


· • • • -· ·

••••••

.

.

,

## Studies of Hydrology of the Lesotho Highlands Water Project for Royalties Assessment

**Progress Report No. 11** 

This report is an official document prepared under contract between the Lesotho Highlands Development Authority and the Natural Environment Research Council. It should not be quoted without permission of both the Institute of Hydrology and the Lesotho Highlands Development Authority.

Institute of Hydrology Crowmarsh Gifford Wallingford Oxfordshire OX10 8BB UK

 Tel:
 0491 838800

 Fax:
 0491 832256

 Telex:
 849365 Hydrol G

July 1994

.

-

- -- -- -- --

. . . . . .

. .

.

-

..

,

- -

.

. .

# Contents

Ĵ,

(

|             |                                                                                                                                                                                                                                                      | • 450   |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1.          | INTRODUCTION                                                                                                                                                                                                                                         | 1       |
| 2.          | KEY DATES                                                                                                                                                                                                                                            | 1       |
| 3.          | WORK COMPLETED                                                                                                                                                                                                                                       | 2       |
| AP          | PENDIX A - RAINFALL DATA                                                                                                                                                                                                                             | 3       |
| <b>A</b> .1 | EVALUATION OF ADDITIONAL SOUTH AFRICAN RAINFALL<br>DATA                                                                                                                                                                                              | 3       |
| A.2         | 2 ANNUAL RAINFALL SERIES                                                                                                                                                                                                                             | 3       |
| Α.3         | NOTE ON MEAN ANNUAL RAINFALL RATIO 1930-66/1967-92                                                                                                                                                                                                   | 7       |
| AP          | PENDIX B - FLOW DATA                                                                                                                                                                                                                                 | 10      |
| B.1         | REVISED CRUMP WEIR DATA                                                                                                                                                                                                                              | 10      |
| B.2         | LHDA COMMENTS ON WP3<br>(UNTITLED REPORT PRESENTED TO IH ON 28/3/94)                                                                                                                                                                                 | 22      |
| B.3         | BKS/DWAF COMMENTS ON WP3<br>(REPORT TITLED "COMMENTS ON THE LHDA REPORT TITLED<br>STUDIES OF HYDROLOGY OF THE LESOTHO HIGHLANDS WATER<br>PROJECT ROYALTIES ASSESSMENT WORKING PAPER 3 - FLOW<br>ANALYSES", BKS INC REPORT NO. P4564/02/10, JAN 1994) | 31      |
| B.4         | COMMENTS BY WEMMIN ON WP3<br>(3 NOTES PRESENTED TO IH ON 28/3/94)                                                                                                                                                                                    | 42      |
| API         | PENDIX C - ADDITIONAL WORK ON THE STOCHASTIC MODEL                                                                                                                                                                                                   | 46      |
| C.1         | GENERAL APPROACH TO VALIDATION OF THE MODEL                                                                                                                                                                                                          | 46      |
| C.2         | EXAMPLES OF VALIDATION TESTS                                                                                                                                                                                                                         | 47      |
| C.3         | TRANSPOSITION AND DISAGGREGATION SCHEMES                                                                                                                                                                                                             | 59      |
| APF         | PENDIX D                                                                                                                                                                                                                                             |         |
| D.1         | AMENDED MONTHLY RAINFALL DATA                                                                                                                                                                                                                        |         |
| D.2         | FINALISED ANNUAL RAINFALL (OCTOBER TO SEPTEMBER WATER V                                                                                                                                                                                              | YEAR)   |
| D.3         | FINALISED ANNUAL RAINFALL (AUGUST TO JULY WATER YEAR)                                                                                                                                                                                                | 1       |
| D.4         | REVISED CRUMP WEIR RECORDS FOR MARAKABEL& PARAY (JUNI                                                                                                                                                                                                | : 1994) |
|             |                                                                                                                                                                                                                                                      |         |

Page

### 1. Introduction

This eleventh monthly progress report covers the period 1 June to 1 July 1994. Work has continued in several areas with the overall aim of finalising the datasets and stochastic model as far as possible with the current information available. This report describes the current position with regards to the three main areas defined in the Terms of Reference, namely the rainfall data, the flow data and the stochastic model.

### 2. Key dates

<u>To date</u>

| 14/06/93 | Project begins                                    |
|----------|---------------------------------------------------|
| 15/06/93 | Project team arrives in Maseru                    |
| 12/07/93 | First progress report issued                      |
| 03/08/93 | Second progress report presented verbally to JPTC |
| 10/08/93 | Project team returns to UK                        |
| 17/09/93 | Third progress report issued                      |
| 15/10/93 | Fourth progress report issued                     |
| 27/10/93 | Working paper 1 despatched from UK                |
| 10/11/93 | Working paper 2 despatched from UK                |
| 15/11/93 | Fifth progress report issued                      |
| 09/12/93 | Working paper 3 despatched from UK                |
| 14/12/93 | Sixth progress report issued                      |
| 01/02/94 | Seventh progress report issued                    |
| 01/03/94 | Eight progress report issued                      |
| 30/03/94 | Meeting with all parties in Maseru                |
| 15/04/94 | Ninth progress report issued                      |
| 01/06/94 | Tenth progress report issued                      |

#### Planned

Following discussions with LHDA, our plan is to continue only with background work until the agreed flow dataset for Whitehill has been received for possible inclusion in the core stochastic model. We will therefore not issue any further progress reports until one month after this dataset has been received (for example; if the dataset is finalised by mid-August, our next progress report will be issued in mid-September). A draft final report will be prepared as soon as possible thereafter describing the final version of the stochastic model and presenting our results for the Royalty flow sequences. ···· •• --

-

· · · · ·

## 3. Work completed

The following work has been completed in the current reporting period:

- 1. The additional rainfall data for the RSA stations (as mentioned in the LHDA comments on our Working Paper 1) was received at the end of May. The data have been evaluated and the annual rainfall database used in the core stochastic model has been updated where appropriate. This database has also been modified to include the changes to the rainfall data recommended in Progress Report 9. Appendix A of this report describes this work and Appendix D presents the revised datasets. Provided all parties agree, this completes our evaluation of the raw rainfall data.
- 2. The agreed flow data for the Marakabei and Paray Crump weirs were also received at the end of May. Again, the data have been evaluated and a revised correction method has been developed for Marakabei. This work is described in Appendix B.1 and the revised datasets are presented in Appendix D. As agreed at the meeting in Maseru on 30/3/94, the correction scheme makes the basic assumption that the Crump weir flows are the best possible estimate of the true flow and so the rated section flows are adjusted to match the Crump weir flows.
- 3. A formal response has been prepared to all the comments received on our Working Paper 3 - Flow Analyses. This includes comments from LHDA (regarding rating equations, discharge measurements, individual flow values), BKS/DWAF (regarding the Seaka/Oranjedraai water balance, drag corrections, individual flow values) and WEMMIN (general points). This work is described in Appendices B.2, B.3 and B.4 of this report.
- 4. Work has continued on evaluating the results from the stochastic model. The aim has been to develop more objective ways of judging the results from different configurations of the model; for example, different choices of raingauges or different transformations. The proposed transposition scheme has also been modified assuming that Whitehill may be included as a key station in the core stochatic model and suggested values have now been estimated for the various coefficients to be used in both the transposition and monthly disaggregation schemes. This work is described in Appendix C of this report. One additional change to the model has been to make the code run more efficiently, to try and reduce run times when using the model on a personal computer. A 30% improvement in run times has been achieved so far.

. .

. . . **.** . . **. .** .

**.** .

- - -

.

. -

- · · - -

· ·

•• -

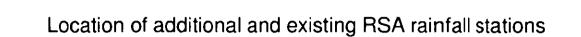
- -

### Appendix A - Rainfall Data

This Appendix describes the work performed to complete our evaluation of the raw rainfall data. The project rainfall database has now been updated according to the recommendations made in Progress Report 9. Details of the amended data are contained in Table A.1 and printouts of the amended monthly rainfall series for these stations are provided in Appendix D.1. Also, the additional rainfall records for stations in RSA have been evaluated and final annual series have been prepared for use with the stochastic model. The map of annual rainfall ratios (pre/post 1966) has also been updated and improved.

#### A.1 EVALUATION OF ADDITIONAL SOUTH AFRICAN RAINFALL DATA

Monthly rainfall data for nine additional stations in South Africa were provided by RSA DWAF. The latitude, longitude and period of rainfall record of each of these stations is listed in Table A.2 whilst their locations are shown in Figure A.1. Figure A.1 also shows the locations of South African rainfall stations for which data have already been received and examined.


The annual rainfall data of each of the nine stations was examined for consistency using the basic techniques adopted previously in this study. This involved comparison with the annual data series of nearby stations in both South Africa and Lesotho by way of scaled time series and cumulative mass plots.

Examination of the data showed that in only one of the nine annual rainfall series, that of station 297721, is there a possible break in consistency. In this data series annual rainfall is higher from the late 1950s on as shown by the break in slope of the mass plot at this point in time (see Figure A.2). Nearby stations do not appear to exhibit a similar increase in annual rainfall and the break in slope is apparent in, for instance, the double mass plot of 297721 with station 298244 (see Figure A.3). On the basis of these findings it has been decided that rainfall data for station 297721 will not be used in the stochastic model.

The data for the remaining eight stations, however, are of satisfactory quality and may be used as additional rainfall inputs to the stochastic model. Of these, two stations appear to be particularly useful, having either relatively long records or being located some way from gauges previously included in the model. In addition a third station, number 237606, provides a much more complete record for the Sani Pass area than is true of the nearby station in Lesotho (station number 26). The decision to use the rainfall records of the remaining five stations will depend on an assessment of the extent to which they can yield additional information of use to the model. A summary of the potential of each data set for use in the stochastic model is given in Table A.3.

#### A.2 ANNUAL RAINFALL SERIES

The annual rainfall series for stations which are likely to be used as inputs to the stochastic model are presented in Appendix D for the period 1930-91. Two tables of annual rainfall series are presented. As discussed in Progress Report 9, there are 4 stations in the project area which potentially have useful long term records, 7 around the borders of Lesotho and



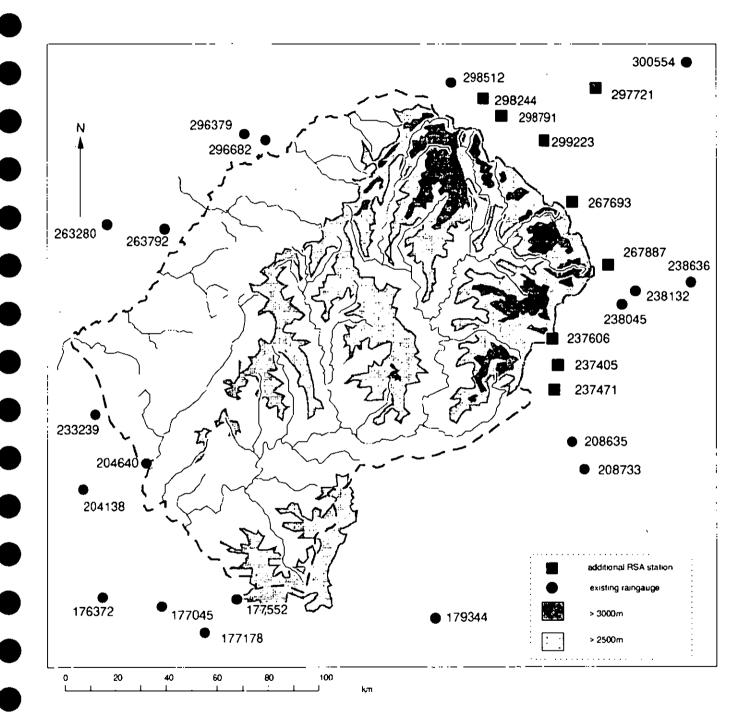
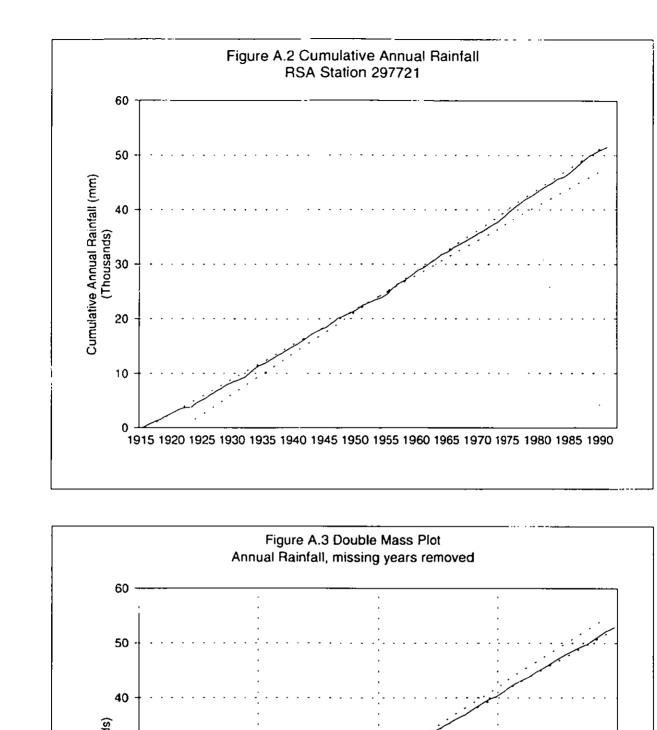
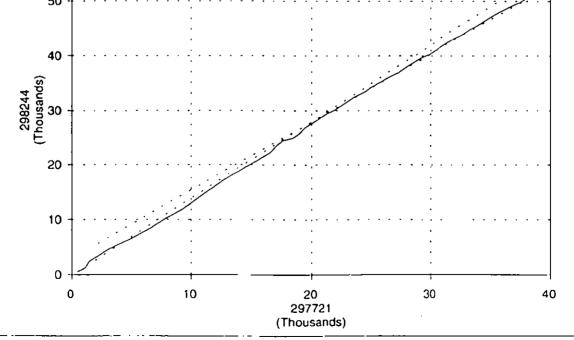





Figure A.1





### (now) 25 in South Africa.

| infall (mm) | Annual Ra | infall (mm) | Monthly Ra | infall (mm) | Daily Ra | Date        | Station |
|-------------|-----------|-------------|------------|-------------|----------|-------------|---------|
| Updated     | Old       | Updated     | bio        | Updated     | Old      |             |         |
| 959         | 1163      | 95          | 214        | 13.1        | 131      | 11 Nov 1966 | 21      |
| 959         | 1163      | 101         | 186        | 9.5         | 95       | 6 Apr 1967  | 21      |
| missing     | missing   | 118         | 26         | 102         | 10.2     | 23 Jan 1980 | 25      |
| missing     | missing   | 120         | 19         |             | -        | Oct 1976    | 26      |
| missing     | missing   | missing     | 2.4        | -           | -        | Nov 1982    | 60      |
| 751         | 809       | 15          | 73         | -           | -        | Jun 1991    | 64      |
| 795         | 1011      | 6           | 222        | -           | -        | May 1977    | 73      |
| 1020        | 838       | 64          | 246        | -           | -        | Sep 1987    | 76      |
| 786         | 822       | 180         | 216        |             | -        | Dcc 1978    | 84      |

### Table AIDetails of amendments to the project rainfall database

--- ---

### Table A2 Details of additional South African rainfall stations

| Station Number | Station Name       | Latitude*      | Longitude* | Period  |
|----------------|--------------------|----------------|------------|---------|
| 237/405        | Drakensburg Garden | 29°45          | 29°14      | 1963-92 |
| 237/471        | Bergview           | 29°51          | 29°16      | 1935-88 |
| 237/606        | Sani Pass pol.     | 29 <b>°</b> 36 | 29°21      | 1968-93 |
| 267/887        | Giants Castle      | 29°17          | 29°30      | 1947-93 |
| 267/693        | Monk's Cowl        | 29*03          | 29°24      | 1962-93 |
| 297/721        | Clarence poi.      | 28°31          | 28°25      | 1916-93 |
| 299/223        | Olivia             | 28•43          | 29°08      | 1948-86 |
| 298/791        | Royal Natal Park   | 28°41          | 28°57      | 1948-93 |
| 298/244        | Caledonia          | 28°34          | 28°39      | 1920-82 |

\* as given in DWA/BKS, Nov 1988

#### Table A3 Summary of potential of additional South African rainfall data

| Station | Potential   | Comment                                                     |
|---------|-------------|-------------------------------------------------------------|
| 237405  | Useful      | Short record near existing stations                         |
| 237471  | Very useful | Long record away from existing stations                     |
| 237606  | Very useful | More complete record than Sani Pass in Lesotho              |
| 267693  | Useful      | Short record near existing stations                         |
| 267887  | Very useful | Relatively distant from existing stations                   |
| 297721  | Do not use  | Break in consistency in late 1950s                          |
| 298244  | Uscíul      | Long record but close to existing stations                  |
| 298791  | Useful      | Relatively long record but close to existing stations       |
| 299223  | Usclul      | Patchy record but relatively distant from existing stations |

Appendix D.2 lists annual totals over the water year running from October to September and differs only slightly from the data previously presented in Working Paper 1. These differences are due to the amendments listed in Table A.1 and the addition of the eight South African stations described in Section A.1.

Appendix D.3 lists annual totals over the water year running from August to July, this being the format required by the stochastic model. It should be noted that annual rainfall totals are not given for any years in which there are one or more missing months of data. Work is in progress to refine upper and lower bounds for the annual rainfall totals of these years in order to finalise the input series for the stochastic model.

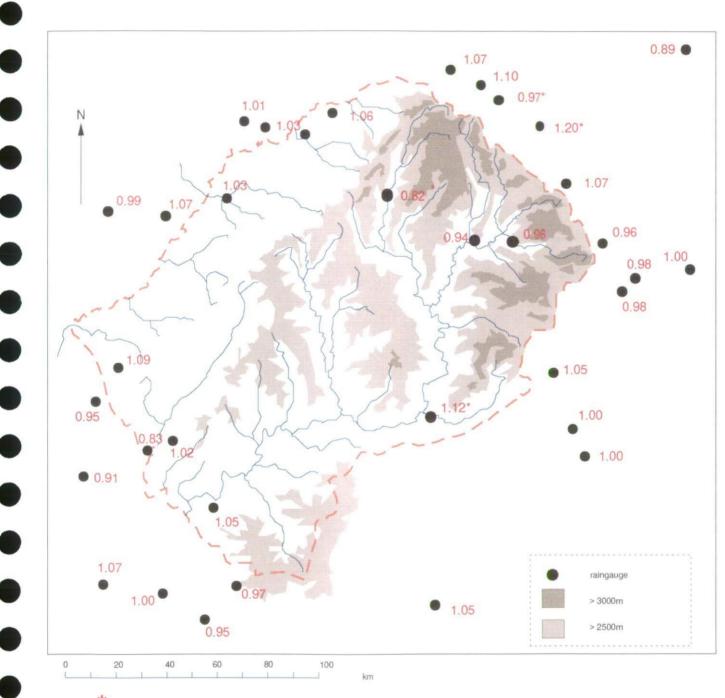

#### A.3 NOTE ON MEAN ANNUAL RAINFALL RATIO 1930-66/1967-92

Figure A.3 in Progress Report 10 shows the ratio of mean annual rainfall in the periods 1930-66 and 1967-92 for stations with long term data in Lesotho and South Africa. The value for station 9, Tsoelike, appears high in relation to those calculated for other stations and this has prompted a re-examination of the data for this gauge.

