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ABSTRACT

This report is an extension of work carried out by P .H . Hosegood

at W .R .A . in a desk study of bias in dilution gauging due to

incomplete mixing . Linear and quadratic distributions of concen-

tration and streamflow are considered , and the variation of bias
with the distribtuion parameters is investigated . The adjustment

of results for this bias permits the assignment of closer con-

fidence limits on the revised results.

A worked example is given in Appendix I, and Appendix II explains
the "DISTRIBUTION" messages of the DIFLO computer program for

dilution gauging results .
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BIAS IN DILUTION GAUGING RESULTS. DUE TO SYSTEMATIC VARIATION OF CONCENTRATION

ACROSS THE STREAM

INTRODUCTION  

In the analysis of dilution gauging results , the concentration of tracer at

the downstream sampling point is usually treated as a random variable , that

is its arithMetic  or its harmonic mean is  taken as  an  estimate of its true

value , "and its standard error is evaluated by the statistical methods used

for random variables. (Gilman 1971 ).

It is often found , especially in gaugings of sluggish streams where mixing

processes are inefficient , that the distribution of tracer is not random , but

indicates  a  systematic variation across the stream , that is the concentration

is a function of distance across the stream . If the flow per unit width

across the stream were uniform , the use of unweighted means would be justified ,

but this is usually not the case. To give an accurate flow figure , the

concentration must be weighted with the flow distribution (Gilman 1971 ,

Appendix II). This presupposes a reliable estimate of this flow distribution ,

which could be made by current m etering .

An  alternative approach is to take th e harmonic mean of the sample c oncen-

trations, and then to use ad estimated flow distribution across the stream

to assess the systematic error ,. or bias , involved in calculating the flow

figure from this mean . This has the advantage that some of the necessary

data , including the biased flow figure , are already calculated by the com-

puter programs of the DIFLO suite , which assume a random distribution of .

tracer across the stream width . It is suggested that , if the coefficient of

variation of this distribution exceed 2 .5% the procedure outlined in this report

should be followed in order that a more accurate flow figure be obtained .

THEORY AND DEFINITIONS

1 .1 Basic techniques

Hosegood calculated the bias in the estimate of concentration for several

distributions of concentration and flow and for two sampling procedures , at

three points and at five point6 across the stream . For the sake of simplicity

in c alculation and a wider application , t hé -continuous case will be considered



here instead Of the discrete case . This makes it possible to_use integration
inst'ead of summation , and to characterisé . the transverse distributions by .
one or two parameters. As much as possible of the calculation will be done by
simple algebra , borrowing some techniques  from  linear algebra , and the results
will be applied in the final stage to the practical situation of discrete
sampling , particularly to the analysis of output from the DIFLO program :

1 .2 Distribution functions

The transverse variation of flow and concentration may be characterised by
a mean value and a distribution function , where the distribution function has
a mean of one .

For example in a stream of width L , let the value of the concentration of
tracer at a distance  y  from the bank be:

C (y ) =  P2y2 +  ply + pc, for (7 5,1:. (1)

The mean value  a  .is given by  ! .

E = rV
( 132Y2 ply Fo )dY 1(2 )

c14

The distribution function may be obtained by setting x = y so that x goes
I.

from 0 to 1, and assigning parameters q2 , ql and qo so that the mean of the
distribution function is one.

Th u s

where

C (x ) = q2x2 + qlx + qo (3)

(12 = 1321,2 / E )  gl = P1L/E , g o = Po / E

It should be noted that although the distribution functions defined here have
some properties in common with probability distributions , they are distri-
butions in a spatial sense , and must not be confused with propability
distribution functions (pdf).

In the work that follows, only the spatial distribution functions will be used ,
that is all streams will be of width one ,.and all concentrations and flows
will have means of one . This involves no loss of generality , and the trans-
ition back to dimensional quantities will be made in the final section .

1 .3 The coefficient of variation of a spatial distribution function

For each distribution , it is possible to define a coefficient of variation



analogous to that of a random variation .(this is a close approximation to the

quantity which , for the discrete case , is calculated by the DIFLO program

and printed out as "COEFF . OF VARIATION OF SAMPLE GROUP"). The coefficient

of variation is defined as

An alternative form of  ( 4 )  may be obtained by expansion and substitution ,

using the fact that

this gives

1

f c dx = 1 (the mean of c is 1)

o

1 :

2
C (c) =[/1

1.4 Linear and bilinear functiOn'als

(5)

This section makes use of certain concepts from the theory of linear algebra ,

the precise definitions of which are outside the scope of this report. The

definitions used therefore will be restricted to the immediate application

and should not be considered as general definitions .

