

Article (refereed)

Henrys, P.A.; Stevens, C.J.; Smart, S.M.; Maskell, L.C.; Walker, K.J.;
Preston, C.D.; Crowe, A.; Rowe, E.C.; Gowing, D.J.; Emmett, B.A..
2011 Impacts of nitrogen deposition on vascular plants in Britain: an
analysis of two national observation networks. *Biogeosciences*, 8 (12).
3501-3518. 10.5194/bg-8-3501-2011

Copyright © 2011 Author(s)

This version available http://nora.nerc.ac.uk/15911/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the authors and/or other rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

This document is the author's final manuscript version of the journal article prior to the peer review process. Some differences between this and the publisher's version may remain. You are advised to consult the publisher's version if you wish to cite from this article.

www.biogeosciences.net

Contact CEH NORA team at <u>noraceh@ceh.ac.uk</u>

The NERC and CEH trade marks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

1 Impacts of Nitrogen deposition on vascular plants in Britain: An analysis of

2 two national observation networks

3 **Running head:** Nitrogen impacts on vascular plants.

- 4 Henrys, P. A.^{1*}, Stevens, C. J.^{2,3}, Smart, S. M.¹, Maskell, L. C.¹, Walker, K.J.⁴, Preston, C.D.⁵,
- 5 Crowe, A.¹, Rowe, E. C.⁶, Gowing, D.J.² and Emmett, B.A.⁶
- ⁶ ¹Centre for Ecology and Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster, LA1 4AP, UK.
- ²Department of Environment, Earth and Ecosystems, The Open University, Walton Hall, Milton Keynes,
 MK7 6AA, UK.
- 9 ³Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
- ⁴Botanical Society of the British Isles (BSBI), c/o 97 Dragon Parade, Harrogate, North Yorkshire,
 HG1 5DG.
- ⁵Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford,

13 Wallingford, Oxfordshire, OX10 8BB.

- ⁶Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57
 2UW.
- ^{*}Corresponding author: Dr Peter A. Henrys
- 17 Email: <u>pehn@ceh.ac.uk</u>
- 18

1 Abstract

Large areas of Great Britain currently have nitrogen (N) deposition at rates which exceed the 2 3 thresholds above which there is risk of damage to sensitive components of the ecosystem (critical loads). Previous studies have focussed primarily on the relationship of species richness to 4 5 nitrogen, whereas here we look at individual species. We used data from two national observation 6 networks over Great Britain to examine the response of individual vascular plant species to N in 7 acid grasslands, calcareous grasslands and heathlands. Presence absence records of individual species, along with mean Ellenberg N scores, within 10km hectads were modelled against N 8 9 deposition whilst at the same time controlling for the effects of climate, land use and sulphur deposition using generalised additive models. Ellenberg N showed a significant increase with 10 increasing N deposition in almost all habitats across both surveys indicating increased fertility. 11 Many individual species showed strong relationships with N deposition and clear negative trends 12 in species prevalence to increasing nitrogen were found in all habitats. A number of these species 13 14 were either habitat dominants or possessed traits known to be influential in controlling ecosystem function. Many community dominants showing significant negative relationships with N 15 deposition highlight a potentially significant loss of function. Some species that showed negative 16 17 relationships to N showed signs of decline at low levels, far below the current critical load levels. Some species also showed continuous changes as N deposition levels rose above the current 18 critical load values. This work contributes to the growing evidence base suggesting species level 19 impacts at low N deposition values. 20

21 Keywords: Air quality, critical loads, Ellenberg N, nitrogen deposition, pollution, vascular plants

22

1 1. Introduction

Atmospheric nitrogen (N) deposition poses a serious threat to sensitive semi-natural 2 habitats in Great Britain (Hall et al., 2006a; RoTAP, 2011.). Estimated levels of nitrogen (N) 3 deposition across Great Britain and Northern Ireland are shown in Fig. 1. Large areas of the 4 5 country exceed the critical loads for nutrient N and critical levels for ammonia, and are predicted 6 to continue to do so in 2020 despite reductions in emissions of reactive N gases (Hall et al., 7 2006b). The critical load is defined as the level below which significant harmful effects on specified sensitive elements of the environment do not occur (Nilsson and Grennfelt 1988). 8 9 Therefore, by definition, as N levels surpass the critical load values there is possibility of a significant harmful effect on the environment. There is a growing body of evidence from both 10 experiments and surveillance studies that suggest that increases in nitrogen have a negative effect 11 on species richness and composition (e.g. Mountford et al., 1993; Wilson et al., 1995, Stevens et 12 al., 2004, Maskell et al., 2010, Stevens et al., 2010a, Dupre et al., 2010, Smart et al., 2004, Van 13 14 den Berg et al., 2010).

15 A negative relationship between species richness and N leads us to hypothesise that some individual vascular plant species show a decline in frequency of occurrence with increased N and 16 are perhaps not found at all in some areas due to high N deposition levels. However, as some 17 species lose out, decline and potentially become eliminated from the ecosystem, with increased 18 levels of N, some species may flourish. Changes in mean indicator scores based on summarising 19 changes across taxa can reveal strong signals of pollutant impacts. However, plant species 20 21 respond individualistically so that assessment at an individual species level is required to 22 understand how assemblage-level changes comprise different magnitudes and directions of change among the species present. Expressing habitat change at the species level also allows 23 identification of potential indicators of air pollution and aids interpretation of critical load 24 25 exceedance scenarios.

There have previously been a number of geographically large-scale studies attempting to 1 2 determine the impact of total inorganic N deposition on vegetation in Great Britain. For example, Stevens et al., 2004 used a large scale spatial survey of acid grasslands to demonstrate declines in 3 species richness, when high N deposition was compared with areas of low N deposition. In the 4 5 RoTAP report (RoTAP, 2011.) results of eleven surveys conducted in Great Britain and Northern Ireland are compared. Species richness declined with increasing N deposition in seven of the 6 7 eleven surveys. Further to this, species richness of vascular plants has been found to decrease in response to N deposition in a number of experimental studies (e.g. Bobbink et al., 1998; Clark 8 and Tilman, 2008; Mountford et al., 1993). 9

10 The Countryside Survey has also been used to study the impact of N deposition on seminatural vegetation communities. Maskell et al., 2010 used data from the 1998 survey to show 11 declines in species richness in both acid grassland and heathland along the gradient of N 12 13 deposition covering Great Britain. Trait data was used to propose mechanisms for species loss. These appeared to vary by habitat type; in acid grassland and heathland acidification appeared to 14 be the driving process rather than eutrophication (Maskell et al., 2010). In addition to this, large-15 scale analyses of UK and European data have also detected parallel signals of eutrophication 16 (Dupre et al 2010; Smart et al 2004; RoTAP 2011). As N deposition increases, plant species and 17 18 traits associated with higher fertility have become more abundant and stress-tolerant species have declined. 19

