recolonisation strategy that involves taking aquatic plants and 

sediment cores from Loch Fitty, keeping the material in ponds and then using it to recolonise 

the loch after reconstruction. This strategy is entirely appropriate. It makes use of locally 

sourced plants, thereby maintaining the genetic integrity of the Loch Fitty populations. While 

nearby Loch Leven provides a good source of suitable plants for passive colonisation, in 

general there seem to be relatively few other good sources within suitable distance (O‟Hare et 

al., submitted). Some areas of the plan require further detail, especially the methods by which 

the plant and sediment will be maintained over the seven year period between removal and 

reinstatement. A detailed plan for the recolonisation of the loch should be developed, in due 

course.  

The conditions in the holding ponds should be specified in terms of water chemistry, 

sediment chemistry, substrate type, depth and shape. Water and sediment should be low in P 

and N, and a suitable depth of water needs to be provided for the different species, ranging 

from circa 0.3 to 3m. This is necessary to ensure that the plants have the correct growing 

conditions and the ponds are not vulnerable to extremes of weather, either from freezing or 

water level fluctuations. Sourcing suitable water, which is low in nutrients, for maintaining 

the water level in the ponds may be difficult. Rainwater alone is likely to be too low in pH to 

suit plants adapted to the high alkalinity waters of Loch Fitty. It is possible to adjust the pH 

of the rainwater to compensate for this and this may be the most practical solution. A routine 

monitoring programme should be put in place to make sure that the plants remain in good 

condition, with basic observations made on the health of the plants at weekly intervals during 

the growing season. 
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10.4 Macroinvertebrates 

The proposed recolonisation strategy for macroinvertebrates, outlined here, focuses on 

creating the right habitat conditions for these animals in the new Loch Fitty. More 

specifically, this involves creating an environment that is naturally low in nutrients, has a 

suitable mix of benthic substrate types, and has a native in-lake flora around its margins. This 

is an entirely appropriate strategy, and will create conditions in which a macroinvertebrate 

fauna of high ecological status can thrive. 

Early records from 1910 indicate that parts of the shoreline were already artificial by that 

time and that the shoreline was physically diverse. The northern shoreline of the loch was 

described as stony, in the south it was sandy and more vegetated, while to the west the 

shoreline merged into bog (Murray & Pullar, 1910). Reed and Chara beds were also present. 

All of these meso-habitats can support different assemblages of benthic macroinvertebrates. 

As the intention is for the new lake to contain the same, or similar, natural shoreline 

components, a diverse macroinvertebrate fauna can be expected. The placement of the new 

meso-habitats reflects the original positions of these habitats, e.g. the single bank along the 

north shore and reedbeds to the west. As each shoreline has a different magnitude of exposure 

to wind and wave disturbance, which can influence both substrate type and macroinvertebrate 

community, the placement of these meso-habitats is important to the success of the 

restoration project. 

Unlike the recolonisation strategy for aquatic macrophytes there is no formal plan to reinstate 

macroinvertebrates collected from the loch. Instead, the strategy is dependent on natural 

immigration. This, again, is an entirely appropriate approach. There is substantial overlap 

between in-stream and in-lake macroinvertebrate communities and the upstream feeder 

streams will provide colonists for the lake, especially to the more exposed, gravelly shores. 

For this reason, it is essential that the quality of these feeder streams is assessed and, where 

necessary, improved before they are reconnected to the re-filled Loch. 

The majority of benthic macroinvertebrates within a lake, including the chironomids used to 

calculate CPET scores, are the juvenile stages of flying insects that are capable of colonizing 

new habitats quickly through egg deposition. It is only these relatively long-lived juvenile 

stages that spend their life in water (Williams & Feltmate, 1994; Armitage et al., 1995). The 

remaining groups of macroinvertebrates, such as crustaceans, are carried by vectors such as 

birds. Experience from reservoir construction suggests that colonisation of new standing 

waters by these animals is rapid and that these new communities stabilise within a few years  

(Armitage, 1983). 

10.5 Fish 

For the fish community, the recolonisation strategy has already been considered effectively 

by Bull (2010b) in relation to the Ecological Mitigation Corridor and by Bull (2011b) for the 

re-instated Loch Fitty itself.  Consequently, the strategy will not be revisited here except to 

note that it is based on the deliberate introduction of desirable fish species and numbers by 

stocking, although it also addresses the potential recolonisation of the loch by undesirable 

fish species, particularly roach, from the connected watercourses. 
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11. Monitoring strategy for ongoing assessment of restored loch meeting WFD 

targets 

11.1 Catchment derived nutrient inputs 

While the lake is empty, it is important that sources of high nutrient loads within the 

catchment are identified and addressed. Although it has been suggested that most of the 

nutrients entering the loch at present are associated with soil and river bank erosion problems 

(Jarvis & Quin, 2010), closer examination of the available data for the main inflow suggests 

that this may not be the case. Runoff from agricultural land generally has an OP:TP ratio of 

0.4 or less if the main source is soil erosion, whereas values higher than this tend to suggest 

important sources of soluble phosphorus (OP) such as sewage works or septic tank discharges 

and/or seepage from agricultural storage areas such as slurry tanks. Figure 11.1 shows that 

the main inflow to Loch Fitty is often high in soluble P so it is recommended that a catchment 

survey of in-stream P concentrations (a “streamwalk”) is undertaken under both high and low 

flow conditions to identify the likely sources of high OP inputs. 
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Figure 11.1 Ratio of orthosphosphate (OP) to total phosphorus (TP) concentrations in 

the main inflow to Loch Fitty, 2008-2010. 

 

After re-instatement, the main external sources of nutrient inputs to Loch Fitty will continue 

to be associated with runoff from land, domestic waste, rainfall, roosting birds, etc. Although 

land use based modelling methods can give a rough estimate of the inputs from these sources 

to receiving waters, the method is not accurate enough to support site specific management 
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activities because most are based on annual runoff values derived from very broadly 

applicable, land use specific, nutrient export coefficients. For site specific management 

purposes, detailed measurements of nutrient (N, P and Si) delivery from the catchment to the 

receiving waterbody are essential. These measurements should be made on a fortnightly 

basis, with additional, close interval, sampling during high runoff events. Regular sampling 

throughout the year is important because the nature, size and seasonality of the inputs (loads) 

can have a significant impact on lake response. Detailed sampling during high runoff events 

is also important because such events, though infrequent, can deliver 80 per cent of the 

annual nutrient input to the lake over just a few days (Defew, 2008).  

Measurements of the water quality and flow in the inflows to the loch should be examined for 

evidence of especially high levels of pollution from particular parts of the catchment. This 

should then be followed up with site visits, wherever possible, to determine the cause(s) of 

these high discharges with a view to advising on how these can be mitigated. Landowner 

interviews should be conducted to address issues of identified point sources using SEPA‟s 

Diffuse Pollution Audit Form to record any responses, if appropriate. 

Recommendation: Water quality problems in the inflow streams should be addressed while 

the loch is empty through targeted catchment monitoring and management activities. Once 

the loch is re-instated, fortnightly monitoring of inflows supplemented with occasional 

intensive monitoring during high runoff events is recommended. This should be undertaken 

to support the recovery process by highlighting any degradation in inflow quality before it 

causes lasting damage to the loch. 

11.2 Phosphorus release from sediments 

An initial assessment of the available in-lake nutrient monitoring data suggests that in-lake 

sediment nutrient processes are not the main driver of water quality in the loch at present. 

However, it should be noted that any catchment management activity aimed at improving 

water quality within the existing lake could result in a switch from catchment derived to 

sediment derived sources of P during the subsequent recovery period. This process can cause 

significant delay in lake recovery, which may last for many years (Sas, 1989). Although the 

current P laden sediments will not be transferred to the new Loch Fitty, it is important to 

monitor the accumulation and recycling of P within the sediments of the new loch as re-

instatement takes place. 