A crude infilling technique was used to fill in missing months of data by simply averaging the maximum and minimum rainfall recorded at Tsoelike in the relevant months. This allowed the estimation of annual totals to provide a more complete annual rainfall series. Recalculation of the mean annual rainfall ratio 1930-66/1967-92 gives a figure of 1.00 compared to the value of 1.12 calculated from the raw data alone.

The result of this exercise suggests that the high ratio of 1.12 for Tsoelike is largely a function of missing data. It is noticeable that annual totals for several wet years in the period 1967-92 are missing due to incomplete monthly data, thereby biasing the calculation of the ratio. The data for this station is consistent and is retained for input to the stochastic model. The rainfall ratio map has been updated to include this value and those for the additional RSA gauges and is shown in Figure A.4.

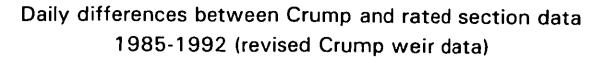
Ratio of mean annual rainfalls in the periods 1930 - 1966 and 1967 - 1992 (based on infilled annual records)

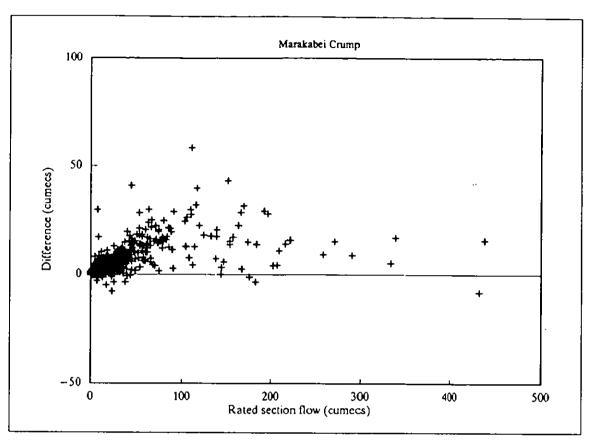


\* Insufficient annual values for reliable long term means

Figure A.4

### **Appendix B - Flow data**


This appendix describes our recent work on various issues regarding the raw flow dataset. Appendix B.1 presents an evaluation of the new agreed flow records for the Marakabei and Paray Crump weirs and Appendices B.2, B.3 and B.4 give our response to the comments made by LHDA, BKS/DWAF and WEMMIN respectively on our Working Paper 3 - Flow analyses. For convenience, Working Paper 3 is referred to as WP3 in the following discussions.


#### **B.1 REVISED CRUMP WEIR DATA**

One of the actions agreed at the meeting in Maseru on 30/3/94 was that LHDA and DWAF would combine their records for the Crump weir sites at Marakabei and Paray into single agreed records for each site covering the whole period of operation. We received these revised datasets at the end of May in the form of two ASCII datafiles (MARA1.DLY and PARA1.DLY). The data covered the period Dec 1985 to Jan 1994 for both sites. Each file contained two columns of data and we were informed that the first column (although marked LHDA data) was in fact the agreed record in both cases. On the assumption that adequate checks were performed by LHDA and DWAF during the intercomparison exercise, we have not performed any further validation tests on these data; for example, comparisons of daily flows with flows at the rated sections or other nearby stations.

The revised datasets are given in Appendix D.4 of this report and Table B.1 lists the periods in which these records differ from those presented in Appendix B of WP3. Figure B.1 shows the updated versions of Figures 4.3 and 4.9 from WP3, based on the new agreed Crump weir records and the original rated section records presented in Appendix B of WP3. These comparisons only cover the period up to Dec 1992 since we have not received any data for the rated section beyond this time. As before, our conclusions are that there seems to be a systematic error in the ratings for one or both sections at Marakabei, but no discernible error for Paray. A revised correction function is therefore required only for Marakabei.

In WP3 we recommended a polynomial correction function which peaked at a flow of about 200 cumecs and dropped off to zero for flows above 420 cumecs. LHDA have since informally suggested that a logarithmic polynomial correction function might be more suitable (in terms of the distribution of the residuals) and we have also thought of other possible functions which it might be possible to fit in a more objective manner. Our conclusion from evaluating these various functions is that the form of the function used makes little difference to the estimated annual total flows, provided that a good fit is obtained in the medium flow range (say 10-200 cumecs), since it is flows in this range which make the main contribution to the overall total flow. However, an unsatisfactory aspect of all these methods is that a subjective choice must be made both in the form of function used and the numerical procedures used to fit the function to the data. These considerations have led us to seek a more objective method which eliminates these uncertainties. The new method we propose is to develop an apparent 'synthetic' rating for the rated section based on simultaneous measurements of instantaneous levels at the rated section and instantaneous flows at the Crump weir. Effectively, this uses the Crump weir as a continuously operated gauging station for the rated section site.





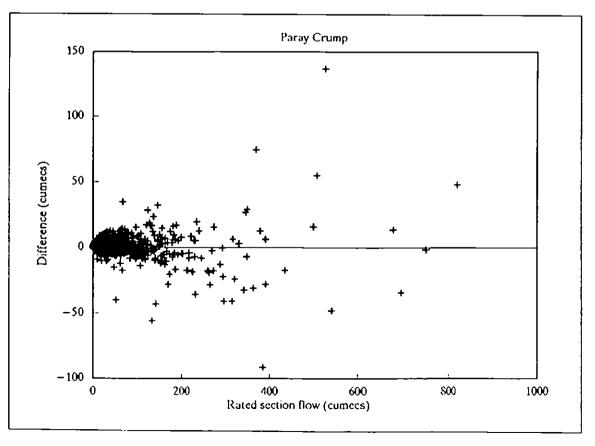
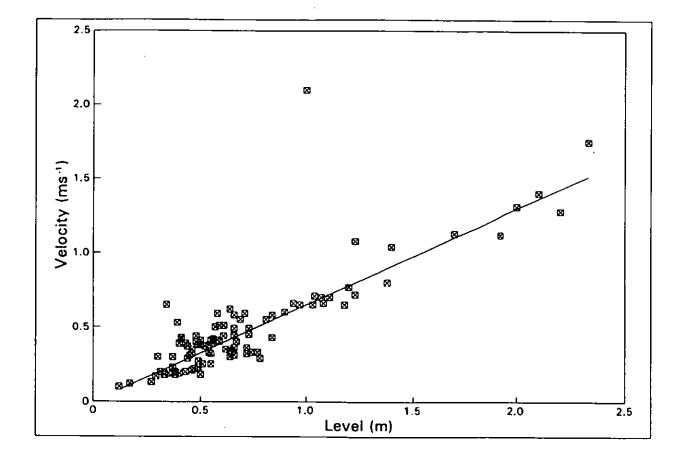


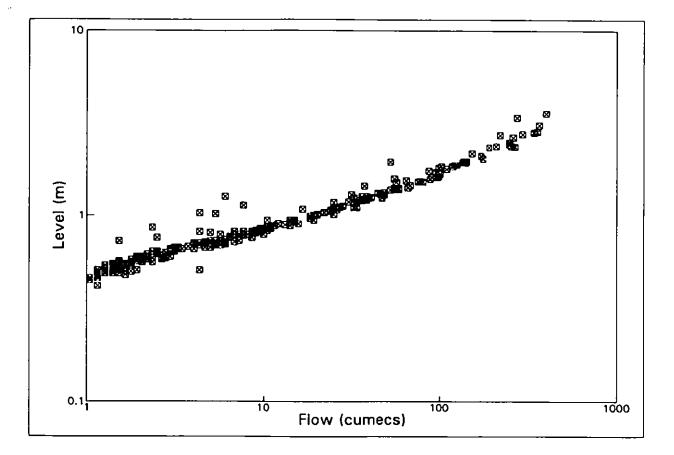

Figure B.1


Table B.1Periods in which revised Crump weir records differ from those given in<br/>Working Paper 3 (differences > 1 cumec)

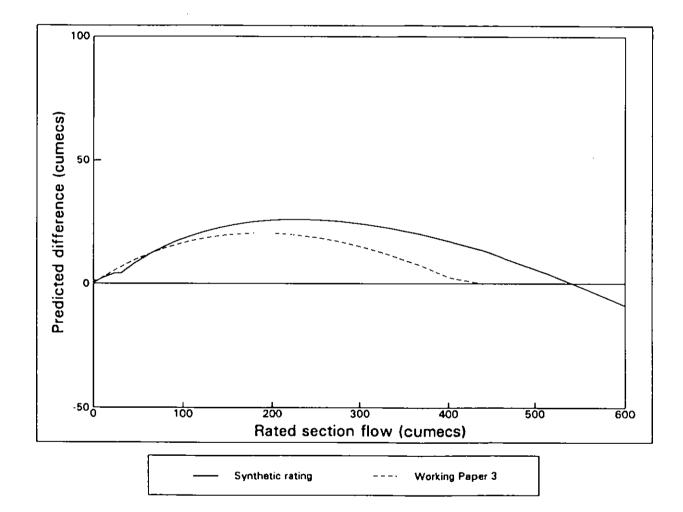
| Marakabei         | Paray             |
|-------------------|-------------------|
| 20/12/85-26/12/85 | 01/06/89-06/06/89 |
| 03/10/86          | 07/02/90-10/02/90 |
| 30/10/86-15/11/86 | 12/02/90-22/02/90 |
| 22/11/86-24/11/86 | 07/03/90          |
| 09/09/87          | 09/03/90          |
| 22/09/87-05/10/87 | 11/03/90-12/03/90 |
| 07/10/87          | 20/03/90-21/03/90 |
| 10/10/87-11/10/87 | 26/03/90          |
| 14/10/87          |                   |
| 08/11/87-04/12/87 |                   |
| 06/12/87-08/12/87 |                   |
| 18/12/87-20/12/87 |                   |
| 24/12/87-27/12/87 |                   |
| 15/01/88-16/01/88 |                   |
| 23/02/88-04/04/88 |                   |
| 13/04/88          |                   |
| 19/09/88          |                   |
| 22/11/88          |                   |
| 12/02/89          |                   |
| 15/02/89-16/02/89 |                   |
| 18/02/89          |                   |
| 01/06/89-02/06/89 |                   |
| 02/11/89-05/11/89 |                   |
| 14/11/89-21/11/89 |                   |
| 23/11/89-25/11/89 |                   |
| 27/11/89-28/11/89 |                   |
| 28/06/90          |                   |
| 16/08/90-17/08/90 |                   |
| 10/10/90-12/10/90 |                   |
| 16/10/90-17/10/90 |                   |
| 06/06/91-08/02/91 |                   |

To use this approach, some account needs to be taken of the finite lag time between the Crump and rated section sites. This can be estimated using the measurements of mean velocity which are made routinely during discharge measurements at the rated section. Figure B.2 shows the velocity/stage relationship for the rated section at Marakabei implied by the discharge measurements listed in WP3. The relationship is almost linear over the whole flow range and approximates to U=0.65h, where U is velocity (in m/s) and h is stage (in m). According to a recent survey by LHDA (see WP3), the Crump weir is about 1860 m upstream of the rated section, so the required lag time is approximately 1860/(0.65h) seconds. As a guide, the lag varies from about 1 ½ hours for flows of 1 curnec to less than 1/2 hour for flows greater than 100 curnecs.

Assuming these lag times, a synthetic rating was developed by sampling LHDA's digitised chart records for the Crump weir and rated section. The period chosen was all the hydrological years for which full records were available on our version of the LHDA database i.e. Oct 1986 to Sep 1992. For each day, the highest and lowest levels recorded at the rated section were noted, together with the appropriate lagged flow at the Crump weir (i.e. earlier in time). The digitising interval throughout this period was 30 minutes so in all cases the lag was estimated to the nearest 15 minutes. After this initial sampling, the five largest and five smallest flows in each month were selected in order to reduce the number of level/flow 'readings' to a more manageable quantity. Also, all values in the periods indicated in Table B.1 were deleted, on the assumption that, in these periods, there must be some doubt about LHDA's digitised chart levels for the Crump weir, since the flows obtained by converting these records were amended after comparison with DWAF's records... Similarly, to account for the previous inter-comparison work (LHDA April 1992) several additional periods were deleted where the daily flows reported in WP3 (for Crump and rated sections) did not agree with those re-computed from the digitised levels.


The end result of this work was a set of some 318 synthetic discharge measurements for the rated section at Marakabei. These are shown in Figure B.3. With the exception of a few outliers, the values generally lie reasonably close to a straight line. The only exception was for flows less than about 1 cumecs, where there was a lot of scatter in the 'data'. The outlying values could arise from measurement errors (e.g. in the chart recorders or from timing/magnitude problems in the subsequent digitisations) or from errors in the estimated lag times. These values were excluded from the analysis. The large scatter at low flows probably results both from measurement errors and from errors in the estimated lag times, which probably become large at low flows. Flow values below 1 curnec were therefore also excluded. Using the remaining values, a synthetic rating was produced using the standard 'Fit Rating' option in the HYDATA database system used by LHDA. The resulting rating is shown in Table B.2 together with the original rating for this site derived during the Interim Hydrology. To estimate low flows with the new rating, the lowest portion of the Interim rating has been retained for levels up to 0.37 m. The main advantage of this method is that, once the rating has been developed, the revised flow record can be computed simply by reconverting the digitised chart levels for the rated section. However, before discussing the revised flows, it is interesting to compare the correction function implied by this new rating with that proposed in WP3. This implied function can be estimated by comparing the differences between the two rating equations shown in Table B.2 and is shown in Figure B.4. Encouragingly, for low to medium flows, the old and new functions are very similar and it is only at high flows that they diverge. High flows, of course, only make a small contribution to total runoff.




# Marakabei - velocity/stage relationship for rated section

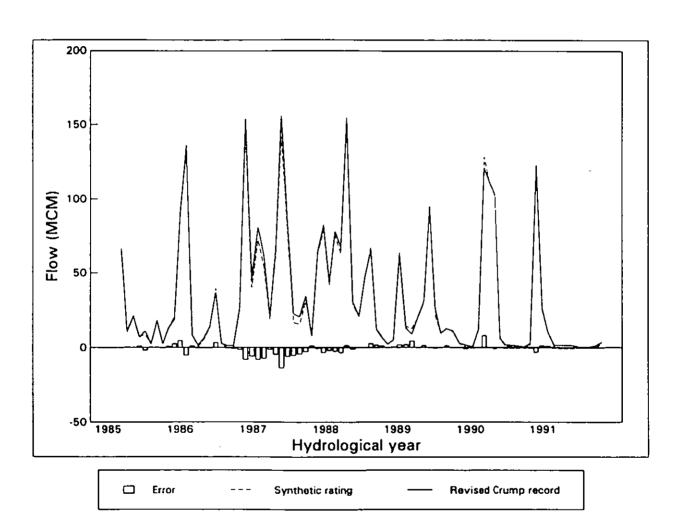






Marakabei - comparison of implied correction from synthetic rating with that presented in Working Paper 3




|                   | â      | b     | C      | h <sub>max</sub> |
|-------------------|--------|-------|--------|------------------|
| Synthetic         | 5.086  | 2.394 | -0.030 | 0.370            |
|                   | 17.894 | 4.000 | 0.015  | 1.100            |
|                   | 56.425 | 2.023 | -0.410 | 10.000           |
| Interim Hydrology | 5.086  | 2.394 | -0.030 | 0.486            |
| ·                 | 17.969 | 4.000 | -0 030 | 1.127            |
|                   | 20.349 | 2.657 | -0.030 | 5.000            |

#### Table B.2 Comparison of Synthetic and Interim Hydrology ratings for Marakabei

Figure B.5 compares the estimated monthly Crump weir flows (computed from the rated section levels and the synthetic rating) with the measured Crump weir flows for Marakebei. The agreement is generally good and the errors vary randomly about zero. The only exception is for the hydrological year 1987 where the estimated flows are consistently too low. However, the earlier intercomparison report (LHDA April 1992) showed that, in much of this period, the original LHDA rated section flows were either deleted or replaced using DWAF records which suggests a possible problem with the LHDA digitised chart record in some of this period. We are therefore not concerned by these large differences in just this period.

The final revised flow record for Marakabei was computed using the synthetic rating up to Dec 1985 and the new agreed Crump weir flows thereafter. As agreed at the meeting in Maseru on 30/3/94, the Crump weir flows are taken as the best possible estimate of the true flows at Marakebei; consequently, no attempt has been made to derive a weighted version of the rated and Crump weir records as suggested in WP3. Also, as in WP3, missing periods in the rated section record were infilled using watchman records where available and provided that the infilling would not have a large effect on the annual total flows. The final monthly flow record is shown in Table B.3 and the annual values are plotted in Figure B.6. The resulting annual total flows are similar to those presented in WP3 and, as shown in Table B.4., differ by at most 1% from those presented in WP3.

For general interest, a synthetic rating was also derived for the rated section at Paray using the revised Crump weir data for Paray. A zero lag time was assumed since we did not have the distance between the Crump and rated sections readily to hand. Table B.5 compares the resulting synthetic rating with that currently used at Paray; the differences are small over the whole flow range which is additional confirmation that there appears to be no discernible systematic error in the rating for the rated section at Paray. A revised monthly record for Paray has therefore been generated using the values from WP3 up to Dec 1985 and the revised Crump weir record thereafter. These values are tabulated in Table B.6 and the resulting updated long term averages are shown in Table B.4.



