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Abstract

Seismic reflection travel time-offset curves are complicated, and depend on many parameters.
There is a need for simplified equations involving a reduced number of parameters that can be
estimated from data and used for moveout correction and a simplified velocity model of the
Earth. Many authors have derived explicit equations for travel time as a function of offset,
involving several parameters which depend on velocity. Some authors have applied the
approach in which velocity varies with offset (velocity with high-order terms or anisotropic
properties). Here we present a new approach in which we employ velocity variation with
depth instead of offset. A simple linear variation of velocity is used to derive expressions for
travel time and offset as a function of ray parameter, from which the variation of travel time
with offset can be obtained. Only two parameters are involved in defining the velocity-depth
profile, but the resulting travel time-offset curves are good approximations. Two-parameter
linear variations of slowness with depth, and velocity and slowness with depth and zero-offset
travel time, have also been derived and the relationships between them are described.
Comparison of the new approximations with those of Taner and Koehler (1969 Geophysics 34
859-81), and the large-offset approximations of Causse et al (2000 Geophys. Prospect. 48
763-78) was performed using ID plane-layered models with different velocity profiles. Taner
and Koehler and Causse et al approximations are inaccurate for large and small offsets
respectively, while the new approximations show improved accuracy and can be applied over
the whole range of offsets. The velocity and slowness expressions can also be used for
moveout correction. Synthetic and real records are used to demonstrate their effectiveness.
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(Some figures in this article are in colour only in the electronic version)

Introduction improvements to it. Taner and Koehler (1969) extended the
approximation by deriving a higher order series applicable to
isotropic layered media for CMP gather:

tz(y) = do + dzl + d4y4 + d6i + dsi + . . . , (1)

where y represents the offset. Several authors (AI-Chalabi
1973, 1974, May and Straley 1979, Gidlow and Fatti 1990,

The hyperbolic approximation for reflection travel times
(Dix 1955) is generally used for velocity analysis and
stacking. In most cases this approximation is accurate at small
offset-to-depth ratio only, and many authors have proposed
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Kaila and Sain 1994, Thore et al 1994) have shown that
it is possible to improve velocity analysis and stacking by
using more than two terms of this series. Reflection travel
times are non-hyperbolic even for a single homogeneous
layer if anisotropy is present, and it is common to use (1)
with three terms (Hake et al 1984) or a modified three-
term approximation with higher accuracy and stability at
large offsets (Tsvankin and Thomsen 1994). All these
approximations are generally applicable only to relatively
small offset-to-depth ratios.

To obtain a travel time approximation with good accuracy
at large offsets, Causse et al (2000) derived a series based on
a large-offset approximation:

2 C-I C-2 C-3 C-4
t (y) = CIY+CO+- + - + - + - +"'.

Y y2 y3 y4

The large-offset approximation is most accurate where
there is strong ray bending, while the classical small-offset
approximation is most accurate in situations of weak ray
bending. So, an approximate expression for travel time at
all offsets cannot be obtained from anyone of these series
above.

To avoid the drawbacks of using equations (1) and (2),
Causse (2004) derived new approximate travel time equations
that do not need any assumption for the offset. The approach
is to build approximations that focus on accurately describing
the subspace of all realistic reflection travel time curves,
formed from the larger space of offset functions represented
by equations (1) and (2). The type of the approximations is as
follows:

tCl(y)= clft(y) + c2h(y) + c3!3(y) +"'.

Equations (1) and (2) represent particular forms of this
expression, with exponent et equal to 2 and 1, respectively,
and with functions fi (y) equal to positive and negative
integer powers of offset. A set of reference travel time
curves are created from a number of realistic velocity models.
Causse (2004) described a method to obtain an optimal basis
of functions from these reference curves by singular value
decomposition, and he shows that equation (3) provides more
accurate approximations of the exact travel time curves at all
offsets.