A mapping is an operation which associa es with one object another unique

object . For example , a function is a mapping which associates with a variable

i unique quantity termed the value Of the function at that point .

A functional is a specialised mapping Which maps a function on to  a l point on

the real axis. For example , integration over a particular range of a function

will yield a result which is a real number .

Two notations can be used to represent a functional : the opetator notation ,

which is normally used to represent integration , or the functional notation .

For example , an integral could be represented as

jrflx) dx or as I(f)
a

provided that the fUnctional I was properly defined elsewhere .



A functional F is linear if and only if it satisfies the condition

F(Xf + pg ) = XF(f) + pF(g ) (6 )

where f and g are functions , A and p are scalars (real or complex numbers ).

Two of the functionals used in b nis'report will map pairs of funCtions on

to: real numbers. A functional F.(f, g) of:thia type is bilinear if and only

if it satrafies n ondition (6)-in both its variabl,en , i.e.-

F(AS + ph , g ) = AF (f , g ) + pF (h , g )

and a similar relation for the ,second variable.

An example of a functional already encountered is Cv(c), defined in §2 .3

Unfortunately Cv(c) is non-linear , which could make it diffinult -to handle ,

but it may -be-written in terms of a linear functional to b e defined below .

CALCULATION OF BIAS

2 .1 Bias in using _unweighted means

This basic eqdation of dilution gauging may be stated as

Q = qc/C

where  qn  is Che.rate mf injection of tracer , and C is the concentration of

tracer at the sampling point . is e'stimated from the analysia :n f a

set of n saMples the equation used is actually

Q = qc/Ch ( 9 )

where Ch is the harmonic mean of the samples , given by

Ch = n/(1 + 1 +  (10)
C 1 C2

•
Equation  ( 8 )  is derived from the continuity equation

QC = qc

(7)

(8)

which for the case of a systematic variation in flow and concentration may be
quoted in its general form



VC dy = qc

,Q-'=:r qc/a

where a is the arithmetic mean , given by

= (c1 + C2 +  )/n

- 5 -

is the estimate of Q made from the weighted mean .

(12)

where V is the flow per unit width and C is the concentration at distance

y  from the bank .

At this point the harmonic mean must be discarded , because it cannot easily

be carried oVer into the continuous case . It is simpler to evaluate the

bias in using the arithmetic mean , and to consider separately the contri-

bution to this bias from the use of the harmonic mean . Equation  ( 9 )

may be rewritten

(13)

(14)

To evaluate the bias in using .this mean , first of all the two estimates of

The absolute bias is the difference of these two estimittes , and the relative

bias is the ratio of the absolute bias to the value of Q given by the weighted
mean .



1
Bi  = f vc dx -

B i = A - 1

- 6

. 1 1  
Th u s Bi = ( 1 / T ) / (

G - j vc dx -
C C jrvc dx

The bias  Bi  above is another functional  Bi ( v , c ) ,  but it is not bilinear .

If we define the functional

A (v , c) =I vc dx (21 )

it is obvious , from the linear nature of integration , that A is bilinear.

(20 ) may be rewritten

Also the coefficient of variation , Cv (c), defined in 41 .3 can be written

in terms of A :

Cv (c) = [A (c ,c ):7 a ] 3  (23)

2 .2 Properties of the bias fun-ctional A (v ,c)

Three important properties of A (v ,c) may be proved simply :

i) A (1 , C ) E 1

where c is any distribution- function as defined above

ii) A (v ,c) E A ( C , V )

i i i )  A (X M ,  Xn ) E  1  

m n + 1

where m , n are-any-real numbers such that m + n 71

(24)

The bilinearity of A means that polynomials-in_x may be dealt with as

follows:

(2o)

2 .3 Values of the bias functional for simple distributions ;

(22)

A (p2x2 + pli- po ,c) = p2A(x2 ,c) + plA (x ,c) + po (25)

Two distribution types will be considered : linear and quadratic. A linear

function would normdlly have two parameters , but one is defined by the

requirement that the mean is unity . Similarly , a parabolic or quadratic



distribution function has only 'two parameters . The parameters chosen were
the gradient of the linear function , and the coefficient of x

2 and the

position of the turning point of the quadratic function . The distributions
are sketched and their equations and parameter values are given in fig . 1 .