In some studies covering a range of habitats across Europe, Ellenberg values (Ellenberg et al., 1991; Hill et al., 1999) have been used as indicators of N deposition effects (Diekmann and Falkengren-Grerup, 2002; Jones et al., 2004). Ellenberg values describe the realised niche of a plant in relation to its tolerance of certain environmental conditions on a scale of one to nine. The most relevant to N deposition is the N score (nitrogen or nutrients). The Ellenberg N score indicates overall fertility or productivity (Hill and Carey, 1997). However, none of these previous studies have focussed on relationships between individual species and N, whilst at the same time accounting for other confounding factors such as climate. As the majority of air pollution policy is focussed on setting appropriate emissions ceilings and the consideration of critical load exceedance, evidence from analysing individual species responses to nitrogen needs to be considered so that critical loads are set at levels to protect the risk of species loss.

7 The main aim of this paper is to analyse vegetation surveillance datasets on a national 8 scale, in terms of individual species responses and Ellenberg N scores, and collate evidence of 9 possible N deposition impacts/relationships. This adds the growing evidence base and provokes 10 thought on potential implications for current conservation commitments and biodiversity targets. 11 These include the aim to maintain or improve the status of wild flora and fauna and their 12 ecosystems and habitats in response to the Convention for Biological Diversity (CBD) Articles 8 13 and 9.

14 **2.** Methods

15 **2.1 Data**

16 Data were taken from two national vegetation datasets to look at relationships with N deposition for three semi-natural habitats: calcareous grassland; acid grassland; and heathland. 17 The distributions of these three habitats over Great Britain are shown in Figure 8. The databases 18 used were: The Vascular Plant Database, which recorded the presence of all vascular plant 19 species growing within 10km² hectads in the wild between 1987 and 1999 (Preston et al., 2002); 20 and The Botanical Society of the British Isles (BSBI) Local Change Survey data which records 21 22 all vascular plant species growing in the wild in 811 2 x 2 km tetrads located within a regular grid of 10km² hectads across Great Britain. The BSBI survey was conducted in both 1987-88 and 23 2003-04 (Braithwaite et al., 2006), but for this analysis only data from 2003-04 was used. For the 24 purposes of this assessment, any recorded subspecies were aggregated to the species level, with 25

hybrids and alien species excluded, and pooled over time as the subsequent analysis uses only the
 spatial distribution of the data to inform the model.

Vascular plants were individually assigned to each of the target habitat types using
published preference data on habitat affinity and altitudinal ranges (Hill et al., 2004). Only those
species selected using the criteria above were subsequently used to generate summary variables.
Thus generalist species and those restricted to other non-target habitats were excluded from the
calculation of mean Ellenberg N values for each recording unit (ie. tetrad or hectad).

8 Hectads (10 x 10 km squares) and Tetrads (2 x 2km square) were processed to determine 9 upland and lowland strata and to locate focal Broad Habitats. Broad Habitat occurrence was 10 derived from the Land Cover Map 2000 25 m raster coverage. The upland mask is composed of 11 the upland delineation for England based on English Natural Areas, a Welsh upland mask 12 provided by Countryside Council for Wales (CCW), and the combined upland and montane 13 masks from Scottish Natural Heritage (SNH).

To understand fully the potential effects of N on vascular plants we investigated 14 relationships between atmospheric N deposition and: individual species' 15 responses (presence/absence in each recording unit based on current distribution); and Ellenberg N scores 16 (Hill et al., 1999; Hill et al., 2007). This allowed us to identify species that are especially 17 18 vulnerable to N deposition and those which are not found in areas of high deposition, whilst 19 Ellenberg N scores allow us to assess the extent to which these different species patterns reflected 20 prior knowledge of their association with different levels of fertility. Thus we calculated average 21 Ellenberg N scores based on the presence of species within each habitat. N scores are on a scale of one to nine, where one represents the most infertile habitats and nine represents fertile habitats. 22

23 2.2 Driver variables

Ecological drivers known to affect species occurrence were included in the model so that the effects could be partialled out before looking into the relationship with total inorganic N

deposition. Additional variables included were: Intensity of land-use in each grid square; 1 2 minimum January temperature; maximum July temperature; total annual rainfall; and change in sulphur deposition. Total annual rainfall was preferred to summer or winter rainfall due to the 3 high correlation between the seasons (>0.8) allowing the inclusion of only one term. For 4 5 completeness, total annual rainfall was therefore favoured. Intensity of land use was measured as the proportion of arable plus improved grassland in the grid square as calculated from Land 6 7 Cover Map 2000. Climate data was based on long term averages from the Met Office covering the period from 1980 to 2005. This long term average provided good representation of the spatial 8 variability in temperature, which was needed to capture the spatial differences in species 9 10 occupancy we modelled. Sulphur (S) deposition was the difference in model estimates for 1971 and 2005 as based on the FRAME model (Fine Resolution Ammonia Exchange) (Fournier et al., 11 2000). For N deposition we used estimates at the 5 km² scale provided by CEH Edinburgh 12 13 (NEGTAP, 2001; Smith et al., 2000), calculated as the mean of the estimates for 1996, '97 and '98 from the CBED model for deposition to moorland. We may perhaps expect plant response to 14 be a function of cumulative N deposition, however, data on this was not available, so current N 15 16 deposition was used as a proxy for cumulative deposition. If cumulative data were based on backcasting from current deposition patterns (as in Dupre et al., 2010), we would expect to see very 17 similar results. Whenever the resolution of the botanical records was greater than that of the 18 driver variable data, the driver data were averaged over the size of the botanical recording unit. 19

20

2.3 Modelling of response variables

We used a generalised additive model (GAM) (Hastie and Tibshirani, 1990) based approach to model both species presence/absence and Ellenberg N scores. This allowed the effects of other covariates of interest to be modelled and accounted for before looking at the relationship between the response variable and N. The flexible, non-linear, smooth terms used in the GAM framework allow for the possibility that a species may be unaffected beneath a certain level of N but showing signs of change beyond this threshold, thus conforming to the critical
 loads definition.

Any spatial structure in the model residuals was accounted for in the GAM by including 3 an additional two-dimensional smooth term, i.e. a planar surface, in the model. This term is 4 defined as an interaction between the two coordinate axes. Therefore any spatial dependence 5 between hectads, missing spatial covariates or spatially structured recording effort is accounted 6 for as much as is possible. This, rather broad scale way of handling residual spatial structure was 7 assessed by repeating a subset of models in a Bayesian framework allowing for a complex, 8 localised, fine scale dependence structure to be specified. Results from such analyses confirmed 9 that the broader scale dependence method of the GAMs performed equally as well. Furthermore, 10 for the BSBI tetrad data a random effect term for hectad was also included to account for 11 differing levels of variability to data from within the same hectad to data from differing hectads. 12

Finally, to maintain an element of consistency across the analyses, all models were started with the same set of terms and driver variables, which were included in the model in the same order.