•

## Marakabei - comparison of predicted & observed Crump weir flows 1985-1992

#### 

#### Institute of Hydrology Summary of monthly data - Flow

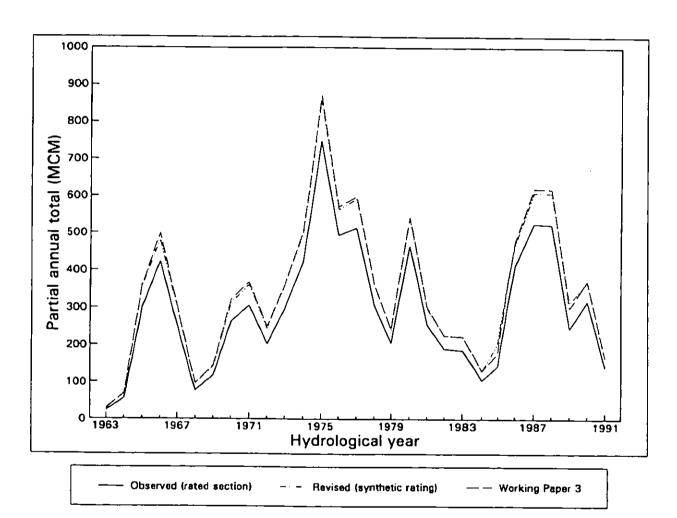
17004

Station number :

\_\_\_\_\_

|   | Basin no. | : 0   | Latitude | : | 0: 0: 0 N | Longitude : | 0:0:0E | Altitude | : .0 |
|---|-----------|-------|----------|---|-----------|-------------|--------|----------|------|
| - | Area      | : 1.0 |          |   |           |             |        |          |      |

Name : Marakabei (revised June 1994)


Annual Jan Feb Mar Apr May Jun Jul Aug Sep Total Oct Nov Dec 963/64 • ---• -24.2 .8 .8 .4 .5 .8 • 1964/65 -• ٠ . 10.9 11.7 17.1 20.9 . 265/66 21.9 42.1 18.1 103.0 133.3 13.6 9.0 8.9 5.0 1.9 1.0 1.3 358.9 18.1 13.9 119.0 -29.1 84.2 40.6 75.2 27.2 26.0 18.0 -966767 2.8 296.8 1967/68 5.7 1.9 9.3 19.9 57.8 9.6 12.2 4.8 3.6 4.5 139.0 28.6 3.1 1.0 18.0 10.8 3.7 6.5 3.2 • 968/69 10.2 1.8 36.1 8.7 .9 1.1 .8 .9 1.0 11.7 141.1 969/70 58.9 21.1 11.7 22.0 2.4 1970/71 26.7 31.0 22.3 1.5 .4 1.1 .4 312.0 60.4 66.0 53.3 34.4 14.4 21.8 19.4 40.2 11.9 5.5 2.0 1.4 358.4 3.5 111.4 60.Z 79.6 1971/72 1.4 3.0 21.6 4.2 1.9 1.6 57.8 11.1 243.6 1.3 72.5 19.7 72/73 16.9 32.1 91.6 20.0 9.6 8.0 4.0 16.9 15.1 359.2 111.6 26.2 1973/74 9.4 12.0 34.7 9.8 9.2 1.9 23.1 498.2 97.1 117.2 2.6 1974/75 4.0 124.2 28.1 64.1 16.7 6.4 2.9 35.3 855.7 168.6 62.0 35.1 35.9 75/76 27.7 143.5 62.7 135.6 140.1 3.0 2.2 17.4 563.4 9.0 976/77 166.4 84.6 6.2 26.1 73.7 154.5 16.1 4.1 40.2 591.8 1977/78 27.6 24.6 170.0 17.9 30.5 197.2 9.5 3.8 1.9 2.3 66.4 8.5 5.0 37.2 99.4 24.7 362.6 78/79 35.0 13.6 94.0 13.3 22.7 7.2 1.8 2.9 .9 1.0 12.9 239.1 979/80 34.1 41.0 12.2 21.6 10.2 7.2 1.4 93.6 18.7 3.6 47.0 33.8 539.0 1980/81 8.5 33.0 41.5 169.1 45.8 71.3 34.6 32.1 4.0 2.5 2.5 299.8 52.3 11.5 28.0 11.7 95.9 16.4 4.Z 981/82 7.2 63.6 225.0 7.1 7.6 6.4 4.4 5.3 3.3 4.0 5.1 2.4 982/83 44.6 120.1 14.7 9.6 8.9 41.0 3.0 7.6 3.7 13.5 222.7 1983/84 5.1 59.5 27.4 39.3 4.3 43.0 2.1 .8 .5 .2 .1 129.6 984/85 7.1 16.4 10.6 8.8 25.6 14.3 189.2 2.5 18.4 2.3 13.1 18.8 985/86 2.3 15.1 66.6 10.6 21.6 6.9 11.0 2.7 1.1 1.4 26.8 154.0 477.6 1986/87 87.5 136.5 8.1 1.5 6.5 14.6 37.0 22.7 20.5 34.5 7.5 64.3 664.6 1987/88 46.5 80.9 61.6 20.6 64.1 156.0 85.3 47.2 65.7 12.0 6.7 2.4 613.5 44.0 78.0 67.2 156.2 30.4 21.2 988/89 82.6 9.7 12.5 11.3 3.0 299.5 8.9 20.9 31.3 95.3 26.0 1989/90 5.2 62.6 13.0 2.7 364.1 121.1 112.3 102.9 6.1 1.7 1.5 1.0 . 6 1990/91 12.2 1.6 .6 169.8 1.2 .3 .4 .3 1.1 3.5 25.8 1.6 1.2 91/92 123.0 10.1 1.3 9.4 28.2 6.9 2.0 1.3 2.1 • . 4.8 66.6 1992/93 14.1 61.7 58.7 11.7 7.1 12.4 18.7 365.2 43.6 36.4 16.2 Nean 35.3 51.2 31.5 50.3 50.7 19.9 3.6 2.9 11.7 9.0 4.1 20.0 dian 14.1 33.0 24.6 13.3 27.8 37.2 99.4 154.0 75.2 197.2 57.8 aximum 166.4 143.5 94.0 170.0 154.8 168.6 .2 .3 Hinimum 1.4 .6 3.0 1.3 1.0 1.2 .9 .3 \_\_4 . 1 9.7 30.0 43.2 21.4 18.3 . dev. 42.1 44.8 24.7 55.1 46.3 50.3 16.5 1.36 1.73 1.61 1.19 .88 .78 1.09 .91 1.15 1.19 1.02 1.56

Total monthly flow in million cubic metres

Data flags Missing - flag "-" Original - no flag set Estimate - flag "c"

Printed on 1/ 7/1994

 Kable B.3
 Revised monthly flow record for Marakabei



## Marakabei - revised annual flows 1963-1992

•

Institute of Hydrology Summary of monthly data - Flow

·

| $\bullet$ |        |   |      |
|-----------|--------|---|------|
| Station   | number | : | 8004 |

Name : Paray (revised June 1994)

| Basin no. | : | 0   | Latitude | : | 0: 0: 0 N | Longitude | : | 0: 0: 0 E | Altitude | : .0 |
|-----------|---|-----|----------|---|-----------|-----------|---|-----------|----------|------|
| Агеа      | : | 1.0 |          |   |           |           |   |           |          |      |

|          |       |       |       |              |       |       |       |       |       |      |       |       | NI 11 14 14 1 |
|----------|-------|-------|-------|--------------|-------|-------|-------|-------|-------|------|-------|-------|---------------|
|          | Oct   | Nov   | Dec   | Jan          | Feb   | Mar   | Арг   | Мау   | Jun   | Jul  | Aug   | Sep   | Total         |
|          |       |       |       |              |       |       |       |       |       |      |       |       |               |
| 65/66    | -     | •     | -     | •            | -     | -     | -     | -     | -     | -    | •     | •     | -             |
| 1966/67  | -     | -     | -     | 126.4        | •     | -     | 119.5 | 37.3  | 66.0  | 18.4 | 14.4  | 26.0  | -             |
| 67/68    | 2.6   | 127.6 | 95.8  | 22.2         | 7.8   | 34.7  | 34.1  | 114.2 | 11.6  | 9.1  | 4.9   | 9.8   | 474.3         |
| 68/69    | 17.1  | 15.8  | 82.1  | 8.3          | 7.0   | 37.3  | 75.2  | 39.9  | 34.8  | 7.6  | 6.0   | 3.7   | 334.8         |
| 1969/70  | 105.4 | 41.4  | 55.1  | 54.2         | 63.5  | 4.9   | 2.9   | 2.3   | 1.2   | 1.2  | 1.3   | 27.3  | 360.8         |
| 270/71   | 124.6 | 57.6  | 106.8 | 142.6        | 76.5  | 58.9  | 97.8  | 26.6  | 5.1   | 4.5  | 2.1   | .9    | 704.0         |
| 71/72    | 2.3   | 14.8  | 33.7  | 141.4        | 133.9 | 213.5 | 28.2  | 34.5  | 9.2   | 3.2  | 2.1   | 2.2   | 618.9         |
| 1972/73  | 19.6  | 65.8  | 5.4   | 1.0          | 138.7 | 46.8  | 38.4  | 7.1   | 3.2   | 1.8  | 71.2  | 47.7  | 446.6         |
| 1973/74  | 43.9  | 34.2  | 85.1  | 148.4        | 204.6 | 31.4  | 59.6  | 20.4  | 24.6  | 11.1 | 14.9  | 16.0  | 694.3         |
| 74/75    | 5.0   | 306.6 | -     | 152.0        | -     | •     | 29.4  | 13.8  | 4.5   | 7.3  | 2.8   | 78.7  | -             |
| 1975/76  | 120.8 | -     | 155.4 | •            | -     | 316.5 | -     | 43.3  | 38.7  | 11.4 | 6.3   | 38.0  | -             |
| 1976/77  | 363,5 | 340.4 | 18.9  | 80.4         | 181.8 | 275.6 | 39.2  | 11.2  | 4.4   | 3.4  | 2.2   | 9.7   | 1330.6        |
| 77/78    | 165.8 | 57.2  | 20.5  | 348.4        | 71.4  | 63.6  | 324.0 | 24.6  | 6.4   | 4.3  | 4.0   | 93.7  | 1183.7        |
| 1978/79  | 84.6  | 35.5  | 225.7 | 44.3         | 35.6  | 36.9  | 5.1   | 10.6  | 13.6  | 41.6 | 233.3 | 164.8 | 931.7         |
| 1979/80  | 174.8 | 86.4  | 183.1 | 48.6         | 93.0  | 25.5  | 6.0   | 4.3   | 2.4   | 1,2  | 1.0   | 32.6  | 658.8         |
| 80/81    | 34.2  | 88.7  | 72.0  | 337.7        | 81.9  | 113.4 | 84.7  | 34.3  | 51.4  | 5.8  | 46.6  | 52.3  | 1002.9        |
| -1981/82 | 10.3  | 78.8  | 149.1 | 16.1         | 14.6  | 19.0  | 135.8 | 32.8  | 6.1   | 4.3  | 3.3   | 4.7   | 474.9         |
| 1982/83  | 69.5  | 225.0 | 19.2  | 6.5          | 14.4  | 24.5  | 17.9  | 22.8  | 10.2  | 4.0  | 7.0   | 4.8   | 425.8         |
| 83/84    | 33.8  | 72.4  | •     | -            | 8.0   | 17.4  | 18.3  | 28.3  | 3.5   | 2.6  | 1.3   | 24.8  | -             |
| 84/85    | 16.5  | 53.4  | 25.5  | 15.6         | 136.1 | 71.2  | 14.4  | 2.5   | 1.0   | 1.2  | .2    | .2    | 337.8         |
| 1985/86  | 29.3  | 126.6 | 256.6 | 31.9         | 80.1  | 17.7  | 43.1  | 10.3  | 29.7  | 5.1  | 14.7  | 50.3  | 695.6         |
| 286/87   | 177.3 | 354.1 | 29.7  | 22.9         | 23.8  | 28.1  | 66.2  | 6.2   | 1.9   | 1.7  | 60.6  | 434.8 | 1207.4        |
| 87/88    | 309.5 | 158.2 | 128.9 | 88.7         | 94.0  | 538.1 | 81.7  | 24.7  | 26.1  | 28.4 | 17.5  | 148.9 | 1644.7        |
| 1988/89  | 117.3 | 145.6 | 198.4 | 115.0        | 370.8 | 90.9  | 48.1  | 65.3  | 143.3 | 48.7 | 14.0  | 6.3   | 1363.7        |
| 1989/90  | 20.2  | 193.8 | 75.5  | 22.8         | 67.3  | 66.1  | 171.1 | 68.1  | 13.5  | 22.8 | 40.8  | 14.5  | 776.4         |
| 90/91    | 13.4  | 7.1   | 21.8  | 123.1        | 215.3 | 121.4 | 17.7  | 3.0   | 2.1   | 1.7  | .7    | 4.2   | 531.6         |
| 1991/92  | 186.1 | 74.8  | 37.0  | 14.5         | 4.0   | 7.3   | 3.4   | 1.3   | .5    | .4   | 1.2   | 14.1  | 344.6         |
| 1992/93  | 21.6  | 168.8 | 26.8  | 19 <b>.1</b> | 76.9  | 55.8  | 99.9  | 14.1  | 4.0   | 2.2  | 4.4   | 1.4   | 495.0         |
|          |       |       |       |              |       |       |       |       |       |      |       |       |               |
|          |       |       |       |              |       |       |       |       |       |      |       |       |               |
| an       | 87.3  | 117.2 | 87.8  | 85.3         | 90.9  | 92.7  | 63.9  | 26.1  | 19.2  | 9.4  | 21.4  | 48.6  | 749.8         |
| nedian   | 34.2  | 78.8  | 72.0  | 48.6         | 75.9  | 46.8  | 39.2  | 22.8  | 6.4   | 4.3  | 4.9   | 16.0  |               |
| Maximum  | 363.5 | 354.1 | 256.6 | 348.4        | 367.5 | 538.1 | 324.0 | 114.2 | 143.3 | 48.7 | 233.3 | 434.8 |               |
|          | 2.3   | 7.1   | 5.4   | 1.0          | 3.9   | 4.9   | 2.9   | 1.3   | .5    | .4   | .2    | .2    |               |
| E. dev.  | 95.5  | 99.5  | 72.9  | 93.3         | 85.5  | 122.9 | 69.0  | 25.1  | 30.0  | 12.4 | 46.4  | 88.3  |               |
| CV       | 1.09  | .85   | .83   | 1.09         | .94   | 1.33  | 1.08  | .96   | 1.56  | 1.31 | 2.16  | 1.82  |               |
|          | 1.07  | .07   |       | 1.07         |       |       |       | . 70  |       |      | 2     |       |               |

Annual

Total monthly flow in million cubic metres

Data flags

Missing - flag "-" Original - no flag set Estimate - flag "e" .

Printed on 1/ 7/1994

Table B.6 Revised monthly flow record for Paray

|           | Table 5.1b WP3 | Revised |
|-----------|----------------|---------|
| Marakahei |                |         |
| 967-1985  | 350            | 345     |
| 1964-1983 | 382            | 377     |
| 1963-1992 | 371            | 365     |
| 'aray     |                |         |
| 1967-1985 | 684            | 683     |
| 966-1982  | 731            | 731     |
| 966-1992  | 762            | 750     |

 Table B.4
 Comparison of revised annual total flows for Marakabei and Paray

 Table B.5
 Comparison of Synthetic and Interim Hydrology ratings for Paray

|                   | 8      | ь     | с     | h <sub>max</sub> |
|-------------------|--------|-------|-------|------------------|
| Synthetic         | 24.800 | 2.463 | 0.115 | 10.000           |
| Interim Hydrology | 30.508 | 2.275 | 0.050 | 10.000           |

# B.2 LHDA COMMENTS ON WP3 (UNTITLED REPORT PRESENTED TO IH ON 28/3/94)

LHDA's comments on Working Paper 3 are grouped by gauging station. Each sub-section comments on the discharge measurements shown in WP3, the revised rating equations and the resulting estimates of mean annual runoff. The following responses to these comments reflect this format.

Senqu River at Seaka Bridge, G3

- Comment: The IH(1993) database has the following measurements that are not available in the LHDA database. Their respective original measurement notes cannot be found in DWA/Natural Resources thus 326, 327, 328, 329, 330, 331, 333 and 345 from IH(1993) database.
- Reply: These measurements were not written on the WEMMIN discharge measurement summary sheet, but original field notes were located at WEMMIN's offices during the project team visit between 15/06/93 and 10/08/93. We have copies of these field notes.
- Comment: Measurement number 207 has the IH(1993) adjusted value more conservative than the LMC 1986 correction.

- Reply: The adjusted value of 1072.2 cumecs given in WP3 is incorrect. The value should be 1102.076 (i.e. less conservative than the LMC corrected value of 1078.12). This new value has been taken into consideration when redetermining the rating equations for this station (see Section B.3).
- Comment: Rating equation J is valid from 23/02/73 to 09/02/74 for stage greater than 2.30 m.
- Reply: Rating equation J is valid from 23/02/73 (not 23/03/72) as written in Appendix A) for all stage measurements.
- Comment: Rating equation  $36.629(h+0.363)^2$ .269 in the appendix A of WP3 should be verified against the rating equation  $36.630(h+0.363)^2$ .208 in the IH(1993) database.
- Reply: This is the upper part of rating J. In the text of Appendix A this equation has been typed incorrectly. As noted by LHDA it should be as it is written in Table A.3 of the Appendix and as it is entered on the IH(1993) database i.e. 36.630(h+0.363)^2.208.
- Comment: IH(1993) rating increases mean annual runoff between 1972 and 1992 by +5%.
- Reply: Noted see discussion in Section B.3.

#### Sengu River at Whitehill, G04

- Comment: Measurements numbers 150 and 151 dated 27/02/87 are to be corrected in the LHDA database and IH(1993) database prior to adjustment according to the original summary sheets.
- Reply: Noted. Measurements changed in our version of the IH(1993) database. Rating equations recalculated after they had been changed.
- Comment: Measurements that have the IH(1993) adjusted values significantly different from the original values by more than 2.0  $m^3/s$ : 162 (diff = 15.91  $m^3/s$ ) and 163 (diff = 15.21  $m^3/s$ ).
- Reply: The original discharge measurements were those on the LHDA database. No corrections had been applied during either the LMC(1986) study or the Interim Hydrology study. The IH(1993) adjusted values have been checked and are confirmed as being correct as written in Appendix A of WP3.
- Comment: The measurement dated 6/02/92 has been omitted in the IH(1993) and LHDA databases.
- Reply: Now added to our version of the IH(1993) database. This measurement has insignificant impact on the calculated rating.
- Comment: The rating equations are okay, the IH(1993) rating is consistently high at stage greater than 4.5 m

- Reply: Noted. To be explored when the revised Crump weir data for Whitehill has been received.
- Comment: IH(1993) rating increases mean annual runoff between 1964 and 1992 by +28%.
- Reply: This increase is primarily caused by applying the Crump weir correction discussed in WP3 which will soon be revised. However, a small part of the increase arises because two new discharge measurements were made at high flows ( $Q > 1175 \text{ m}^3\text{s}^{-1}$ ) after the Interim Hydrology study (on 24/09/87) and enable the upper part of this rating curve to be fitted with more confidence than previously. The IH(1993) rating is consistently higher at stages greater than 2.0 m (see Fig. A.7 in Appendix A).
- Comment: This station should be used as a key station for all the hydrological studies of the LHWP. The available Crump weir data can improve the reliability of the historical data at this site.
- Reply: This point will be explored once the revised Crump weir data for Whitehill has been received.

