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23 Abstract 
 

 
24 

 

25 Four different parameter-rich process-based models of forest biogeochemistry were analysed 
 

26 in a Bayesian framework consisting of three operations: (1) Model calibration, (2) Model 
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27 comparison, (3) Analysis of model-data mismatch. 
 

28 Data were available for four output variables common to the models: soil water 
 

29 content and emissions of N2O, NO and CO2. All datasets consisted of time series of daily 
 

30 measurements. Monthly averages and quantiles of the annual frequency distributions of daily 
 

31 emission rates were calculated for comparison with equivalent model outputs. This use of the 
 

32 data at model-appropriate temporal scale, together with the choice of heavy-tailed likelihood 
 

33 functions that accounted for data uncertainty through random and systematic errors, helped 
 

34 prevent asymptotic collapse of the parameter distributions in the calibration. 
 

35 Model behaviour and how it was affected by calibration was analysed by quantifying 
 

36 the normalised RMSE and r
2 

for the different output variables, and by decomposition of the 
 

37 MSE  into  contributions  from  bias,  phase  shift  and  variance  error.  The  simplest  model, 
 

38 BASFOR, seemed to underestimate the temporal variance of nitrogenous emissions even 
 

39 after calibration. The model of intermediate complexity, DAYCENT, simulated the time 
 

40 series well but with large phase shift. COUP and MoBiLE-DNDC were able to remove most 
 

41 bias through calibration. 
 

42 The Bayesian framework was shown to be effective in improving the parameterisation 
 

43 of the models, quantifying the uncertainties in parameters and outputs, and evaluating the 
 

44 different models. The analysis showed that there remain patterns in the data - in particular 
 

45 infrequent events of very high nitrogenous emission rate – that are unexplained by any of the 
 

46 selected forest models and that this is unlikely to be due to incorrect model parameterisation. 
 

 
47 

 

 

48 

 

49 Keywords: Bayesian calibration; carbon cycle; likelihood of data; nitrogen cycle; NO; 
 

50 N2O; prior and posterior probability distributions for parameters; uncertainty analysis; 
 

51 water cycle 
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52 
 

 

53 

 

54 1. Introduction 
 

 
55 

 

56 1.1 Rationale 
 

57 Various recent reviews have assessed the evidence for impacts of environmental change on 
 

58 European forests (Hyvönen et al., 2007; Kahle et al., 2008; Luyssaert et al., 2010). Most 
 

59 studies have focused on changes in growth and carbon balance, but the importance of the 
 

60 interaction with the nitrogen cycle is increasingly recognised (de Vries et al., 2009; Sutton et 
 

61 al., 2008; Van Oijen et al., 2008a; Van Oijen et al., 2004). Research programmes to measure 
 

62 and  model  emissions  of  nitrogenous  greenhouse gases  from  European  forests  and  other 
 

63 ecosystems have been set up (Sutton et al., 2007). 
 

64 The measurement of nitrous oxide (N2O) and nitric oxide (NO) emissions from forest 
 

65 soils is hampered by the large spatial and temporal heterogeneity in the fluxes, and modelling 
 

66 these processes is still limited by availability of data (Kesik et al., 2005). Moreover, the 
 

67 relevant underlying mechanisms have not yet been clarified fully, and large uncertainties are 
 

68 present  in  both  data  and  models.  Available  data  sets  not  only  suffer  from  random 
 

69 measurement  error,  but  also  from  systematic  errors  associated  with  the  positioning  of 
 

70 measurement chambers in the field and their functioning (Butterbach-Bahl et al., 2002; Kroon 
 

71 et  al.,  2010).  When  modelling the systems,  there is  uncertainty about  how to  represent 
 

72 processes, i.e. model structural uncertainty (de Bruijn et al., 2009). Furthermore, there is 
 

73 uncertainty about environmental drivers and parameter values. 
 

74 To improve the applicability of models to the analysis of the greenhouse gas balance 
 

75 of forests, these uncertainties need to be quantified and reduced. Probabilistic methods of 
 

76 model-data fusion or data-assimilation have come to the fore in recent years, and offer the 
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77 prospect of improved data use and uncertainty quantification (Fox et al., 2009; Wang et al., 
 

78 2009).  Because  these  methods  are  applications  of  probability  theory,  they  require  all 
 

79 uncertainties – in data, model inputs and model structure - to be expressed in the form of 
 

80 probability distributions. Bayes‟ Theorem can then be employed to update the distributions 
 

81 when new information becomes available. 
 

82 In biogeochemical modelling, most Bayesian applications have focused on 
 

83 parameterisation of individual models, with little attention for systematic errors in data and 
 

84 model structure. Wang et al. (2009) thus concluded, in a recent review on model-data fusion 
 

85 studies for terrestrial ecosystems, that there is a need for “developing an integrated Bayesian 
 

86 framework to study both model and measurement errors systematically”. The work presented 
 

87 here is intended to contribute to that goal. 
 

 
88 

 

89 1.2 Towards a Bayesian framework for dynamic modelling in forest biogeochemistry 
 

90 We propose a framework which requires that multiple models are used in any given study, 
 

91 and  which  consists  of  three  operations:  (1)  Bayesian  calibration,  (2)  Bayesian  model 
 

92 comparison, (3) Analysis of model-data mismatch. 
 

93 The  overarching  objective  of  this  paper  is  to  demonstrate  that  this  three-stage 
 

94 framework is an effective tool for the analysis of models in forest biogeochemistry. For that 
 

95 purpose, we used four different published models and one rich data set from the Norway 
 

96 spruce forest in Höglwald, Germany (Kreutzer et al., 2009). Most of the data were on the 
 

97 nitrogen cycle, with long time series of measurements of emissions of N2O and NO, but we 
 

98 also used time series of the carbon and water cycles in the form of soil respiration and soil 
 

99 water content. 
 

100 Bayesian calibration, i.e. the first operation in the framework, consists of defining a 
 

101 prior probability distribution for a model‟s parameters and updating that distribution using the 
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102 data.  The  method  has  not  often  been  applied  to  parameter-rich  nonlinear  process-based 
 

103 ecosystem  models  (Luo  et  al.,  2009).  One  reason  is  the  high  computational  demand 
 

104 associated with the technique, which is exacerbated by the long running time of the models. 
 

105 A second issue is the difficulty of quantifying uncertainties about random and systematic 
 

106 measurement errors. We show in this paper how both types of error can be accommodated in 
 

107 a Markov Chain Monte Carlo algorithm for Bayesian calibration. 
 

108 Bayesian model comparison, the second operation used in the framework, aims to 
 

109 determine the extent to which the data support the different models. This is done by providing 
 

110 a probability distribution over models rather than parameter values. The attempt in this paper 
 

111 to assess whether Bayesian model comparison as a method can be useful for model selection 
 

112 purposes is, as far as we are aware, new for parameter-rich process-based ecosystem models. 
 

113 Detailed analysis of model-data mismatch, the third operation in our framework, is 
 

114 not a common step in Bayesian model studies, which tend to focus on the probabilistic 
 

115 aspects of model behaviour rather than the internal structure of the models (Gelman and 
 

116 Shalizi, 2010). Bayesian calibration and model comparison effectively treat models as black 
 

117 boxes  that  convert  parameter  values  into  outputs,  so  this  further  analysis  is  needed  to 
 

118 facilitate model improvement. 
 

119 In summary, this paper aims to show the strengths and weaknesses of this three- 
 

120 operation  Bayesian  framework  using  a  case-study  with  four  models  simulating  the 
 

121 
 

 

122 

biogeochemistry of a Central European spruce forest. 

 

123 
 

 

124 

2. Materials and Methods 

 

125 2.1 Data 
 

126 All data were taken from the Norway spruce (Picea abies L.) site at Höglwald, Germany, 
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127 
 

 

128 

latitude 48°30'N, longitude 11°10'E, altitude 540 m  (Papen and  Butterbach-Bahl, 1999). 
 