16 2.4 Model Inference

For both the hectad and tetrad models, regression parameters for any fixed linear terms 17 and parameters for each of the smooth terms were estimated, together with standard errors, by 18 either approximating the true likelihood or using quasi likelihood methods. Having fitted the 19 model with all terms, individual terms were selected based on F tests, the AIC score (Akaike, 20 1969) and the generalised cross validation score. Non significant terms were only removed if the 21 22 AIC and GCV scores improved upon their removal. The covariate corresponding to N was always included in the model whether it was significant or not, as it was this relationship that 23 ultimately we were interested in. The final model was checked by examining plots of residuals 24 25 and quantile-quantile plots of the observed and predicted values.

To formally assess the impact of N, the p value from the F test associated with the N covariate was returned along with a graphical plot of the estimated smooth term in the GAM for N deposition. Both the p value and the plots together provide a full assessment of the modelled relationship, including significance, direction and change points, that N has in relation to the vegetation response variable.

Because of the complex modelling framework and the number of driver variables used in
building the model, data sets with a small number of observations could not be analysed and were
therefore removed. Also species with less than 10% and greater than 90% of presences in the data
set were also removed as convergence in the model was difficult to achieve.

10 **3 Results**

11 Results are presented separately for the analysis of the individual species' presence / 12 absence and the calculated Ellenberg N score. Furthermore, each of the three habitats: calcareous 13 grassland, acid grassland and heathland are listed individually for the species response analysis. 14 The number of hectads within each of the three habitats for the two recording schemes is shown 15 in Table 1. Histograms showing the ranges of N deposition covered within each habitat for which 16 data were analysed are given in Appendix A.

17 It is important to note that the low sample sizes for analysis are not solely because of too 18 few records in either recording scheme. It is the combination of sampling units coinciding with 19 grid cells with identifiable and hence larger areas of the focal habitat. i.e. the presence records for 20 species in cells where Land Cover Map did not pick up the habitat of interest were not included.

21 **3.1 Individual species response**

Removing the very rare and very common species from the analysis (those with an overall presence of less than 10% and greater than 90% respectively) the presence/absence of the remaining species occurring in the sampling units according to Table 1, was modelled as outlined above. P values obtained from testing the null hypothesis of no association between presence/absence and N deposition, having accounted for other driver variables, are given in Appendix B for all species analysed. For species where a significant association with N deposition was found, the relationships are plotted as probability of presence against increasing total inorganic N deposition (kg N ha⁻¹ yr⁻¹). The critical load for each habitat, as defined by the range midpoint of the published values by Bobbink and Hettelingh, 2011, is also included in these plots.

8 3.1.1 Acid grassland

In the Vascular Plant Database there were sufficient data to test the probability of 9 presence with N deposition for eleven species (between 10 and 90% of hectads occupied) for 10 11 lowland acid grassland. Five of these species showed a significant relationship with N deposition: Cerastium arvense, Cerastium semidecandrum, Trifolium arvense, Vicia lathyroides 12 and Viola canina. All five species showed similar trends (Fig. 4), with the probability of 13 presence declining rapidly with increasing deposition, including at levels below the critical load 14 of 15 kg N ha⁻¹ yr⁻¹, and then tailing off. Only one species was investigated for upland acid 15 grassland but did not show a significant response to N deposition. 16

In the BSBI data for lowland acid grasslands there was sufficient data on only one species in the data set (Appendix B), *Senecio sylvaticus*, which did not show a significant relationship with N deposition. For upland acid grassland again only one species had sufficient data for analysis: *Agrostis vinealis*. *A. vinealis* showed a significant hump-backed response to N deposition, increasing to 25 kg N ha⁻¹ yr⁻¹ then declining.

22 3.1.2 Calcareous grassland

In the Vascular Plant Database the presence / absence of 40 species in lowland calcareous grassland were modelled. Of these, 17 showed significant relationships with N deposition (Appendix B). Nine species showed negative relationships (Fig. 2a) with N deposition: *Allium*

vineale, Anacamptis pyramidalis, Carlina vulgaris, Cynoglossum officinale, Echium vulgare, 1 2 Geranium columbinum, Ononis repens, Rosa micrantha and Spiranthes spiralis. All of these species showed changes in their probability of presence even at low levels of N deposition well 3 below the critical load of 20 kg N ha⁻¹ yr⁻¹. Four species showed positive relationships (Fig. 2b) 4 with N deposition: Carex spicata, Knautia arvensis, Lathyrus nissolia and Stachys officinalis. All 5 of which appeared to increase to around 25 kg N ha⁻¹ yr⁻¹ and then stabilise. There were also four 6 species (Centaurium erythraea, Epipactis helleborine, Linum bienne and Pastinaca sativa) that 7 showed hump-backed distributions (Fig. 2c) with the peak occurring around the critical load 8 level. For upland calcareous grasslands there were only sufficient data to analyse seven species. 9 10 Two species showed significant relationships with N deposition (Fig. 2d). Alchemilla xanthochlora showed a significant increase with N deposition, whereas *Melica nutans* showed a 11 generally declining probability of presence with increasing N deposition. The slight increase at 12 13 low levels of deposition is due to the wide variation in the data at this point.

In the BSBI local change survey data there were sufficient records for analysis of 17 14 species within lowland calcareous grasslands. Eight showed a significant relationship with N 15 deposition (Fig. 3a): Bromopsis erecta, Campanula glomerata, Carex spicata, Centaurea 16 scabiosa, Daucus carota, Ononis repens, Sanguisorba minor and Viola odorata. Of these, a 17 18 number of species show changes of a small magnitude or complex responses but there are clear, steep declines for a number of species including B. erecta, C. glomerata, C. spicata and O. 19 20 repens. There were 12 species analysed in upland calcareous grasslands of which three species 21 showed significant correlations with N deposition: Persicaria vivipara, Rubus saxatilis and Thalictrum alpinum. All of these species showed hump-backed relationships with N deposition 22 (Fig. 3b). 23

24 **3.1.3 Heathland**

Within the Vascular Plant Database there was sufficient data for analysis of four species
in lowland heathland. Two species showed a significant relationship with N deposition (Fig. 5a).