Sengu River at Koma Koma, G05

- Comment: Measurement 185 has the IH(1993) adjusted value more conservative than the LMC(1986) adjusted value.
- Reply: Measurement 185 was corrected by the velocity area method (discussed in reply to the next comment) and the value thus obtained was 1028.0, which as noted is more conservative than the LMC(1986) adjusted value of 1183.3.
- Comment: The adjustment of measurements by the velocity area method gives very conservative results when compared with the IH(1993) methodology. The adoption of this methodology to only three stations, Paray G08, Koma-Koma (G05), and Marakabei (G17) is not acceptable or it is questionable. Further application of this methodology without a well defined channel cross-section normally leads to less accurate results especially when applied to peak flows (instantaneous) flows that contribute significantly to the MAR (Mean Annual Runoff).
- Reply: As discussed in WP3, there are often considerable difficulties in obtaining reliable discharge measurements at high flows. Considerable error can occur in these measurements and it is sometimes difficult to treat them with a high degree of confidence. In the IH(1993) study, all discharge measurements were initially corrected only using the IH(1993) drag correction, which is explained in detail in WP3. However, at three stations (Koma-Koma, Paray and Marakabei), high flow measurements used to fix the upper part of the rating caused the ratings to look very unrealistic (exponents greater than or equal to 4). For this reason and after careful consideration of subcatchment water balances, high discharge measurements at these three stations were estimated using the velocity-area method instead.

- Comment: The correction of the rating curves by IH(1993) were noted. IH(1993) rating consistently higher than LHDA (1987) for stage greater than 6.0 m.
- Reply: The IH(1993) correction is different to that of LMC(1986) as discussed in WP3. This is why the IH(1993) rating equation differed from the LHDA(1987) ratings.
- Comment: The rating equation  $Q = 2.536(h+0.220)^{-3.642}$  should be  $Q = 2.535(h+0.220)^{-3.642}$  in Appendix A.
- Reply: This is the LHDA rating T. The difference is a typing error in Appendix A; the correct value was used in generating the flows.
- Comment: IH(1993) rating and data decreases the mean annual runoff between 1972 and 1992 by 4%.
- Reply: Noted see also the comments in Section B.3 of this report.
- Comment: The reduction in the monthly total of March 1975/76 from 1171.0 (LHDA, 1987) to 642.9 IH(1993) which is an 82% reduction on the basis of the IH(1993) Appendix C is not acceptable because there is digitized stage data for the whole month including the three days 20, 21 and 22nd March 1976. There were floods all over the country for the period. This was an extremely wet year.
- Reply: Agreed. These values were deleted because they seemed unusually high and were a long way above the highest discharge measurement ever made at this station. However, we are happy to include data for this period if LHDA are confident in the chart digitisations (see also Appendix B.3). As a comparison, the peak daily mean flow recorded at Paray during this event was about 900 cumecs and the peak daily mean flow at Oranjedraai was about 5400 cumecs.

#### Sengu River at Mokhotlong, G06

- Comment: Flow measurements that are missing from the IH(1993) database yet they are available in the LHDA database (19/05/87, 25/06/88, 02/08/91, 08/08/91 and 04/09/91).
- Reply: These are all very low flow measurements with measured velocities below the calibrated minimum of the current meter. They were removed inadvertently from the IH(1993) database, but have now been replaced. The effect of omitting these measurements was negligible in terms of the rating equation for Mokhotlong.

Tsoelike River at Tsoelike Bridge, G07

- Comment: The flow of the original measurement No. 95 should be adjusted to 3.786  $m^3 s^{-1}$  in the LHDA database (measurement 94 in the IH(1993) database).
- Reply: Noted. LHDA action required.

Comment: No problems with the IH(1993) change of rating dates. The IH(1993) rating is consistently high for stage greater than 2.5 m.

Reply: Noted. No action required.

Comment: III(1993) ratings and data decreases the mean annual runoff between 1965 and 1992 by 6%, when compared to the LHDA ratings.

Reply: Noted. We believe the revised rating provides an improved estimate of the mean annual runoff

Malibamatso River at Paray, G08

- Comment: The adjustment of the measurement made on 25/01/81 by the velocity-area method gives very conservative results when compared with IH(1993) methodology. The adoption of this methodology to only three stations, Paray (G08), Koma-Koma (G05), and Marakabei (G17) is not acceptable or it is questionable. Further application of this methodology without a well defined channel cross-section normally leads to less accurate results especially when applied to peak flows (instantaneous) flows that contribute significantly to the MAR.
- Reply: See reply to the same comment made for Koma-Koma, G05.
- Comment: The IH(1993) rating is considerably higher for stages greater than 4.0 m than the LHDA rating.
- Reply: In fact, when considering the whole flow range, the IH(1993) ratings and data decreases the mean annual runoff between 1966 and 1992 by 2%, when compared to the LHDA ratings and data. Since the IH(1993) rating is higher at all stages, this reduction is a consequence of the IH cleaning up of the raw data.

Sengunyane River at Marakabei, G17

Comment: The adjustment of the measurement made on 29/01/77 results in the corrected value being more conservative than the LMC 1986 correction. Further, the adjustment of measurements by the velocity-area method gives very conservative results when compared with other methodologies. Its application to ill-defined channel cross-section normally leads to less accurate results especially when applied to peak flows that contribute significantly to the Mean Annual Runoff.

Reply: See comments made to this point previously.

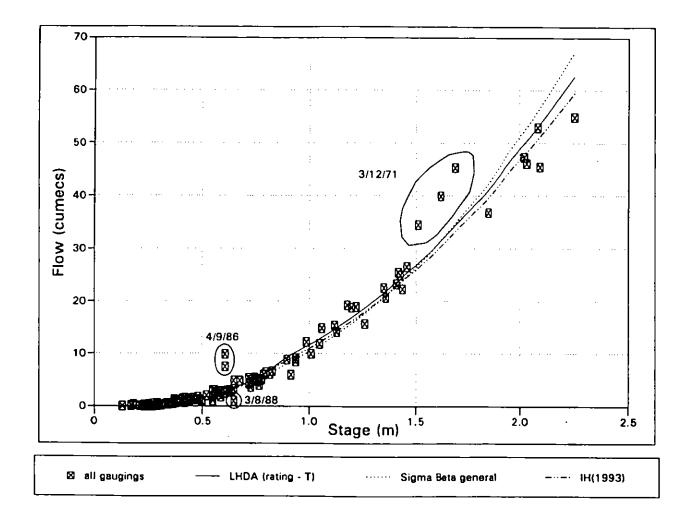
Comment: The IH(1993) equation is consistently high for stage greater than 3.0 m.

Reply: Noted. Revised rating recommended.

Comment: The IH(1993) rating to be corrected in Appendix A and Table A.3.

Reply: This was a typing error. The upper part of the rating, written as  $Q = 43.410(h+0.280)^2.870$  in Appendix A and Table A.3 should be  $Q = 43.410(h-0.280)^2.870$ .

Comment: The LHDA(1987) rating to be corrected in appendix A.


- Reply: This is another typing error. The middle part of the LHDA(1987) rating written as  $Q = 17.969(h-0.030)^2$ .120 in Appendix A, should be written as  $Q = 17.969(h-0.030)^4$ .000.
- Comment: IH(1993) ratings and data increases the mean annual runoff between 1963 and 1992 by 18%, when compared to the LHDA ratings.
- Reply: This is mainly due to the correction applied to account for the recent Crump weir data for Marakabei (see Section B.1 of this report).

#### Sengunyane River at Nkaus, G32

- Comment: Has the IH(1993) drag correction been applied to the original observed measurements as reflected in the LMC(1986) feasibility study or to the LMC(1986) adjusted values as reflected in the LHDA database ?
- Reply: The IH(1993) drag correction has been applied to the original observed measurements not the LMC(1986) adjusted measurements. This is why the IH(1993) corrected flows are greater than the LMC(1986) corrected flows.
- Comment: The IH rating is consistently high for stage greater than 4.0 m.
- Reply: This is because the IH(1993) drag correction is smaller than that previously applied by LMC(1986).
- Comment: IH(1993) ratings and data increases the mean annual runoff between 1967 and 1979 by 1.7%, when compared to the LHDA ratings.
- Reply: Noted. The revised ratings are believed to provide an improved estimate of mean annual runoff.

#### Khubelu River at Tlokoeng, G36

- Comment: Clarification required: Omission of 4 measurements dated 3rd December 1971 (i.e. numbers 37, 38, 39 and 40 in the LHDA database) because they were determined on the steep recession of the hydrograph require explanation. It is worth noting that these flow measurements are very high measurements compared to the other recorded measurements for the station.
- Reply: When all the discharge measurements are plotted on a linear scale three of those made on 3/12/71 appear as outliers (see Figure B.7). From the order in which they appear in the LHDA database it would seem that stage decreased from 1.69 m to 1.05 m and velocity from 1.258 ms<sup>-1</sup> to 0.894 ms<sup>-1</sup> between the first and last measurement made on this date (unfortunately the original field sheets could not be located at WEMMIN). This suggests that



## Khubelu River at Tlokoeng: discharge measurements omitted

the measurements were made during a period of steep recession when discharge was changing rapidly. Under such circumstances accurate flow gauging is extremely difficult and since these measurements appear to be outliers it was decided to omit them from the analysis.

- Comment: Measurement of 19th May 1993 is to be corrected in the LHDA database according to the original one. Refer to the IH(1993) report.
- Reply: Noted. Action by LHDA required.
- Comment: The IH(1993) rating is lower than the Interim Hydrology rating (1987) for stage greater than 3.0 m.
- Reply: This is only a very small difference between the two ratings, probably caused by the omission of the measurements discussed above.
- Comment: IH(1993) ratings and data decreases the mean annual runoff between 1969 and 1988 by 2.7%, when compared to the LHDA ratings.
- Reply: Noted. The revised ratings are believed to provide an improved estimate of mean annual runoff.

Bokong River at Bokong, G41

- Comment: The IH adjusted measurement made on 15/04/87 is different from the original measurement by a value greater than 2.0 m<sup>3</sup>s<sup>-1</sup>. The difference is 3.23 m<sup>3</sup>s<sup>-1</sup>.
- Reply: The IH adjustment or drag correction for this measurement has been checked and is confirmed as being correct.
- Comment: The Interim Hydrology rating R has been revised for high flows and the IH(1993) rating gives conservative results.
- Reply: The LHDA rating R was based solely on low flow discharge measurements and considerably over-estimates flow.
- Comment: IH(1993) ratings and data decreases the mean annual runoff between 1971 and 1992 by 6%, when compared to the LHDA ratings.
- Reply: Noted. The revised rating is believed to provide an improved estimate of mean annual runoff.

Matsoku River at Ha Seshote, G42

- Comment:The IH(1993) equation is consistently higher for medium to high flows.Reply:The IH(1993) rating is a two-part rating that we feel gives a slightly better<br/>fit than the LHDA single part rating across the range of discharge<br/>measurements.
- Comment: The IH(1993) ratings and data leave the mean annual runoff between 1970 and 1992 exactly the same, when compared to the LHDA ratings.

Reply: Noted. No action required.

Malibamatso River at Ha Lejone, G4

Comment: For the 7 measurements dated 15/04/87, two measurements at stage of 2.85 m were observed, the measurement of 251.16 m<sup>3</sup>s<sup>-1</sup> was selected.

Reply: The measurement selected was that on the WEMMIN discharge measurement summary sheet.

Comment: For the 7 measurements dated 15/04/87, two measurements at stage of 3.10 m were observed, the measurement of 292.17 m<sup>3</sup>s<sup>1</sup> was selected.

- Reply: The measurement selected was that on the WEMMIN discharge measurement summary sheet.
- Comment: The adjusted discharge measurements 135, 139 and 141 (all made on 15/04/87) are different from the original measurements by more than 2.0  $m^3 s^{-1}$ .
- Reply: The original field sheets obtained from WEMMIN for all the measurements made on 15/04/87 have been checked. From these it is clear that in some cases the measurements had a drag correction applied before they were entered onto the WEMMIN discharge summary sheet. The IH drag correction was applied inadvertently to all the measurements and so in some cases a correction was applied twice. This occurred in the case of measurements 138, 139, 140 and 141. The correct values for these discharge measurements (i.e. when the IH correction is applied to uncorrected flows) are:

| 138: | 250.4 m <sup>3</sup> s <sup>-1</sup> , | 139: | 299.4 m <sup>3</sup> s <sup>-1</sup> , |
|------|----------------------------------------|------|----------------------------------------|
| 140: | 222.5 m <sup>3</sup> s <sup>-1</sup> , | 141: | 289.6 m <sup>3</sup> s <sup>-1</sup>   |

The IH drag correction was applied correctly to measurements 135, 136 and 137. These revisions are sufficiently small that we do not feel that there is any need to revise the ratings recommended in WP3.

- Comment: On table 3.3 the date of the second measurement (i.e.  $101.7 \text{ m}^3 \text{s}^{-1}$ ) should be corrected to 13/01/76,
- Reply: This is a typing error and is noted.
- Comment: The LHDA(1987) rating has been revised for medium to high flows due to the availability of flow measurements. The 1H(1993) rating gives reasonable results for high flows. The 1H(1993) ratings and data decrease the mean annual runoff between 1972 and 1992 by 7.6% when compared to the LHDA ratings.
- Reply: Noted. The revised ratings are believed to give an improved estimate of the mean annual runoff.

#### <u>General</u>

There are a few other minor typing errors in Appendix A of WP3 that were not noted by LHDA. These errors and their corrections are listed below:

Seaka (03):

'Period until 22/02/72' should be 'Period until 22/02/73'

Koma Koma (05):

Period until 22/03/76 - the third part of the rating:

 $Q = 1.230(h-0.553)^{3.962}$  should be  $Q = 1.230(h+0.553)^{3.962}$ 

Period from 23/03/76 - the second part of the rating:

 $Q = 28.061(h+0.100)^{1.744}$  should be  $Q = 28.061(h-0.270)^{1.744}$ 

Tsoelike (07):

In Table A.3 of WP3: 17.04.75 should be 17.04.76

Nkaus (32):

Period from 10/02/73 until 18/03/75 - the first part of the rating:

 $Q = 15.490(h+0.092)^{1.940}$  should be  $15.940(h+0.092)^{1.940}$ 

Note: the multiplier also needs changing in table A.3.

Bokong (41):

Period from 26/02/72 until 21/03/76 - the first part of the rating:

 $Q = 68.710(h-0.284)^{1.560}$  should be  $Q = 68.710(h-0.284)^{2.458}$ 

Period from 22/03/76 until 19/06/78 - the first part of the rating:

 $Q = 58.200(h-0.202)^{1.140}$  should be  $Q = 58.200(h-0.202)^{2.770}$ 

Period from 20/06/78 - the first part of the rating:

 $Q = 66.490(h-0.255)^{1.100}$  should be  $Q = 66.490(h-0.255)^{2.550}$ 

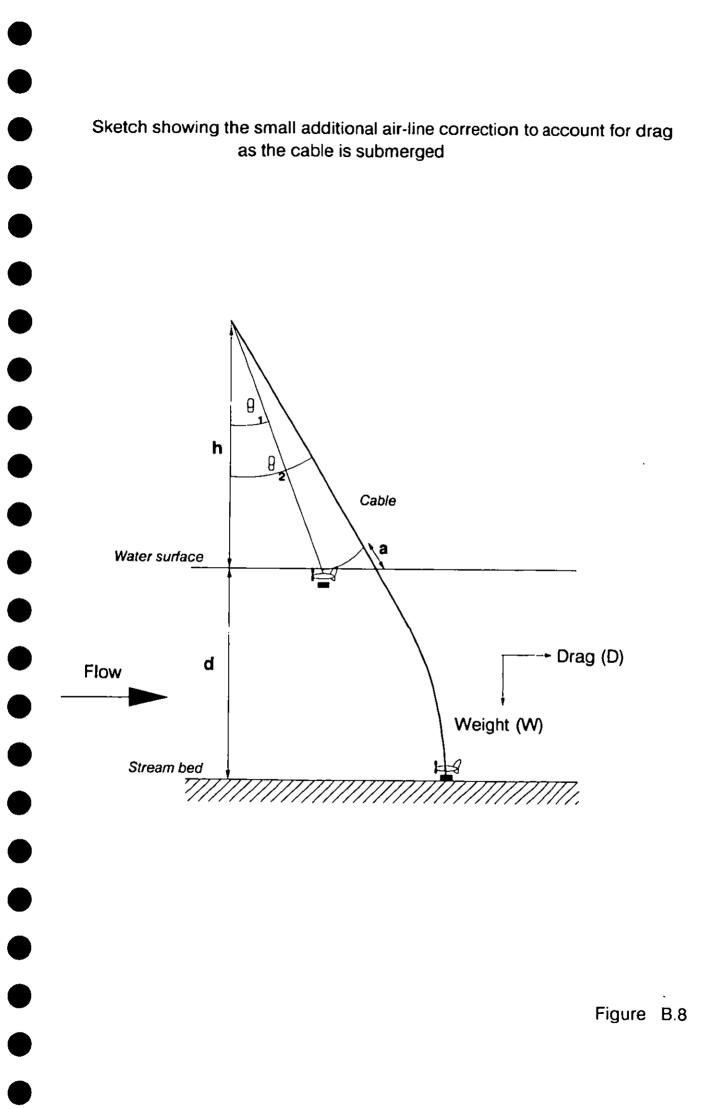
#### **B.3** BKS/DWAF COMMENTS ON WP3 (REPORT TITLED "COMMENTS ON THE LHDA REPORT TITLED STUDIES OF HYDROLOGY OF THE LESOTHO HIGHLANDS WATER PROJECT ROYALTIES ASSESSMENT WORKING PAPER 3 - FLOW ANALYSES", BKS INC REPORT NO. P4564/02/10, JAN 1994)

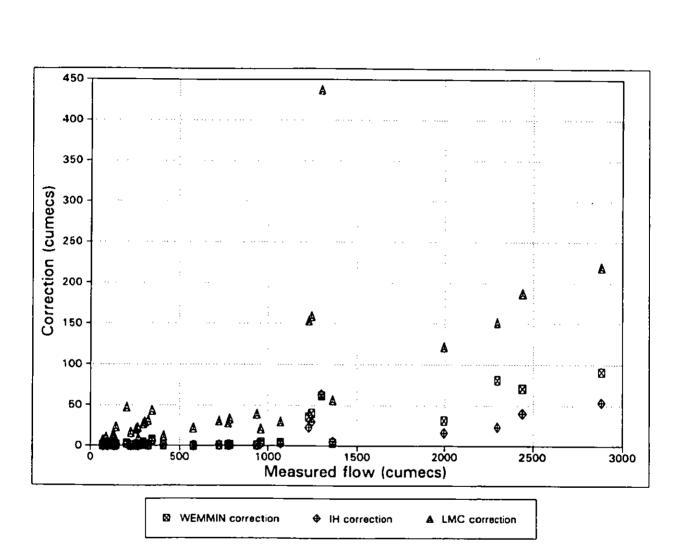
BKS/DWAF prepared an extensive report commenting on the issues discussed in Working Paper 3. The comments mainly concerned aspects of the methodology used, rather than specific data values. The main questions raised in the Conclusions and Executive Summary concerned:

- (a) The drag corrections applied to the raw discharge measurements
- (b) The correction to be applied to the historic Marakabei data
- (c) The water balance between Seaka and Oranjedraai
- (d) Miscellaneous plants (e.g. the record for Koma Koma)

The main recommendations concerning the Marakabei data were that the LHDA and RSA records should be merged into a single record and that a decision should be taken about whether the Crump weir flows should be regarded as 'correct' or whether a weighted average of Crump and rated section flows should be used instead. These issues were resolved at the meeting in Maseru on 30/3/94 and the revised Marakabei record is discussed in Section B.1 of this report. The remaining issues are discussed in detail below:

#### Drag corrections (Section 3.3 of BKS/DWAF report)


When making discharge measurements, a drag correction is required to allow for the curvature of the cable caused by the current meter being swept downstream, resulting in an over-estimate of the true depth and hence of the true flow. In WP3, we presented a revised drag correction method based on recent actual measurements of cable deflection angle. The resulting corrections were generally much smaller than the theoretical correction factors derived by LMC at the time of the Stage 2B studies. We believe that the new corrections are more realistic since they are based on field data rather than theoretical estimates. In future, the need for a drag correction could be avoided altogether by a change in measurement procedures; for example by using heavier sinker weights in fast flowing water or by the more difficult method of 'casting' the current meter upstream of the suspension point so that it drifts back to touch the river bed immediately beneath the suspension point.