Sediment P release is commonly estimated using a combination of the approaches, as 

follows: (1) a mass balance approach, if summer internal loading peaks are evident, (2) 

sequential fractionation analyses of sediment samples collected from the lake bed to quantify 

the “release sensitive” sediment P pool, and (3) sediment core studies to assess the P flux per 

unit area of lake bed. 

The mass balance approach subtracts the lowest TP concentration in spring from the highest 

concentration in autumn and assumes that the difference in concentration results from 

sediment P release, alone. However, over this period, variable amounts of TP will be entering 

the loch from the catchment and leaving the loch from the outflow, so it is important that 

detailed catchment loading data are available so that this can be corrected for. 

Estimating the whole lake stock of release sensitive P is best conducted seasonally to assess 

the different processes of sediment uptake (i.e. winter and spring) and release (i.e. summer 
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and autumn). Intact sediment cores should be collected from sites spanning the depth gradient 

of organic sediment in the restored loch. The sediment cores should be sectioned at 2cm 

intervals to a depth of 20 cm and the untreated sediment should be subjected to the following 

P extraction scheme, which follows that of Psenner et al. (1988),: 

(1) extraction in 1M NH4Cl for 30 min and quantification of total soluble P (TSP) [„labile-

P‟]; 

(2) repeated (5 min) extraction with 0.11 M NaHCO3 / 0.11 M Na2S2O4 for 1 h and 

quantification of TSP [„reductant-soluble P‟]; 

(3) repeated (5 min) extraction in 1 M NaOH for 16 h followed by quantification of 

soluble reactive P (SRP) [„metal oxide adsorbed P‟] and TSP; 

(4) repeated (5 min) extraction with 0.5 M HCl for 16 h followed by quantification of TSP 

[„apatite bound P‟]; 

(5) digestion with 30% (v/v) H2SO4 and 8% K2S2O4 at 121 ºC for 30 min followed by 

SRP quantification [„residual P‟]. Organic P [„organic P‟] was quantified by 

subtracting NaOH-SRP from NaOH-TSP in step (3), above.  

The sum of the „labile P‟, „reductant-soluble P‟ and „organic P‟ fractions represents the 

“release sensitive” P pool in the sediment (Boström et al., 1982). The mass of sediment TP 

and release sensitive P can then be estimated at the whole loch scale if accurate knowledge of 

the sediment distribution across the bed is available. This spatial and seasonal data must be 

collected to underpin any follow up management required to control sediment P release 

during the recovery process. 

Recommendation: Assess internal P release from the sediments and the accumulation of 

release sensitive P in the sediments over the recovery period to underpin any follow up 

management required to control sediment P release during the recovery process. 

11.3 Routine monitoring of in-lake water chemistry, chlorophyll a concentrations, 

phytoplankton and zooplankton species composition and abundance 

The sampling regime required for assessing water quality monitoring data against WFD water 

quality targets for TP and chlorophyll a was recently quantified by Carvalho et al. (2006). In 

summary, these authors found that single annual spot sampling produced errors of ±109% 

and ±48% in TP and chlorophyll a annual means, respectively, while quarterly sampling 

produced corresponding errors of ± 32% and ±14%, bi-monthly sampling produced errors of 

±21% and ±10 %, monthly sampling produced errors of ±11% and ±5%, and fortnightly 

sampling produced errors of ±5% and ±3 %. To achieve mean annual estimates that are 

within acceptable levels of uncertainty, i.e. ±10%, a monthly sampling strategy is required for 

both chlorophyll a and TP concentrations. 

It is recommended that samples for monitoring species composition and abundance of 

phytoplankton and zooplankton communities are collected in parallel to those for 

chlorophyll a and TP concentrations. 

Recommendation: Chlorophyll a and TP concentrations, and species composition and 

abundance of phytoplankton and zooplankton communities should be measured at monthly 
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intervals to assess compliance with WFD water quality targets, where appropriate, and 

provide supporting data for on-going lake management activities. 

11.3.1 Routine monitoring of phytobenthos  

Samples of benthic diatoms should be collected annually by brushing or scraping the upper 

surface of cobbles or small boulders obtained from the littoral zone of the loch, or from 

submerged stems of emergent macrophytes in areas dominated by fine sediments. 

11.3.2 Routine monitoring of macrophytes 

Annual macrophyte surveys should be undertaken over the recovery period, following WFD 

recommended methods. 

11.3.3 Routine monitoring of macroinvertebrates 

Surveys of the macroinvertebrate communities should be undertaken four times a year, 

between April until October. The surface of the lake should be skimmed with a hand net 

(nominal mesh size: 250 µm) with an extendable handle. The samples should be analysed 

following the recommendations of WFD-UKTAG (2008d).  

11.3.4 Routine monitoring of fish 

Annual fish surveys should be undertaken over the recovery period, following WFD 

recommended methods when these are available from the competent authority. 

11.4 Assessment of in-lake processes 

An understanding of site-specific lake processes (e.g. the seasonality of P or N limitation, 

chlorophyll:TP ratio; TN:TP ratio; denitrification rates; stratification; redox conditions; 

internal loading etc) is essential when developing future management programmes (Jeppesen 

et al., 2005; Spears et al., 2007; May et al., 2010). Lakes which appear to have similar water 

quality issues can require very different management approaches and can respond to 

management very differently depending on site-specific traits (Jeppesen et al., 2005). 

Additional information can also be gained with respect to the timing of management 

practices. For example, many shallow lakes are predominantly P limited; however in-lake 

processes such as internal P loading and denitrification, which run concurrently in summer, 

can result in sporadic periods of N limitation. Additionally, sediment P is predominantly 

released in lakes in the summer (Spears et al., 2007). An understanding of these processes 

can be inferred from an assessment of seasonal and spatial (with depth) variations in physical, 

chemical and biological determinands as discussed below. Additionally, these processes vary 

at a seasonal timescale and a combined sampling approach of outflows and open water and 

sediments is required to roughly estimate these processes. 

Recommendation: Monthly sampling of outflows, seasonal sampling of open water depth 

profiles and annual sampling of sediment nutrient content are recommended to provide 

information on in-lake processes to inform future management decisions. 
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12. Likely timescale for attainment of good status 

12.1 Factors affecting lake recovery 

A recent review of over 700 „lake-equivalent‟ case studies (LECs) indicated that a wide range 

of pressures are expected to influence the recovery of lakes following management to solve 

eutrophication problems. Many of these pressures are classified as primary eutrophication 

pressures that will result in an increase or decrease in nutrient inputs to a lake (Table 12.1). 

However, a range of secondary (i.e. indirect) pressures can also impact upon, and delay, the 

recovery process. It is essential to understand the combined impacts of these multiple 

pressures when designing restoration solutions. Also, planning contingency management to 

address these pressures is required to minimise the risk of undesirable restoration outcomes 

when lake restoration is attempted (Hilderbrand et al., 2005). 

In the case of Loch Fitty, it is important to identify any potentially confounding pressures and 

mitigate their impacts, prior to re-instating the loch. It is also important that the complexity of 

restoring heavily impacted lakes is acknowledged within a realistic long-term management 

plan that allows for continual assessment of ecological succession in line with existing and 

emerging environmental pressures. In the following sections we review the success/failure of 

a range of case studies in which waterbodies have been either created or have undergone 

sediment removal and/or dewatering. The results of these studies have been used to identify 

potentially confounding pressures and response periods that should be considered in relation 

to Loch Fitty, given the proposed restoration work. 

Table 12.1. Primary and secondary drivers and pressures checklist for eutrophication in 

freshwater lakes used in the analysis of pressure-impact relationships. Drivers are 

underlined and pressures are in italics. 