Trees were planted in 1907. Soil C and N were around 90,000 and 5000 kg ha
-1 

(Kreutzer et 
 

129 al., 2009; Rothe, 1997). For the years 1985-1995, mean annual temperature was 7.9 °C, 
 

130 
 

 

131 
 

 

132 

precipitation 888 mm, and atmospheric N-deposition as measured in the throughfall 39.4 kg 

N ha
-1 

(Rothe, 1997). For 1975-1990, average global radiation was 11.3 MJ m
-2 

d
-1 

and wind 

speed 2.8 m s
-1 

(data from JRC-Ispra, as cited by (Van Oijen et al., 2008b)). 
 

133 The primary data from the site were in the form of time series of daily measurements 
 

134 of soil water content and soil emissions of N2O, NO and carbon dioxide (CO2) (see e.g.Wu et 
 

135 al., 2010). Measurements at the Höglwald Forest are continuous throughout the year with 
 

136 fluxes being available in sub-daily resolution. However, daily mean values were used here for 
 

137 various years between 1994 and 2003 (1994-1996 and 2001-2003). For use in the calibration, 
 

138 the data were aggregated to monthly averages (Fig. 1). For N2O and NO, we also calculated 
 

139 intra-annual quantiles of the frequency distribution of daily emission magnitudes (10, 50 and 
 

140 90%). Monthly averages and annual statistics were only calculated for months and calendar 
 

141 years with more than 75% coverage, no gap-filling being applied. The data transformations 
 

142 led to ten different time series of data being available for use in the Bayesian analysis, four 
 

143 with monthly averages and six with annual quantiles, and with a combined number of data 
 

144 
 

 

145 

points of n = 225 (Table 1). 

 

146 
 

 

147 

[Fig. 1 HERE] 

 

148 2.2 Models 
 

149 Four different deterministic process-based models of forest biogeochemistry were used in this 
 

150 study: BASFOR, COUP, DAYCENT and MoBiLE-DNDC (Table 2). 
 

151 BASFOR  is  the  simplest  model  in  the  group.  It  was  designed  to  simulate  the 
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152 interactive effects of changes in N-deposition, atmospheric [CO2] and climate on the carbon 
 

153 balance of forests (Van Oijen et al., 2010a; Van Oijen and Thomson, 2010). The model has 
 

154 been subjected to Bayesian calibration before, using data from the United Kingdom (Van 
 

155 Oijen et al., 2005). 
 

156 COUP and MoBiLE-DNDC are the two most complex models in the group. Both 
 

157 models were originally designed with special focus on soil processes, but recent versions of 
 

158 the models simulate the whole ecosystem. MoBiLE-DNDC calculates soil microclimate and 
 

159 hydrology, plant growth and plant-soil interactions, biogeochemical processes of the C and N 
 

160 cycle in soils, microbial growth and subsequent trace gas emissions. The core functionality 
 

161 follows the concepts developed in the DNDC suite of models (Li et al., 2000; Li et al., 1992; 
 

162 Werner et al., 2007). COUP was subjected to uncertainty quantification by Klemedtsson et al. 
 

163 (2008) and Svensson et al. (2008). The version of the model used in this paper, referred to as 
 

164 CoupModel, includes an N-flux submodel taken from the PnET-N-DNDC model (Norman et 
 

165 al., 2008). A preliminary uncertainty assessment was also carried out for MoBiLE-DNDC (de 
 

166 Bruijn et al., 2009). 
 

167 DAYCENT, a model of intermediate complexity, traces its origins to the grassland 
 

168 soil  model  CENTURY  (Parton  et  al.,  1993),  but  like  the  previous  two  models  it  has 
 

169 developed into a full model for various ecosystems (Del Grosso et al., 2001), of which a 
 

170 small part was subjected to Bayesian calibration before (Yeluripati et al., 2009). The model 
 

171 version used in this paper, referred to as DailyDAYCENT, uses a daily time step for all 
 

172 
 

 

173 

processes. 

 

174 2.3 Parameter screening 
 

175 In the case of the simplest model, BASFOR, no parameter screening was applied, so all its 48 
 

176 model parameters and initial constants for state variables were included in the Bayesian 
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177 calibration. Initial constants were not included in the calibrations of the other three models. 
 

178 The COUP  model  was  subjected to  informal  screening,  based  on  previous  work 
 

179 involving the same model and experimental site  (Norman et al., 2008). The fraction of 
 

180 COUP‟s output variability that was caused by uncertainty regarding the selected parameters 
 

181 was not quantified. 
 

182 Calibration parameters for DAYCENT were selected using Morris screening (Morris, 
 

183 1991) on average model outputs for soil water content and emissions of N2O, NO and CO2. 
 

184 DAYCENT  has  over  300  parameters  but  only  214  were  subjected  to  Morris  screening 
 

185 because the majority of the about hundred parameters of the soil water dynamics module 
 

186 were known to contribute about equally to the overall uncertainty, precluding identification 
 

187 of  a  subset  of  essential  parameters.  Morris  screening  is  a  global  parameter  sensitivity 
 

188 analysis, i.e. it explores combinations of parameter values across parameter space rather than 
 

189 just in the neighbourhood of a default parameterisation. Compared to other global sensitivity 
 

190 analyses, the method requires relatively few model runs (proportional  to the number of 
 

191 
 

 

192 

parameters) which  permits its use even for models with long runtimes. A subset of 17 
 

DAYCENT parameters was selected in this way. The r
2  

of the relations between model 
 

193 output variability (from runs where all parameters were varied) and the selected parameters 
 

194 was  0.88-0.98  for  the  three  emission  rates  and  0.20  for  water  content,  the  latter  value 
 

195 reflecting the difficulty in selecting key parameters for soil water dynamics in this model. 
 

196 In the case of MoBiLE-DNDC, uncertainty in the 67 parameters of the soil chemistry 
 

197 submodel was considered. These were mainly parameters used to adapt or scale physical or 
 

198 chemical processes observed by lab studies to real world conditions, semi-empirical ratios, 
 

199 and   k-values   (decay   rates   for   the   various   litter   and   microbial   pools   of   varying 
 

200 decomposability). A substantial number of those parameters also describe Michaelis-Menten 
 

201 kinetics for the microbial turnover processes. The Morris screening method (Morris, 1991) 
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202 was applied to MoBiLE-DNDC using the same selection criteria as for DAYCENT, and 26 
 

203 parameters were selected which together accounted for more than 60% (NO-emission) and 
 

204 
 

 

205 

>90% (N2O- and CO2-emission, soil water content) of model behaviour. 

 

206 2.4 Bayesian calibration 
 

207 Bayesian calibration is the application of probability theory to parameter estimation (Jaynes, 
 

208 2003; Sivia, 2006). The method finds increasing use in ecological modelling (Ogle, 2009; 
 

209 Ogle and Barber, 2008; Van Oijen et al., 2005). Uncertainty about parameters is represented 
 

210 as a joint probability distribution for the possible parameter values. Bayes‟ Theorem is used 
 

211 
 

 

212 

to determine how this distribution changes in the light of new data: 

 

213 
 

 

214 

P(θ|D)  P(θ) P(D|θ) (1) 

 

215 Where P(θ) and P(θ|D) are the prior and posterior distributions for the parameters θ, i.e. 
 

216 before and after conditioning on the data. The factor that modifies the prior, P(D|θ), is the 
 

217 likelihood function, which is the probability of the data for a given θ. A formal likelihood 
 

218 function, integrating to  unity in data space, needs to be used to be consistent with the 
 

219 probability calculus, allowing Bayes‟ Theorem to be applied (Rougier, (in press)). 
 