To answer some of the points made by BKS/DWAF, it is perhaps helpful to explain why it was necessary to develop a new correction method. On arriving in Maseru at the start of the project, we quickly realised that a large number of discharge measurements had been made since the time of the Interim Hydrology. It was therefore important to include these in our review of the rating equations for the project area stations. However, both of the main data collection agencies (LHDA and WEMMIN) were of the opinion that the Stage 2B drag corrections were larger than necessary, and were no longer applying these corrections to new discharge measurements. LHDA had reached this view after requesting Dr Reg Herschy to review the Stage 2B correction method, whilst WEMMIN had, with the assistance of a UN consultant, developed a new correction method based on direct measurements of the cable deflection angle. In his visit report, Herschy outlined a new method for making the wet-line correction, although at that time he did not have access to the measurements of cable deflection made by WEMMIN. We simply took his suggested method one step further by developing an empirical relationship between deflection angle and the mean stream velocity.

The resulting correction function gave similar results to that developed by WEMMIN. However, in view of the comments made by BKS/DWAF, we have again reviewed the various assumptions made in deriving these revised corrections. Perhaps one of the main reasons that the corrections are smaller than the Stage 2B values is that they do not include an 'air-line' component. This is because it is generally agreed that WEMMIN have always zeroed the depth meter after the current meter has been immersed at the water surface. This was noted by LMC themselves in their original report and is confirmed again in WEMMIN's comments on our WP3 (i.e. "Natural Resources DWA have always zeroed the depth meter when the water is at the horizontal axis of the current meter-sinker assemblage ... "). In fact, the assumption of an identically zero air-line correction is not strictly correct because the deflection angle may change as the current meter assemblage is lowered from the surface to the river bed. This leads to a small additional error as indicated in Figure B.8, which can be either positive or negative, depending on the relative magnitudes of the drag forces on the immersed sinker and immersed cable. A rough estimate for this term can be obtained by taking moments about the suspension point, and ignoring the curvature of the cable. These calculations suggest that, for the Lesotho highlands, this correction is unlikely to be more than a few percent in the worst case of deep, fast flowing water, when the drag on the immersed cable is likely to be a maximum. However, to derive these estimates, many assumptions must be made about the magnitude of the drag force, the shape of the cable, the precise measuring technique and the velocity profile in the river. Also, WEMMIN evidently did not feel this error term was a significant factor when developing their correction method using direct field observations of the deflection angle. For the future, better estimates of this term could be obtained by measuring the true length of the submerged cable with the aid of markers attached to the cable at, say, 10 cm intervals.

A second assumption in the IH method is that the mean deflection angle gives a reasonable measure of the total correction; in fact, this is confirmed by comparisons with the WEMMIN field data, in which WEMMINS's estimated corrections are based on an integration of the correction factor for each flow panel across the stream width, and give similar results to a function based on the mean deflection angle. This is shown by Figure B.9, which compares the WEMMIN correction, the revised (WP3) correction and the original Stage 2B correction for those discharge measurements for which WEMMIN have made direct measurements of the cable deflection angle (see Table 3.2 of WP3). The only differences between the WEMMIN and WP3 corrections are for flows greater than about 1500 cumecs, and are only of the order 1-2%.

In their comments, BKS/DWAF also make several useful observations about the corrections applied to specific measurements. One such measurement is that made on 25/1/81 at Koma Koma; the problem here is that this measurement was made using a 100 kg sinker weight. whilst the revised correction was only developed from data collected using the 25 kg and 50 kg sinker weights. The revised correction therefore seems inconsistent when compared with the Stage 2B correction. However, given that the correction is only 2% when assuming a 50 kg sinker weight, there would only be a small effect on the rating for Koma Koma if the correction was modified to allow for the heavier sinker weight. Also, an inspection of the Stage 2B and subsequent data shows that the 100 kg weight has apparently only ever been used on three occasions in the Lesotho highlands - all at the Koma Koma site. Another point made by BKS/DWAF is that, in WP3, five of the measurements were estimated using the area-velocity method rather than by applying the revised correction, and that the resulting values seem very close to those obtained using the LMC drag correction. These five measurements themselves are in error since they do not fit in with the pattern indicated by





Comparison of drag correction methods (when cable deflection angle was known)

Figure B.9

the other measurements at these sites. Another suggestion made by BKS/DWAF in their report was that LMC's original calculation files should be consulted for further information. In fact, we obtained the bulk of these informally whilst we were preparing Working Paper 3. The notes consist mainly of earlier drafts and worked examples similar to the final text presented in the LMC (1985) report and do not contain any significant additional data or information. They do however confirm that the full air-line correction was included in the calculations and that, apparently, the shape of the submerged cable was approximated as a parabola.

Overall, we believe that the revised drag corrections provide a reasonable estimate of the true correction and may in any case be small in comparison to some of the other errors inherent in making discharge measurements by current meter. Also, even if the drag correction was in error at the highest flows, the impact on annual total flows at a given station is likely to be small, since the highest flows only make a small contribution to annual runoff. The rating at Seaka provides a good example of this point (see next section).

#### Seaka-Oranjedraai water balance (Section 3.5 of BKS/DWAF report)

One of the conclusions from WP3 was that there were some problems with the water balance in the reach between Seaka and Oranjedraai, with a suspiciously low mean annual runoff and consistently small or negative incremental flows since 1987. BKS/DWAF make the points that (a) the revised drag corrections have raised flows at Seaka, (b) the water balance to Whitehill is suspect and (c) that additional RSA flow data (Hendrik Verwoerd, Kraai, Caledon) may help in resolving this issue. We plan to re-work the overall water balance once the revised flow records for Whitehill have been received; in the meantime, we present some observations on the discharge tables for Seaka and Oranjedraai.

The first point is that LHDA have noted that the IH(1993) drag correction was applied incorrectly to discharge measurement 207 at Seaka (see Section B.2). This has been rectified and the rating equations recalculated. The new ratings, which are given in Table B.7 are virtually indistinguishable from those previously determined, and the revised annual total flows are within 1% of the values presented in WP3.

We now consider the issue of the effect of the revised drag corrections. In order to determine the sensitivity of the fitted ratings to the correction applied, and consequently the impact on the calculated flows, rating equations were fitted to discharge measurements to which the following drag corrections had been applied:

i) No correction applied

Ì

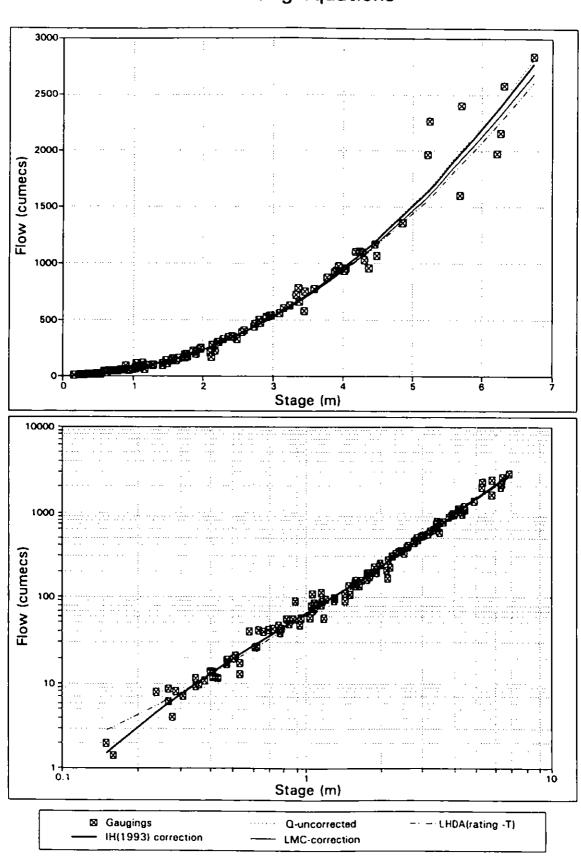
- ii) LMC(1986) correction applied
- iii) H(1993) correction applied

For this comparison exercise, all the ratings were fitted to discharge measurements made after 14/10/77, which was the last time there was definitely a shift in the rating curve, and were all two-part ratings with the switch-point at 1.52 m. The resulting rating equations were:

| i)  | $Q = 73.53(h \cdot 0.056)^{1.649}$<br>$Q = 52.69(h + 0.036)^{2.080}$ | hmax = 1.52 m<br>hmax = 10.00 m |
|-----|----------------------------------------------------------------------|---------------------------------|
| ii) | $Q = 73.01(h - 0.057)^{1.640}$                                       | hmax = 1.52 m                   |

 $Q = 56.53(h - 0.005)^{2.024}$  hmax = 10.00 m

| iii) | $Q = 73.52(h - 0.056)^{1.649}$ | hmax = 1.52 m  |
|------|--------------------------------|----------------|
|      | $Q = 55.58(h + 0.005)^{2.049}$ | hmax = 10.00 m |


 Table B.7
 Revised rating equations for Seaka

Period until 22/02/73:  $O = 67.90(h + 0.020)^{1.737}hmax = 1.90 m$  $O = 55.58(h + 0.005)^{2.049}hmax = 10.00 m$ Period from 23/02/73 until 09/02/74:  $Q = 64.03(h - 0.077)^{1.959}hmax = 2.30 m$  $O = 55.58(h + 0.005)^{2.049}hmax = 10.00 m$ Period from 10/02/74 until 06/02/77:  $Q = 49.22(h + 0.127)^{2.102}hmax = 2.50 m$  $Q = 55.58(h + 0.005)^{2.049}hmax = 10.00 m$ Period from 07/02/77 until 13/10/77.  $Q = 87.82(h + 0.010)^{1.434}hmax = 2.10 m$  $Q = 55.58(h + 0.005)^{2.049}hmax = 10.00 m$ Period from 14/10/77 until 15/03/88:  $Q = 73.52(h - 0.056)^{1.649}hmax = 1.52 m$  $Q = 55.58(h + 0.005)^{2.049}hmax = 10.00 m$ Period from 15/03/88:  $Q = 35.87(h + 0.097)^{2.577}hmax = 1.80 m$  $Q = 55.58(h + 0.005)^{2.049}hmax = 10.00 m$ 

Figure B.10 shows a comparison of these three rating curves as both a linear and a log-log plot. Also shown is the Interim Hydrology rating (Rating T):

iv)  $O = 5.208(h + 0.080)^{2.018}$ 

which was applied from 25/10/77 in the original work. However, in this case, it was applied from 14/10/77 in order to compare it directly with the other rating equations. Figure B.10(a) shows that for stages greater than 4.0 m the IH(1993) rating is slightly greater than both the LMC(1986) rating and rating-T whilst, for stages greater than 5.0 m, rating-T is lower than even the rating determined by applying the LMC(1986) correction to all the data presently available (i.e. last discharge measurement in June 1992). However, for stages less than 0.3 m, rating T is slightly higher than the other fitted ratings so it is clear that the two-part ratings produce a better fit to the low flow discharge measurements. Between stages of 0.3 m and 4.0 m all the ratings are very similar. In order to compare the rating equations in a quantitative way and to ascertain the impact on long-term mean annual flows, a cumulative total (MCM) was calculated for the period 10/77 to 09/92 using each of the rating equations. To determine the total, the raw LHDA stage data were used. The table below gives the cumulative totals derived from the different rating equations and the percentage changes



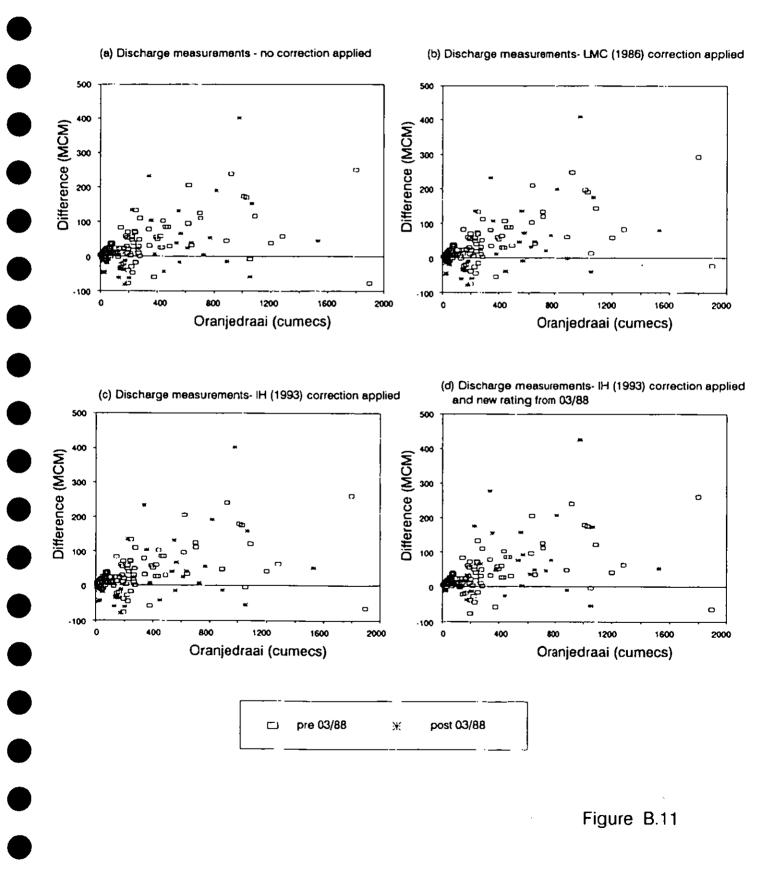
Senqu at Seaka: comparison of discharge measurements and rating equations

Figure B.10

relative to the IH(1993) rating:

| Rating (IH(1993) correction applied): | 42019.9 MCM        |
|---------------------------------------|--------------------|
| Rating (no correction applied):       | 42113.0 MCM +0.2 % |
| LHDA(1987) rating T:                  | 41576.8 MCM -1.1 % |
| Rating (LMC correction applied):      | 41429.9 MCM -1.4 % |

These results allow direct comparison of the influence of the different rating equations and consequently the effect of the correction applied to the current meter measurements. The results clearly demonstrate that over a representative period the different rating equations do not significantly change the flow. This must be because the stage at Seaka lies predominantly between 0.3 m and 4.0 m and consequently there are relatively few periods when the rating equations are significantly different. Certainly these differences alone are not enough to explain the discrepancy between the Oranjedraai and Seaka flows, which assuming the flows at Oranjedraai are correct, would require a decrease in the flow at Seaka of between 8 and 14%. As a further check, Figure B.11(a-c) shows the monthly total incremental flows between Oranjedraai and Seaka computed on the basis of these different rating equations. These confirm that the different Seaka ratings result in very similar patterns of incremental flow and so clearly the negative flows cannot be explained solely by the magnitude of the drag correction applied to the discharge measurements at Seaka.


Since it is particularly noticeable that, in the period after water year 1987, the incremental flows are zero or negative, this period was investigated in more detail. It is possible that a major flood between 13 and 14 March 1988 shifted the lower part of the rating at Seaka as it did at several other stations in the Lesotho Highlands (e.g. G45, Malibamatso at Pelaneng). In Appendix A of WP3 it was stated that there was insufficient evidence to prove that a change in rating had actually occurred, because only 11 discharge measurements have been made since this date and only one of these has been made at a stage less than 1.00 m. Consequently, no new rating was fitted. However, it is possible that the rating did shift and the few discharge measurements that have been made do suggest that this might be the case (see Figure A.1 in WP3). To investigate the effect of this apparent change, the new rating was fitted for the period from 15/03/88 using the discharge measurements available. These were first corrected for drag using the IH(1993) methodology and it was assumed that no change occurred in the upper part of the rating. The equation fitted is:

 $Q = 35.87(h + 0.097)^{2.577} \quad hmax = 1.80 \text{ m}$  $Q = 55.58(h + 0.005)^{2.049} \quad hmax = 10.00 \text{ m}$ 

Figure B.11(d) indicates that this does improve the incremental flows for the period after March 1988, but there are still several near zero and some negative values.

Our overall conclusions from this work are that the near zero and negative incremental flows between Oranjedraai and Seaka cannot be explained solely by errors in the rating fitted at Seaka. The magnitude of the drag correction applied to the current meter measurements made at Seaka has little effect on the rating derived and consequently the calculated flows at Seaka. Over a representative period the difference between having no correction and the largest possible correction (i.e. the LMC correction) is less than 2%. The suggested new rating for stages up to 1.80 m improves the incremental flows between Seaka and Oranjedraai from 15/03/88. However, this rating is based on only eleven discharge measurements and our recommendation that is to make every effort to confirm it through current meter measurements as soon as possible. This new rating also does not fully explain the observed

### Comparison of monthly total flows (10/77 to 12/92) Oranjedraai - Seaka



#### discrepancies.

One further possibility was examined. Since there was a change in the discharge table used by DWAF for Oranjedraai in August 1989 and this corresponds to the period during which the water-balance between Seaka and Oranjedraai is particularly prone to being close to zero, the effect of this switch was investigated. Discharge table 28 (DT28) was used from 21/10/60 to 29/04/87. Discharge table 30 was used from 08/08/87 to 29/08/89 and discharge table 33 (DT33) has been used since. As DT30 was used for just two years we have not looked at this rating but have concentrated on the other two. Using data from the discharge tables, rating curves corresponding to each table were fitted. Using the daily flow data from 01/09/89 to 31/08/92 an "effective mean daily stage" was calculated using the DT33 rating. The flow was then re-computed using the DT28 rating. This allows direct comparison of the two discharge tables. The results indicate that while there are differences on a day to day basis, the monthly totals are very similar and not sufficiently different to cause the water balance problem between Seaka and Oranjedraai. Recent stream gauging made on 13/01/94 at Oranjedraai lie within the error band of gauging at the site and confirm the rating. However, we note that they are different from the rating in the positive sense (i.e. suggest a slightly higher flow at Oranjedraai). As for Seaka the only real solution is to make more discharge measurements. It is also hoped that re-working the overall water balance may help towards resolving this issue.