Eutrophication drivers and pressures 

Primary  Secondary 

 Agriculture Boat disturbance of sediments Sediment dredging 

Fertiliser application Gardening practices Boat disturbance 

Animal waste Waterfowl feeding Mine pollution 

Soil errosion  Population growth Invasive species spread 

 Industry Waste water treatment plants Pesticide application 

Textiles Septic tank discharges Climate change 

Food manufacturing Waste disposal Fish stocking 

Paper mill discharges Construction Fishery exploitation 

Mining discharges Transport run-off Acidification 

Distillery discharges Detergent and soap use Macrophyte removal 

Aquaculture discharges  Other pressures  Industrial thermal-regulation 

Sediment dredging Lake-bed sediments Water level management 

 Tourism and recreation Waterfowl feaces Waterfowl introduction 

Food waste disposal Atmospheric deposition Extreme weather events 

Fish stocking N2 – fixation  
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12.1.1 Nutrient inputs from the catchment 

There is a lack of understanding of the main nutrient sources and scales of input to the current 

Loch Fitty from its inflows. This lack of knowledge means that any forecasting of TP 

concentrations based on nutrient inputs will have a high degree of uncertainty. It is welcomed 

that monitoring of the surface waters to improve load estimation, and the implementation of 

targeted measures to reduce catchment loading, are to be initiated at the commencement of 

the development (i.e. 7.5 years prior to re-filling) to provide baseline nutrient loading data for 

the restored loch. During refilling, water with high nutrient content should be avoided and 

only sources of water with the low nutrient concentrations should be used to re-fill the loch. 

Therefore, ongoing monitoring of the groundwater abstraction wells proposed to be used to 

refill the restored loch is required to ensure water quality is within acceptable limits. Any 

inflow streams that are found to have high TP or N concentrations should be investigated and 

management action taken to reduce these inputs before they are reconnected. As stated above, 

this problem will be addressed while the loch is empty. A suitable regime for monitoring 

nutrient input to the restored loch is outlined in Section 11.1. 

12.1.2 Internal phosphorus loading 

As the proposed restoration works include an initial dewatering step, the potential direct 

ecological impacts of the removal of sediment without dewatering can be ignored in the case 

of Loch Fitty. In addition, the proposed restoration works are designed to enhance the 

recovery of Loch Fitty, by reducing both sediment P release and nutrient inputs from the 

catchment and removing heavy metal laden sediment. 

A range of factors regulate the recovery of lakes following dewatering and sediment removal. 

Chemically, the reduction of sediment P release is expected to be a key outcome for Loch 

Fitty. However, care needs to be taken to ensure that P-laden sediments are not re-introduced 

to the loch during restoration as this could limit the recovery process. In particular, where 

recolonisaton of macrophytes is an important step, it is important to ensure that large amounts 

of P-laden sediments are not re-introduced to the site as plant substrate during macrophyte 

translocation. 

In general, sediment P concentrations increase towards the sediment surface. This is because 

(1) organic matter is deposited at the sediment surface and remineralised in the upper layers 

by bacteria and (2) P is bound within iron and manganese oxyhydroxides under aerobic 

conditions (i.e. towards the sediment surface) and released under anaerobic conditions (i.e. in 

deeper sediment layers) and so focuses towards the aerobic surface layers. This store of P is 

released to the water column when bottom water and surface sediment conditions are 

anaerobic, most commonly in warm summer months when biological oxygen demand 

outstrips supply (Spears et al., 2007). Ideally, the new Loch Fitty bed sediments will have a 

high P binding capacity with a low sensitivity to anaerobic release. However, if not, 

amendment of the bed sediments may be necessary to achieve this. 

Amendment to enhance the P sorbing capacity of the lake sediments may be conducted prior 

to the sediments being introduced to the loch or retrospectively if internal loading occurs after 

the loch has been re-instated. A range of products that can be used for this purpose are 

commercially available (Table 12.2) and the selection of the appropriate product should be 

based on the properties of the proposed bed material. 
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Table 12.2. Summary of commercially available materials to control sediment P release 

at the whole lake scale, and references to documented examples of their application. 

Method Mechanism Reference 

Physical 

Discing 

 

RIPLOX, manual injection of chemicals (FeCl, 

Ca(NO3)2, CaCO3 into bed sediments to 

manipulate P sorbing capacity and/or 

denitrification rate through pH. 

 

Ripl, 1976 

Capping – Passive   

Sand/gravel Adding sand/gravel/clay (> 5 cm layer) to 

existing bed sediments to reduce diffusion of 

nutrients from sediment to water column. 

Cooke et al,. 2005 

Capping-active   

Alum Buffered (>6.5 pH) alum addition to sorb 

phosphate in water column and settle out to lake 

bed, also acts as a flocculent but potentially toxic 

Al
3+

 release if low pH conditions are not 

correctly buffered. 

Cooke et al., 2005 

Modified Zeolite Al-zeolite clay with high binding affinity for 

NH4-N and moderate binding affinity for PO4-P. 

Applied as slurry to the water column where it 

binds dissolved nutrients before settling to the 

lake bed where it caps sediment nutrient release 

when applied at the correct dose. 

Hickey & Gibbs, 

2010 

Phoslock® Lanthanum-bentonite clay with high binding 

capacity for PO4-P. Effective over a wide range 

of pH (4.5-8.5) and solubility product with PO4-

P is very low, so it forms a very stable La-P 

complex in the sediment. Concerns about La 

toxicity are still being investigated. 

Hickey & Gibbs, 

2010 

 

Van der Does et al. (1992) suggest that lake morphometry and hydraulic residence time be 

taken into account when deciding on the likely success of sediment removal for enhancing 

the recovery process. Additionally, Sas (1989) demonstrates that sediment TP concentration 

can be used as an indicator of the likely transient recovery time, as a result of sediment P 

release, following external load reduction. 
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Sas (1989) classified the sediment TP concentration in the upper 15 cm of lake sediments in 

relation to the estimated recovery time following reduction of external P loading. At 

concentrations of less than 1 mg TP g
-1

d.w., internal loading is expected to be negligible with 

moderate summer sediment-P release events. At concentrations between 1 mg TP g
-1

d.w. and 

2.5 mg TP g
-1

d.w., net annual sediment-P release will be high, initially, with recovery 

expected within a 5 year period; a high summer release event would be expected to occur that 

will be affected by pH, dissolved oxygen and microbial activity. At concentrations in excess 

of 2.5 mg TP g
-1

d.w., net annual sediment-P release will occur for more than 5 years; in this 

situation, sediment-P release is expected all year round and will be greatly influenced by pH, 

dissolved oxygen and microbial activity. 

Rowan (2011) conducted a comprehensive spatial survey of TP concentration in 38 bulk 

sediment samples collected from Loch Fitty in November 2010. The bulk samples averaged 

19.6 cm in sediment depth. TP concentrations ranged from 0.11 to 2.45 mg TP g
-1

 d.w. 

Significant spatial variability was reported, with deeper water sediments having the highest 

TP concentrations. The mean TP concentration from the bulk sediment samples was 

0.91 mg g
-1

 dw ± 0.18 mg TP g
-1

 d.w. At the whole loch scale, Rowan (2011) estimated a 

store of about 65 tonnes in the upper 20 cm of sediment. Significant positive correlations 

were reported between total Fe and TP, and total Mn and TP, indicating that a major 

component of the TP pool in the upper 20 cm is associated with redox-sensitive Fe-P and 

Mn-P complexes. These complexes represent the pool of sediment TP that is likely to be 

released to the water column under reducing conditions (Spears et al., 2007).  

Dated depth profiles of TP, in the upper 29 cm of sediment, were assessed in two cores by 

Rowan (2011). As in most eutrophic lakes, the TP concentration increased significantly 

towards the sediment water interface, especially over the upper 5 cm (“active layer”). This 

increase is generally attributed to the migration of redox-sensitive phosphorus pools towards 

the aerobic sediment surface and to the fact that organic P and inorganic particulate P pools, 

originating from the water column, are deposited at the surface. These high TP surface 

sediment layers are those that are responsible for sediment-water interactions, and for 

prolonging the recovery of lakes from eutrophication following reductions in catchment 

loading (Farmer et al., 1994; Spears et al., 2007). The reported (Rowan, 2011) estimates of 

bulk sediment TP concentrations will, therefore, underestimate TP concentrations in the 

active layer as a result of dilution of surface sediments with deeper sediment layers (depth 

range of bulk sediment cores – 4 cm to 36 cm) of significantly lower TP concentrations.     