220 The prior  probability distribution  for the parameters of a model,  P(θ),  reflects  a 
 

221 modeller‟s uncertainty about parameter values before using the data. This uncertainty is 
 

222 subjective, and there was no effort in this study to impose any harmonisation on the priors for 
 

223 the four different models (except for data-scaling factors, discussed later). All modellers 
 

224 assigned prior distributions that could be written as the product of independent marginal 
 

225 distributions for individual parameters, but different types of marginal distribution were used: 
 

226 beta for BASFOR and uniform for the other three models. 
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i 

R 

1 

 

227 The likelihood function P(D|θ) is the probability of the data D (the 225 data points) 
 

228 given model output generated by parameter vector θ. It accounts for possible measurement 
 

229 error. The same likelihood function was used for all models to allow formal Bayesian model 
 

230 comparison. As described above, the calibration data were in the form of time series of ten 
 

231 different  variables,  six  for  annual  quantiles  and  four  for  monthly  averages  of  daily 
 

232 measurements (Table 2). Estimates for the uncertainty of these variables, both random and 
 

233 systematic, were elicited from the data-providers: co-authors Butterbach-Bahl, Kiese and 
 

234 Werner. Uncertainty about random measurement error is often represented by the use of 
 

235 independent Gaussian distributions for the data points. However, the squared exponential in 
 

236 the Gaussian tends to cause asymptotic collapse of the parameter distribution even with 
 

237 moderate  amounts  of  data  (Clark,  2005),  and  may  represent  an  overestimate  of  their 
 

238 information content. We therefore used the more heavy-tailed function proposed by Sivia 
 

239 
 

 

240 

(2006): 

 
 
241 

 

 
 

242 

2 2 5 

P(D |  )  
i 1   i  2

1  Exp(R 
2

 

2 

i 

/ 2)  

(2) 

 

243 Where σi is a measure of the uncertainty about random error of the i-th data point, and Ri is 
 

244 the difference between model output and i-th data point, divided by σi. The values of the σi 

 

245 were considered to be specific to the type and magnitude of the data points, with relative 
 

246 values of 0.2 for the medians (Q50), 0.3 for the tail-quantiles (Q10 and Q90), and 1.0 for the 
 

247 monthly averages. Besides random measurement error, the data-points were considered to be 
 

248 subject to possible systematic error, which could result from unrepresentative positioning of 
 

249 the soil measurement chambers or errors in instrument calibration. This was implemented by 
 

250 means of four multiplicative data-scaling factors γj, one each for N2O, NO, CO2  and water. 
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251 As in other recent studies (Raupach et al., 2005), we treated the γj as additional parameters to 
 

252 be calibrated. We considered that errors larger than a factor 2 would be very unlikely, but 
 

253 otherwise no assumptions about the systematic data-scaling factors were made. We therefore 
 

254 used an uninformative Jeffrey‟s prior (Jaynes, 2003; Sivia, 2006) for the marginal prior 
 

255 
 

 

256 

distribution for each of the four factors: 

 

257 
 

 

258 

P(γj)  1 / γj (3) 

 

259 The  Jeffrey‟s priors  for  the  uncertainty  about  multiplicative  error  thus  are  log-uniform 
 

260 distributions on the interval [½, 2]. Keats et al. (2009) also used multiplicative errors, for air 
 

261 pollution data in Bayesian calibration of an atmospheric transport model, but used log-normal 
 

262 distributions instead. As Keats et al. (2009) argued, multiplicative error is often the natural 
 

263 choice for measurements of non-negative quantities. 
 

264 For each of the four models, the Bayesian calibration was carried out by means of 
 

265 Markov Chain Monte Carlo sampling (MCMC), using the Metropolis algorithm (Metropolis 
 

266 et al., 1953; Van Oijen et al., 2005), but model-specific choices were made of proposal 
 

267 distribution and method of testing chain convergence. 
 

268 Before and after each model‟s calibration, a preliminary parameter sensitivity analysis 
 

269 was carried out by calculating the partial correlation coefficients (PCC) for the relationships 
 

270 between individual parameters and the average simulated values of N2O, NO, CO2 and water. 
 

271 In contrast to the ordinary correlation coefficient (r), the PCC calculates the association 
 

272 
 

 

273 

between parameter and output after correcting for the linear effects of the other parameters. 

 

274 2.5 Bayesian model comparison 
 

275 The formal Bayesian model comparison consisted of quantifying the relative probabilities of 
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276 correctness of the four models, under the assumption that at least one of them was a correct 
 

277 model for the data. The comparison was, like the calibration described above, based on 
 

278 
 

 

279 

application of Bayes‟ Theorem (Kass and Raftery, 1995): 

 

280 
 

 

281 

P(M|D)  P(M) P(D|M) = P(M) ∫ P(D|M,θ) P(θ) dθ (4) 

 

282 Where P(M) and P(M|D) are the prior and posterior distributions for the models M.  In 
 

283 contrast to the parameter distributions, these are discrete distributions, over the four models 
 

284 in our comparison. As shown in the right-hand term, the factor that modifies the prior, 
 

285 P(D|M),  is  the  integral  of  the  likelihood  function  over  the  space  spanned  by  the  prior 
 

286 parameter distribution of each model. We refer to this integral as the model‟s „integrated 
 

287 likelihood‟. Another common name for this quantity is „marginal likelihood‟ which expresses 
 

288 the fact that it is found by marginalising out the parameters θ. 
 

289 We a priori assigned equal probabilities to the different models of being correct, so 
 

290 P(M) is uniform and the integrated likelihoods represented the relative probability for each 
 

291 model of being correct given the information in the data (Kass and Raftery, 1995). We 
 

292 quantified the integrated likelihoods as follows. For each model, 1000 parameter vectors were 
 

293 drawn from its prior parameter distribution. Comparison of the model outputs for these 
 

294 parameter vectors with the data yielded a sample of 1000 values of the likelihood, and the 
 

295 sample mean was taken as the estimate for the integrated likelihood of the model. Because 
 

296 any sampling-based method is subject to sampling error (McCulloch and Rossi, 1992), we 
 

297 additionally calculated the integrated likelihoods using the method suggested by Kass and 
 

298 
 

 

299 

Raftery (1995), as the harmonic mean of the sample generated by the MCMC. 

 

300 2.6 Analysis of model-data mismatch 
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301 Besides the calculation of the likelihood function, the mismatch between model outputs and 
 

302 measurements was also quantified using more classical means. This was done separately for 
 

303 each of the ten output variables (Table 2) by calculating the Normalised Root Mean Square 
 

304 
 

 

305 
 

 

306 

Error (NRMSE = square root of the average squared difference between model output and 

data, divided by the average of the data) and the squared correlation coefficient (r
2
). NRMSE 

and r
2 

are distributed quantities, because they depend on the parameterisation, so they were 

 

307 calculated across the range of prior and posterior parameter distributions. 
 

308 Additional analysis was carried out for just the modes of the prior and posterior 
 

309 parameter distributions.  We ran  each  model  with  the two  modal  parameter  vectors and 
 

310 calculated the Mean  Squared  Error  (MSE) for  each  of the four time series  of monthly 
 

311 averages. The MSE-values were then decomposed as suggested by Kobayashi and Salam 
 

312 
 

 

313 
 

 

314 
 

 

315 

(2000): 
 

 
 
 
 
 

+ (σM-σD)
2   

+ 2(σM σD) (1-r) (5) 

 

316 Where M is a simulated time series consisting of monthly averages of N2O, NO, CO2  or 
 

317 water content, D is the matching data, σM  and σD  are their standard deviations, and r is the 
 

318 correlation  between  the  two.  The  decomposition  consists  of  three  terms,  which  can  be 
 

319 interpreted as measures for model-data mismatch due to bias, variance error and phase shift 
 

320 
 

 

321 
 

 

322 

(Kobayashi and Salam, 2000). 

 

323 
 

 

324 

3. Results 

 

325 3.1 Bayesian calibration 



14  

 

326 All four models were calibrated using the same MCMC-algorithm, i.e. Metropolis sampling. 
 

327 Burn-in and convergence were determined visually, by each modelling group separately, but 
 

328 an  additional  analysis  of  the  Markov  chains  was  carried  out  to  confirm  that  parameter 
 

329 distributions had properly stabilised. The analysis was based on the fact that, after a chain 
 

330 reaches convergence, subsequent distinct and sufficiently long sub-chains should have similar 
 

331 sample means and variances. We compared the first and second halves of the chains after 
 

332 burn-in. The results showed that convergence was adequate for BASFOR and DAYCENT, 
 

333 with all parameters having similar means and variances in the two halves. However, for 
 

334 COUP and MoBiLe-DNDC, some parameters had not stabilised to the same extent, so the 
 

335 posterior parameter distributions for these two models were likely less accurate. 
 

336 The calibration  modified  the means  and  reduced  the variances  of most  marginal 
 

337 distributions. The average variance reduction for process-parameters was small in BASFOR 
 

338 and DAYCENT (3%, 4%), but larger in COUP and MoBiLE (26%, 29%). The data-scaling 
 

339 
 

 

340 

factors γj showed greater variance reductions except for soil water content (Fig. 2). 