#### Miscellaneous points

#### Koma Koma record (p4.3-4.5)

BKS/DWAF note that the revised flows for Koma Koma are some 3% lower than their own estimates, whereas a higher value would be expected in view of the revised drag correction. Examining individual years, the values are higher in the first 10 years of record and lower thereafter. This difference almost certainly arises from a revision of the rating equations rather than from the revised drag corrections. The recommended ratings (Figures A.9 and A.10 of WP3) give higher flows up to 1976 and lower flows thereafter when compared to the Interim Hydrology ratings. The shift in 1976 was linked to the flood of 21.3.76.

BKS/DWAF also discuss several monthly values for which there are large differences with previous estimates. We agree that two of these values seem inconsistent when compared with the values for nearby stations; for Nov. 68, the problem arises because, during the period 5/11-18/11, flows at Koma Koma were estimated as zero whilst a flow of a few cumecs was recorded at Paray. Similar monthly totals were obtained for Paray and Whitehill suggesting that the records for Koma Koma are incorrect for this month. This will be corrected in the final database. The low value for Mar. 76 is in fact an estimate based on an incomplete month of data. In Section B.2, we mention that LHDA recommend reinstating 3 of the missing daily high flow values, which would raise the total for this month by about 615 MCM. Estimated values should really be flagged and this will be done in the final printouts; note however that this has no effect on the annual totals used in the stochastic model since these are calculated directly from the daily data.

#### Non-zero in rating equations (p3.6)

In this study, rating equations are expressed in the form  $Q=a(h+c)^b$ , where Q is flow, h is level and a,b and c are constants. BKS/DWAF point out that a non-zero value for c can

result in discontinuities at intersections in multi-art ratings. Whilst in principle we agree with this comment, the use of a non-zero c is in line with current practice at both WEMMIN and LHDA and also with ISO guidelines. Applying a retrospective correction to all digitised stage values might also cause confusion. We feel that the ratings developed so far are certainly sufficient to provide a satisfactory estimate of the monthly and annual total flows required as input to the stochastic model.

## B.4 COMMENTS BY WEMMIN ON WP3 (3 NOTES PRESENTED TO IH ON 28/3/94)

WEMMIN provided three sets of comments on WP3 in letters dated 14/1/94 (ref: WR/557/01), 25/1/94 (ref: NR/WA/A/16) and 25/2/94 (ref: NR/WA/C/22). Two of these letters included comments on Working Papers 1 and 2, but only those comments relating to WP3 are discussed below.

#### Letter dated 14/1/94

- Comment: The fact that there is no balance in flows between Seaka and Oranjedraai suggests further investigation into measurements upstream of Oranjedraai. If the Whitehill data is very suspect then the water balance downstream at Seaka will also be affected. One would expect that the Oranjedraai weir data is more reliable than the Seaka rated section data.
- Reply: Some further investigation of the water balance in the Seaka-Oranajedraai is presented in Section B.3 of this report. The Whitehill-Seaka balance will be reviewed once the agreed flow records for the Whitehill Crump weir have been received.
- Comment: Whitehill and Marakabei flow data has been investigated in great detail the past few years. There is a great amount of information available from both Lesotho and RSA authorities on the measuring structures. Both sets of data should be used if found to be suitable.
- Reply: One of the recommendations from the meeting in Maseru on 30/3/94 was that the LHDA and RSA Crump weir records for Marakabei and Paray should be merged into single agreed records for the whole observational period. This exercise has now been completed and Section B.1 of this report presents a review of these data. A similar exercise for Whitehill is currently underway.
- Comment: The method of determining the mean annual rainfall in Chapter 5.4 is very dependent on the choice of a straight line (see fig 5.7). A small change in the slope of the line will result in a big change of the annual rainfall since the catchment areas, used as a multiplier in the equation, are very big. The use of the same MAR straight line relationship for the areas FA and CG in fig 5.8 is questionable. All these factors may contribute to the differences between Seaka and Oranjedraai.
- Reply: We agree that the mean annual rainfall estimates presented in Working Paper 1 are only approximate and are sensitive to the rainfall-altitude relationships assumed. However, we believe that they are as good as can be

achieved at present with the current rainfall dataset and raingauge network density. The MAR estimates were only one of several factors which led us to question the water balance in this reach; similar conclusions are reached from a comparison of flows alone. Section B.3 of this report discusses some of these issues in more detail.

#### Letter dated 25/1/94

- Comment: 1. Proper naming of the gauging stations. The old names it not relate to the actual location of the site but to the home of the nearest European in the area.
- Reply: We have adopted the naming system used by LHDA and during the Stage 2B and Interim Hydrology to avoid confusion. We agree that some of the stations may be known locally by different names.
- Comments: Imbalances between the rises and falls of water levels in the river and in the stilling, especially during flashy floods. Has this been addressed in any of the previous studies?
- Reply: This is yet another of the uncertainties inherent in measurements of river levels using chart recorders. Detailed comments on possible problems appear on many of the original chart records and in the Stage 2B reports. We have assumed that, where these problems have occurred, the resulting values have either been corrected or not loaded onto the LHDA database. Consequently, our primary validation checks were on the daily mean flows (e.g. Figure 2.3 of WP3).
- Comment: The watchmen (most of) tend to record the upstream level of the water on the gage plate. Debris may have built up against the gage plate.
- Reply: Again, we assumed that, where watchman records were used for infilling, gross errors due to this problem could be spotted by inter-station comparisons of daily mean flows.
- Comment: The gauge height may change drastically during a discharge measurement, and estimating the weighted mean gauge height may be in error if no intermediate gage readings are not available in between the start and end of the measurement.
- Reply: Agreed. This is yet another of the uncertainties in making discharge measurements by current meter however, there is little prospect of correcting the historical measurements for this effect.
- Comment: Joint and independent discharge measurements are available made by DWA and LHDA
- Reply: With the assistance of LHDA and WEMMIN staff, we believe that we located all of the discharge measurements made up to 1993 during our time in Maseru (6/93-8/93).

- Comment: Early in the 1970 discharge measurements included velocity profiles. Time taken used to miss the crest and hence DWA resorting to 0.6 depth and 0.2 and 0.8 depth.
- Reply: For future assessments of the accuracy of discharge measurements, it would be very interesting to locate a write-up on this work. Presumably, the 0.2/0.8 depth method was adopted on the basis of these trials.
- Comment: DWA zeros the depth meter when the water cuts the horizontal axis of the current meter sinker assemblage.
- Reply: This is the basic assumption made in the revised drag corrections developed by ourselves and WEMMIN.
- Comment: The average value of Cd, the drag coefficient of the cable and meter assemblage of equation 3.2 on page 8 is not given.
- Reply: This was not required since a purely empirical relationship was developed between velocity and cable deflection.
- Comment: A deflection angle of 30° may be an overestimate. The measurements made with the angle measuring device show small angles. However it depends on the sinker weight used by the hydrometrist.
- Reply: Agreed. Many hydrometric technicians would be suspicious of readings taken with such a large deflection; in part because of the difficulties of placing the meter accurately at the 0.2/0.8 depths and because the meter is several meters downstream of the suspension point. These are some of the reasons why discharge measurements at high flows must be treated with caution.
- Comment: It was not until the mid-1980s that DWA changed from  $Q = a(h)^b$  to  $Q = a(h-c)^b$ .
- Reply: Some comments on this point are given in Section B.3.
- Comment: Cableway site at Koma Koma has some rapids upstream especially at mid to high flows; thus affecting the surface of the flow.

Reply: Noted.

- Comment: Crump weirs were drowned and by-passed by the 1988 floods. For very high flows the cableway site does not confine the flow in the first banks on the right hand side.
- Reply: It is not clear which site(s) this comment refers to.
- Comment: Table 3.2 should read: "Some" discharge measurements by WEMMIN....cable angle are available. And "Mokhare (G22)" should read "Maseru (G22)". As stated before "Pelaneng" should be "Lejone's".

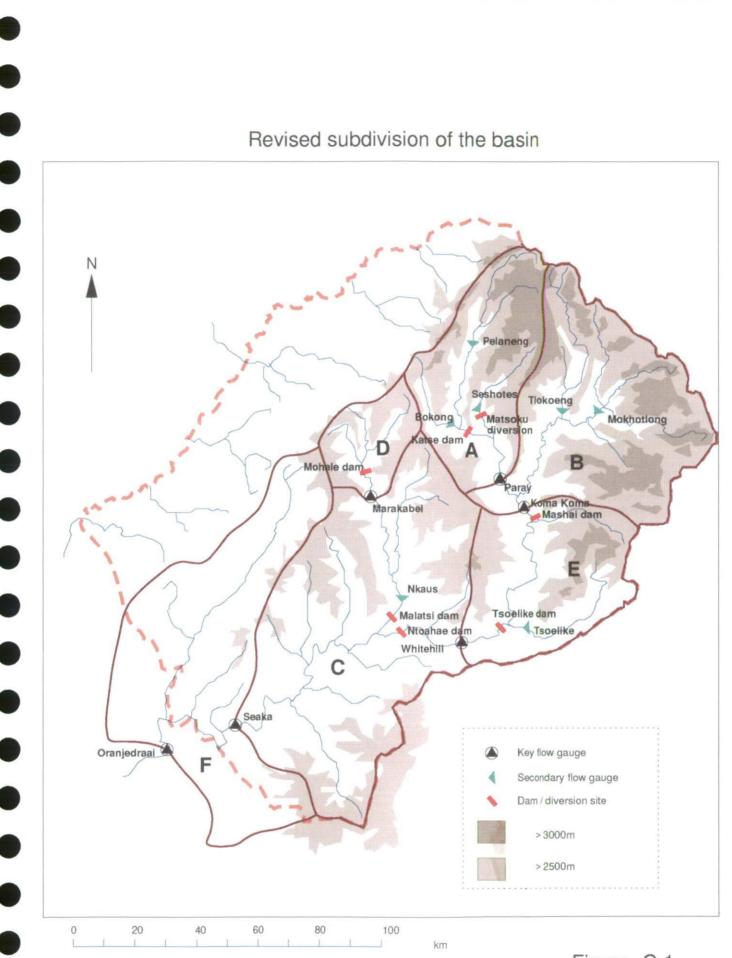
Reply: Noted.

- Comment: Tlokoeng: Page 13: During the 1988 floods the minihydropower was still under construction and plans/designs had already been completed for the contractor to move the station to the new site because the backwater of the 5 m dam was going to flood it.
- Reply: Noted.
- Comment: Paray (page 21): 2000 m<sup>3</sup>/s the Crump weir is drowned and by-passed. Flow is over the banks at the cableway section.
- Reply: Agreed. At high flows, errors in the ratings may be large for both the Crump weirs and rated sections.

# APPENDIX C - Additional work on the stochastic model

In Progress Report 10, we described our current thinking on ways of validating the output from the core stochastic model. Since then, we have been trying to develop more objective ways of choosing between the results produced by different configurations of the model, such as different choices of raingauges or different transformations. Our general approach is described in Section C.1 whilst some examples of the types of test being used are presented in Section C.2. We have also started to implement the transposition and monthly disaggregation schemes which were outlined in Working Paper 2 and Section C.3 discusses the general approach we are taking.

#### C.1 GENERAL APPROACH TO VALIDATION OF THE MODEL


Each run of the stochastic model generates several hundred annual flow sequences for the 5 (or 6) key sites and for the incremental catchment areas immediately upstream of each site. The model can also be configured to use different combinations of raingauges, different key sites and different transformations between flow and rainfall. Also, as discussed in Progress Report 10, the model can be run in three different modes of operation according to the intended application. Before describing specific validation tests, it is therefore worth reviewing what it is hoped to achieve using each configuration of the model. Figure C.1 shows the current preferred configuration of the model, which allows for the possibility of including Whitehill as a key site.

As described in the Terms of Reference, there are two main objectives to this study:

- (a) to generate annual flow sequences for the Royalty hydrology and
- (b) to generate longer term annual flow sequences for use in the Phase 1B design studies.

The Royalty flows will be a set of flow sequences which individually are all plausible estimates of the flows which really occurred in the Lesotho Highlands in the period 1930/31 to 1982/83. The number of sequences required to estimate the Royalty payments will only become apparent by running each sequence through the Royalty calculation program but will probably be of the order 10-20. The form of the model ensures that the actual recorded flows appear in all sequences in periods where these flows are available (i.e. the 'flow-data' period, which begins in the 1960s). By contrast, the design flow sequences are completely synthetic and span an arbitrary period, which at present is set to equal the entire observational period for rainfall, which dates from about 1886. Also, many more sequences will be required for reliable yield estimates; typically, in reservoir design, several hundred sequences with durations of 50-100 years might be used. In Progress Report 10, it was mentioned that the core stochastic model has already been configured to work in both the Royalty mode (Mode 1) and the design flow mode (Mode 3).

These different requirements ((a) and (b) above) lead naturally to slightly different testing procedures. In stochastic modelling, the conventional test is to ensure that the generated sequences have the same statistical flavour as the shorter original observed flow sequences.




For reservoir yield studies, the flow sequences should have not only the correct mean, standard deviation, serial and cross correlations, but also the correct storage related characteristics, such as minimum run sums and maximum deficits. However, for the Royalty sequences, it only makes sense to apply these tests to the 'flow-data' period. This is because the longer term rainfall data (Figure C.2) shows that this period would be expected to have noticeably different statistical characteristics to the earlier part of the Royalty period, with apparently a higher serial correlation, higher variability and longer low flow deficits. A two stage validation procedure is therefore required, checking first that, for the 'flow-data' period, the flows generated by the model have the same statistical characteristics as the observed flows and then, for the full Royalty period, that the generated flows behave in the way suggested by the observed rainfall data, and by other indicators of flow variability, such as estimates of the flow at Aliwal North and flows estimated by other modelling procedures, such as the Pitman rainfall-runoff model. To perform the first of these tests, it is necessary to use the model in an additional mode of operation, in which the flows in the 'flow-data' period are generated using rainfall data alone, and the fact that the flows are really known is ignored. This is called Mode 2 in Progress Report 10.

For the design flow sequences, more conventional stochastic modelling validation tests will be appropriate. So far in this study, we have not presented any results using this mode of operation, although the model is configured to run in this mode and all of the required validation testing procedures are in place. These procedures include all the conventional tests on the statistics of the generated flows and on various storage related statistics. Some example results from this mode of operation are shown later. In this mode of operation, flows will still be generated using rainfall data as a guide, although the rainfall data will now be generated as well. It is at this stage that the issues of cycle and trend become important since, if they are significant, they should be built into the rainfall generation process. However, our preliminary conclusion (see Working Paper 2 and previous Progress Reports) is that, in this study, these factors will not be significant in terms of reservoir yield and reliability.

#### C.2 EXAMPLES OF VALIDATION TESTS

We now present some examples of the types of statistical tests being used to validate the model when it is being used in the Royalty and design flow modes of operation. These are in addition to the various comparisons of time series shown in Progress Report 10. To illustrate the methods, five different combinations of raingauges and rainfall-flow transformations have been used as shown in Table C.1. We must emphasise that the following discussion is intended only to give some examples of the validation procedures being developed and the results presented should not be interpreted as representative of the final Royalty flow sequences. We will not take any final decisions on the optimum configuration of the model until the revised flow records for Whitehill have been received.

In these tests, the parameters of the transformations applied to individual flow and rainfall series have been selected separately. Models 1, 2 and 3 each used identical sets of transformations for the flow and rainfall, while for Models B-3 and U-3 the same sets of upper bounds were used in both models. In the case of Models 3, B-3 and U-3 the same combinations of raingauges and catchments were used: however, note that the selection of raingauges was made after assessing several variants of Model 3, but that such a selection is not necessarily appropriate for the other models because of the different effects of the transformations in these cases. For the time being, Model 3 is regarded as our 'best' model, with the others being presented as an illustration of the effects of various changes to the

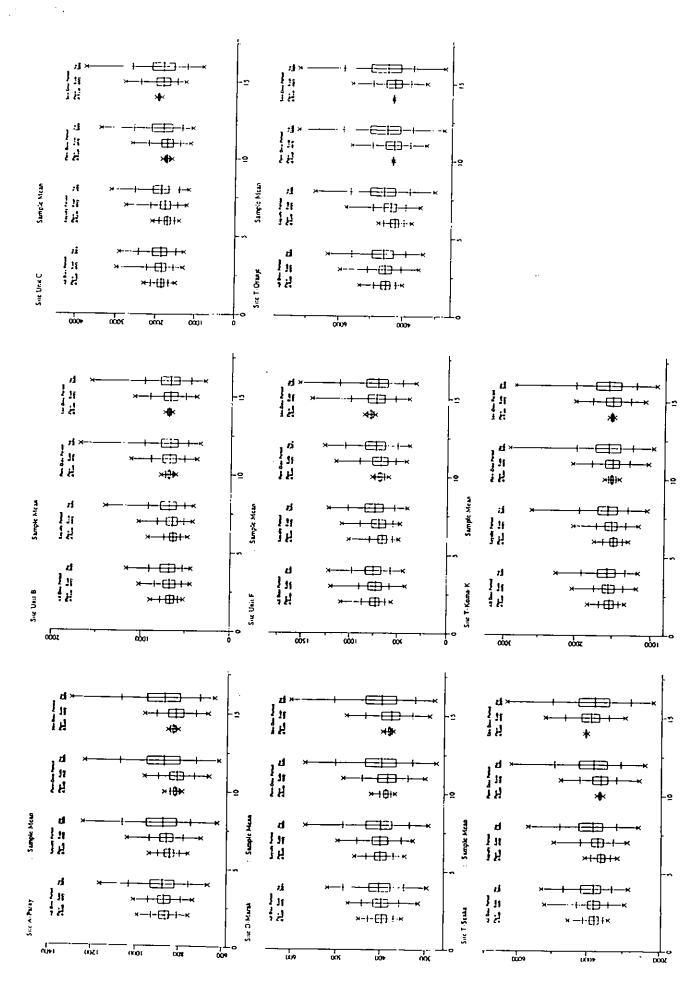


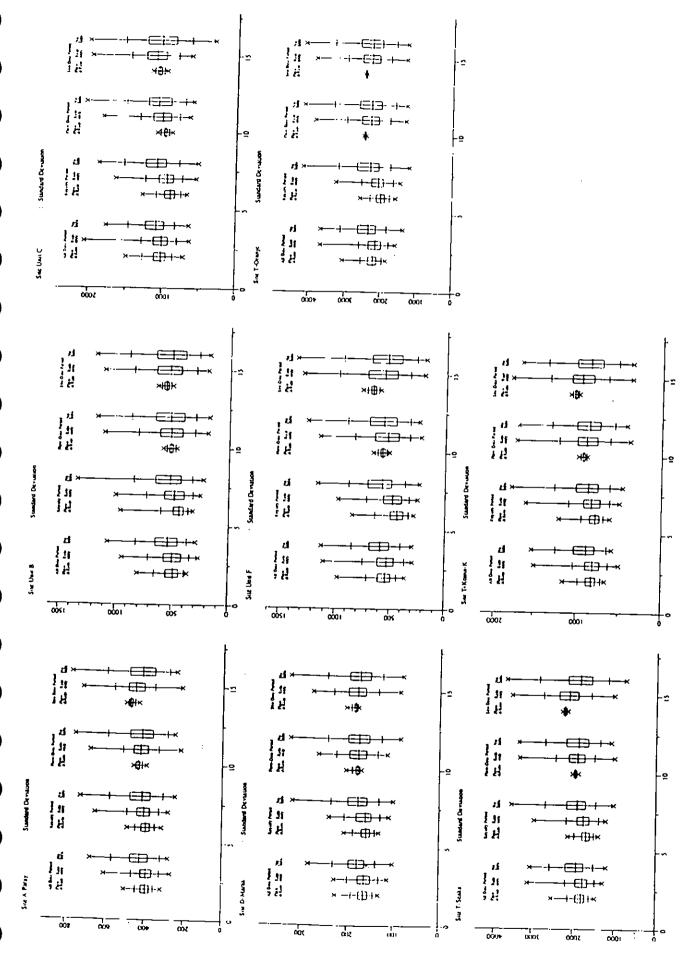
#### model configuration.