Platanthera bifolia had a positive relationship with N deposition, with probability of presence 1 2 increasing steadily as N deposition increased. Viola canina had a negative relationship with N deposition declining considerably in its probability of presence between 10 and 25 kg N ha⁻¹ yr⁻¹. 3 In upland heathlands it was possible to analyse ten species (Appendix B). Two species showed 4 5 significant relationships with N deposition. Arctostaphylos uva-ursi had a negative relationship with N deposition declining in probability of presence up to 15 kg N ha⁻¹ yr⁻¹ and then remaining 6 at very low levels (Fig. 5b). Trientalis europaea showed a hump-backed distribution peaking at 7 approximately 18 kg N ha⁻¹ yr⁻¹. 8

9 In the BSBI Local Change survey data there were insufficient data to perform analysis on 10 any of the 16 potential lowland heathland species in the data set. However, in upland heathland 11 there were seven species for which analysis could be performed (Appendix B). Of these, three 12 showed significant relationships with N deposition: *A. vinealis, Listera cordata* and *Vaccinium* 13 *vitis-idaea* (Fig. 6). *A. vinealis* and *L. cordata* showed similar hump-backed responses with peak 14 probability of presence at around 20 kg N ha⁻¹ yr⁻¹, whereas *V. vitis-idaea* showed a clear decline 15 in response to N deposition.

16 **3.2** Ellenberg N

Plots of modelled relationships between Ellenberg N score and total inorganic N
deposition for all habitats are shown in Fig. 7a for the Vascular Plant database and 7b for the
BSBI Local change survey data.

Using data from the Vascular Plant Database, average Ellenberg N scores showed a clear increase with increasing N deposition (indicating an increase in fertility) for lowland acid grasslands (p=0.0005). For upland acid grasslands, however, there was no significant (p=0.32) relationship between Ellenberg N and N deposition. This result was echoed in the analysis of the BSBI Local Change survey data, showing a clear increase in the lowlands (p=0.01), but no significant result in the upland acid grasslands (p=0.42). 1 There were significant results for both lowland (p=0.004) and upland (p=0.0062) 2 calcareous grasslands in the analysis of Ellenberg N scores from the Vascular Plant Database 3 with both communities showing a significant increase in mean Ellenberg N with increasing N 4 deposition. Results from the BSBI Local Change survey data in upland calcareous grasslands 5 showed no significant relationship between N deposition and mean Ellenberg N score (p=0.72), 6 whereas lowland calcareous grassland showed a significant (p=0.0074) increase. Unlike the acid 7 grasslands analysis however this relationship is non-linear.

Analysis of the vascular plant database for both upland and lowland heathlands showed a significant (p=0.0059 & p=0.0549 respectively) increase in Ellenberg N score. The analysis of BSBI Local Change survey data for heathlands showed mixed results between upland and lowland communities with no significant response for the analysis of upland heathland (p=0.98) but a clear, significant (p=0.0015) increase in Ellenberg N with increasing deposition for lowland heathland.

14 **4 Discussion**

15 4.1 Individual Species responses

16 4.1.1 Acid Grassland

17 For lowland acid grassland, consistent trends were found in the Vascular Plant Database with five species displaying significant responses showing a very similar negative relationship, 18 declining in occupancy to low levels before stabilising c.25 kg N ha⁻¹ yr⁻¹. With the exception of 19 Viola canina, which the BSBI Local Change survey results (Braithwaite, Ellis and Preston, 2006) 20 suggested was declining due to its vulnerability to eutrophication, all are small, low-growing or 21 22 prostrate species most typical of dry acid grassland in the south and east of England. All have 23 low Ellenberg N values and thus are typical of infertile environments. Unfortunately, there were no species with suitable coverage (between 10 and 90% occupancy) in the BSBI Local Change 24 survey data to test the effects of N deposition and to enable us to confirm whether there were 25 consistent trends among species within tetrads that contained lowland acid grassland. It is 26

difficult to draw conclusions for upland acid grassland as only *Agrostis vinealis* displayed a
significant (hump-backed) response reaching an optimum in occupancy at ca. 25 kg N ha⁻¹ yr⁻¹ in
the BSBI Local Change survey data.

4 4.1.2 Calcareous Grassland

Results for the lowland calcareous grassland analysis using the Vascular Plant data 5 showed that around half the species with significant responses showed negative trends in 6 occupancy in relation to increasing N deposition. The BSBI Local Change survey data also 7 showed a high proportion of negative trends, though this was generally for different species than 8 noted in the Vascular plant data. Although the two datasets had numerous species in common, 9 only one species, the legume Ononis repens, showed a significant negative response in both. For 10 11 most other cases when a particular species was recorded in both datasets, a significant result in one was paired with a non-significant result in the other. This could be because although a 12 particular species was recorded in the two datasets, it may not correspond to records from the 13 same locations. This could have a large effect in a spatial modelling approach as adopted here. 14

It was notable that most species displaying clear negative trends (in either dataset) tended 15 to be specialists of grazed nutrient-poor calcareous grassland in Great Britain and generally 16 showed declines in the BSBI Local Change survey results (Braithwaite, Ellis and Preston, 2006) 17 e.g. Bromopsis erecta, Campanula glomerata, Carlina vulgaris, Spiranthes spiralis. These were 18 typically species with low Ellenberg N values. Species displaying more complex (hump-backed) 19 or positive trends in the Vascular Plant Database dataset are generally more typical of taller and 20 slightly more mesotrophic swards (e.g. Epipactis helleborine, Knautia arvensis, Lathyrus 21 nissolia, Stachys officinalis). Increased biomass production following increased N deposition 22 23 would therefore favour the latter species and may partly account for the reported declines of some of the rarer species dependent on shorter swards. Carex spicata, which also showed a positive 24 relationship to N deposition, was found to have increased in the BSBI Local Change Survey 25

results (Braithwaite, Ellis and Preston, 2006), which suggested that increases were potentially a
 result of increased availability in gaps of drought-prone grasslands and verges.