For the two distribution types , values of A were calculated , using the

properties (24) and (25).

The following results were obtained :

i) for a linear distribution of both flow and concentration , with parameters
al and a2 respectively ,

A (v ,c) = 1  + aarj aa , (26 )
12

ii) for a linear distribution.,of concentration and a quadratic distribution
of flow ,

A (v ,c) 7 + al a2 - al_ap ml  
12 6

where a1'is the coefficient of  i t  in v

ml is the x-coordinate of the turning point of v

a2 is the gradient of c

for a quadratic distribution of both flow and concentration ,

(27)

A (v ,c) = 1 + al a2 (  + 1 (m i)(m2u 3 1 - (28)

where al , a2 are the coefficients of x2 in v and c respectively

ml , m2 are the x-coordinates of the turning points of v and c

respectively .

Bi(v ,c) = al a2

3t

•Thus the general form of the bias Bi(v ,c) for these distributions is

where k 'is determined by the type of the distributions. (and the parameters
m in the case of the quadratic distribution). Values of k are given in Table 1.



2 .4 Bias due to use of arithmetic mean

The harmonic_mean of a set of values C is always less than the arithmetic..--

mean , by an amount whi-6h-is .dependent upon the scatter Of-the -Via l:1es : This - -

amount can be shown to be approxiMately equal to

02 (C)  

where o2 (C ) is the variance (the mean of squares .of deviations from the mean )

of C . The error in taking the difference_equal fd this amount is given by

which is very small .

- 2  0 4 (C )

E 3

- 8

Thus .the bias in using the arithmetic meap -is negative (a larger value for

C gives a smaller value for (W and itS relative .magnitude-is

-
which is the square of the coefficient of variation of C , defined in 41 .3

APPLICATION  

3.1 Using the bias estimates

The output from a DIFLO programi.takes tile following form :

BIAS CORRECTION ).

II

SAMPLE GROUP 8  

COEFF . OF VARIATION OF SAMPLE GROUP 8 IS 5.1%

DISTRIBUTION - MAXIMUM AT 0 .4

FLOW 135.9 L/S PLUS OR MINUS 6 .93 L/S AT 95% CONFIDENCE LEVEL (SUEJECT TO

The coefficient of variation is calculated from the reciprocals of the sample

concentrations which are a discrete set , and it is the best estimate avail-

able of the coefficient of variation of the continuous distribution actually

present in the river , Cv (c). From the values of Cv (c) and m2 given in the

output (0 .051 and 0) in the above example) the value of the parameter a2 may

lie obtained.



From (23), (26 ) and (28 )

a2 = tCv (c)  4 1 2  if c is linear . (30)

='_ (0[118° (m2 - i)2] (31)

Values of the expression by which Cv (c) is multiplied in (31) are given in

Table 2 .

The value of al is more difficult to establish . 4 current metering of

the stream will supply estimates of the flow through sections of the stream

whose centres are the sampling points (see Fig . 2). These estimates must

then be fitted with a quadratic. or linear function by numerical methods ,

as described by Lyon (1970 ) to obtain values of al and ml.

Table I may then be used to give a value of k , which is used in formula

(29 ) to give the bias Di . Bi is the bias invoked by using the arithmetic

mean of C rather than the weight ed mean ; the true value of the bias is

-
where Mi is the bias invoked by:using the arithmetic mean rather than the

harmonic mean . Thus if Bi is positive , the true value of bias will be less

than Di (ma being negative); if Bi is 4egative , the true value will be

greater in magnitude than Di .

Mi is given by

Di + Mi

Mi = T v2(C) ,(from .S.2 .4 )

MI ' 112 :2_ c is' linear
12

. .4322r I
-

(m2 - if c is quadratic (32 )75  

1
Values of the expression in brackets are given in Table 3.



3.2 Quoting the final result

- 10 -

If C is taken as a random variable , the systematic variation can swamp

all other errors due to injection and analysis, and produce a set of

unrealistic confidence limits. By considering C as a function of distance

across the stream , these confidence limits can be reduced considerably , but

the process of estimating bias can contain significant error .