 

341 
 

 

342 

[Fig. 2 HERE] 

 

343 Parameter  uncertainty  induced  output  uncertainty.  The  degree  of  prior  output 
 

344 uncertainty was assessed by determining the quantiles of the output distributions (Table 3). 
 

345 For all models except DAYCENT, prior Q95 was one or two orders of magnitude larger than 
 

346 Q5 for the eight nitrogenous emission variables (Table 3). DAYCENT was already strongly 
 

347 constrained by its prior parameter distribution. For all models, soil respiration was a priori 
 

348 slightly more constrained than the N-emissions, whereas soil water content, which was the 
 

349 only state variable in the set of ten output variables, was most narrowly delimited. Overall, 
 

350 prior ranges were widest for BASFOR. The calibration had only little impact on the output 
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351 distributions for soil water content and almost no effect on the soil respiration distributions 
 

352 (Table 3). However, the posterior outputs for the nitrogenous emission variables were much 
 

353 more narrowly constrained than the prior distributions, with posterior Q95/Q5 ratio‟s ranging 
 

354 from 2-5 (BASFOR, see also Fig. 1), 2-3 (COUP) and ~1.5 (MoBiLE-DNDC) (Table 3). 
 

355 DAYCENT was the exception with posterior ratio‟s that were similar to the prior. 
 

356 Using the samples  from  both  the prior  and  posterior parameter distributions,  we 
 

357 calculated the partial correlations between individual parameters and outputs. Posterior PCC- 
 

358 values tended to be higher than prior values for BASFOR and COUP, whereas the calibration 
 

359 decreased PCC-values for DAYCENT and MoBiLE-DNDC. However, for all models and 
 

360 output variables, the PCC-based ranking of the parameters changed little, so we restrict 
 

361 ourselves to reporting on the posterior values. 
 

362 In the case of BASFOR, only one parameter was strongly correlated (|PCC| > 0.5) 
 

363 with N2O- and NO-emission: the soil water content at which both emissions are equal. Soil 
 

364 respiration was strongly correlated with the parameters that govern decomposition rate of 
 

365 organic  matter,  and  also  with  the  light-use  efficiency.  Soil  water  content  was  mainly 
 

366 correlated with specific leaf area and leaf longevity, both of which affect the active surface 
 

367 area for transpiration. The results for COUP were similar. N-emissions were also mainly 
 

368 correlated with the N2O-NO balance, soil respiration with decomposition rates and light-use 
 

369 efficiency, and water content with specific leaf area. In the case of DAYCENT, no individual 
 

370 parameters were a posteriori strongly correlated with model outputs, although there had been 
 

371 some strong correlations with the prior parameter distribution (i.e. the NO3-N2O conversion 
 

372 efficiency for N-emissions and the leaf area ratio for soil water content). In the case of 
 

373 MoBiLE-DNDC, no parameters were strongly correlated with N2O-emission, but the Km- 
 

374 value for NO2  did have a high PCC with NO-emission. Soil respiration and water content 
 

375 were both mainly correlated with the parameter that scales decomposition of active organic 
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376 
 

 

377 

substance as a function of soil porosity. 

 

378 3.2 Bayesian model comparison 
 

379 The log-transformed integrated likelihood values, calculated from samples from the prior, 
 

380 were as follows  (between brackets the values  from the alternative calculation using the 
 

381 harmonic mean of the sample from the posterior): BASFOR: -661.7 (-654.7), COUP: -663.5 
 

382 (-651.2), DAYCENT: -738.5 (-761.2), MoBiLE-DNDC: -657.0 (-758.9). For comparison: a 
 

383 parameter vector whose model outputs would have gone exactly through the 225 data points, 
 

384 would  have  had  a  log-likelihood  of  -581.2.  Both  methods  of  calculating  the  integrated 
 

385 likelihoods showed that the data provided greater support for BASFOR and COUP than for 
 

386 DAYCENT. The two estimates of the integrated likelihood for MoBiLE-DNDC differed 
 

387 
 

 

388 

strongly, so it is less clear how plausible this model is. 

 

389 3.3 Analysis of model-data mismatch 
 

390 First, the data were compared with the ranges of model output uncertainty induced by the 
 

391 parameters. All time series averages of measurements were in the central intervals of the 
 

392 prior output distributions, between the 5% and 95% quantiles, except for soil respiration as 
 

393 predicted by BASFOR and MoBiLE-DNDC, and the lower quantiles of daily N2O emission 
 

394 rates as predicted by COUP (Table 3). 
 

395 Although the distributions of simulated time series averages were found to cover the 
 

396 data fairly well, inspection of the time series themselves revealed considerable differences 
 

397 between models and measurements (Fig. 3). For example, none of the models was able to 
 

398 reproduce the large peak in N2O-emissions in early 1996 after a strong freeze-thaw event 
 

399 (Papen and Butterbach-Bahl, 1999), neither with the mode of the prior, not with the posterior 
 

400 mode (Fig. 3). This is likely to be a consequence of incomplete process representation in the 
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401 models,  although  a  more  recent  version  of  MoBiLE-DNDC  showed  a  possible  way  to 
 

402 account  for  the  freeze-thaw  effect  (de  Bruijn  et  al.,  2009).  Despite  these  remaining 
 

403 differences between model outputs and data, overall the calibration was able to remove much 
 

404 of the mismatch for the N-emissions and, to lesser extent, for CO2-emission (compare the 
 

405 lower „posterior‟  panels of Fig. 3 to the upper „prior‟ ones,  and see also the increased 
 

406 likelihoods depicted in Fig. 4). Note that some of the reduced bias in the posterior results was 
 

407 due  to  the  impact  of  calibration  on  data-scaling  factors  (Fig.  2)  rather  than  on  model 
 

408 parameters. There was no apparent improvement in the simulation of soil water content, 
 

409 which reflected the fact that for this variable the least amount of information was available 
 

410 (Table 2). In one specific case, simulation of soil water by model DAYCENT using the mode 
 

411 of its posterior distribution, bias was increased relative to the prior mode (Fig. 3), but this 
 

412 result was not representative of the full posterior distribution for the water data-scaling factor 
 

413 (γWATER) of this model (Fig. 2). However, it does suggest that a useful – but for this model 
 

414 computationally demanding - additional step in the procedure would have been to determine 
 

415 the mode of the posterior distribution by targeted optimisation, rather than relying on the 
 

416 
 

 

417 

parameter sample generated by the MCMC. 

 

418 
 

 

419 

[Fig. 3 HERE] 

 

420 Whereas for the prior output distributions of the models most time-series averages 
 

421 were in the central Q5-Q95, the same did not apply to the posterior distributions. Most time- 
 

422 series averages were to be found in the upper tails (>Q95) of the posterior output distributions 
 

423 (Table 3, and compare also the examples for BASFOR in Fig. 1). There were differences, 
 

424 however, in how the likelihood distributions responded to the calibration, as can be seen from 
 

425 the posterior distributions of likelihoods (Fig. 4). 
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427 
 

 

428 

[Fig. 4 HERE] 

 

429 For each model and each parameter vector sampled from the prior and posterior 
 

430 distributions, we compared the simulated time series of the ten output variables with the 
 

431 corresponding data, by calculating the correlation coefficient (r) and the normalised root 
 

432 mean  square  error  (NRMSE).  Each  parameter  distribution  thus  induced  ten  different 
 

433 distributions of r and NRMSE, of which we show the 5, 50 and 95% quantiles (Table 4). The 
 

434 posterior values of the quantiles for r are often not improvements over the prior, except for 
 

435 Q5. So calibration tended to remove only the parameter vectors with the poorest output-data 
 

436 correlation. In contrast, NRMSE was improved for almost every quantile of every variable in 
 

437 each model (Table 4). 
 

438 The MSE-decompositions for time series with monthly averages, both for the prior 
 

439 and posterior parameter modes, are shown in Fig. 5. Phase shift, variance error and bias were 
 

440 
 

 

441 

reduced to different extent for the different models. 