In upland calcareous grassland, Melica nutans was the only species to show a clear 3 negative relationship with N, whereas Alchemilla xanthochlora had greatest probability of 4 occurrence at the highest N deposition levels. Melica nutans was shown to decline in the BSBI 5 Local Change survey results (Braithwaite, Ellis and Preston, 2006), possibly due to competition. 6 7 Alchemilla xanthochlora was also shown to decline in the BSBI Local Change survey results (Braithwaite, Ellis and Preston, 2006), possibly a result of eutrophication. These results found by 8 Braithwaite, Ellis and Preston, 2006 were obtained from pooling data over multiple habitats, 9 whereas the relationship we find is based solely on upland calcareous grasslands. It is typically a 10 species of unimproved hay meadows yet is capable of surviving in tall-herb communities on 11 roadsides. Three species displayed a hump-backed relationship to N deposition in the BSBI Local 12 Change survey data, with an optimum in occupancy between 10-20 kg N ha⁻¹ yr⁻¹ (Persicaria 13 vivipara, Rubus saxatilis, Thalictrum alpinum). Again these results are difficult to interpret but 14 may represent the localised distribution of these species to a narrow altitudinal and geographical 15 range in the uplands, and therefore a highly restricted N deposition gradient, or a potential 16 unmodelled interaction between N deposition and another covariate in the model. 17

18 4.1.3 Heathland

In the Vascular Plant Database, only two species displayed significant trends for lowland 19 heath, Viola canina decreasing and Platanthera bifolia increasing significantly in probability of 20 21 presence with increasing N deposition. V. canina is a species with a low Ellenberg N score and its low stature means it does not compete well with competitive species. The latter result is very 22 23 surprising as *P. bifolia* is an uncommon plant of unimproved pastures and wet heathlands. It was shown to be declining in the BSBI Local Change survey results (Braithwaite, Ellis and Preston, 24 2006), which they suggest was due to a long term response to management of moorland for 25 grouse. Having applied the habitat masks, there were no species in lowland heathland recorded in 26

the BSBI Local Change survey data that had sufficient coverage (between 10 and 90%
occupancy) to allow testing of the spatial effects of N deposition.

The results for upland heathland showed two sub-shrubs Arctostaphylos uva-ursi 3 (Vascular Plant Database) and Vaccinium vitis-idaea (BSBI Local Change survey data) 4 displaying clear negative trends in occupancy with increasing N deposition. Both of these 5 species have low Ellenberg N values. Two species associated with more humid upland 6 heathlands, Trientalis europaeus and Listera cordata, displayed distinct optima at around 20 kg 7 N ha⁻¹ yr⁻¹, possibly reflecting their restricted distributions along the N deposition gradient. Both 8 are elusive species. An alternative hypothesis for Listera cordata might be its dependence on 9 10 aerial deposition of nutrients for growth in nutrient-poor habitats. This species typically roots within Sphagnum tussocks and therefore attains most of its nutrients from decaying matter or 11 rainwater. 12

13 4.2 Ellenberg N

14 There was a general trend for higher Ellenberg N scores in areas of high N deposition across many habitats indicating higher fertility rates. The most prominent changes occurred in 15 lowland acid grasslands, where Ellenberg N showed this relationship in both data sets. However, 16 17 the magnitude of these differences across the N deposition gradient were generally quite small differences of approximately one unit on the Ellenberg N scale between deposition of 5 and 30 kg 18 N ha⁻¹ yr⁻¹. It is somewhat surprising that lowland grasslands appear to show greater differences 19 20 than upland ones. Due to their tendency to have soils with a lower nutrient status, we might 21 expect upland grasslands to be more sensitive. Although this is dependent on the species present 22 being capable of exploiting any excess N. For upland acid grasslands the lack of a convincing Ellenberg N score response to N deposition is not entirely surprising as this has also been found 23 in research scale spatial surveys which have suggested acidification from N deposition may be 24

the main driver of reductions in species richness rather than eutrophication (Maskell et al., 2010;
 Stevens et al., 2010).

The two datasets generally show consistent results between the habitats with only slight differences in the shape of the response, whilst the general pattern and modelled scores are broadly aligned.

6 **4.3 Ecosystem effects**

7 Whilst deletions of rare species and additions of generalist species constitute changes in conservation value, impacts on ecosystem properties can also result. These impacts can often be 8 9 understood in terms of the mass effect of dominant species in controlling productivity and litter quality, coupled with the functional diversity effect of subordinate species (Grime 1998; Smith & 10 Knapp 2003; Laughlin 2011). Because the scale of our observational data was occupancy of large 11 grid cells (10x10km and 2x2km) common generalists and many ecosystem dominants were not 12 examined since they are either not specialised to those focal habitats vulnerable to nitrogen 13 14 deposition or were likely to be present in many grid squares and so insensitive to the nitrogen deposition gradient. However, a number of the species for which we found significant 15 relationships are either habitat dominants or possess traits known to be influential in controlling 16 17 ecosystem function. For example three leguminous N-fixers showed negative responses to the nitrogen gradient. This could indicate a loss of capacity to fix N and sequester carbon, yet two of 18 the three species, Vicia lathyroides and Trifolium arvense, are not common and, where they do 19 20 occur, occupy subordinate positions in the dominance hierarchies of each grassland type. Community dominants include Tricophorum cespitosum (upland heath), Vaccinium vitis-idaea 21 22 (upland heath) and *Bromopsis erecta* (lowland calcareous grassland). Their negative relationships with N deposition imply a potentially more significant loss of function. This situation is more 23 24 likely for populations at their range edge.

Most of the species for which significant effects were found are of restricted distribution 1 2 in Britain and at low biomass even within their favoured habitat. On this basis, their changing abundance may have had less direct impact on ecosystem function than correlated increases in 3 biomass of species that may have responded positively to increased nutrient supply. The impact 4 5 of increasing species is likely to be significant both in terms of their role in competitive suppression of shorter, stress-tolerators and in driving influential changes in ecosystem 6 7 productivity and nutrient cycling. The scale of the study makes it difficult to speculate further on ecosystem impacts since losses or gains from survey squares are likely to exhibit large lag effects 8 9 relative to influential changes in biomass. This also means that biomass-linked changes in function may well have either significantly pre-dated loss from the grid cell or, for additions, 10 should follow subsequently if colonisation precedes biomass increase. Because of the subordinate 11 12 position of many of these species in their favoured habitat, it may be that ecosystem impacts have 13 been or will be relatively minor and that observed species changes are most significant in terms of loss of the cultural ecosystem service linked to the conservation of wild species diversity. 14 However, recent work has helped elucidate the supporting role of a diverse species pool in 15 16 maintaining ecosystem function (Isebell et al 2011). We cannot therefore, rule out the possibility of reduced resilience following species deletions among the ecosystems studied here. 17

18

19 4.4 Conclusions

This study set out to evaluate the response of individual vascular plant species to N deposition and assess how the shape and direction of any relationships relate to current critical load levels. After accounting for a number of additional explanatory variables, we have found evidence that a number of species show clear responses to N even at low levels. Although the models allow for the possibility of no change up to a threshold after which we see a decline, there are few instances where this is indeed the case. Where we do see significant relationships to N deposition, there are many changes that occur well below the critical load, with Ellenberg N values increasing from the lowest N levels and some species showing strong responses at low deposition. This highlights the possibility that current European empirical critical loads for N do not protect all species and this gives concern in respect of meeting nature, conservation and biodiversity targets of the UK and Europe. Ongoing effects are also found above critical load values indicating there may be benefits from reductions in deposition however small and at any level.