.The parameter a2 , calculated from the sample concentrations, is subject to

error , as the concentration at each point is a random variable . Its scatter

could be estimated by taking se veral samples at each point across the stream ,

and this would provide better values of a2 and m2 , but the errors in these

parameters are probably smaller than those in the values of al and ml ,

calculated from the results of current metering . Leaving aside the question

of the accuracy of current metgring , i,t is unlikely that the flow distri-

bution is as simple as has beer, assumed here . In practice , the flow

distribution will not be deterillined for every gauging , but will be assumed

constant over a range of flows6 This  i s  another potential source  o f  error .

it seems wise , therefore , to a. sign a standard error to the bias estimation

process of at least 2 .5% . This standard error would be combined  wi t h  the

errors from all other sources .(except ,liof course , the sample group e rror

caused by systa atic variation ) to give confidence limits to the flow figure

of around ±5% . This will be incorporated into the DIFLO program.

An upper limit must also be set to avoid misuse of the technique . A

coefficient of variation in excess of  2 0%  indicates bad mixing of a serious
1.

degree, and results with this megnitude of error should be discarded . A

point to remember is that although inefficient mixing can exist in a _steady-
,--

state situation , it is more usually a result of failure to achieve plateau .
1

This means that the quantity of tracer flowing through the sample cross-

section is less than qc , and the flow figure is subject to a bias from this

source .

Both the upper limit and the standard error are arbitary , and subject to

revision , and all results calEtulated by the bias estimation procedure must

be treated with a certain amount of caution . It is suggested that the

coefficient of variation be adopted as ian index of mixing , and should be

clearly stated with all resulta,obtained by this method.



where Ar = 1
gr2

3.3 Combining results of gaugings at the same point

In normal practice, several aet's of samples will be taken at each sampling

cross section (these are denoted by the term "sample group" in the DIFLO

program ),and-it will be desirable to combine these results to give a single

value for the flow at this crosa-section.

Given a set of results from n sample groups , each with its standard error ,

the first step is to test for a significant difference between results.

The presence of such a difference could stem from a genuine difference in

the flow through the section (at two different times , for instance ) or from

a false value of the standard error in a result . When testing the difference

between two results one of the variables used in the calculation is the

number of samples used in the determination of the results. For the case

of dilution gauging results , it:is proposed that the effective number of

samples  be  set equal to the numter of samples in a group when bias estimation

has been used , and to infinity when the results have a coefficient of vari-

ation of less than 2 .5%

The significance test used is Student 'a t test , which is used as follows.

Let two results have valu es Q1 lan d Q2 , 0.n d standard errors S1 an d 32 • Then

the standard error of Q1 - Q2  i s

= 1(812 822) (33)

and we now compare Q1 - Q2 with,tS , where t is obtained from Table 4 . If

Q1 - Q2 is greater than tS , the :results,are significantly different at the

5%  level , and cannot be combing ..

If there is no significant difference between the results , taken in pairs ,

they may be combined to give a better estimate of the flow . The method of

combination is not the arithmetic mean , which would take too much account

of the less reliable results , but a weighted mean , where -ihe weighting of

each result is dependent upon the standard error of the result . The

weighted mean is given by

0W-= A1-Q1 t-A2g2

Al i A2 +
(34-)



and Sr is the standard error of the result Qr. The standard errors used in

this section are absolute standard errors , obtained by multiplying the

coefficient of variation of the Qr by Qr .

The standard error of the combined result is Sm , where l

1 1  S 1
t? :  g i2 + S 2  4. = Al + A2 + — (35)

...-',---
---

This standard error may be doubled to give the 95% confidence limit on the

result .

Results calculated by the bias dstimation procedure can be quoted with

much closer confidence limits than if the concentration were treated'as a

CONCLUSIONS  

Stream discharges calculated from dilution gauging results can be adjusted

to aliow for bias due to incompfete mixing resulting in a non-uniform distri-

bution of tracer across the streLm . 114 method is based on the assumption

that the concentrations of samples acros's the stream may be weighted according

to a transverse distribution of :flow whi h has a simple form and remains

sensibly constant for a range of discharges . This flow distribution may be

determined by current metering at the sampling section .

random variable .

- 12 -



TABLE 1  

Values of k for calculation of Bi

- 13 -

Table c is symmetric, for exampie the value of k for ml = 0.4 and m2 = 0.9

is -129 , the same as the velue ior ml = 0.9, m2 = 0.4
1



TABLE 2  

TABLE 3

for m2 = A

-

[

1 1 ,
Values of = = km2 7 2 )+ 3

180

m2 =
0.1 0.2 0.3 0.4 0,5 0.6 0.7 0.8 0.9 1.0

3.360 4.133 5.303 7.341 10.81 13.42 10.81 7.341 5.303 '4.133 3.360

1 1
Values of 8 = — (m2 - 1)2

3

0 0 .1 0 .2 0 .3 0.4 0 .5

0 .0885 0 .0586 0 .0356 0 :0186 0 .00856 0 .00556
,

Table 3 is symmetric: the value of 13 for. in2 = 1 - A is the same as that

TABLE 4  

Student's t for 5% significance level ;

effective n 3 4 6 8  l o

4.30 3.18 2.57 2.36 2.26 1.96
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AiPENDIX I - A WORKED EXAMP LE

Gau in of R . Nailbourne

i) Results of current metering carried out 10 .1.72 at 0 .6 of depth .