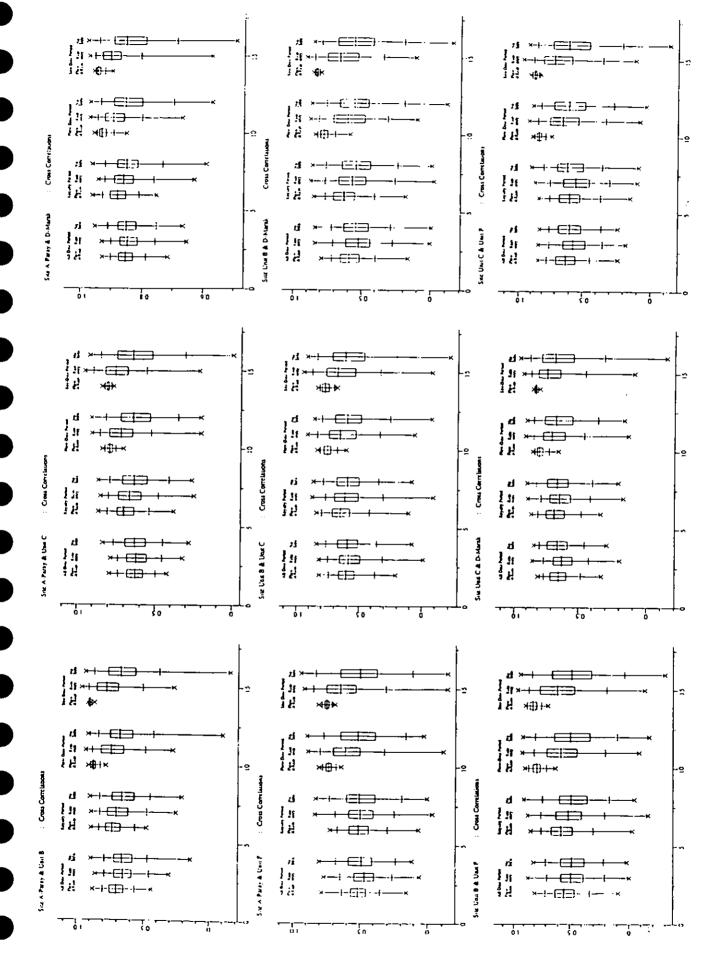
Table C.2 presents a comparison of the results of the different models in regard to the probability distributions which summarise the models' best estimates of what the actual mean annual flow over the Royalty period might have been. Entries in the table consist of the mean (upper figure) and the standard deviation of the distributions of these means, where flows are expressed in units of million cubic metres. As expected, there is a consistent decrease in the uncertainties with which the mean flows are known as more use is made of the information available in the rainfall data in passing from Model 1 to 2 and then to 3. A similar comparison for the sample standard deviation is shown in Table C.3. In this case, the variability in the standard deviation typically decreases as more information about rainfall is used: this would be expected since the range of variation of rainfall during the Royalty period is smaller than that experienced during the period when both flow and rainfall data are available. For Models B-3 and U-3, the flows are forced to lie below a finite upper bound and thus smaller standard deviations might be expected, but such an effect is not apparent in Table C.3 which presumably indicates that the bounds are not tight enough to cause such a problem.

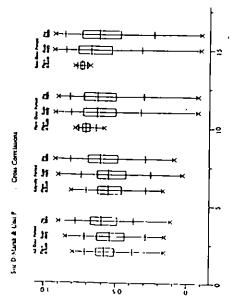
| Model | Treatment of rainfall-runoff modelling                            | Flow and rainfall transformations                                |
|-------|-------------------------------------------------------------------|------------------------------------------------------------------|
| 1     | Rainfall information ignored                                      | Logarithm/linear                                                 |
| 2     | Each catchment regressed on the average of the same set of gauges | Logarithm/linear                                                 |
| 3     | Each catchment regressed on the average a different set of gauges | Logarithm/lincar                                                 |
| B-3   | Each catchment regressed on the average a different set of gauges | Logit, with selected upper and lower bounds                      |
| U-3   | Each catchment regressed on the average a different set of gauges | Logit, with selected upper bounds, all lower bounds set to zero. |

| Table C.1 | Summary of model configu | rations |
|-----------|--------------------------|---------|
|-----------|--------------------------|---------|


Table C.4 gives an indication of the strengths of the relationships between rainfall and flow built into the models. The table shows, in the upper figure, the mean standard deviation of the model relating flow to rainfall and past flows and, in the lower figure, the ratio of this value to the mean standard deviation of the flows themselves. Note that the standard deviations here are in transformed units, so that, although direct comparisons of standard deviations can be made between Models 1,2 and 3, those of Models B-3 and U-3 each relate to different scales. The values given in Table C.4 give one possible guide to the best choice of raingauges for use in the final model runs; for example, on the basis of these tests, Model 3 appears to give the best results. By contrast, the results reported in Tables C.2 and C.3 relate primarily to the generated Royalty sequences rather than the performance of the model. It is therefore not sensible to use these tables to try to choose between competing versions of the model by, for example, directly seeking to minimise the uncertainty with which the Royalty period mean flows are known. Instead, we suggest using the mean residual standard deviation (Table C.4) to select which raingauges are to be included in the rainfall-runoff component of the model, although this is itself closely related to the standard deviation of the mean flow.


In any case, these statistics are by themselves not sufficient to provide guidance as to the appropriateness or adequacy of the model. The results presented in Tables C.1 to C.4 all relate to the Royalty mode (Mode 1) of operation. As indicated in Section C.1 above, we also need to consider the performance of the model in other modes of operation, especially Mode 2, when estimating the Royalty flows. The previous report gave some examples of comparisons made using this mode, and a more extensive set of comparisons is now presented here. The box plots presented in Progress Report 10 were in fact a summary of just part of the information presented in a much more comprehensive set of plots which are now generated routinely by the model after each model run. Figures C.3 to C.6 give examples of these plots for the 'Model 3' configuration shown in Table C.1. Each of the example plots corresponds to a different sample statistic (mean, standard deviation, ordinary cross correlation, rank-based cross-correlation (Spearman rho)) calculated for four different data periods and for the three different run-modes (including the design mode, Mode 3). Note that in Mode 1 of operation, the simulated series reproduce whatever flow observation was made in a given year, if available; also, infilled values obey bounds where these are available. The results presented consist of box-plots constructed from 400 sets of simulated series, where the points marked are the minimum and maximum and the 5, 25, 50, 75 and 95 percent points. The four different data periods considered are:


| (a) All data period  | 1886 to 1991;                 |
|----------------------|-------------------------------|
| (b) Royalty period   | 1930 to 1982;                 |
| (c) Flow-data period | 1960 to 1991;                 |
| (d) Site-data period | different for each site/unit. |


| Site/Unit     | Model 1 | Model 2 | Model 3 | Model B-3 | Model U-3 |
|---------------|---------|---------|---------|-----------|-----------|
| Paray (A)     | 817     | 858     | 843     | 860       | 879       |
|               | 76      | 51      | 31      | 49        | 32        |
| Unit B        | 705     | 738     | 646     | 658       | 697       |
|               | 97      | 87      | 58      | 64        | 55        |
| Unit C        | 1676    | 1743    | 1709    | 1749      | 1729      |
|               | 182     | 151     | 117     | 115       | 119       |
| Marakabei (D) | 390     | 418     | 399     | 409       | 409       |
|               | 32      | 23      | 19      | 18        | 16        |
| Unit F        | 632     | 680     | 666     | 662       | 666       |
|               | 99      | 83      | 73      | 72        | 70        |
| Oranjedraai   | 4221    | 4437    | 4263    | 4338      | 4381      |
| -             | 384     | 267     | 185     | 203       | 192       |
| Scaka         | 3589    | 3757    | 3596    | 3676      | 3714      |
|               | 311     | 228     | 161     | 173       | 161       |
| Koma Koma     | 1522    | 1595    | 1489    | 1518      | 1576      |
|               | 161     | 123     | 73      | 91        | 74        |

**Table C.2.** Mean and standard deviation of the distribution of the actual mean annual flow over the Royalty Period (Mm<sup>3</sup>)









۰ .

Figure C.5 cont.

•

.

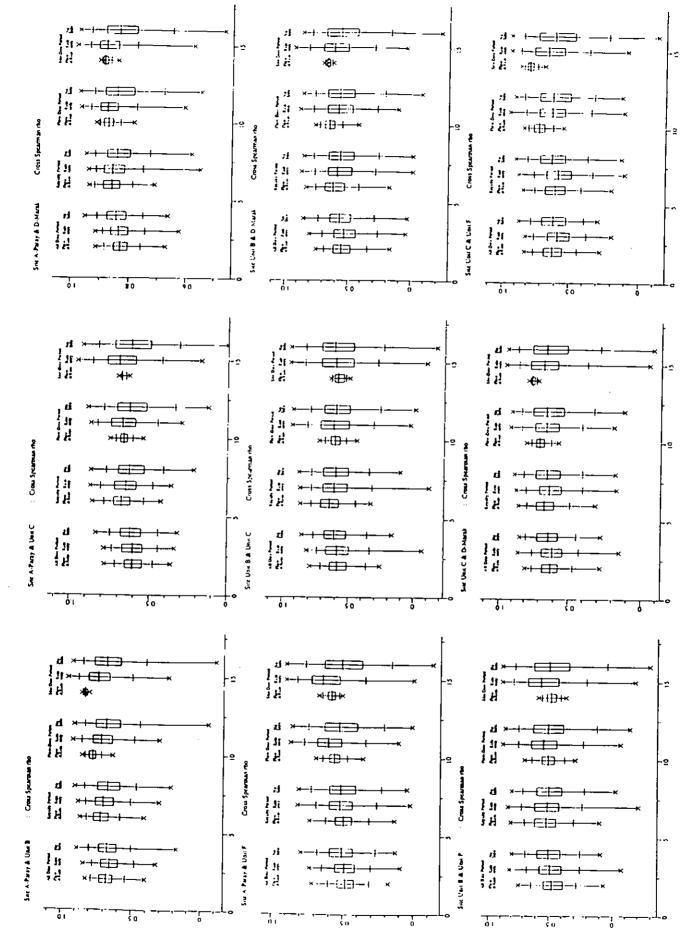
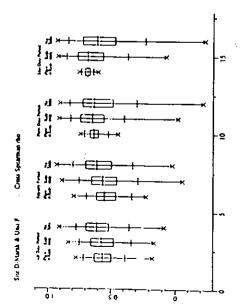





Figure C.6








































| Site/Unit     | Model 1 | Model 2 | Model 3 | Model B-3 | Model U-3 |
|---------------|---------|---------|---------|-----------|-----------|
| Paray (A)     | 407     | 393     | 395     | 452       | 399       |
|               | 64      | 45      | 31      | 40        | 25        |
| Unit B        | 533     | 542     | 456     | 477       | 478       |
|               | 126     | 114     | 77      | 57        | 45        |
| Unit C        | 987     | 969     | 910     | 896       | 891       |
|               | 161     | 150     | 102     | 92        | 86        |
| Marakabci (D) | 186     | 175     | 161     | 163       | 158       |
|               | 28      | 17      | 14      | 13        | 11        |
| Unit F        | 501     | 497     | 449     | 454       | 441       |
|               | 141     | 119     | 92      | 70        | 65        |
| Oranjedraai   | 2298    | 2204    | 2014    | 2064      | 2063      |
| -             | 393     | 280     | 163     | 157       | 143       |
| Scaka         | 1901    | 1843    | 1702    | 1747      | 1736      |
|               | 300     | 226     | 144     | 131       | 117       |
| Koma Koma     | 891     | 882     | 790     | 846       | 828       |
|               | 171     | 141     | 82      | 75        | 59        |

Table C.3.Mean and standard deviation of the distribution of the actual standard<br/>deviation of the annual flows over the Royalty Period (Mm³)

Table C.4.Mean standard deviation of the residuals of the model relating flow to rainfall<br/>and past flows (transformed units), and proportion of the overall standard<br/>deviation not explained.

| Site/Unit     | Model 1 | Model 2 | Model 3 | Model B-3 | Model U-3 |
|---------------|---------|---------|---------|-----------|-----------|
| Paray (A)     | 179     | 109     | 69      | 0.82      | 0.30      |
|               | 0.81    | 0.51    | 0.34    | 0.47      | 0.32      |
| Unit B        | 269     | 213     | 169     | 0.74      | 0.56      |
|               | 0.85    | 0.66    | 0.56    | 0.53      | 0.54      |
| Unit C        | 123     | 82      | 63      | 0.47      | 0.45      |
|               | 0.81    | 0.57    | 0.45    | 0.44      | 0.45      |
| Marakabci (D) | 224     | 116     | 103     | 0.43      | 0.30      |
|               | 0.79    | 0.45    | 0.44    | 0.41      | 0.40      |
| Unit F        | 263     | 177     | 172     | 0.68      | 0.59      |
|               | 0.80    | 0.56    | 0.56    | 0.56      | 0.57      |

For the purposes of model assessment one would ideally seek an 'observed' value of some statistic to compare with a statistical distribution of similar values generated from the fitted model. In the present situation, there is no single 'observed' value available because, in some years, values are missing and sometimes only bounds are available rather than the exact values. Instead, what arises is a statistical distribution of what the observed statistic for the particular period might have been, and this distribution is slightly affected by the particular model being assessed since it is derived from values infilled using the model. One is therefore left with the problem of comparing two statistical distributions in order to assess the performance of the model.

In order to use a consistent assessment procedure across all cases we suggest using the 'Flowdata' period comparisons since for these the spread of the 'observed' distributions is reasonably small and, as mentioned earlier, we suggest comparing the 'observed' distribution with the distribution from the 'rainfall only' case (Mode 2). Similar comparisons were made in Progress Report 10 using the 'site data' period; however, using the 'flow-data' period has the advantage of using an identical number of years in each comparison. For a particular model configuration to fit well, one would expect the 'observed' distribution (possibly taking the median of this distribution as representative) to be a not-unusual outcome of the fully simulated distribution. In an attempt to quantify this agreement, a numerical summary of the match between observations and model has been defined in the following way. First, the median of the observed (Mode 1) flow distribution is found, and then the proportion of the simulated (Mode 2) values which are more extreme than this is calculated, where 'more extreme' is counted in the direction away from the median of the simulated values. This proportion (which must be less than or equal to one-half) is then converted to a measure of fit by setting the outcome identically equal to 1.0 if the proportion has a value greater than x, say, and otherwise by multiplying the proportion by 1.0/x. This procedure results in the outcome being a continuous function of the proportion, taking values between 0.0 and 1.0. The value x allows for the fact that only a finite number of simulations has been performed, and would be 0.5 for an infinite number of simulations. For the test results shown below, we have used a value of x=0.4 to allow for the fact that the distributions are the result of only 400 simulations and thus the counts are subject to sampling error. Once the medians are in agreement to that extent there is little merit in expecting to achieve a closer match. A samplesize based criterion is not used here because the samples are not independent and thus the expected discrepancy is not easily quantified.

This proposed measure of fit yields a single value for each site, or combination of sites, for each statistic chosen. If required, these values can also be averaged across sites and types of statistic to yield a final overall measure of fit. Some example results of this procedure are presented in Table C.5: here a value of 1.0 represents a perfect fit, while 0.0 is very poor. As well as the conventional statistics such as mean and standard deviation, this table also includes a set of storage based statistics which are calculated separately for each flow unit, and also for the three major flow observation sites which appear in Tables C.2 and C.3. Furthermore, for each site the statistics are calculated for a number of different design yields. Similarly, the Minimum run-total statistics are calculated for a number of different runlengths. For the five example model configurations shown, in the case of the medians and standard deviations, the observed and simulated distributions might be expected to be in close agreement, since these statistics are closely related to ones which play an intrinsic part in the model-fitting procedure and are therefore to some extent reproduced automatically. For other variables, such as the storage based tests, there is no in-built constraint at all on the generated values, so the measures of fit shown are a genuine guide to the performance of the model.

From these comparisons, the poorest agreement is for the cross-correlation statistics, although it is still satisfactory (the lowest value of 0.39 is well above the 5% limit). It is worth considering the reasons for this in more detail. The ability of the model to reproduce the observed cross-correlations is affected by two factors.