Another way to approximate traveltime is to use a function
of velocity with depth. A common approach is to represent
the velocity as a linear function of depth. The function
can be called the two-parameter function, because there are
two independent parameters (initial velocity and its gradient).
Causse and Senechal (2006) applied themodel-based approach
to build accurate travel time approximations into velocity
analysis of GPR field data for vertical velocity heterogeneous
media.

In this paper, we extend the calculation of the two-
parameter velocity function of depth to a velocity function
in terms of the vertical travel time to. We also present
functions of slowness dependent on depth and vertical travel
time to. Since the functions have only two parameters, they
are much simpler than equation (3). To demonstrate the
improved accuracy and applicability of the two-parameter
velocity and slowness functions over a wide range of offsets,
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we applyour approximations, and those givenby equations (1)
and (2), to different simple plane-layered models, and discuss
the performance of each. Finally, we use synthetic and
real records to show that the two-parameter velocity and the
slowness method also give accurate moveout corrections over
a wide range of offsets, and we draw some conclusions on its
functionality.

Two-parameter functions for velocity and slowness

(2)

Considering a seismic wave travelling through a stack of plane
homogeneous isotropic layers, its ray path from source to
receiverscan be decomposed into ray segmentsnumbered from
1 to N. The velocity associated with ray segment i is denoted
by Vi. This may represent either the P- or S-wave velocity,
depending on the wave mode. The corresponding slowness
(1/ Vi) is represented by Si. Denoting the corresponding layer
thickness by !:::"Ziand using the ray parameter p, the travel time
t and offset y can be expressed as

" 1 !:::"Zi
t- ~

- i ; 1 - p2V? Vi '

(4)

and

(3)

pVi
y= L !:::"Zi.

i ;1 - p2V?

When using the equivalent continuous velocity or slowness
model instead of a layered model, equations (4) and (5) can be
written as

(5)

1
1 dz

t- -
- )1 - P2V2 V 'z z z

(6)

and

1 pVz dz.
y= z)1-p2Vz2

(7)

Velocity with depth

The typical linear function of velocity with depth can be
described as

Vz = Vo+ kz, (8)

where Vz is the velocity at depth z, parameter Vo is the initial
velocity at depth z = 0 (intercept) and k is the gradient (the
rate of variation of velocity with depth). We have

dVz-=k
dz '

1
1 dz 1 r 1 dVz

t = z )1 - p2Vz2 Vz = kp lv, ;.:!z - V2 VzP z
and

1
pVz I ] Vz

y = dz = - dVz.

z )1 - p2 Vz2 k v,; J... - V2p2 z

So the solution of equations (10) and (11) becomes

(9)

(10)

(11)
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1 I+JI-P2Vz2

I

V"

t = -- In ,
k pVz Vo

1

I

v"

y = - k J1 - p2 Vz2 ,P Vo
where Zrand Vz, denote the depth of reflector and wave velocity
respectively at the depth Zr'

When the ray path is vertical, p = 0, x = 0 and

lVz lVto
to = -In- = -In-

k Vo k Vo'

Vto= Voexp(kto).

Equations (8) and (14) are equivalent. From (14),
we know that velocity can also be described as a function
of vertical travel time to. It follows that we can extend
the equivalent function concept to expressing velocity as a
function of travel time toand slowness as a function of depth
and vertical travel time to.

Velocity with vertical travel time

If velocity is described as

Vto = Vo + yto,

dVto
-=y.
dto

Then we can obtain

1
1 dz l 1

t= = ~
z Jl - p2Vl Vz toJl - p2Vt;
1

1
1

= - dVto,

yp v'AII - V2p' to

and

1
pVz

1
vt;

y = dz = dto

z Jl - p2Vl to J"'!" - v2pL to

1

1
v2

= - to dVto,

y v,o J"'!" - v2pL to

the solution of equations (17) and (18) becomes

1

I

VTO

t = - arcsinpVto '
yp Vo

and

( 0 )I
VTO

1 Vtol 21.

Y = Y -2 p2 - Vto+ 2p2 arcsmpVto vo' (20)

where to represents the one-way vertical travel time from the
surface to the reflector.