Based on the available data, TP trends below the active layer (i.e. about 5 cm in Loch Fitty) 

may be used loosely to infer changes in TP concentrations in the loch over time. It should be 

noted that a limitation of using sediment TP depth profiles is that the redox-sensitive, labile 

and organic P pools are not well represented for reasons outlined above. Instead, the sediment 

P pools most likely to dominate in deeper, anaerobic, sediment layers are apatite-P, metal 

adsorbed-P and residual-P, i.e. those P pools that are likely to be driven by changes in the 

mineral signature of catchment inputs commonly driven by land-use changes (Boström et al., 

1982). The results suggest that loch TP concentrations increased gradually between about 

1950 and 1970 followed by a rapid increase to a peak in the mid-1970s. Following this, TP 

concentrations have gradually declined through to the 1990s. The values reported for the 

1990s were more than double those reported for pre-1940s, indicating sustained high 

catchment loading. 
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At present, Loch Fitty has a relatively short residence time of 57 days and a mean depth of 

2.2 m (Rowan, 2011). According to Sas‟s (1989) estimates of recovery time based on 

sediment TP concentrations, the upper confidence level mean sediment TP concentration for 

Loch Fitty of 1.19 mg TP g
-1

 d.w. (Rowan, 2011) corresponds to an estimated recovery 

period of less than 5 years as a result of internal loading alone. It should be noted that these 

estimated recovery times only apply once the external loading has been significantly reduced 

and will be enhanced at higher flushing rates. It should also be noted that these recovery time 

categories are based on meta-analyses and that specific site attributes (e.g. depth, effective 

fetch and residence time) are also important regulators. For example, the delay in recovery in 

Loch Leven (mean depth – 3.9 m, residence time ~ 146 days and sediment TP in 1995 and 

2005 of about 2.5 mg TP g
-1

 d.w.; Farmer et al., 1995; Spears et al, 2007) was around 15 

years. A comparison of the mean bulk sediment TP concentrations for Loch Fitty reported by 

Rowan (2011) together with a range of other lakes is shown in Figure 12.1. It should be noted 

that variations in sample design and procedure across the studies included in Figure 12.1 

allows only rough comparison between lakes. 
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Figure 12.1 Summary of TP concentrations for surface sediments in lakes across the 

world, with the exception of Loch Fitty (black bar) where estimates are based on bulk 

sediment cores over a range of depths (4-36 cm). Following significant reductions in 

catchment nutrient load, lakes with concentrations that lie below the solid black line are 

expected to recover quickly, those with concentrations between the full line and the 

dashed line represent a recovery period of less than 5 years, and those with 

concentrations above the dashed line are expected to take more than 5 years to recover 

as a result of internal loading (Sas, 1989).  
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12.1.3 Fish and fishery management 

Fish communities have been managed throughout Europe for hundreds of years. This has 

resulted in a huge scientific literature on the subject, the review of which is far beyond the 

remit of this report. However, a relatively recent review of the particular field of fish stocking 

and introduction can be found in the edited proceedings of a symposium on this subject 

edited by Cowx (1998). This contains a number of papers that are specifically concerned with 

brown trout and eel, both of which are key species in the present context. In terms of 

UK-specific projects in this area, Roger A. Sweeting (Honorary Research Fellow, Freshwater 

Biological Association, U.K.  E-mail RSweeting@fba.org.uk, pers. comm.) has extensive 

personal experience of introducing and re-introducing fish to gravel pit lakes in the south of 

England, including observations of the subsequent rapid expansion of some species before 

the community settled down to some form of balance. Also relevant to this area, Keith J. 

Wesley (Bedwell Fish Farms and Bedwell Fisheries Services.  Tel. 07802 783233) is a 

commercial provider of services with over 25 years of experience, including the restocking of 

de-silted or otherwise modified water bodies. 

With a more recent history from the 1980s to the present, and a more restricted scope in terms 

of the species involved, fish community management has also been undertaken for 

biomanipulation purposes in which fish numbers and species composition are manipulated to 

produce cascading changes in the zooplankton, phytoplankton and, ultimately, in the water 

quality of a standing water body. An authoritative review of this field on a global basis is 

provided by Hansson et al. (1998). Such studies have relevance to the present project because 

biomanipulation in Europe frequently involves the removal, or at least great reduction, of 

roach populations due to this species frequently being a major predator of zooplankton 

populations, especially in eutrophic waters. Such biomanipulated fish populations have been 

removed or reduced by manual removal through netting or electric fishing, by the addition of 

predatory fish, or by the use of chemicals such as rotenone. The U.K. experience with 

biomanipulation, where fish removal/reduction methods are tightly restricted, is reviewed by 

Moss et al. (1996), with Perrow et al. (1997) providing a more fish-focused account and 

Phillips et al. (1999) concentrating on its practical aspects. In the U.K., such work has been 

focused almost entirely on the Norfolk Broads of south-east England, with the manual 

removal of roach and, to some extent, other species, by repeated electric fishing, some netting 

and some egg removal being reviewed by Perrow et al. (1997) and Phillips et al. (1999).  One 

particularly clear conclusion which can be drawn from these and other studies is that the 

complete removal of roach and similar species from a standing water body is extremely 

difficult to achieve when it is attempted only by physical capture. Even if only a few 

individuals evade capture, the population biology of such small cyprinids is such that they 

will rapidly recover in population abundance within a few years.  Andrea Kelly (Broads 

Authority, U.K.  E-mail andrea.kelly@broads-authority.gov.uk, pers. comm.) has managed 

much of this work and has confirmed that, although fish are not being actively removed at 

present following successful earlier exercises, their eggs continue to be removed and their 

populations continue to be monitored by annual surveys. 

12.1.4 Ingress of non-native invasive species 

Non-native invasive species are defined by the GB non-native species secretariat as “any 

non-native animal or plant that has the ability to spread causing damage to the environment, 

the economy, our health and the way we live.” The recovery of Loch Fitty would be 

adversely affected by ingress of any of a range of non-native invasive species. Loch Fitty is 
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currently infested with the non-native invasive aquatic plant species Elodea canadensis 

(Canadian pondweed) and the non-native fish species roach). Although many non-native 

invasive species are introduced by humans for a specific purpose (i.e. stocking of non-native 

invasive coarse fish), by definition, they also have the ability to spread throughout the 

environment and infest lakes without human intervention. A summary of the types of non-

native invasive species, and their vectors, that may affect the recovery of Loch Fitty by out-

competing native species and resulting in an undesirable recovery end point, including the 

failure of the WFD quality targets, are outlined in Table 12.3. 

 

Table 12.3. Summary of organism groups, their mode of introduction, and possible 

environmental impacts for non-native invasive species considered to pose a high risk to 

the recovery of Loch Fitty (after, Manchester and Bullock, 2000). 

Type of organism Purpose Impacts Examples 

Fish and shellfish Angling, accidental 

introduction 

Competition, 

predaition, habitat 

disturbance, disease 

vector, increased 

sediment P release, 

reduction of 

macrophyte cover 

Grass carp, common 

carp, crayfish, 

rainbow trout 

Invertebrates Accidental 

introduction 

Competition with 

native species, 

grazing of 

phytoplankton 

Zebra mussel, alien 

gammarids 

Plants Accidental 

introduction 

Prolific vegetative 

growth, forms dense 

matts leading to 

deoxygenation, 

outcompetes native 

flora. 