8 Within all three habitats, there are a number of species with low Ellenberg N values, which may have been expected to respond negatively to N deposition but do not show a significant 9 10 relationship with N deposition here. This may be for a number of reasons as this analysis is based on data using large recording units, there may be interactions with climate not detected and 11 12 presence absence data may be too coarse and insensitive to change. Abundance of individual 13 species would be more sensitive to change but targeted surveys are needed to collect such data. The main benefits of using a large scale study with comprehensive nationwide coverage, as done 14 here, are that we have good coverage over the N deposition gradient with which to build our 15 16 models, any inference drawn is not spatially restricted and there is no chance that we only model an unusual niche of a given species. 17

18 However, using large scale data and large recording units meant that the assignment of species to a habitat was at a coarse scale and may not be as accurate as smaller scale data and 19 20 smaller recording units such as quadrats, which contain species data from known habitat types. It 21 is also important to note that the analysis presented did not extend to species which were too rare 22 or too abundant. We were therefore only working with the middle range of species and conclusions are based on modelling these species. It may be, however, that the rare or abundant 23 24 species show more sensitive changes or differing relationships to those presented here. This may 25 be an avenue of further research, as would be the investigation of other drivers variables and the possibility of including interaction terms to look at 2 dimensional species responses. 26

To ensure that relationships seen here did not reflect a potential correlation between N deposition and habitat area, the theory being that the larger the habitat area the more likely we are to find a record, some selected species were re-modelled with habitat area included as an additional covariate in the model. However, no differences to the original analysis were found and the plotted relationships remained unchanged.

Our work has sought to separate out the effect of N deposition from other variables 6 known to affect the responses of interest. To this end we included in the model all extra variables 7 we thought ecologically meaningful and for which data were available. We also included a 8 generic spatial surface and used a flexible class of models. All of which mean we have made less 9 assumptions, are less open to bias and have accounted for more possible confounding issues than 10 any other similar study. We therefore see this as a key contribution to a growing body of 11 scientific evidence suggesting species level impacts in all three habitats investigated and potential 12 13 effects at low deposition values beneath current critical load levels.

14 Appendix: A

15 Histograms showing the distribution of N deposition in the Vascular plant database between 0 -

16

30 kg N ha-1 yr-1

Total N Deposition

25 30

Upland Calcareous Grassland

Upland Heathland

between 0 - 30 kg N ha-l yr-1.

1 Appendix B:

2 Full table of results showing the p values testing the null hypothesis that there is no relationship

3 between species occurrence and N deposition. Significant results are highlighted.

4 Vascular Plant Database

Habitat	Species	P Value	Change
Upland Acid Grassland			
	Viola lutea	0.4131	
Upland Calcareous Grassland			
	Alchemilla xanthochlora	0.0406	Positive
	Galium boreale	0.2170	
	Melica nutans	0.0016	Negative
	Persicaria vivipara	0.3801	
	Rubus saxatilis	0.4809	
	Thalictrum alpinum	0.9106	
	Viola lutea	0.3051	
Upland Heath			
	Arctostaphylos uva-ursi	0.0001	Negative
	Cornus suecica	0.3167	
	Cryptogramma crispa	0.5060	
	Diphasiastrum complanatum	0.9520	
	Empetrum nigrum	0.2198	
	Lycopodium clavatum	0.3648	
	Rubus chamaemorus	0.7752	
	Trichophorum cespitosum	0.6715	
	Trientalis europaea	0.0237	Hump-Back
	Vaccinium vitis-idaea	0.0919	
Lowland Acid Grassland			
	Anthriscus caucalis	0.7252	
	Aphanes australis	0.2999	
	Cerastium arvense	0.0212	Negative
	Cerastium semidecandrum	0.0022	Negative
	Myosotis ramosissima	0.0990	

	Ornithopus perpusillus	0.6780	
	Scleranthus annuus	0.2995	
	Senecio sylvaticus	0.9415	
	Trifolium arvense	0.0344	Negative
	Vicia lathyroides	0.0457	Negative
	Viola canina	0.0000	Negative
Grassland			
	Allium vineale	0.0365	Negative
	Anacamptis pyramidalis	0.0507	
	Blackstonia perfoliata	0.0571	
	Brachypodium pinnatum	0.2820	
	Bromopsis erecta	0.8306	
	Carex spicata	0.0478	Positive
	Carlina vulgaris	0.0226	Negative
	Catapodium rigidum	0.7550	
	Centaurium erythraea	0.0087	Hump-Back
	Centaurea scabiosa	0.8592	
	Cirsium acaule	0.5282	
	Cirsium eriophorum	0.0905	
	Clinopodium vulgare	0.2215	
	Cynoglossum officinale	0.0000	Negative
	Daucus carota	0.2341	
	Echium vulgare	0.0070	Negative
	Epipactis helleborine	0.0280	Hump-Back
	Filago vulgaris	0.1019	
	Geranium columbinum	0.0176	Negative
	Geranium sanguineum	0.1388	
	Hypericum hirsutum	0.1314	
	Inula conyzae	0.0880	
	Knautia arvensis	0.0014	Positive
	Lathyrus nissolia	0.0030	Positive
	Linum bienne	0.0306	Hump-Back
	Ononis repens	0.0109	Negative

Lowland Calcareous Grassland

	Ononis spinosa	0.6074	
	Ophrys apifera	0.1344	
	Orchis morio	0.2136	
	Origanum vulgare	0.2222	
	Pastinaca sativa	0.0154	Hump-Back
	Picris hieracioides	0.4054	
	Poa angustifolia	0.9579	
	Rosa micrantha	0.0105	Negative
	Rosa rubiginosa	0.3157	
	Sanguisorba minor	0.1927	
	Sherardia arvensis	0.3197	
	Spiranthes spiralis	0.0074	Negative
	Stachys officinalis	0.0186	Positive
	Viola odorata	0.3596	
Lowland Heath			
	Platanthera bifolia	0.0081	Positive
	Radiola linoides	0.0527	
	Scleranthus annuus	0.6258	
	Viola canina	0.0008	Negative

2 BSBI Local Change Survey Data

Habitat	Species	P Value	Change
Upland Acid Grassland			
	Agrostis vinealis	0.0060	Hump-Back
Upland Calcareous Grassland			
	Alchemilla alpina	0.2052	
	Galium boreale	0.7008	
	Persicaria vivipara	0.0001	Hump-Back
	Rubus saxatilis	0.0321	Hump-Back
	Saxifraga aizoides	0.2127	
	Saxifraga oppositifolia	0.1236	
	Selaginella selaginoides	0.0605	