Slowness with depth

Describing seismic slowness as

Sz = So +az,

so that

dSz = a,
dz

(12)

we have

t _ 1
1 dz =

1 s; dz
- z Jl - p2Vl Vz z Js; - p2

= 2. r s; dSz,
a is, J s; - p2

(23)(13)

(14)

and

1
pVz

1
p

= dz= dz
y z Jl - p2vl z J s; - p2

1

1
p

= - dSz.
a s, JS; - p2

Thesolutionof equations(23)and(24)becomes
1

[

s 2

JI

S"

t=- ...!:..JS;-p2+!! ln(Sz+JS;-p2) , (25)a 2 2 So
and

(24)

(15)

(16)

~
I

S"

y=fln(Sz+vS;-p2) ,a So
where Zr and Sz, are used to denote the reflector depth and
wave slowness at that depth, respectively.

When the ray path is vertical, p = 0, x = 0 and

1 S;

I

S, 1
(

2 2
)

1 2
to = - -"- = - S - S = Soz + -az ,

a 2 2a z 0 2So

Sz = Sto= J2ato + S6.

Equations (21) and (27) are equivalent.

(26)

(27)

(17)
Slowness with vertical travel time

Given the slowness equation

(18)

StD = So+ fJto,

dStD= fJ
dto '

and equations (23) and (24) can be written as

1
1 dz

1
Sto

t = = dto

z Jl- p2Vz2 Vz to Js~ - p2
1

1
Sto= - dSto,

fJ StoJs~ - p2

(28)

(29)

(30)

(19)
and

1
pVz

1
p

y = dz = dto

z Jl - p2 Vl to S JS2 - P2
to to

P
1

1
= - dSto,

fJ StD S JS2 - P2
to to

the solution of equations (30) and (31) becomes

- 1 r Sto - 1 ~
I

STO

t - 7i J~ J dSto - 7i VSio - p. ,S'O S~ - p2 So

(31)

(32)

(21) and

y = f r 1 1
I

STO

fJ 1stoS ~ dSto = -fJ
arccos.!!... .

toV Uto- p- Sto So

(33)

(22)
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Table 2. Layer depth, thickness and interval velocities for a model
with two high-velocity layers.

Table 1. Layer depth, thickness and interval velocities for the
models with small velocity variations (A), with larger velocity
variations (B) and with a high-velocity layer (C).

Numerical examples

We now compare the accuracy of the functions derived above
with those series used by Causse et al (2000) and Taner and
Koehler (1969), which we shall henceforth refer to as the
Causse and T and K series, respectively. We use the same
models as Causse et al (2000), and calculate the approximate
travel times for P-waves reflected at the bottom of three
different plane-layer models (A-C) with a reflector depth of
2500 m (table 1).

Given the ratio of offset to depth, the parameters (initial
velocity and/or slowness and their gradients) in velocity or
slowness functions can be obtained for known models. The

relative offset X can be obtained from the layered velocity
model. Reflection travel time T can be calculated from
equations (4) and (5). Then using the offset X and reflection
travel time T in equations (12) and (13), the parameters for
velocity variation with depth can be obtained. The same
applies to the slowness variation with depth, and the velocity
and slowness variation with vertical travel time.

For calculating analytical parameters, the depth of
reflector and vertical travel time can be the control parameters
for a given layered model. Using the maximum velocity and
minimum slowness in the layered model, we have

k E Root {f(k) = Vm- (Ym- kzm) exp(ktOm)= O},

(0 < k < ~:)
2(Vmtom - zm)

y= 2
tOm

2(SmZm - tOm)a=

(y < Vm)tom

Z~
13 E Root {f(f3) = Sm - (Sm- f3tom)exp(f3Zm)= O},

(13< 0) (37)
where Zm,Vm,Smand tomare the maximum depth of the layer
being calculated, maximum velocity, minimum slowness and
vertical travel time from the surface to the layer, respectively.