Distance from bank Depth yel ga s t Flow/unit width  

y m . h.m . U min V = Uh m3/s/m

Rt.bank 0
0 .2
0.6
1.0
1.4
1.8
2 .2
2 .6
3.0

3.4
3.8

Lt .bank 4.0

0.09 0.363
0%10 0.248
0.08 0.241
0.105 0.242
0.095 0.215
0.08 0.40
0.07 0 .211
0 .05 0 .277
0 .05 0 .223
0 .05 0.161

0.0327
0.0248
0.0193
0.0254
0.0204
0.0327
0.0148
0.0139
0 .0112
0.0084

The equation of the parabola fitted  1.)y the orthogonal polynomial

method (Lyon 1970) is i

v = - .003505 (y - 2) - .00728 (y - 2) + .02614

and the mean oi v is 0 .02036.' From equation (3 ), the distribution

function parameter

al = - .003505 x 42/0.02036 = -2.754

The position of the maximum of v is obtained by differentiation of the

equation for v . v reaches a 'maximum :at y = 0.34, so for the distri-

bution function

0.34  
mi = 4 -  0-09.5

There is little loss of accuracy in assuming ml = 0 .1

ii) The following is a table of concentration peak heights at six points

across the stream , assumed equally spaced , and reading from right bank

to left.

38.5 39.5 35.5 34.5 . 33.5 33



The DIFLO output for these resUlts reads as follows:

SAMPLE GROUP 7  

COEFF . OF VARIATION OF SAMPLE GROUP 7 is 6.7

DISTRIBuTION  -7 MONOTONE L .H .

FLOW 108 .0 LJS PLUS OR MINUS 5.68 W S AT 95% CONFIDENCE LEVEL

(SUBJECT TO BIAS CORRECTION )

The "coeff. of variation of sample group 7" is a good approximation to

Cv (C ). The message "distribution - monotone L .H ." means that the

distribution function is approximately a straight line with negative

gradient (see Appendix II). The magnitude of the distribution parameter

a2 is given by equation (30)

and from ..(29 )

The net value of the bias

1a21  = 0.067  / Ti— = 0.232

The sign of a
2

is negative

71,232_

iii) The bias in the flow figure

Fiom equation (32 )

Mi = -a22 = -0.9945

12

Bi = al a2 where k'is given by Table 1

For ral = 0.1 , k = 15. So

Bi = -2 .754 x - .232 = 0 .041

15

Bi + Mi = 0.03.7

Thus'the result. quoted , 108.0 LYS ,_is biased by +3 .7% .



The true figure is' 108.(1 - 0.037) = 104.0 LjS

The confidence-iimit_is 5.68 (1 - 0.037) = 5.47 L/S._ Because of the--

inaccuracy of the bias estiMation_process, the confi
dence limit should be

quoted to two significant figUres L/S

-

Corrected flow -figure 104.0 LJS plus or minus
5.5 LJS

•



APPENDIX II - DISTRIBUTION TYPES IN DIFLO OUTPUT

If the coefficient of variation of a sam ple group exceeds l DIFLO will

display a message starting "DISTRIBUTION - ". The:da stribution types are

explained below :

DISTRIBUTION - MONOTONE R .H .

The pattern analysis routine has found that the concentration exhibits

an increase from right bank to left bank . MONOTONE distributions 'are-

treated as linear .

DISTRIBUTION - MONOTONE L .H .

-As above , but a decrease from right bank to left

DISTRIBUTION - MAXIMUM 'AT

A quadratic distribution with .a maximum 'at the .stated fraction of the width _

from the right bank .. _

DISTRIBUTION - MINIMUW AT

Similar to the above , but this 13essage should be extremely rare.

DISTRIBUTION UNIFORM

The pattern analysis routine has found a zero trend in concentration .

This means that the points are very scattered , and the results should be

discarded , as mixing is obviously poor .
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