Crassula helmsii, 

Elodea Canadensis 

and E. Nutalii 

 

As it is extremely difficult to eradicate non-native invasive species once they have infested a 

lake, it is important to minimise the risk of infestation to Loch Fitty. This is especially 

important as this risk is likely to be heightened by the translocation and re-planting of the 

native plant species that currently inhabit the loch. 

The proposed restoration work opens up two conflicting opportunities in relation to the 

control of non-native invasive species in Loch Fitty. These are: 

 the opportunity to remove Canadian pondweed (Elodea canadensi) and roach 

populations, and  
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 the opportunity for new non-native species to colonise during the loch recovery phase. 

Measures to reduce the risk of Loch Fitty being colonised of by non-native invasive species 

may include appropriately controlling public access during the re-colonisation phase and 

improving public awareness in line with the GB Non Native Species Secretariat “Be Plant 

Wise” campaign (https://secure.fera.defra.gov.uk/nonnativespecies/home/index.cfm). Care 

needs to be taken to ensure that holding ponds do not become infested with non-native 

invasive species. It should also be noted, however, the fact that some non-native invasive 

species can be introduced by waterfowl may make them difficult to control (e.g. Crassula 

helmsii, Elodea Canadensis and Eloea nutalii). An invasive species action plan should, 

therefore, be drawn up in collaboration with SEPA and the local community to identify high 

risk species and to monitor their presence/absence in the loch. These measures will reduce the 

risk of infestation and increase control over recovery to the desired end point.  

12.1.5 Control of non-native invasive phytoplankton and phytobenthos 

The phytoplankton and phytobenthos communities are generally considered to be ubiquitous 

due to their ease of distribution. As such, no practical management measures are considered 

necessary for these communities. 

12.1.6 Control of non-native invasive macrophytes 

In terms of recovery, there is a risk that invasive, macrophyte species could outcompete 

desirable species during the establishment phase. As part of the process of mitigating those 

risks, and to inform management of the expected rate of recovery, it is recommended that 

pilot work is undertaken to confirm the recruitment rates and growth rates of the native 

species. The results of this work can be used to determine sensible stocking densities. Similar 

pilot work has proven very effective in the restoration of rivers in Denmark (Riis et al., 2009; 

Riis pers comm.).  

Equally, the species present in Loch Fitty are from groups that are known to exhibit different 

growth rates and there is anecdotal evidence that species that are closely related to those 

present in Loch Fitty may reproduce at different rates. This raises the possibility that the most 

competitive species may dominate at an early stage, leading to the exclusion of rarer, less 

competitive species (Grime et al., 1988). A recolonisation plan informed by a pilot study, as 

described above, will mitigate this risk. 

There are a number of further prophylactic steps that can be taken to prevent undesirable 

recovery scenarios. A critical first step is to reduce nutrient input to the lake, because 

enriched conditions favour undesirable species. On occasion, this has been sufficient to 

provide the conditions whereby native species can overcome invasive species (Pot & ter 

Heerdt, 2009).  

Consideration should also be given to restricting access to propagule vectors, including 

people and birds, within the first few years of reinstatement. Any sources of propagules of 

invasive macrophyte species within the upstream area of the catchment should also be 

identified and controlled, especially during the recolonisation period. 

Like freshly turned garden soil, a new lake without an established native plant community, is 

vulnerable to weedy growth. In the USA, where the US Army Corp of Engineers is 

responsible for building new reservoirs, this scenario is commonly observed in the years 

https://secure.fera.defra.gov.uk/nonnativespecies/home/index.cfm
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immediately following construction (Dr M. Grodowitz, US Army pers. comm.). Their 

experience is that the conditions found in new water bodies can encourage either nuisance 

algal blooms or aggressively invasive macrophytes, making it difficult for native species to 

establish. In either case, reversing the process is expensive or practically difficult, so 

prevention is the better option. 

Other potentially more aggressive invasive macrophytes are known to occur locally and there 

is a risk of these becoming established in the new Loch Fitty. For example, Canadian 

pondweed (Elodea canadensis) is found in the nearby Loch Leven, Nuttall‟s pondweed 

(Elodea nutalii) is found in Linlithgow Loch and New Zealand pygmy weed (Crassula 

helmsii) is present in the wider area. Other species, such as Himalayan balsam and Japanese 

knotweed, also occur locally and can infest riparian zones. However, it is recognised that this 

risk exists for the waterbody currently and, indeed, the existing Loch Fitty suffers from 

invasive plant species. So, the above mitigation measures are proposed to mitigate this risk in 

the early years of establishment of the new loch. 

The impermeable nature of the clay liner alone may slow colonisation, therefore, the 

provision of an additional substrate layer above the clay liner is welcomed and consideration 

should be given to using materials such as sands and low nutrient silts as rooting media that 

favour native species over non-native species. The seedbank of these materials should be 

assessed to ensure that non-native invasive species are not inadvertently introduced. 

The prophylactic measures suggested above will help prevent problems with aggressive 

invasive species. The GB non-native species secretariat has recently published a range of 

guidance documents designed to provide bio-security advice to stop the spread of non-native 

invasive macrophyte species. 

12.1.7 Control of non-native invasive macroinvertebrates 

As a calcareous hardwater site, Loch Fitty is especially suitable for crustacea and mollusca, 

as calcium will be available for the shells of these animals. For this reason the loch could be 

susceptible to invasion from, for example, zebra mussel (Dreissena polymorpha), North 

American signal crayfish (Pacifasticus leniusculus) and alien gammarids (e.g. 

Dikerogammarus villosus). These pest species are not very prevalent in Scotland at present, 

either because they have not migrated to this area yet or because many Scottish waters are 

relatively low in calcium and not suitable for them. However, if they did successfully invade 

the new Loch Fitty, the WFD ecological status of the loch, under any measurement scheme, 

would probably be reduced. It is therefore important to prevent their ingress. Careful control 

on the sourcing of materials used in the construction of the loch, and the decontamination of 

any work/leisure craft or sampling equipment used on the loch should prevent the spread of 

these invasive species into the new loch.  

The GB non-native species secretariat has recently published a range of guidance documents 

designed to provide bio-security advice to stop the spread of non-native invasive 

macroinvertebrate species. 

12.1.8 Control of non-native invasive fish 

In recent years, a number of fish communities have been managed with the aim of addressing 

the problems associated with invasive species. In Europe, the invasive (or „undesirable‟) fish 

species in this context are usually cyprinids closely related to roach. Examples of such 
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operations in mainland Europe include the work of Carlos Fernandez-Delgado (Departamento 

de Zoología, Campus Universitario de Rabanales, Universidad de Córdoba, Spain.  E-mail 

carlos.fdelgado@uco.es, pers. comm.) who has used rotenone to remove introduced common 

carp (Cyprinus carpio) and mosquitofish (Gambusia affinis) from water bodies in southern 

Spain (Fernandez-Delgado, 2009). In one such waterbody, the Laguna de Zóñar with a 

surface area 37 ha and a maximum depth 14 m, both invasive species were successfully 

removed while a desirable native species (Atherina boyeri) was temporarily held elsewhere 

and then successfully reintroduced. In a second water body with a surface area 87 ha and a 

maximum depth 2 m, only the common carp was successfully eradicated. Elsewhere in Spain, 

similar work is currently underway under a LIFE Nature project (LIFE08 NAT/E/000078) at 

the Lake Area of the Estany de Banyoles, in the north-east of the country, under the 

leadership of Miguel Campos (Consorci De l'Estany, Banyoles, Spain.  E-mail 

mcampos@consorcidelestany.org). 