The analytical parameters can be used to analyse which
function is the best fit for the given layered velocity model.
Table 3 shows the RMS errors for models in table 1. The
velocity variation with vertical time matches models A and
B but the slowness variation with depth matches model C.
Though the best results for a given model cannot be obtained
from (34) to (37), as the parameters must be adjusted to get
best-fit travel times, the RMS errors can help to decide which
approximation is the best fit for a given model (table 3).
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Table 3. RMS errors from using equations (34)-(37) for models in
table 1.

Model

VA
VB
VC

Vz VtD Sz StD

0.1339
0.3123
1.5068

0.1241
0.2520
1.7229

0.1509
0.4734
0.8298

0.1417
0.3741
0.9604

(34)

Figure 1 shows the rays for offsets 4, 8 and 12 km in the
different models. Since equations (4) and (5) are sums, and
the order of the terms in the sum does not play any role in the
finalresult, wecan change the layer order to increasing order in
velocity from the surface to the reflector in order to more easily
determine the two parameters in the linear velocity and/or
slowness function. Taking model C of table 1 as example, we
can move the high-velocity layer from the middle to the bottom
of the layer sequence. Figures 2-4 show the representation of
velocity and slowness for the small velocity variations model
(A), large velocity variationsmodel (B) and high-velocity layer
model (C) respectively.

Figure 5 shows the Taner and Koehler near-
offset approximation travel times and Causse large-offset
approximation travel times. Figure 6 shows travel times
calculated by two-parameter velocity and slowness as
illustrated in figures 2-4. Figure 7 shows the approximation
errors resulting from the use of Taner and Koehler and Causse
approximations for the three models. Figure 8 shows the
approximation errors of two-parameter velocity and slowness
with depth or vertical travel times. Figure 9 shows the
residuals of travel times for the models in table 1. We used

offset-to-depth ratios of 1, 3 and 5 to obtain parameters of
velocity and slowness. It is seen that the velocity variation
with vertical time (green curves in figure 9) is suitable for
model B, and slowness variation with depth (yellow curves
in figure 9) is the best match for model C. All four functions
can be used for model A, corresponding to small velocity
variations.

(35)

(36)

Discussion

We now compare the results obtained using the different
approximations, and discuss the performance of the two-
parameter functions for velocity and slowness when applied
to different velocity depth profiles. Then after setting out the
relationships between the functions, we shall use anexample to
illustrate how velocity and slowness functions of vertical travel
time are convenient for velocity analysis and the determination
of NMO corrections.

Depth (m) L1.Z(m) VA (m S-I) VB (m s-l) VC (m S-I)

250 250 1500 1500 1500
650 400 1800 2000 1800

1250 600 1900 2400 1900
1450 200 2000 2800 4600
1950 500 2100 3200 2100
2500 550 2200 3600 2200

Depth (m) L1.z(m) V (m S-I)

300 300 1500
1100 800 2000
1300 200 4599
1900 600 2200
2100 200 4600
3000 900 2400
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Figure 1. Ray paths for different offsets. The solid, dashed and dotted lines correspond to models (in table I) with small velocity variations,
large velocity variations and a high-velocity layer, respectively (after Causse et al2000).
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Figure 2. Velocity and slowness of model A (small velocity variations). The blue and red lines represent initial and estimated velocities and
slowness respectively. Graphs show velocity variation with depth (top left) and vertical travel time (top right), and slowness variation with
depth (bottom left) and vertical travel time (bottom right).
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Figure 3. Velocity and slowness of model B (large velocity variations). The blue and red lines represent initial and estimated velocities and
slowness respectively. The order and annotation of the graphs are the same as in figure 2.