 

442 
 

 

443 

[Fig. 5 HERE] 

 

444 
 

 

445 

4. Discussion 

 

446 4.1 Bayesian calibration: methodological issues 
 

447 Bayesian  calibration  uses data to  update the joint probability distribution  for a model‟s 
 

448 parameters. The Bayesian approach allows for non-Gaussian distributions for both parameter 
 

449 uncertainty and measurement error. Our calibration was therefore based on sampling by 
 

450 means of MCMC rather than on matrix inversion methods. This in turn allowed us to include 
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451 systematic data error in the calibration, rather than having to estimate error terms in a first 
 

452 separate step, as was done for example by Michalak et al. (2005), using maximum-likelihood 
 

453 estimation. 
 

454 Although the theory is straightforward, it is easy to overestimate the information 
 

455 content  of  any  dataset,  and  this  may  lead  to  unsupported  changes  in  the  parameter 
 

456 distributions. For example, when the common assumption is made that each new data point 
 

457 adds  independent  new  information  to  the  calibration,  the  parameter  distributions  will 
 

458 asymptotically collapse with sample size (Clark, 2005). Modellers thus need to elicit realistic 
 

459 assessments  of  measurement  uncertainty  from  the  data-providers  (Moala  and  O'Hagan, 
 

460 2010). This issue was important in the case-study presented here because the dataset was 
 

461 fairly large (n=225), covering times series of four variables. We applied four techniques to 
 

462 ensure a realistic, albeit subjective assessment of the information content of the data: (1) 
 

463 using the monthly temporal scale as the one at which the models were supposed to be 
 

464 applicable, together with the frequency distribution of daily emission events, (2) allowing for 
 

465 random errors in the data, (3) allowing for systematic errors in the data by the use of the four 
 

466 scaling factors, (4) using a heavy-tailed likelihood function (Sivia, 2006). The adjustment of 
 

467 temporal scale is a common technique in atmospheric physics, applied whenever models 
 

468 produce more smooth results than measurements and thereby induce apparent correlations 
 

469 between measurement errors (Prinn, 2000). We considered the implementation of these four 
 

470 techniques to be partly the responsibility of the data-providers (in the case of random and 
 

471 systematic errors) and partly that of the modellers and data-providers together (temporal scale 
 

472 and  likelihood  function).  Using  this  approach,  parameter  uncertainties  were  reduced 
 

473 markedly but the distributions did not collapse. The techniques applied are generic and may 
 

474 
 

 

475 

be widely applicable to calibration of complex dynamic models using long time series. 
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476 4.2 Bayesian calibration: impact on parameter uncertainty of the forest models 
 

477 Parameter uncertainties were reduced strongly compared to the prior, and the likelihood 
 

478 distributions were shifted toward higher values for all four models (Fig. 4). The degree of 
 

479 uncertainty reduction varied between the models, as did the balance between changing data- 
 

480 scaling parameters and process parameters. Although our dataset included measurements of 
 

481 the three major biogeochemical cycles (nitrogen, carbon and water), there was still some lack 
 

482 of balance because about 75% of the data points were for emissions of N2O and NO (Table 
 

483 1). Therefore, most of the improvement of model behaviour (reduction of likelihood and 
 

484 NRMSE, increase in r) was for these variables. For all models, the parameters that were 
 

485 changed the most were related to the soil nitrogen dynamics. 
 

486 The results of our preliminary parameter sensitivity analysis, consisting of calculating 
 

487 partial correlations with the different outputs, need to be interpreted with care. A high value 
 

488 of the PCC for a specific parameter-output combination suggests that the parameter – within 
 

489 its range of uncertainty - strongly affects the output. Therefore knowledge about the process 
 

490 governed by that parameter is key to understanding variability in the output. The opposite 
 

491 may not be true: a strong but non-linear effect may yield a low PCC. Also, the importance of 
 

492 a parameter is not an intrinsic property: it depends on the distribution of that parameter. 
 

493 Whenever Bayesian calibration reduces the variance of a parameter, the contribution of that 
 

494 parameter to output variability is expected to decrease. However, PCC-analysis is not a 
 

495 variance-decomposition method (Saltelli et al., 2000), so it may not be able to show that 
 

496 effect, and indeed, for two out of the four models posterior values of PCC were generally 
 

497 larger than the prior values. 
 

498 With these caveats, the results of the PCC-analysis did reveal commonalities between 
 

499 the  models.  Across  the  models,  N-emissions  were  mainly  correlated  with  N2O-NO 
 

500 partitioning, soil respiration mainly with decomposition but also tree productivity, and soil 
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501 water content with leaf area dynamics. These agreements between the models suggest that 
 

502 some of the differences between complex process-based models may not overly affect their 
 

503 behaviour. The models compared here all represent, albeit in very different ways, the linkages 
 

504 between the ecosystem C-, N- and H2O-cycles. Therefore there are inevitable similarities in 
 

505 the overall feedback structure of the models, imposed by constraints of stoichiometry and 
 

506 mass-balance of the three biogeochemical cycles. These similarities may outweigh details of 
 

507 process representation and parameterisation (Van Oijen et al., 2004; Van Oijen et al., 2010b). 
 

508 The prior PCC-values were, as expected, indicative of which parameters were most 
 

509 informed by the data in the subsequent calibration. For all four models, the relative decrease 
 

510 of marginal variance tended to be greatest for those parameters that had a strong a priori 
 

511 correlation with N2O-emission, the output variable for which the largest number of data 
 

512 points were available. The parameter variance reduction accounted for by the prior PCC- 
 

513 values ranged from 25% (COUP, MoBiLE) to 29% (BASFOR) and even 35% (DAYCENT). 
 

514 
 

 

515 

PCC-analysis might thus play a useful role in parameter screening before calibration. 

 

516 4.3 Bayesian model comparison 
 

517 Comprehensive model comparison requires taking into account parameter uncertainty. A 
 

518 complex model might, in principle, be able to predict complex biogeochemical time series 
 

519 more closely than a simple model. But if it is unclear what the parameterisation of the 
 

520 complex model for good prediction should be, then its predictive capacity is reduced. A 
 

521 simple model whose parameters are well-known might then perform better. Regarding model 
 

522 complexity, there is a trade-off between the need to represent the intricacies of the real world 
 

523 and the need to minimise parameter uncertainty. We thus need a method for comparing the 
 

524 behaviour  of the  models  not  just  at  the  modes  of the  parameter distributions  or at  the 
 

525 maximum  likelihood  estimates,  but  across  their  whole  parameter  distributions.  Bayesian 
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526 model comparison is such a method. This method has been used before in environmental 
 

527 modelling, in the elegant study by Tuomi et al. (2008) who compared different functions 
 

528 describing the impact of temperature on soil respiration, but to our knowledge this is the first 
 

529 application to complex process-based ecosystem models. Formally, the relative magnitudes 
 

530 of the integrated likelihoods equate to relative probabilities for the individual models of being 
 

531 correct,  conditional  on  a  correct  model  being  present  in  the  comparison.  However,  in 
 

532 environmental modelling all models are incorrect in some way, so we prefer to use the 
 

533 integrated  likelihoods  as  a  guide  towards  plausible  model  structures  rather  than  as 
 

534 probabilities of correctness (Gelman and Shalizi, 2010; Kass and Raftery, 1995). 
 

535 Bayesian model comparison requires that a common likelihood function is used with 
 

536 all models – because the criterion for comparison is the integrated likelihood of the models, 
 

537 where the integration is over the prior parameter distribution. Therefore only those data can 
 

538 appear  in  the  likelihood  function,  which  are  part  of the  output  set  of  each  model.  For 
 

539 example, in the current study, we could not include vertical profiles of soil temperature in the 
 

540 likelihood function because the simplest model BASFOR has only one soil compartment. 
 

541 Three of the models had remarkably similar values of the integrated likelihood, the exception 
 

542 being the low value for DAYCENT, which was thus identified as the least plausible model. 
 

543 There was only a slight preference for MoBiLE-DNDC. We analysed these prior integrated 
 

544 likelihood values further by considering the underlying distributions of likelihoods associated 
 

545 with the four different categories of output variable (N2O, NO, respiration, water) (Fig. 4). 
 

546 The lower value of the integrated likelihood for DAYCENT can be seen to be mainly due to 
 

547 poorer performance for N2O. The similarity between the integrated likelihoods for the other 
 

548 models was seen to extend to the underlying distributions of category-wise likelihoods (Fig. 
 