	Thalictrum alpinum	0.0231	Hump-Back
Upland Heath			
	Agrostis vinealis	0.0206	Hump-Back
	Arctostaphylos uva-ursi	0.1448	
	Listera cordata	0.0001	Hump-Back
	Lycopodium clavatum	0.0880	
	Rubus chamaemorus	0.0707	
	Trichophorum cespitosum	0.0701	
	Vaccinium vitis-idaea	0.0074	Negative
Lowland Acid Grassland			
	Senecio sylvaticus	0.1240	
Lowland Calcareous Grassland			
	Brachypodium pinnatum	0.4144	
	Bromopsis erecta	0.0052	Negative
	Campanula glomerata	0.0000	Negative
	Carex spicata	0.0183	Negative
	Catapodium rigidum	0.1609	
	Centaurea scabiosa	0.1047	
	Centaurium erythraea	0.0000	Negative
	Crepis capillaris	0.2595	
	Daucus carota	0.0218	Negative
	Knautia arvensis	0.1527	
	Ononis repens	0.0021	Negative
	Origanum vulgare	0.5387	
	Pastinaca sativa	0.9980	
	Salvia verbenaca	0.4535	
	Sanguisorba minor	0.0000	Negative
	Stachys officinalis	0.0962	
	Viola odorata	0.0251	Hump-Back

1 Acknowledgements

This work was funded by Defra, Joint Nature Conservation Committee (JNCC), Natural England,
Scottish Natural Heritage and the Countryside Council for Wales. We are very grateful to the
BSBI and Biological Records Centre for providing access to their database and to all the
botanical recorders who have collected these data over many years. We are also grateful to CEH
Edinburgh for providing N and S deposition data.

7 **5 References**

- AKAIKE, H., 1969. Fitting autoregressive models for prediction. *Annals of the Institute of Statistical Mathematics*, 21, 243-247.
- BOBBINK, R., HORNUNG, M., and ROELOFS, J.G.M., 1998. The effects of air-borne nitrogen
 pollutants on species diversity in natural and semi-natural European vegetation. *Journal of Ecology*, 86, 717-738.
- BRAITHWAITE, M.E., ELLIS, R.W., and PRESTON, C.D., 2006. *Change in the British Flora 1987-* 2004. London, Botanical Society of the British Isles.
- BOBBINK, R. and HETTELINGH, J.P., (eds.) 2011. Review and revision of empirical critical loads and
 dose-response relationships, Coordination Centre for Effects, National Institute for Public Health
 and the Environment (RIVM), www.rivm.nl/cce.
- CLARK, C.M., and TILMAN, D., 2008. Loss of plant species after chronic low-level nitrogen deposition
 to prairie grasslands. *Nature*, 451, 712-715.
- DIEKMANN, M., and FALKENGREN-GRERUP, U., 2002. Prediction of species response to
 atmospheric nitrogen deposition by means of ecological measures and life history traits. *Journal* of Ecology, 90, 108-120.
- DUPRÉ, C., STEVENS, C.J., RANKE, T., BLEEKER, A., PEPPLER-LISBACH, C., GOWING, D.J.G.,
 DISE, N.B., DORLAND, E., BOBBINK, R., and DIEKMANN, M., 2010. Changes in species
 richness and composition in European acidic grasslands over the past 70 years: the contribution of
 cumulative atmospheric nitrogen deposition. *Global Change Biology*, 16, 344-357.
- ELLENBERG, H., WEBER, H.E., DULL, R., WIRTH, V., WERNER, W., and PAULISSEN, D., 1991.
 Zeigerwerte von pflanzen in Mitteleuropa. *Scripta Geobotanica*, 18, 1-248.
- FOURNIER, N., DORE, A.J., VIENO, M., WESTON, K.J., DRAGOSITS, U., and SUTTON, M.A.,
 2000. Regional estimation of pollutant gas deposition in the UK: model description, sensitivity
 analysis and outputs. *Atmospheric Environment* 34, 3757-3777.
- 32 GRIME, J.P. (1998) Benefits of plant diversity to ecosytems: immediate, filter and founder effects.
 33 *Journal of Ecology* 86, 902-910.
- HALL, J., BEALEY, B., and WADSWORTH, R., 2006a, Assessing the Risks of Air pollution Impacts on
 the Condition of Areas/Sites of Special Scientific Interest. : Peterborough, JNCC.
- HALL, J., DORE, A., HEYWOOD, E., BROUGHTON, R., STEDMAN, J., SMITH, R., and
 O'HANLON, S., 2006b, Assessment of the Environmental impacts Associated with the UK Air
 Quality Strategy: London, DEFRA.
- 39 HASTIE, T.J., and TIBSHIRANI, R.J., 1990. *Generalised Additive Models*. London, Chapman and Hall.