Considering the travel time curves in figure 5, and the
corresponding residuals in figure 7, it is clear that the Taner
and Koehler approximation (equation (1» matches the exact
travel time curve very well at small offsets. This must be less
than 3 km in the case of model C with a high-velocity layer
(see figure 7). However the fit is poor at large offsets, except
when the velocity contrasts are small. The approximation can

be improved at small offsets by using more terms of the series,
but the high powers of offset in the series make it diverge
rapidly with increasing offset (AI-Chalabi 1973). Causse
et at (2000) note that in the presence of a high-velocity layer,
the hyperbolic approximation gives relatively large travel time
errors even for offsets approximately equal to the reflector
depth.
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Figure 4. Velocity and slowness of model C (high-velocity layer, where this layer has been moved from the middle to the bottom of the
sequence). The order and annotation of the graphs are the same as in figure 2.
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Figure 5. Travel time curves for model A (small velocity variations) on the left, model B (large velocity variations) at the centre and model
C (high-velocity layer) on the right. Upper diagrams: Taner and Koehler (1969) approximation. Lower diagrams: Causse et a/ (2000)
large-offset approximation. The legend indicates the number of terms used in the respective series. The thick solid line represents the exact
travel times curve (Causse et a/2000).

Considering the same figures 5 and 7 the Causse series
(equation (2» fits the exact travel time curve very well at large
offsets, especially for models containing a high-velocity layer.
Approaching zero-offset, the approximate travel times tend to
infinity because of the negative powers of offset in the series,
when more than two terms are included. Using more terms
of the series improves the approximation at large offsets, but
makes it diverge slightly more rapidly when approaching near
offset. Figure 10 shows the travel times and residual errors
for the Causse large-offset approximation for a model with
two high-velocity layers, with the interval velocity and depth
given in table 2. The Causse approximation shows relatively
poor accuracy at small offset for the two examples with no
high-velocity layer, especially model A in table I where there
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is only a small variationof velocity (see figure7). It is accurate
at large offset, which must be larger than 3.5 km in the case
of model C and 4 km for the model with two high-velocity
layers.

In contrast, comparing figures 5-8, the travel times
calculated from the equivalent velocity and slowness method
are seen to fit the exact travel time curves better than both
the Causse and Taner and Koehler approximations along all
offsets. Figure 11 shows travel times and residuals calculated
by this method for the model with two high-velocity layers.
Considering figures 8 and 11 it is seen that the approximation
using slowness variation with depth shows relatively high
accuracy when used for models with a high-velocity layer
(yellow line in figures 9 and 11).
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To compare the different approximations, figure 12shows
four velocity curves with depth. The curves show the same
maximum velocities, but different minimum velocities and
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Figure 9. Travel time residuals using equivalent functions for model A (small velocity variations, top), model B (large velocity variations,
middle) and model C (high-velocity layer, below). The left, centre and right graphs couespond to offset-to-depth ratios of 1, 3 and 5,
respectively. The blue, yellow, green and red lines represent the travel time residuals calculated from functions of velocity with depth,
slowness with depth, velocity with vertical travel time and slowness with vertical travel time, respectively.
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Figure 10. Travel times (top) and travel time residuals (bottom) for the model with two high-velocity layers. The legend indicates the
number of terms used in the Causse long-offset travel time series. The coefficients of the series have been calculated by the numbers in
table 2 (left curves) and by assuming that both high-velocity layers had a same average velocity of 4599.5 m S-1(right curves). The thick
solid line represents the exact travel time curve (Causse et al 2000).
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variations. The linear velocity variation with depth has
constant slope at all depths (blue curve in figure 12), The
velocity variation with vertical travel time varies rapidly
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Figure 11. Travel times and travel time residuals for the model with two high-velocity layers. The blue, yellow, green and red lines
represent the travel time residuals calculated from functions of velocity with depth, slowness with depth, velocity with vertical travel time
and slowness with vertical travel time, respectively.
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Figure 12. Velocity curves from approximations given by
equations (4), (15), (21) and (28). The blue, green, yellow and red
lines represent functions of velocity with depth, vertical travel time,
slowness with depth and vertical travel time, respectively.
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in low-velocity layers (green curve in figure 12). This
approximation matches model B (table 1) better than the other
three approximations (figure 9 and table 3). The slowness
variations with vertical time and depth vary most rapidly in
large velocity layers (red and yellow curves in figure 12)
among all the approximations. Thus these approximations
show the highest accuracy in the model with the high-velocity
layer(figures9, 11andtable3).