549 
 

 

550 

4). 
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551 4.4 Analysis of model-data mismatch 
 

552 The  NRMSE  and  r  statistics  provided  useful  additional  information  beyond  the  formal 
 

553 Bayesian model comparison. When going from prior to posterior, r did not improve (apart 
 

554 from Q5) in any of the models, but NRMSE improved throughout (Table 4). The calibration 
 

555 thus was more successful in reducing the average magnitude of the differences between 
 

556 simulations and measurements, than in aligning the distribution of the outputs over time. 
 

557 There clearly remain difficulties for all models in simulating the large interannual variation in 
 

558 nitrogenous  emission  characteristics.  The  models  were also  similar in  that  the posterior 
 

559 NRMSE was lowest for soil water content and highest for the monthly values of N2O- 
 

560 emission (Table 4). It was easier to simulate water than nitrogen dynamics. 
 

561 The decomposition of the MSE for the modes of the prior and posterior parameter 
 

562 distributions gave further information. The MSE-decomposition is only possible for long time 
 

563 series, i.e. the monthly data (Table 1). There were not enough annual quantiles available to 
 

564 allow the reliable estimation of the variance and phase shift terms. The calibration reduced 
 

565 the MSE for the parameter modes of all four models, and all four categories of output 
 

566 variables (Fig. 5), confirming the effectiveness of the calibration. However, the analysis 
 

567 revealed  large  differences  between  the  models.  The  simplest  model,  BASFOR,  had  the 
 

568 highest variance error for N2O and NO. This suggests that a simple model may not be able to 
 

569 respond quickly enough to changes in the environment that affect nitrogenous emissions. The 
 

570 low integrated likelihood of DAYCENT has already been attributed to poor simulation of 
 

571 N2O-emission (Fig. 4), and the MSE-decomposition showed that this was mainly due to a 
 

572 large phase shift for N2O emission (Fig. 5). In fact, DAYCENT had very low bias and 
 

573 variance error for N2O, so it was able to capture general characteristics (mean, „peakiness‟) of 
 

574 the time series of emission very well, but not the timing of emission events. 
 

575 Most data were in the central Q5-Q95 ranges of the prior output distributions of the 
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576 models (Table 3). However, perhaps surprisingly, most data were to be found in the upper 
 

577 tails (>Q95) of the posterior output distributions (Table 3). This is because of a trade-off 
 

578 between the different variables in the calibration. Such trade-off is inevitable with models 
 

579 that  are  imperfect  and  cannot  capture  the  whole  range  of  behaviour  of  all  variables 
 

580 simultaneously. Moreover, there is also the distinct possibility of systematic error in the 
 

581 measurement of the different categories of output variables. Where the models were unable to 
 

582 reconcile all the data, the calibration tended to modify the settings of the scale parameters 
 

583 (Fig. 2). It is important to establish whether the likely underlying cause of the revision of the 
 

584 scale factors was indeed systematic measurement error or model structural error. One way of 
 

585 attempting this is to consider the differences between the models in their posterior estimates 
 

586 for the scaling factors. A posteriori, all models suggested that the measurements for CO2- 
 

587 emissions were unrealistically high (Fig. 2: γCO2  mostly <1), but only the BASFOR model 
 

588 suggested the same for the N-emissions (γN2O and γNO <<1). There thus is some doubt about 
 

589 the CO2-measurements, and likewise about the capacity of BASFOR to simulate N-dynamics. 
 

590 Note that, in our approach, the data-scaling factors are intended to represent the 
 

591 idiosyncrasies of specific datasets, so we cannot expect the calibrated scaling values to apply 
 

592 elsewhere. However, if calibration of a model using data from multiple sites were shown to 
 

593 consistently lead to scaling factors different from unity, we would expect the error to be 
 

594 predominantly the model‟s rather than that of the data. Here we only had data from one site 
 

595 
 

 

596 

available, so no strong conclusions can be drawn. 

 

597 4.5 The Bayesian framework 
 

598 The three-operation Bayesian framework proposed here - calibration, comparison, analysis of 
 

599 model-data  mismatch  –  was  shown  to  work  well  in  this  study.  Most  of the techniques 
 

600 employed in each of these operations are novel in their application to complex dynamic 
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601 models of forest biogeochemistry, in particular in combination with the use of data from 
 

602 processes that vary strongly over time (Luo et al., 2009). The application of the framework 
 

603 showed that model parameter uncertainty could be reduced in all models, irrespective of their 
 

604 level of complexity. However, it also showed that the models still suffer from structural 
 

605 deficiencies, even if we allow for the possibility of errors in the data, and that the deficiencies 
 

606 are stronger for the nitrogen cycle than for the carbon and water cycles. 
 

607 There are limitations associated with this study and a caveat has to be made regarding 
 

608 the  use  of  the  results.  We  only  used  data  from  one  site,  Höglwald,  and  the  general 
 

609 applicability of the models to European forests needs to be tested with data from other sites. 
 

610 When data from these new sites become available, the posterior distributions found here will 
 

611 become prior distributions in further calibration. Another limitation of the study was the use 
 

612 of parameter screening, which was considered necessary for the three models with the highest 
 

613 computational demand, but there may be environmental conditions under which simulated 
 

614 forest biogeochemistry is sensitive to the excluded parameters. Also, uncertainty concerning 
 

615 environmental drivers such as weather conditions was ignored as it was expected to be small 
 

616 compared to the structural and parameter uncertainties. This assumption needs to be verified. 
 

617 Wang et al. (2009) called for the development of an integrated Bayesian framework 
 

618 that  can  account  for  the  different  sources  and  types  of  error  arising  in  environmental 
 

619 modelling. The Bayesian framework proposed here is an integrated one in the sense that its 
 

620 three  operations  were  linked  methodologically  and  in  that  its  three  operations  provide 
 

621 complementary information. Methodologically, the Bayesian calibration made use of the 
 

622 same likelihood function as the Bayesian model comparison. Calibration was also linked to 
 

623 comparison in the use of MCMC to explore parameter space, with the thus generated sample 
 

624 being used in the model comparison for estimating the integrated likelihood. Because this 
 

625 estimate, based on the harmonic mean of the sampled likelihoods, can be unstable (Chib and 
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626 Jeliazkov,   2001),   we   also   used   the   method   of   directly   sampling   from   the   prior. 
 

627 Methodological links further existed between the calibration and the analysis of model-data 
 

628 mismatch, in that the sample generated by the calibration was used to calculate the NRMSE 
 

629 across the posterior parameter distribution, rather than just for one parameter vector. 
 

630 More  importantly  than  these  methodological  links,  the  three  operations  in  the 
 

631 framework  also  complemented  each  other  in  how  they  help  improve  the  modelling. 
 

632 Calibration reduced parameter uncertainty, model comparison reduced uncertainty about the 
 

633 relative plausibility of the different models, and the analysis of model-data mismatch showed 
 

634 which parts of the models needed most improvement, which in this case was the nitrogen 
 

635 
 

 

636 
 

 

637 

dynamics. 

 

638 5. Conclusions 
 

639  Bayesian  calibration  can  be  used  to  reduce  parametric  uncertainty  of  complex 
 

640 dynamic models for forest biogeochemistry. 
 

641  Bayesian calibration allows for the use of datasets that contain long time series of gas 
 

642 emissions with high intra- and interannual variability, and with both random and 
 

643 systematic error. 
 

644  Data need to be compared with models at the appropriate temporal scale. This may 
 

645 involve, as shown here, monthly averaging and the calculation of annual frequency 
 

646 distributions. These transformations, and the use of heavy-tailed likelihood functions 
 

647 that account for uncertainty about random and systematic measurement errors, can 
 

648 help prevent collapse of the parameter distributions in the calibration. 
 

649  Bayesian  model  comparison  can  be  used  to  calculate  the  relative  conditional 
 

650 probabilities of models being correct, irrespective of the type and complexity of the 
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651 considered models. 
 

652  Bayesian model comparison treats models as black boxes, so it can only identify 
 

653 which models are implausible, but it cannot identify any specific model deficiencies. 
 

654  Analysis   of   model-data   mismatch can help identify   model weaknesses   by 
 

655 decomposition of the MSE and by showing how the NRMSE and the correlation 
 

656 coefficient r vary for the different processes simulated by the models. 
 