Within the U.K., work on the control of invasive fish species has concentrated on the small 

cyprinid topmouth gudgeon (Pseudorasbora parva) and has been developed by Rob Britton 

(Centre for Conservation Ecology and Environmental Change, School of Conservation 

Sciences, Bournemouth University, U.K. E-mail rbritton@bournemouth.ac.uk) and Matt 

Brazier (Environment Agency, U.K.  E-mail matt.brazier@environment-agency.gov.uk), with 

the latter individual subsequently leading the national application of the developed technique 

for the Environment Agency. This work involves the temporary removal by netting of 

desirable native fish for safe-keeping elsewhere during the eradication process, which is then 

itself accomplished using the piscicide rotenone. Such use of rotenone remains potentially 

controversial in the U.K. and so is understandably subject to detailed restrictions. In the 

present context, significant research was required to develop the technique into an acceptable 

protocol. This research has included the determination of appropriate treatment procedures 

(Allen et al., 2006), the detailed documentation of their field application at a number of sites 

(Britton & Brazier, 2006;  Britton et al., 2007;  Britton et al., 2008), and a more strategic 

consideration of this approach to the issue (Britton et al., 2010). In addition to a remarkable 

record of successful eradication, this rotenone-based approach has also been shown to lead to 

no long-term problems at the application sites as evidenced by subsequently increased growth 

and production of native fish (Britton et al., 2009). 

12.2 Evidence of chemical and ecological recovery from similar case studies 

Information on similar projects within the UK and across the rest of Europe was sought by 

reviewing scientific literature and consulting colleagues within the international research 

community. This information was used to evaluate possible management issues, likely 

recovery times and potential contingency management options at Loch Fitty. The survey 

returned the following general results: 

 sediment removal has been widely used in restoration projects across Europe, 

 a response in P, chlorophyll a and, to a lesser extent, nitrogen concentrations were 

most commonly reported, 

 no studies have reported on European lake restoration that directly addressed WFD-

compliance, or any other recovery targets for BQEs of restored lakes 

 recolonisation by macrophytes, phytoplankton and zooplankton after sediment 

removal has been reported for a small number of UK and other European lakes, 

 ecological recovery is currently being comprehensively studied in a range of created 

lakes across Europe from which practical management lessons may be learned,  
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 a small number of lakes within the Czech Republic have been created on spent brown 

coal mining sites; the recolonisation of the fish community has been managed and 

monitored in these lakes, and 

 there a number of sites to which visits could be made that would provide useful 

information on the recovery process. 

 

Stewart (2010) has documented many examples of lake creation projects within the UK, but 

with little or no indication of their success or failure. The locations of these projects include 

Cotswold Water Park (Wiltshire and Gloucestershire), Windrush Valley (Oxfordshire), 

Cresswell (Northumberland), and the Mountcastle/Wilderness sand quarries (Fife). Stewart‟s 

report also includes guidance for mineral extraction companies that has been produced by the 

Ponds Conservation Trust, and which is considered to be applicable to the proposed work on 

Loch Fitty. However, this guidance is only aimed at strategies for the promotion of 

stoneworts (charophytes) in new lakes. Although this will be important in the restoration of 

Loch Fitty, the needs of other species must also be taken into account. Stewart (2010) 

addresses these needs, to some extent. 

There are many examples of lake restoration projects throughout Europe, although most of 

these have been attempted without draining the lakes and completely removing the 

sediments. Many lessons that are pertinent to the proposed work at Loch Fitty can be learned 

from these examples. Many of these case studies have been reviewed by Gulati et al. (2008) 

and Søndergaard et al. (2007), who highlight several factors that are important for successful 

restoration: 

1. the reduction of inputs of P and N from external sources such as inflowing streams 

and groundwater, and from internal sources such as sediment release 

2. the removal or control of planktivorous fish, which allows the proliferation of 

zooplankton grazers; these, in turn, remove many of the phytoplankton that would 

otherwise compete with submerged aquatic plants for light 

3. the reduction of sediment resuspension by removing bottom-feeding fish or reducing 

wind-induced mixing (e.g. by reducing fetch) 

Although few examples of lake creation per se are documented in the scientific literature, it is 

likely, that this has been attempted many times, given the examples found by Stewart (2010) 

within the UK. Given the relative complexity of the Loch Fitty macrophyte recolonisation 

strategy, it would be helpful (during the operational period of the development) to explore 

which of these projects have been considered to be successes or failures and what the main 

causes of these successes/failures were, if this information is available. Such information may 

provide some important lessons that have relevance to the Loch Fitty restoration project. 

12.2.1 Pheonix See, Germany - a lake creation site in progress 

Pheonix See is a lake in Dortmund, Germany, that has been created on an old blast furnace 

and steel plant site. The created lake is going through the early phases of management and 

ecological colonisation. This includes macrophyte and fish introduction work and a strict 

creation plan that includes initial control of internal loading by laying sand. The lake is 

1.2 km long and 320 metres wide, with a total surface area of 24 ha and a maximum depth of 

3-4 m. The lake is fed, primarily, from groundwater inputs. The development has brought 
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together a range of experts from the fields of hydrogeology, ecology and lake system 

remediation who are currently working together towards the creation of a healthy functioning 

ecosystem. This management process is extremely dynamic and the project group for Loch 

Fitty would benefit from visiting the site to discuss the approach taken there, the results 

achieved and the lessons learned.  

 

 

 
 

Figure 12.2 Aerial photograph of Pheonix See, Dortmund, Germany (image from 

http://www.phoenixseedortmund.de).  

 

The Loch Fitty project group has been invited to discuss the Pheonix See creation project 

with Heinz Hueppe, the Chief Executive of the Pheonix See development project. His contact 

details are as follows: 

 

Heinz Hueppe 

PHOENIX See Entwicklungsgesellschaft mbH Barcelonaweg 14 

44269 Dortmund 

http://translate.google.com/translate?hl=de&sl=de&tl=en&u=http://www.phoenixseedortmun

d.de/2.html&rurl=translate.google.de 

Fon: +49(0)231 / 22 22 77 - 11 

Fax: +49(0)231 / 22 22 77 - 19 

eMail:hueppe@phoenixseedortmund.de 

http://www.phoenixseedortmund.de 

12.2.2 Lake Kraenepoel, Belgium – restoration by de-watering, dredging and 

biomanipulation 

Lake Kraenepooel (mean depth 1.0 m, maximum depth 1.5 m) has a surface area of 22 ha and 

was split into two separate basins in 1957 by the creation of a dyke. The north basin was 

drained every 10 years to harvest its fish population, whereas the south basin was not. The 

south basin was fed by nutrient rich inflow waters, whereas the north basin was not. Both of 

the basins have suffered from eutrophication, although the north basin retained a healthy 

Littorelettea vegetation, whereas the south basin became turbid and phytoplankton 

dominated. In order to reduce nutrient concentrations in the lake, the nutrient rich inflow was 

diverted from the southern basin, both basins were drained and their fish populations were 

http://www.phoenixseedortmund.de/
http://www.phoenixseedortmund.de/
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removed, and the north basin was dredged to remove nutrient rich sediments whereas the 

south basin was not. Both basins were stocked with juvenile Pike. Van Wichelen et al. (2007) 

documented the chemical and ecological recovery of both basins for 1 year prior to and 2 

years post restoration. The key results of this study in relation to the proposed work on Loch 

Fitty are outlined below: 

 Ammonium and phosphate concentrations and phytoplankton biomass all decreased 

in the north basin (with sediment removal) within 1 year of restoration, mainly 

because in-lake nutrient cycling shut down. 

 This improved water quality in the north basin was associated with a shift from 

abundant Potamogeton spp. to a more “benthic” Littorelletea vegetation; of particular 

note was the emergence of Hypercium elodes and an increase in the number of pre- 

and post-restoration desmid species from 3 to 30. 

 In the southern basin (without sediment removal), no reduction in N and P 

concentrations was observed, despite the removal of external nutrient inputs; it is 

likely that the source of these nutrients was the sediments given the high 

remineralisation rate that is expected to be associated with dewatered surface lake 

sediments. 

 The south basin became acidified (to about pH 4) a few months after refilling, 

probably as a result of oxidation of sulphides during the drying period and subsequent 

release of sulphides to the water column on refilling; refilling with rainwater probably 

reduced the buffering capacity of the lake to changes in pH. 