2000

2tOO

2800

3200

...~.!
J4000

14400...

4BOO

S2OO

I!«iO

I!OOO

It is appropriate to set out the relations between velocity
and slownessvariation with depth and vertical travel time. The
relation of vertical depth z and vertical travel time to can be
written as

z = 1 Vtodto = 1 ~dto,
to to Sto

(38)

and

to = f ~dZ = f SzdZ.
z Vz z

Applying equations (38) and (39) to equations (8), (15), (21)
and (28), we have

Vz = Vo+ kz {} Vto = VoeXP(ktO)

]

Vto= Vo+ yto {} Vz2= Vr?+ 2yz

Sz = So+ az {} S~ = SJ+ 2ato .
St~ = So+ f3to {} Sz = Soexp(f3z)

For calculating travel times, we use the functions of velocity
and slowness with depth. For seismic data velocity analysis,
it is more convenient to apply the functions of velocity and
slowness with vertical travel time.

(39)

(40)

Offset(km)
, 10

12 2000

2400

2800

3200

3600'0;
.!
CD

(OOOE

i
4400eI-
4BOO

5200

I!«iO

Figure 13. Synthetic CDP records for the model with two high-velocity layers (table 2).
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Figure 14. Two-parameter slowness analysis for the synthetic
records shown in figure 13. The value of to is read from figure 13
and used in the slowness analysis. The values of Soand SolSt~are
obtained from the contour plot and used to calculate St~and Cl.

To illustrate the application of the equivalent velocity
and slowness approximations to velocity analysis, we take the
model with two high-velocity layers (table 2) as an example.
The bottom reflector synthetic CDP records are shown in
figure 13. A total of 121 receivers at 100 m intervals are
used. The minimum and maximum offsets are zero and 12km,
respectively. At reflector depth, velocity Vz and Vtoare the
same, and so are Sz and Sto' Since to can be read from
seismic records, we normally use the approximations giving
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velocity and slowness as a function of to. From figure 13,
to is approximately 2670 ms. According to the test result,
we chose So from 0.4 to 1 s km-l and the ratio of slowness
(Sto/ So) at the reflector and the surface from 0.1 to 0.5. The
parameters Sz(Sto) and Clin equation (21) can be calculated
through equation (27) from to, So and the ratio of slowness.
For each pair of Soand Cl,travel times were computed for all
offsets.

Figure 14 is the two-parameter slowness semblance
analysis for the synthetic records shownin figure 13, in which,
the strongest stacking energy is shown in red. The optimum
So and ratio of slowness were picked, and StD(the slowness
at reflector) and Cl (the slowness gradient) were calculated
as 0.213 616 s km-I and -0.1540615 s km-2. Applying the
parameters in equations (25) and (26), we obtained the NMO
times. The CDP records with NMO applied are shown in
figure 15 at the same scale as figure 13, and also at large
scale.

Figure 16 shows the two-parameter velocity analysis
method used in real data, in which, the maximum offset is
at 7008 m. The two-wayverticaltravel time from typical
reflectoris about 1950ms. Real CMP gather of seismicrecords
is shown in (a), the records shown in (b) and (c) are NMO
results using traditional single velocity and two-parameter
velocity semblance analysis respectively. We can see that
the two-parameter velocity function produces relativelyhigher
accuracy at far offset. These synthetic and real results
confirm that the two-parameter approximations are sufficiently
accurate for moveout correction of seismic data from near to
far offsets.

Offset(km)
. ID

Offset (km)
, 10

Figure 15. The NMO results ofthe records in figure 13 following application of the results of two-parameter slowness analysis from
figure 14. The profile is shown at the same scale as figure 13 (top), and at a larger scale (below).
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Figure 16. (a) Real CMP gather of seismic records. (b) and (c) are NMO results using traditional single velocity and two-parameter velocity
semblance analysis respectively. Maximum offset is at 7008 m. The two-way vertical travel time from typical reflector is about 1950 ms. At
far offset, the two-parameter velocity function produces relatively higher accuracy.