657  Together, the three operations of Bayesian calibration, Bayesian model comparison, 
 

658 and  analysis  of  model-data  mismatch,  constitute  a  promising  framework  for 
 

659 uncertainty  reduction  and  improvement  of  complex  dynamic  models  in  forest 
 

660 biogeochemistry. 
 

661  This  was  confirmed  by  the  case-study  analysed  here,  in  which  four  different 
 

662 parameter-rich process-based models of forest biogeochemistry were confronted with 
 

663 long time-series of biogeochemical data. Parameter uncertainties were reduced in all 
 

664 models and the relative model plausibilities were quantified, with MoBiLE-DNDC 
 

665 having a slight preference over the other models. The simplest model, BASFOR, was 
 

666 shown to underestimate variance of nitrogenous emissions even after calibration. The 
 

667 model of intermediate complexity, DAYCENT, simulated the time series well but 
 

668 with large phase shift. COUP and MoBiLE-DNDC were able to remove most bias 
 

669 through calibration. 
 

670  The calibration not only reduced parameter and model uncertainty, but also identified 
 

671 possible systematic error in the measurement of soil respiration, to which all models 
 

672 assigned data-scaling factors less than unity with high posterior probability. 
 

673  There  remain  patterns  in  the  data  -  in  particular  infrequent  events  of  very high 
 

674 nitrogenous emission rate - that are unexplained by any of the models, even after 
 

675 calibration. Given the intensive exploration of parameter space in the calibration, this 
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676 is unlikely to be due to incorrect model parameterisation. 
 

677  The analysis showed that the models still suffer from structural deficiencies, even if 
 

678 we allow for the possibility of errors in the data. The deficiencies are stronger for the 
 

679 
 

 

680 
 

 

681 

nitrogen cycle than for the carbon and water cycles. 
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Table 1. Overview of data used for calibration. Variables are annual quantiles 

 
of daily emission rates where indicated, and monthly averages otherwise. The 

period of measurement indicates the years of first and last measurement, and n 

is the total number of data points over that period. The columns marked min, 

mean and max show the extreme values and the mean of the n values. 

Variable Unit Period of 

 
measurement 

n min mean max 

N2O (Q10) kg N ha
-1 

y
-1 1994-2003 6 0.08 0.21 0.31 

N2O (Q50) kg N ha
-1 

y
-1 1994-2003 6 0.27 0.52 0.85 

N2O (Q90) kg N ha
-1 

y
-1 1994-2003 6 0.55 2.32 9.14 

NO (Q10) kg N ha
-1 

y
-1 1994-2002 5 1.65 2.33 2.79 

NO (Q50) kg N ha
-1 

y
-1 1994-2002 5 4.81 6.64 8.30 

NO (Q90) kg N ha
-1 

y
-1 1994-2002 5 10.65 13.65 18.52 

N2O kg N ha
-1 

y
-1 1994-2003 70 0.03 0.99 16.55 

NO kg N ha
-1 

y
-1 1994-2003 61 1.74 7.72 24.04 

Rsoil mg C m
-2 

h
-1 1995-1997 36 23.9 113.3 255.2 

Water % (vol) 1994-1996 25 27.1 33.6 37.0 
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830 

 

Table 2. Overview of the models. 

Property BASFOR COUP DAYCENT MoBiLE-DNDC 

# State variables 

 
(trees, soil) 

14 

 
(6,8) 

56 

 
(8,48) 

20 

 
(10,10) 

38 

 
(10,28) 

# Parameters 

 
(in calibration) 

48 

 
(48) 

>300 

 
(23) 

>300 

 
(17) 

67* 

 
(26) 

Time step Daily Hourly Daily Daily (but less than 

 
1 minute for 

diffusion processes) 

Inputs: 

 
Environmental 

time series 

Radiation, 

 
temperature, 

precipitation, 

humidity, wind 

speed, N-deposition, 

[CO2] 

Radiation, 

 
temperature, 

precipitation, 

humidity, wind 

speed, N-deposition 

Radiation, 

 
temperature, 

precipitation, 

humidity, wind 

speed, N-deposition, 

[CO2] 

Radiation, 

 
temperature, 

precipitation, N- 

deposition, [CO2] 

Inputs: 

 
environmental 

constants 

Soil water retention 

 
curve, rooting depth 

Soil water retention 

 
curve, rooting depth 

Soil water retention 

 
curve, rooting depth 

Layer-specific 

 
texture, bulk density, 

field capacity, pH 

831 
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* For the soil chemistry module only. 
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Table 3. Summary of model output, with prior and posterior uncertainties. All values shown 

 
refer to time series averages, to be compared with the last-but-one column of Table 1. For each 

model, the table entries are three quantiles (5, 50 and 95%) of the output distributions generated 

by the prior and posterior parameter distributions. In bold: posterior distributions for which the 

posterior width (Q5-Q95) is at least an order of magnitude less than for the prior. 

Var. Unit Dist. BASFOR COUP DAYCENT MoBiLE-DNDC 

Q5 Q50 Q95 Q5 Q50 Q95 Q5 Q50 Q95 Q5 Q50 Q95 

N2O 
 

(Q10) 

kg N 
 

ha
-1 

y
-1 

Prior 0.01 0.05 1.78 0.01 0.03 0.13 0.01 0.02 0.02 0.09 0.68 2.82 

Post. 0.02 0.03 0.04 0.03 0.05 0.07 0.01 0.01 0.02 0.13 0.16 0.21 

N2O 
 

(Q50) 

kg N 
 

ha
-1 

y
-1 

Prior 0.03 0.18 3.83 0.02 0.10 0.49 0.34 0.41 0.50 0.19 1.64 6.82 

Post. 0.07 0.12 0.17 0.06 0.10 0.16 0.29 0.33 0.39 0.25 0.30 0.34 

N2O 
 

(Q90) 

kg N 
 

ha
-1 

y
-1 

Prior 0.12 1.13 8.08 0.16 0.69 4.49 2.00 2.13 2.28 0.40 3.21 12.85 

Post. 0.29 0.46 0.65 0.11 0.18 0.33 1.90 1.99 2.08 0.41 0.51 0.62 

NO 
 

(Q10) 

kg N 
 

ha
-1 

y
-1 

Prior 0.03 0.10 8.99 3.42 7.24 14.26 0.72 0.75 0.78 0.27 2.88 12.22 

Post. 0.05 0.11 0.18 1.60 2.10 2.77 0.71 0.72 0.75 1.84 2.28 2.72 

NO 

 
(Q50) 

kg N 
 

ha
-1 

y
-1 

Prior 0.09 0.45 12.21 5.95 13.02 28.90 1.16 1.26 1.37 0.92 5.83 17.91 

Post. 0.25 0.79 1.43 2.41 3.20 4.64 1.08 1.15 1.23 3.52 4.19 4.86 

NO 

 
(Q90) 

kg N 
 

ha
-1 

y
-1 

Prior 0.31 2.38 19.99 10.56 22.88 48.30 0.51 0.57 0.63 1.89 9.39 23.70 

Post. 0.99 2.69 4.57 4.41 6.22 8.70 0.48 0.51 0.55 5.61 6.65 8.02 

N2O kg N 
 

ha
-1 

y
-1 

Prior 0.05 0.39 4.42 0.07 0.27 1.44 1.55 1.82 2.11 0.24 1.81 7.42 

Post. 0.11 0.18 0.24 0.08 0.12 0.20 1.40 1.55 1.74 0.27 0.32 0.37 

NO kg N 
 

ha
-1 

y
-1 

Prior 0.15 0.92 13.25 6.05 14.78 32.82 4.04 4.97 6.00 1.21 6.00 17.58 

Post. 0.43 1.16 1.99 2.96 4.11 5.68 3.54 4.05 4.74 3.68 4.32 5.01 

CO2 mg C 
 

m
-2 

h
-1 

Prior 44.2 69.4 106.8 76.5 97.0 127.0 25.3 48.2 73.0 46.4 66.3 96.5 

Post. 56.2 76.5 99.5 67.6 84.4 101.2 26.9 49.6 76.2 49.1 55.4 64.2 

Water % 

 
(vol) 

Prior 28.3 31.6 33.7 33.2 34.5 36.1 32.3 32.3 32.3 34.5 34.5 34.5 

Post. 28.7 31.0 33.0 33.3 34.6 35.9 32.3 32.3 32.3 34.5 34.5 34.5 
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Table 4. Comparison of data with model outputs: correlation coefficient (r) and normalised 

 
root mean square error (NRMSE). The table shows quantiles (Q5, Q50, Q95) of the 

distributions of r and NRMSE induced by prior and posterior parameter distributions. In 

bold: posterior values that are improvements over the prior (r increased, NRMSE reduced). 