 Acidification resulted in the immobilisation of phosphates at low pH and favoured 

nitrification; direct pH effects on the ecology of the lake were also expected and a 

shift from Potamogeton spp. to Littorelletea vegetation was not reported in the south 

basin. 

12.2.3 Mine lakes in the Czech Republic- emerging evidence on fish population 

management 

Information was sought on similar fish community projects elsewhere in the U.K. and across 

the rest of Europe by combining of a search of the scientific literature with enquiries to over 

50 personal contacts in appropriate research and management fields. Unsurprisingly, no 

published scientific accounts of similar projects were found, but published and unpublished 

investigations of varying relevance were discovered Furthermore, a number of personal 

contacts (see below) confirmed that activity in most of these areas continues to the present 

day.  These contacts also revealed limited, but current, activity in the area of fish community 

establishment following reservoir dewatering and the creation of new lakes when extraction 

activities, including brown coal mining, had ceased. The information summarised below is, 

largely, from unpublished sources. 

Pavel Jurajda (Department of Fish Ecology, Institute of Vertebrate Biology, Czech Republic.  

E-mail jurajda@brno.cas.cz, pers. comm.) has some experience of dewatering and the 

subsequent rebuilding of fish communities in reservoirs in the Czech Republic. Specifically, 

the 220 ha Brno Reservoir was dewatered to 70 ha for a year during which time sediment and 

cyprinids were removed with the ultimate aim of water quality improvement, i.e. a form of 
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biomanipulation. At present, two smaller reservoirs (Plumlov Reservoir and Luhacovice 

Reservoir) are completely dewatered and their sediment is being removed prior to refilling 

next year. 

In terms of the construction of fish communities in new water bodies within the U.K., this is 

primarily restricted to the development of flooded gravel pits for angling, and to some extent 

for nature conservation, purposes. The experience of Roger A. Sweeting noted above in a 

fisheries context is also relevant here, as is a review by Giles et al. (1992) relating to 20 years 

of practical work on the development of such habitats including their fish communities.   

Finally, Jan Kubecka (Biology Centre of Czech Academy of Sciences, Institute of 

Hydrobiology, Czech Republic.  E-mail kubecka@hbu.cas.cz, pers. comm.) is currently 

leading the development and monitoring of fish communities following lake creation after the 

completion of open-cast brown coal mining activities in the Czech Republic. Specifically, he 

is currently running three relevant projects in relation to the creation of new lakes and the 

construction of appropriate fish communities on the basis of the species that would be 

expected to be present if the lakes were completely natural. Although this work has not yet 

reached full publication, several years of post-construction monitoring data for the specific 

site of Chabařovice Lake are already held and this work is briefly summarised in Peterka et 

al. (2010). Additionally, Martin Neruda has been working with Jan Kubecka to assess 

responses in plankton, flora and fauna in Lake Most (Martin Neruda, Jan Evangelista 

Purkyně University, Czech Republic, Email: Martin.Neruda@ujep.cz; pers. comm.). Martin 

Neruda will be visiting Scotland in June 2011 and is willing to discuss this work with the 

project group. 

The above review of similar projects and individuals involved allows a number of specific 

recommendations to be made concerning appropriate further contacts and site visits.  In the 

U.K., to develop understanding of the likely dynamics of the introduced fish populations, 

further contacts are recommended with Roger A. Sweeting (Freshwater Biological 

Association), potentially with Keith J. Wesley (Bedwell Fish Farms and Bedwell Fisheries 

Services) if a commercial operator is required, and, in particular, with Andrea Kelly (Broads 

Authority) and Matt Brazier (Environment Agency). Site visits are also recommended to 

locations where projects managed by the latter two individuals have been undertaken. At the 

same time, it is recommended that contact with Matt Brazier also considers the potential 

value and practical considerations, including public acceptability, of the use of rotenone in 

the present project. Should further consideration of such use be considered appropriate, 

further international contacts are recommended with Carlos Fernandez-Delgado (Universidad 

de Córdoba, Spain) and Miguel Campos (Consorci De l'Estany, Banyoles, Spain). Also 

elsewhere in Europe, in the context of rebuilding fish communities further contact is 

recommended with Pavel Jurajda (Institute of Vertebrate Biology, Czech Republic), 

potentially with an associated site visit to the Brno, Plumlov and Luhacovice Reservoirs in 

the Czech Republic. Finally, and most importantly in the context of establishing new fish 

communities, further contact is highly recommended with Jan Kubecka (Institute of 

Hydrobiology, Czech Republic) together with a site visit to his current project locations in the 

Czech Republic, particularly Chabařovice Lake. 
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12.2.4 The Wetland Centre, London - water level, waterfowl and colonisation 

trajectories 

An example of a well documented lake creation project is given by Yallop and O‟Connell 

(2000), who followed the developmental progress of three artificial lakes at the Wetlands 

Centre, London. The project was designed to enhance habitat for waterfowl by introducing 

macrophytes as a food source and as a refugia habitat for macroinvertebrates and fish in these 

lakes. The lakes were created in 1995 and inundated between 1996 and 1997. In this scheme, 

early planting of aquatic plants was abandoned due to extensive growths of filamentous 

macroalgae and, for the first two years, all three lakes were characterised by such growths 

together with frequent phytoplankton blooms, high concentrations of total phosphorus (1996-

1999; 200-5000 µg TP L
-1

) and high turbidity. Phosphorus concentrations decreased in all of 

the lakes in 1999, although they remained relatively high (>100 µg TP L
-1

). 

In 1999, one of the lakes, Sheltered Lagoon, underwent a switch from a phytoplankton 

dominated state to a clear water macrophyte dominated state. This coincided with the 

development of extensive beds of the macrophyte Myriophyllum spicatum (spiked water-

milfoil) and a reduction in the cover of filamentous algae. This switch was not caused by the 

lowering of nutrient concentrations. Instead, it has been attributed to the shallow and 

sheltered nature of the lake and the fact that a drop in water level preceding the switch 

resulted in a “window of opportunity” where light levels at the sediment surface were 

temporarily increased. 

Between 1999 and 2001, two of the lakes, Sheltered Lagoon and Main Lake, oscillated 

between a turbid, phytoplankton dominated state and a macrophyte dominated state, whereas 

Reservoir Lagoon, remained turbid and dominated by phytoplankton and benthic filamentous 

green algae (dominated by Enteromorpha sp.), throughout. Waterfowl grazing was identified 

as the main driver of the undesirable phytoplankton dominated state in Reservoir Lagoon 

(high grazing) and the relatively high diversity of macrophytes in Main Lake (low grazing). 

Both water level fluctuations (increasing competitive advantage) and elevated pH levels (pH> 

10 decreasing propagule survival) affected macrophyte communities in Sheltered Reservoir 

(Yallop et al., 2004). 

The various state shifts experienced by the Wetland Centre lakes are summarised in 

Table 12.4. 
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Table 12.4 Summary of state shifts in The Wetland Centre lakes, after Yallop et al. 

(2004). RL: Reservoir Lake; ML: Main Lake; SL: Sheltered Lagoon. Clear: clear water 

macrophyte dominated state (with dominant macrophyte species indicated in brackets); 

Turbid: phytoplankton or benthic filamentous algal dominated turbid water state; TP and 

phytoplankton crop measured as summer means (May - September). Macrophytes consumed 

expressed as percentage of macrophyte community estimated to be removed by calculated 

grazing rates for waterfowl community. 