The parameters derived from semblance analysis can
be used to estimate the velocity model. Considering the

relationships in equation (40), we can derive the layer depth
Zi, thickness hi and interval velocity Vi,

For the four different approximations, we have the
following expressions.

Velocity variation with depth:

Va,i[exp(kita,i) - 1]
Zi =

ki

Va,i(exp(kita,i) - 1)
hi = Zi - Zi-I =

ki

Va,i-l (exp(ki-Ita,i-I) - 1)

ki-I

Vi = hi = 1
[

Va,i(exp(kita,i)- 1)

ta,i - ta,i-I ta,i - ta,i-I ki

- Va,i-l(exp(ki-Ita,i-I) - 1)
]

.
ki-I

(41)

Velocity variation with vertical trave/time:

1 2
Zi = Va,ita,i + "2Yita,i'

hi = Zi - Zi-I = (Va,ita,i - Va,i-Ita,i-I)
l
(

2 2
)+"2 Yita,i - Yi-Ita,i-I '

hi 1

[Vi = = (Va,ita,i- Va,i-Ita,i-I)
ta,i - ta,i-I ta,i - ta,i-I

+ ~(YitJ,i - Yi-ItJ,i-l) 1 (42)

Slowness variation with depth:

Zi = ~i (JSJ,i +2(1ita,i- Sa,i),

hi=zi-zi-I= ~i (JSJ,i+2aita,i-Sa,i)
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- ~(!S6,i-1 + 2ai-ItO,i-1 - SO,i-I),ai-I
hi

Vi=
to,i - to,i-1

= I
[.! (!S6,i+2aito,i-SO,i)to,i- to,i-1 ai

- ~(JS6,i-1 +2ai-ItO,i-1- SO,i-I)]
.

a,-I
Slowness variation with vertical travel time:

I SO,i+ fJitO,i
Zi = -log ,

fJi SO,i

I 'SO,i + fJ;tO,i
hi = Zi - Zi-I = - log

fJi SO,i

I SO,i-1 + fJi-ltO,i-1
--log,

fJi-1 SO,i-1

hi I

[I SO,i+ fJitO,i
V; = = -log-to' - to '- 1 to ' - to '- I R. SO '

.1,' ,I ,I fo'l .'

I SO,i-1 + fJi-ItO,i-l

]
--log .

fJi-1 SO,i-1

In the presence of anisotropy produced by thin-layered media,
the two-parameter approximations can be used to get highly
accurate results. Since in this case the anisotropy is caused
by a vertical variation of velocity, the methods described here
are well matched to the situation. However, in the presence
of azimuthal anisotropy, a third parameter will be required to
estimate seismic wave travel times.

Conclusions

We have extended the approximation of seismic travel times
using velocity variation with depth to approximations based
on velocity variation with vertical travel time, and slowness
variation with depth and vertical travel time. Solutions for
all four types of velocity or slowness have been derived.
The new method was compared with the approximations of
Taner and Koehler (1969) and Causse et al (2000) for plane-
layered isotropic media. It provides a much better match to
exact travel times at all offsets, even though the functions
only consist of two terms. The function which uses the
slowness variation with depth works particularly well in the
presence of a thin high-velocity layer and with two high-
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(43)

velocity layers. The relationships between velocity and/or
slownesswith depth and/or vertical travel time were discussed.
One can choose suitable expression of velocity or slowness
according to equation (40). For example, Vz = Vo+ kz
is suitable for calculating travel times but its equivalent
expression Vlo = Voexp(kto) is better for semblance analysis.
A two-parameter velocity/slowness analysis illustrated the
application of the functions. Optimum parameters can be
determined from semblance analysis. The results of NMO
for synthetic and real seismic records show that the two-
parameter approximations produce relatively high accuracy
for all offsets.
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