Var. Dist. Statistic BASFOR COUP DAYCENT MoBiLE-DNDC 

Q5 Q50 Q95 Q5 Q50 Q95 Q5 Q50 Q95 Q5 Q50 Q95 

N2O 
 

(Q10) 

Prior r -0.37 0.42 0.72 -0.83 -0.09 0.47 -0.36 -0.27 -0.19 -0.27 0.54 0.76 

NRMSE 0.44 1.07 11.95 0.41 0.93 1.91 0.52 1.01 1.95 0.42 2.47 12.95 

Post. r -0.75 -0.19 0.49 -0.60 -0.22 0.20 -0.39 -0.29 -0.21 0.21 0.70 0.87 

NRMSE 0.41 0.47 0.53 0.31 0.38 0.48 0.54 0.77 1.05 0.20 0.39 1.32 

N2O 
 

(Q50) 

Prior r -0.46 0.65 0.88 -0.62 0.28 0.77 0.45 0.60 0.70 -0.67 -0.14 0.33 

NRMSE 0.40 1.02 7.64 0.35 0.87 1.86 0.23 0.40 1.25 0.48 2.46 13.32 

Post. r -0.53 -0.04 0.78 -0.73 -0.37 0.38 0.45 0.62 0.71 -0.06 0.15 0.50 

NRMSE 0.31 0.38 0.46 0.32 0.40 0.48 0.19 0.28 0.48 0.22 0.47 1.51 

N2O 
 

(Q90) 

Prior r -0.51 0.32 0.80 -0.57 0.22 0.96 0.60 0.60 0.61 -0.58 -0.41 -0.08 

NRMSE 0.83 1.64 3.13 0.64 1.50 3.01 0.72 1.06 2.34 0.94 2.04 5.43 

Post. r -0.35 0.55 0.86 -0.68 -0.33 0.70 0.60 0.60 0.61 -0.38 -0.25 -0.13 

NRMSE 0.67 0.75 0.86 0.77 0.82 0.91 0.71 0.82 1.13 0.78 1.34 3.05 

NO 

 
(Q10) 

Prior r 0.20 0.52 0.78 -0.11 0.20 0.49 -0.44 -0.44 -0.43 -0.73 0.37 0.55 

NRMSE 0.53 1.13 4.54 0.72 2.26 5.37 0.37 0.75 1.62 0.30 0.97 4.37 

Post. r 0.39 0.60 0.84 0.05 0.41 0.67 -0.44 -0.44 -0.44 -0.62 -0.01 0.66 

NRMSE 0.45 0.48 0.54 0.18 0.35 0.55 0.35 0.40 0.51 0.18 0.37 1.00 

NO 

 
(Q50) 

Prior r -0.60 -0.32 0.37 -0.90 -0.68 -0.36 0.14 0.18 0.22 -0.92 -0.21 0.39 

NRMSE 0.50 1.04 1.96 0.53 1.26 3.58 0.38 0.82 1.71 0.24 0.67 1.84 
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 Post. r -0.50 -0.38 -0.25 -0.78 -0.51 -0.20 0.13 0.16 0.20 -0.80 -0.36 0.03 

NRMSE 0.38 0.44 0.51 0.19 0.27 0.40 0.36 0.42 0.56 0.16 0.39 1.31 

NO 

 
(Q90) 

Prior r -0.59 -0.34 0.11 -0.93 -0.70 -0.36 -0.59 -0.53 -0.43 -0.89 -0.30 0.27 

NRMSE 0.41 0.90 1.78 0.42 1.00 2.79 0.51 0.96 1.86 0.20 0.56 1.44 

Post. r -0.51 -0.35 -0.09 -0.90 -0.53 -0.09 -0.61 -0.58 -0.53 -0.86 -0.52 0.01 

NRMSE 0.28 0.37 0.48 0.14 0.25 0.42 0.48 0.54 0.69 0.15 0.49 1.44 

N2O Prior r -0.15 0.07 0.41 -0.14 0.25 0.66 -0.08 -0.08 -0.07 -0.24 -0.19 -0.06 

NRMSE 1.34 2.64 5.00 1.16 2.32 4.46 3.28 4.10 5.29 1.56 3.40 8.58 

Post. r -0.13 -0.04 0.21 -0.26 -0.05 0.36 -0.08 -0.07 -0.07 -0.19 -0.12 -0.02 

NRMSE 1.14 1.20 1.35 1.14 1.20 1.33 2.79 3.18 3.74 1.19 2.00 4.47 

NO Prior r -0.59 -0.32 0.26 0.42 0.55 0.65 0.69 0.69 0.70 0.09 0.52 0.67 

NRMSE 0.62 1.24 2.21 0.50 1.23 3.74 0.39 0.58 1.48 0.37 0.86 1.83 

Post. r -0.43 -0.20 0.05 0.42 0.50 0.58 0.69 0.69 0.70 0.52 0.67 0.74 

NRMSE 0.50 0.54 0.60 0.28 0.35 0.51 0.31 0.36 0.42 0.26 0.61 1.66 

CO2 Prior r 0.76 0.80 0.82 0.85 0.87 0.89 0.87 0.89 0.90 0.85 0.89 0.91 

NRMSE 0.27 0.64 1.49 0.25 0.44 1.25 0.24 0.63 1.67 0.17 0.55 1.53 

Post. r 0.76 0.79 0.81 0.86 0.88 0.89 0.87 0.89 0.90 0.86 0.88 0.89 

NRMSE 0.28 0.39 0.64 0.20 0.28 0.53 0.22 0.34 0.76 0.17 0.42 1.36 

Water Prior r -0.16 0.03 0.55 0.36 0.38 0.39 0.53 0.53 0.53 0.55 0.56 0.56 

NRMSE 0.04 0.10 0.26 0.08 0.13 0.26 0.11 0.15 0.28 0.02 0.10 0.25 

Post. r -0.17 -0.03 0.27 0.36 0.38 0.39 0.53 0.53 0.53 0.55 0.55 0.56 

NRMSE 0.04 0.07 0.13 0.08 0.10 0.17 0.11 0.14 0.21 0.02 0.09 0.24 
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FIGURES 

 

844 Fig. 1. Dots: Monthly averages of measured emissions of N2O, NO, CO2  and of soil water 
 

845 content. The lines represent output of model BASFOR. Dashed red line: output for the 
 

846 mode of the prior parameter distribution. Thick black line: output for the mode of the 
 

847 
 

 

848 

posterior. Thin black lines: 5% and 95% quantiles of the posterior output distribution. 

 

849 Fig. 2. Posterior marginal distributions for the four data-scaling factors that represent 
 

850 
 

 

851 

systematic multiplicative error in the data according to the different models. 

 

852 Fig. 3. Differences between measurements and simulations (positive values indicating 
 

853 underestimates by the models) for time series with monthly averages. Top 4 panels: 
 

854 simulations using the mode of the prior parameter distribution. Bottom 4 panels: 
 

855 
 

 

856 

simulations with the posterior mode. 

 

857 Fig. 4. Distributions of log-likelihoods for each of the four models, for the four categories of 
 

858 
 

 

859 

output variables. Grey: prior, black: posterior. 

 

860 Fig. 5. Decomposition of the Mean Squared Error (MSE) associated with the modes of the 
 

861 
 

 

862 

prior and posterior parameter distributions, for the time series with monthly data. The 
 

MSE-values for the N2O and NO are in the same units (kg N ha
-1  

y
-1  

squared), the 
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8 63 

 

 
8 64 

MSE-values for soil respiration and soil water content are in squared mg C m-2 h-1 and 

squared %, respectively. 
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Figure 4 BASFOR COUP DAYCENT MoBiLE 
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Figure 5 BASFOR COUP DAYCENT MoBiLE 
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