- HILL, M.O., and CAREY, P.D., 1997. Prediction of yield in the Rothamsted Park Grass Experiment by
 Ellenberg indicator values. *Journal of Vegetation Science*, 8, 579-586.
- HILL, M.O., MOUNTFORD, J.O., ROY, D.B., and BUNCE, R.G.H., 1999, Ellenberg's indicator values
 for British plants. ECOFACT Volume 2. Technical Annex., Institute of Terrestrial Ecology.
- HILL, M.O., PRESTON, C.D., BOSANQUET, S.D.S., and ROY, D.B., 2007. BRYOATT: Attributes of
 British and Irish Mosses, Liverworts and Hornworts. Huntingdon, Centre for Ecology and
 Hydrology.
- 8 HILL, M.O., PRESTON, C.D., and ROY, D.B., 2004. *PLANTATT Attributes of British and Irish Plants:* 9 Status, Size, Life History, Geography and Habitats. Monkswood, Abbots Ripton, Huntingdon,
 10 UK, Centre for Ecology and Hydrology.
- ISBELL, F., CALCAGNO, V., HECTOR, A., CONNOLLY, J., HARPOLE, W.S., REICH, P.B.,
 SCHERER-LORENZEN, M., SCHMID, B., TILMAN, D., VAN RUIJVEN, J., WEIGELT, A.,
 WILSEY, B.J., ZAVALETA, E.S. & LOREAU, M. 2011. High plant diversity is needed to
 maintain ecosystem services. Nature 477: 199-U196.
- JONES, M.L.M., WALLACE, H.L., NORRIS, D., BRITTAIN, S.A., HARIA, S., JONES, R.E., RHIND,
 P.M., REYNOLDS, B.R., and EMMETT, B.A., 2004. Changes in vegetation and soil
 characteristics in coastal sand dunes along a gradient of atmospheric nitrogen deposition. *Plant Biology*, 6, 598-605.
- LAUGHLIN, D.C. 2011. Nitrification is linked to dominant leaf raits rather than functional diversity.
 Journal of Ecology, 99, 1091-1099.
- MASKELL, L.C., SMART, S.M., BULLOCK, J.M., THOMPSON, K., and STEVENS, C.J., 2010.
 Nitrogen Deposition causes widespread species loss in British Habitats. *Global Change Biology*, 16, 671-679.
- MOUNTFORD, J.O., LAKHANI, K.H., and HOLLAND, R.J., 1994, The effects of nitrogen on species
 diversity and agricultural production on the Somerset Moors, Phase II.: Peterborough, English
 Nature.
- MOUNTFORD, J.O., LAKHANI, K.H., and KIRKHAM, F.W., 1993. Experimental assessment of the
 effects of nitrogen addition under hay-cutting and aftermath grazing on the vegetation of meadows
 on a Somerset peat moor. *Journal of Applied Ecology*, **30**, 321-332.
- NEGTAP, 2001, Transboundary air pollution: Acidification, eutrophication and ground-level ozone in the
 UK.: Edinburgh, CEH.
- NILSSON, J., and GRENNFELT, P.E., 1988, Critical Loads for sulphur and nitrogen: Copenhagen,
 Denmark, UNECE/Nordic Council of Ministers.
- PRESTON, C.D., PEARMAN, D.A., and DINES, T.D., 2002. New Atlas of the British Isles Flora.
 Oxford, Oxford University Press.
- ROTAP, 2011, Review of Transboundary Air Pollution: Acidification, Eutrophication, Ground Level
 Ozone and Heavy Metals in the UK. Report to the Department for Environment, Food and Rural
 Affairs. Centre for Ecology and Hydrology, Edinburgh.
- SMART, S.M., ASHMORE, M.R., SCOTT, W.A., HORNUNG, M.H., DRAGOSITS, U., FOWLER, D.,
 SUTTON, M.A., FAMULARI, D., and HOWARD, D.C., 2004. Detecting the large-scale signal of
 atmospheric N deposition across British ecosystems. *Water Air and Soil Pollution Focus*, 4, 269 278.

- SMITH, R.I., FOWLER, D., SUTTON, M.A., FLECHARD, C., and COYLE, M., 2000. Regional
 estimation of pollutant gas dry deposition in the UK: model description, sensitivity analyses and
 outputs. *Atmospheric Environment*, 34, 3757-3777.
- SMITH, M.D. and KNAPP, A.K. 2003. Dominant species maintain ecosystem function with non-random
 species loss. *Ecology Letters*, 6, 509-517.
- STEVENS, C.J., DISE, N.B., and GOWING, D.J., 2009a. Regional trends in soil acidification and metal
 mobilisation related to acid deposition. *Environmental Pollution*, 157, 313-319.
- 8 STEVENS, C.J., DISE, N.B., MOUNTFORD, J.O., and GOWING, D.J., 2004. Impact of nitrogen
 9 deposition on the species richness of grasslands. *Science*, 303, 1876-1879.
- STEVENS, C.J., MASKELL, L.C., SMART, S.M., CAPORN, S.J.M., DISE, N.B., and GOWING, D.J.,
 2009b. Identifying indicators of atmospheric nitrogen deposition impacts in acid grasslands.
 Biological Conservation, 142, 2069-2075.
- STEVENS, C.J., THOMPSON, K., GRIME, J.P., LONG, C.J., and GOWING, D.J.G., 2010. Contribution
 of acidification and eutrophication to declines in species richness of calcifuge grasslands along a
 gradient of atmospheric nitrogen deposition. *Functional Ecology*, 24, 478-484.
- WILSON, E.J., WELLS, T.C.E., and SPARKS, T.H., 1995. Are calcareous grasslands in the UK under
 threat from nitrogen deposition? an experimental determination of a critical load. *Journal of Ecology*, 83, 823-832.
- 19
- 20
- 21
- 22

- 1 Table 1: The number of sampling units (hectads or tetrads) across Great Britain containing each of the three studied
- 2 habitats from each of the two surveys.

	Habitat	Lowland	Upland
Vascular Plant Database	Acid grassland	1143	1203
	Calcareous grassland	1546	662
	Heathland	855	1284
BSBI Local Change	Acid grasslands	164	158
survey data	Calcareous grasslands	377	209
	Heathland	43	231

- 2 Figure 1: Total inorganic N deposition (kg N ha⁻¹ yr⁻¹) to heathland and rough grazing land in Great Britain. CBED
- deposition data for <math>1996 98.

- 1 Figure 2: Change in probability of presence for species showing statistically significant relationships to N
- 2 deposition in calcareous grasslands in the Vascular Plant database against increasing total inorganic N
- 3 deposition (kg N ha⁻¹ yr⁻¹). The dashed grey line indicates the midpoint of the critical load range for calcareous
- 4 grasslands as defined by Bobbink and Hettelingh, 2011.

1.0

0.8

0.6

0.4

0.2

0.0

Probability of Presence

Figure 3: Change in probability of presence for species showing statistically significant relationships to N
 deposition in calcareous grasslands in the BSBI local change survey data against increasing total inorganic N
 deposition (kg N ha⁻¹ yr⁻¹). The dashed grey line indicates the midpoint of the critical load range for calcareous

5

Figure 4: Change in probability of presence for species showing statistically significant relationships to N deposition
in lowland acid grasslands in the Vascular Plant database against increasing total inorganic N deposition (kg N ha⁻¹
yr⁻¹). The dashed grey line indicates the midpoint of the critical load range for acid grasslands as defined by Bobbink
and Hettelingh, 2011.

Figure 5: Change in probability of presence for species showing statistically significant relationships to N deposition
in heathland in the Vascular Plant database against increasing total inorganic N deposition (kg N ha⁻¹ yr⁻¹). The
dashed grey line indicates the midpoint of the critical load range for heathlands as defined by Bobbink and
Hettelingh, 2011.

5

Figure 6: Change in probability of presence for species showing statistically significant relationships to N deposition
in upland heathland in the BSBI local change survey data against increasing total inorganic N deposition (kg N ha⁻¹
yr⁻¹). The dashed grey line indicates the midpoint of the critical load range for heathlands as defined by Bobbink and
Hettelingh, 2011.

- 1 **Figure 7:** Modelled response of Ellenberg N scores against total inorganic N deposition (kg N ha⁻¹ yr₋₁) using data
- 2 from (a) the Vascular Plant database and (b) the BSBI local change survey.

Figure 8: Distribution of three semi-natural habitats: calcareous grassland; acid grassland; and heathland over Great
Britain according to Land Cover Map 2000.Shown and mapped at 1km² resolution when habitat was dominant type
in the 1km square.