Lake 

name 

Year State TP         

(mg L
-1

) 

Macrophyte 

max. biomass 

(kg dw
-1

 ha
-1

) 

Phytoplankton 

crop                    

(µg Chla L
-1

) 

Macrophytes 

consumed by 

waterfowl (%) 

SL 1998 Turbid 0.2 – 5.0 ND   

 1999 Clear (M) 0.38 2450 13  

 2000 Clear (E
1
,M) >0.10 1983 11 7.7 

 2001 Turbid (E
1
)  Low 150 7.3 

RL 1998 Turbid  0.2-5.0 ND   

 1999 Turbid 0.39 620 45  

 2000 Turbid >0.10 1650 45 22.0 

 2001 Turbid   58 15.0 

ML 1998 Turbid 0.2-5.0    

 1999 Turbid (Z) 0.19 230 105  

 2000 Clear (P
1
,P

2
,E

2
) >0.10 1717 8 32.9 

 2001 Clear-Turbid (P
1,2

)   46 8.5 

 

Species key – Myriophyllum spicatum (M); Elodea nutalii (E
1
); Zannichellia palustris (Z), 

Potamogeton pectinatus (P
1
); Potamogeton pusilis (P

2
); Elodea Canadensis (E

2
). 

 

This case study highlights the importance of the stable states hypothesis when considering the 

climax ecological structure in newly created shallow lakes (Scheffer, 1998). In the stages of 

early lake succession, the dominant autotrophic community will be fast growing 

phytoplankton and filamentous benthic algae where TP concentrations are high (i.e. summer 

TP concentrations of 200-5000 µg TP L
-1

, in this case). Once this community has established, 

it will shade out macrophytes, thereby reducing the likelihood of a switch from 

phytoplankton to macrophyte dominated state. The high biomass of phytoplankton will die 

back during the winter months returning P to the sediment where it will be remineralised and 

released into the water column the following year, thus sustaining the feedback loop and 

resilience to change. Further resilience to change was evident in the above case study in the 

form of high waterfowl grazing of macrophytes and high pH reducing propagule success. The 

steady state hypothesis proposes that shallow lakes may switch between phytoplankton and 

macrophyte dominated states, with no change in P load, as a result of a disturbance (Scheffer, 
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1998). In the case of Sheltered Lagoon, it was initially hypothesised that this switch took 

place as a result of a temporary increase in the euphotic depth associated with water level 

reduction (Yallop & O‟Connell, 2000). The fact that this phenomenon was not observed in 

Main Lake or Reservoir Lagoon was attributed to this lake being particularly sheltered from 

wind induced sediment disturbance. It is, therefore, evident that lakes may follow alternative 

colonisation trajectories based on lake specific pressures. 

It should be noted that a range of natural disturbances (excluding increased P loading, which 

has been well studied) have been reported in the literature, including extreme weather events, 

fish stocking practices and waterfowl grazing of macrophytes and that resilience of the 

macrophyte dominated state to change increases at low TP concentrations (Scheffer, 1998). A 

small number of studies have also investigated forcing a desirable state change to macrophyte 

dominance through controlled ecosystem disturbances. These include the control of sediment 

P release using P-capping agents (e.g. Loch Flemington, B.M. Spears, unpublished data, 

http://www.ceh.ac.uk/sci_programmes/water/LochFlemington.html), biomanipulation studies 

(Hosper, 1998) and sediment removal programmes (Søndergaard et al., 2007).      

12.2.5 Olentangy River Wetland Research Park – managing colonisation trajectories 

The Olentangy River Wetland Research Park (ORWR) is a research site on which two 

wetlands (1 ha in area; < 1 m in depth) were created to have similar hydrological signatures 

(Mitsch et al., 2005). These wetland systems included both large shallow areas to favour 

marginal macrophyte species and open water “deeper” (up to 80-100 cm) areas to support 

submerged macrophyte species. The project addressed a range of hypotheses designed to 

compare the effects of macrophyte introduction by planting to natural macrophyte ingress. 

This hypothesis that was relevant to the proposed work at Loch Fitty was that “planted and 

unplanted basins will be similar in function in the beginning, diverge in function during the 

middle years and ultimately converge in structure and function”, as conceptualised in 

Figure 12.3. 

 

The theoretical recovery trajectories presented in Figure 12.3 were comprehensively tested in 

the two ORWR constructed wetlands using macrophyte community composition and 

productivity estimates over a 10 year period following wetland creation (Mitsch et al., 2005). 

The key results from this study included: 

 Survival of planted macrophytes was higher for the emergent community (~ 5 – 

80% survival of individual plants) than the submerged community (<10 % 

survival; Potamogeton pectinatus) within 1 month of planting. 

 Macrophyte cover increased annually in each wetland for the first 5 years, with an 

apparent stable community being established at this time. 

 Macrophyte colonisation rate was higher in the planted wetland for the first 3 

years. 

 After 3 years, the unplanted wetland was dominated by a monoculture of Typha 

spp., whereas the planted wetland had a more diverse community (Sparganium 

eurycarpum, S. tabernaemontania, Typha spp. and Scirpus fluviatilis). 

http://www.ceh.ac.uk/sci_programmes/water/LochFlemington.html
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 Herbivorous grazing by muskrats reduced macrophyte cover in both wetlands (to 

27.6% and 17.4% cover in the planted and unplanted wetland, respectively) in 

Year 6. This peak in muskrat grazing was attributed to an association between 

high macrophyte cover in Year 5 leading to an increase in muskrat productivity as 

a result of improved habitat. Muskrat numbers dropped in Year 7 following the 

low macrophyte cover in Year 6. 

 An experimental drawdown was conducted in the spring of Year 7 in an attempt to 

“re-set” the seed bank. This resulted in the highest recorded macrophyte cover 

(73% and 74% cover for the “planted” and “non-planted” wetland, respectively) 

and a decrease in the dominance of Typha spp. in both wetlands. The community 

structure of the wetlands had generally converged by this point. 

  Macrophyte productivity (expressed as dry weight) increased in both wetlands 

throughout the study. Productivity was consistently higher in the unplanted 

wetland with the onset of an apparent plateau reported in the unplanted wetland, 

only, in Year 10. 

 Macrophyte community diversity (as community diversity index) was consistently 

higher in the planted wetland than in the unplanted wetland. 

 

 

 

Figure 12.3 Hypothetical recovery scenarios based on macrophyte colonisation for 

created wetlands (after Mitsch et al., 2005). Scenarios 1 and 2 represent recovery 

trajectories with no secondary pressure, whereas Scenarios 3 and 4 represent recovery 

trajectories with secondary pressures leading to deterioration in the recovery end point in 

terms of ecosystem state. 
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Based on the results outlined above, it would appear to be sensible to wait until the 

macrophyte community has established and reached a steady state before introducing the fish. 

This would reduce the likelihood of negative fish impacts in the important early years of 

macrophyte colonisation and allow targeted contingency management to be put in place 

where necessary. Additionally, planting of desirable species will increase the resilience of the 

system to undesirable monocultures, although the end point community structure may not be 

dependent on the stocked plant community structure. Finally, as outlined already in this 

document, it is essential that non-native invasive species (especially macrophytes and fish), 

and perhaps also non-native waterfowl species, be excluded from the site during the early 

macrophyte colonisation phase where possible. 
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13. Conclusions 

The proposed surface mining project provides a unique opportunity to restore Loch Fitty. It 

will address some key improvements that are essential for helping the loch meet WFD 

targets, i.e. good water quality and good hydromorphological conditions. 

Good water quality can only be attained by addressing sources of nutrient pollution within the 

loch and its catchment, and by removing heavy metal laden loch bed sediments. This will 

ensure that previous water quality problems at the loch do not re-occur and that the 

improvement in status of the waterbody is sustainable over time. 

Ensuring that invasive non-native species cannot return to the loch requires the ecological 

quality of the inflows and outflow to be improved. This is an additional benefit of the 

proposed loch restoration project. 

Overall, the proposal of SCCL for restoring Loch Fitty has a better chance of delivering the 

required end result of Good Ecological Status than the River Basin Management Plan 

proposal, because failure to meet WFD ecological quality targets at this site cannot be 

resolved by catchment management, alone. Pressures due to hydromorphological 

modification, non-native species and the accumulation of heavy metals in the sediments also 

need to be addressed. 
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