- (a) The structure of the model is such that it is the cross-correlation of the modelresiduals which play a primary role. These are residuals from the model relating flow to both rainfall and past flows. Even in the case of Model 1, where rainfalls are not used, the model structure still relates flow for a unit to the flow in the previous year for the same unit.
- (b) The model structure assumes that, after the logarithm/linear or logit transformation, the flows and rainfall are jointly Normally distributed. One aspect of this requirement is that when one transformed variable is related to another, there should be a constant conditional variance: broadly speaking the spread of the points about a regression line should be the same for all values of the 'dependent' variable. At least for the data-sets being used at present, it does not seem possible to find transformations of the flow variates which work well at achieving simultaneously both marginal Normality, and bivariate Normality. It seems therefore that some compromise between these must be made. Transformations which have been evaluated include the log-normal and the logit (SB3) transformation favoured by BKS/DWAF in some cases.

When the same type of assessment procedures as reported here are applied to crosscorrelations evaluated from the transformed-values, it is found that there is much closer agreement between the observations and the model results. Also, higher scores are obtained using rank based correlation tests, such as Spearman's rho, which are also shown in Table C.5. We are therefore not concerned by the lower scores achieved so far in tests of crosscorrelation compared to tests of the other statistical variables.

#### C.3 TRANSPOSITION AND DISAGGREGATION SCHEMES

The core stochastic model generates annual flows at the key gauging stations in the project area. To estimate monthly flows at the dam sites, two further sub-models are required to transpose the estimated annual flows to the dam sites and to disaggregate these flows into monthly values. To avoid duplicating work, we have deliberately delayed implementing these schemes in detail until the final rainfall and flow sequences have been agreed.

The general approach to be used is outlined in Working Paper 2. However, now that we have a good idea of how the final dataset will appear (in terms of data availability/gaps in the records) we have identified some minor modifications which will be required to the proposed methods. These are discussed briefly below.

#### **Transposition**

The transposition scheme is required to estimate flows at the dam sites from the flows generated at the key sites (see Figure C.1). The main change since producing Working Paper 2 is the possibility of including Whitehill as a key station in the core stochastic model. This would affect the proposed transposition scheme for the Tsoelike, Mashai, Malatsi and Ntoahae dam sites. The general approach would remain the same but the coefficients in the model would of course change from those derived using the earlier 5 unit scheme. In fact,

| Statistic                 | Model 1 | Model 2 | Model 3 | Model<br>B-3 | Model<br>U-3 |
|---------------------------|---------|---------|---------|--------------|--------------|
| Sample mean               | 1.00    | 1.00    | 1.00    | 1.00         | 0.99         |
| Standard deviation        | 0.98    | 0.97    | 0.97    | 0.89         | 0.80         |
| Sample<br>Minimum         | 0.87    | 0.89    | 0.89    | 0.68         | 0.81         |
| Sample<br>Maximum         | 0.98    | 0.98    | 0.98    | 0.82         | 0.54         |
| Serial<br>Correlations    | 0.69    | 0.69    | 0.90    | 0.92         | 0.89         |
| Cross<br>correlations     | 0.59    | 0.46    | 0.39    | 0.35         | 0.51         |
| Maximum<br>Deficit        | 0.86    | 0.94    | 0.89    | 0.89         | 0.87         |
| Duration of max deficit   | 0.72    | 0.72    | 0.70    | 0.65         | 0.61         |
| Duration of depletion     | 0.70    | 0.73    | 0.72    | 0.71         | 0.72         |
| Minimum<br>run-totals     | 0.84    | 0.87    | 0.84    | 0.78         | 0.83         |
| Serial<br>Spearman rho    | 0.79    | 0.73    | 0.86    | 0.83         | 0.71         |
| Cross<br>spearman rho     | 0.99    | 0.99    | 0.88    | 0.86         | 0.88         |
| Overall<br>measure of fit | 0.83    | 0.83    | 0.84    | 0.78         | 0.76         |

\_

Table C.5. Overall Measure of Fit

for Tsoelike and Ntoahae, it will be much easier to derive reliable estimates for these coefficients, since both dam sites are only a short distance from the Whitehill station.

For all of the dam sites, we proposed in Working Paper 2 to base the transposition coefficients on the areas and mean rainfalls for the incremental catchments. From the Interim Hydrology data, there appeared to be a unique relationship between mean runoff and mean rainfall for the whole project area (Figure 5.8 of WP2). The most recent data suggest that this may be an oversimplification, and that for some of the lower catchments, the transposition scheme might safely be based on catchment area alone. Our main change to the scheme proposed in Working Paper 2 is therefore to update Figure 5.8 of WP2 using the final flow and rainfall datasets and to use these new relationships in transferring the generated flows to the dam sites. One additional change may be to simplify the proposed transposition scheme for the Paray basin by merging the flows at Bokong and Pelaneng into a single record. This would then reduce the number of records for this basin from four to three, which should make it simpler to preserve the required cross correlation between the generated flows at Paray and the flows at Katse dam and the Matsoku diversion.

#### Monthly disaggregation

Disaggregation of generated annual flows to monthly values will be undertaken by a modification of the method of fragments, which is that used in the current BKS stochastic models. The method has been described very effectively by McMahon and Mein (1986)<sup>1</sup>, and uses standardised observed monthly flows for each year as scalars for the generated annual flows. For each year of the historical record at each of the six key stations of the core model, the annual flows are ranked from lowest to highest and their corresponding monthly flows are expressed as proportions of the annual total. The generated annual totals are then compared to the historical flows for the appropriate site, and disaggregated using the standardised monthly scalars from whichever historical year is closest to the generated annual total.

This method will however have to be modified in two important respects, one for all modes of operation of the stochastic model, and the other solely for Mode 1, where the Royalty period is being modelled. The first modification of the model is required because of the frequent gaps in the historical data, with only a relatively small number of years with complete monthly historical data being available at most sites. The valid samples of monthly distributions may be rather too limited for application of the method without some sort of adjustment of the method. A suitable extension of the method has not yet been finalised and work is continuing on this topic.

The second modification is required for computation of flows for the Royalty period, where in the later years observed or bounded flows make up the bulk of the flow series. It will be necessary to make some slight adjustments to the disaggregation model for years with bounded flows so that only months with missing data are estimated, with observed data being allowed to stand unaltered. In such circumstances, care will have to be taken to ensure that the generated proportion of the annual flow is sensibly distributed over months with missing data. Work is again continuing on this point.

<sup>&</sup>lt;sup>1</sup> McMahon T.A. and Mein R.G., 1986, River and reservoir yield. Water Resources Publications, Littleton, Colorado.

•

•

. . . .

,

. . . . . . . .





- - - - -

. . .

. . . . .

- ..

. .

-

-

· \_

-

-- - - -

.

....

|          |            | <b></b> -   |                          | Summ        | Insti<br>ary o | tute c<br>f mont | of Hyd<br>hly d | rology<br>ata - | y<br>Rainf | Eall     |      |            |                 |
|----------|------------|-------------|--------------------------|-------------|----------------|------------------|-----------------|-----------------|------------|----------|------|------------|-----------------|
| Stati    | on nu      | umber       | :                        | 21          |                | Né               | ame :           | ST JOI          | HN (MA     | ARAKAB   |      |            |                 |
| Basin i  | no. : O    |             | Lat                      | itude :     | 29:33;         |                  |                 | : 20:           |            | Altitu   |      | 40.0       |                 |
|          | Oct        | Nov         | Dec                      | Jan         | Feb            | Mar              | Apr             | Мау             | մսո        | Jul      | Aug  | Sep        | Annual<br>Total |
|          |            |             |                          |             |                |                  |                 |                 |            |          | -    | •          |                 |
| 63/64    | -          | -           | 159.                     | 135.        | 70.            | 199.             | 57.             | 13.             | 35.        | Ο.       | 27.  | 39.        | -               |
| 1964/65  | 140        | 36.         | 112.                     | 98.         | 59.            | 20.              | 100.            | 2.              | 58.        | 27.      | 57.  | 18.        | 727.            |
| 1965/66  | 61         | 84.         | 43.                      | 207.        | 80.            | 55.              | 58.             | 31.             | 8.         | Ο.       | 17.  | 3.         | 647.            |
| 1967/68  | 59.<br>94. | 95.<br>139. | 118.                     | 217.e       | 70.            | 99.              | 101.            | 53.             | 38.        | 11.      | 24.  | 14.        | 959             |
| 1968/69  | 69.        | 139.<br>57. | 75.<br>116.              | 74.         | 5.             | 134.             | 66.             | 79.             | 10.        | 29.      | 14.  | 24.        | 743.            |
| 69/70    | 154.       | 35.         | 79.                      | 100.        | 85.            | 154.             | 76.             | 75.             | 5.         | 6.       | 28.  | 15.        | 786.            |
| 1970/71  | 100.       | 56.         | 79.<br>152.              | 78.<br>145. | 65.<br>68.     | 48.              | 15.             | 12.             | 15.        | 13.      | 29.  | 75.        | 618.            |
| 1971/72  | 68.        | 52.         | 239.                     | 145.        | 155.           | 103.             | 55.             | 68.             | 5.         | 33.      | 3.   | 7.         | 795.            |
| 72/73    | 63.        | 69.         | 23 <del>3</del> .<br>33. | 121.        | 155.           | 223.             | 43.             | 35.             | 28.        | 6.       | 28.  | 29.        | 1077.           |
| 973/74   | 16.        | 129.        | 113.                     | 162.        | 231.           | 95.<br>54        | 57.             | 15.             | 1.         | 11.      | 78.  | 50.        | 769.            |
| 1974/75  | 33.        | 166.        | 96.                      | 113.        | 125.           | 54.<br>121.      | 30.             | 22.             | 20.        | Ο.       | 48.  | 29.        | 854.            |
| 75/76    | 55.        | 196.        | 151.                     | 175.        | 139.           | 179.             | 28.<br>55.      | 11.<br>26.      | 17.        | 3.       | 6.   | 101.       | 820.            |
| 576/77   | 190.       | 57.         | 50.                      | 166         | 87.            | 175.             | 55.<br>48.      | 26.             | 37.        | 0.       | 0. · |            | 1151.           |
| 1977/78  | 142        | -           | 98.                      | 158.        | 115.           | 193.             | 48.<br>88.      | 21.             | 10.        | 0.       | 6    | 88         | 898.            |
| 78/79    | 31.        | 55.         | 165.                     | 59.         | 74.            | 24.              | 19.             | 4.8.            | 12.<br>3.  | 2<br>65. | 31.  | 98.        | -               |
| 79/80    | 104.       | 95.         | 157.                     | 115.        | 159.           | 93.              | 31.             | 22              | э.<br>0.   | 1.       | 41.  | 22.        | 606.            |
| 1980/81  | -          | 162.        | -                        |             | 149.           | 135.             | 56.             | 31.             | 42.        | 1.<br>0. | 106. | -<br>27.   | -               |
| 81/82    | 52.        | 106.        | 62.                      | 118.        | 84.            | 80.              | 105.            | 7.              | 20.        | 16.      | 0.   |            | -               |
| 82/83    | 175.       | 86.         |                          | 117.        | 33.            | 69.              | 58.             | 46.             | 19.        | 37.      | 0.   | 14.<br>25. | 664.            |
| 1983/84  | 74.        | 86.         | 116.                     | 71.         | 39.            | 45.              | 19.             | 38.             | -          | 0.       | 57.  | ∡o.<br>5.  | -               |
| 84/85    | 85.        | 57.         | 82.                      | 89.         | 120.           | 76.              | 58.             | -               | _          | U.       | 57.  | э.         | -               |
| 85/86    | 92.        | 74.         | 147.                     | -           |                | -                | -               | -               | -          | _        |      | _          | -               |
| 1986/87  | -          | -           |                          | 34.         | 54.            | 44.              | 18.             | 0               | 6.         | _        |      |            |                 |
| 887/88   | -          | 82.         | •                        | 54.         | -              | 219.             | 59.             | -               | 34.        | -        | -    | -          | -               |
| an       | 88.        | 90.         | 113.                     | 123.        | 97.            | 110.             | 54 .            | 30.             | 19.        | 12.      | 29.  | 41.        | 807.            |
| Median   | 74.        | 82.         | 113.                     | 117.        | 84.            | 95.              | 56.             | 22.             | 15.        | 6.       | 27.  | 25.        |                 |
| Maximum  | 190.       | 196.        | 239.                     | 277.        | 231.           | 223.             | 105.            | 79.             | 58.        | 65.      | 106. | 138.       |                 |
| himum    | 16.        | 35.         | 33.                      | 34.         | 5.             | 20.              | 15.             | Ο.              | Ο.         | 0.       | Ο.   | З.         |                 |
| St. dev. | 48.        | 44.         | 49.                      | 55.         | 53.            | 63.              | 26.             | 24.             | 16.        | 17.      | 28.  | 38.        |                 |
|          | . 54       | .49         | . 44                     | . 45        | . 54           | . 57             | . 49            | . 79            | . 81       | 1.37     | . 98 | . 93       |                 |

Total monthly rainfall in millimetres

Data flags

|           | tlag "-" | Original - no flag set | Estimate - flag "e"                   |
|-----------|----------|------------------------|---------------------------------------|
| 22/ 6/199 |          |                        | · · · · · · · · · · · · · · · · · · · |

-------Institute of Hydrology

| •             |            |             |            | Summ        | Instit<br>ary of | tute<br>E mon | of Hyd:<br>thly da | rology<br>ata - | ,<br>Rainf | all      |         |            |                 |
|---------------|------------|-------------|------------|-------------|------------------|---------------|--------------------|-----------------|------------|----------|---------|------------|-----------------|
| Stati         | on nu      | mber        | :          | 25          |                  | N             | ame : 1            | Mashai          |            |          |         |            |                 |
| Basin a       | no. : 0    |             | Lat        | itude :     | 29:41:           | 05            | longitude          | : 28:48         | 9:0E       | Altitu   | de : 18 | 30 0       |                 |
| •             | Oct        | Nov         | Dec        | Jan         | Feb              | Mar           | Apr                | May             | Jun        | Jul      | Aug     | Sep        | Annual<br>Total |
| 65/66         | -          | -           | -          | -           | 50.              | 25.           | Ο.                 | 18.e            | 0.         | 0.       | 20.     | 0.         | -               |
| 1966/67       | 32.        | 30.         | 90.        | -           | 12.              | 41.           | 30.                | Ο.              | ο.         | Ο.       | Ο.      | 0.         |                 |
| 1967/68       | 60.        | 30.         | 61.        | 25.         | 38.              | 45.           | 6.                 | 18.             | Ο.         | 11.      | Ο.      | 28.        | 322.            |
| 68/69         | 6.         | 15.         | 56.        | 31.         | 12.              | 62.           | 40.                | 34.             | Ο.         | 0.       | 14.     | 9.         | 279.            |
| 1969/70       | 87.        | 21.         | 78.        | 43.         | 50.              | 14.           | 0.                 | -               | -          | -        | 37.     | 57.        | -               |
| 1970/71       | 44.        | 38.         | 63.        | 130.        | 71.              | 14.           | 26.                | -               | -          | -        | -       | -          | -               |
| 71/72         | 28.        | 13.         | 88.        | 40.         | 61.              | 47.           | 10.                | 15.             | 0.         | 6.       | 8.      | 38.        | 354.            |
| 1972/73       | 40         | 97.         | -          | 48.         | 100.             | 36.           | 34.                | 0.              | 0.         | 4.       | 82.     | 30.        | -               |
| 1973/74       | 7.<br>1.   | 61.<br>132. | 89.<br>71. | 90.<br>99.  | 143.<br>74.      | 42.<br>71.    | 16.<br>18.         | 2.<br>3.        | 12.<br>3.  | -<br>9.  | -       | -          |                 |
| 1975/76       | 19.        | 131.        | 74.        | 180.        | 62.              | 124.          | 15.                | 37.             | з.<br>О.   | 9.<br>0. | 0.      | 80.<br>51. | 562.<br>693.    |
| 1976/77       | 97.        | 51.         | 40.        | 131.        | 53.              | 84.           | 26.                | 0.              | 2.         | 0.       | 1.      | 22.        | 507.            |
| 77/78         | 87.        | 26.         | 41.        | 149.        | 60.              | 21.           | 59.                | 0.              | 0.         | 0.       | 23.     |            | 518             |
| 1978/79       | 30.        | 37.         | 98.        | 19          | 85.              | 50.           | 12.                | 6.              | 0.         | 22.      | 59.     | 10.        | 429             |
| 1979/80       | 41.        | 70.         | 26.        | 118.        | 27.              | 16.           | 4.                 | 0.              | Ο.         | Ο.       | Ο.      | -          | -               |
| 80/81         | 18.        | -           | 29.        | 113.        | 81.              | -             | -                  | 1.              | 12.        | 0.       | 21.     | Ο.         | -               |
| 981/82        | 18.        | 45.         | 28.        | -           | -                | 67.           | 46.                | Ο.              | 7.         | -        | Ο.      | 8.         | -               |
| 1982/83       | -          | 64.         | 15.        | 122.        | 21.              | 77.           | 20.                | 1.              | 4.         | 22.      | 0.      | 6.         | -               |
| 83/84         | 54.        | 90.         | •          | 84.         | 29.              | 25.           | 13.                | •               | 1.         | -        | 22.     | 2.         | -               |
| <b>J84/85</b> | 55.        | 27.         | 36.        | 51.         | 71.              | ₿.            | 3.                 | 0.              | 0.         | 0.       | 0.      | 0.         | 251.            |
| 1985/86       | 139.       | 87.         | 90.        | 26.         | 62.              | 72.           | 13.                | 0.              | 36.        | 0.       | 43.     | 12.        | 580.            |
| 86/87         | -          | 86.         | 11.        | 34.         | 49.              | 76.           | 36.                | -               | 0.         | 3.       | •       | 141.       | -               |
| 1988/89       | 31.        | 59.         | -          | <b>4</b> 7. | 72.              | 50.           | -                  | 0.              | 31.        | 2.       | Ο.      | 57.        | -               |
| 1988/89       | 41.<br>39. | 53.<br>100. | 82.        | -           | •                | -             | -                  | 20.             | 17.<br>25. | 0.       | -       | 0.         | -               |
| 90/91         | 18.        | 100.        | 87.        | -<br>141.   | 54.              | -<br>37,      | -<br>0.            | <u>-</u> 0.     | ∡⊃.<br>-   | -        | 13.     | 0.<br>32.  | •               |
| 1991/92       | 115.       | 36.         | -          |             | -                | -             | -                  | 1.              | -<br>0.    | -<br>0.  | -       |            | -               |
|               |            |             |            |             |                  |               |                    |                 |            |          |         |            |                 |
| an            | 46.        | 56.         | 60.        | 82.         | 50.              | 48.           | 19.                | 7.              | 6.         | 4.       | 16.     | 28.        | 431             |
| dian          | 39.        | 51.         | 63.        | 84.         | 60.              | 45.           | 15.                | 1.              | 0.         | Ο.       | 8.      | 12.        |                 |
| Maximum       | 139.       | 132.        | 9B.        | 180.        | 143.             | 124.          | 59.                | 37.             | 36.        | 22.      | 82.     | 141.       |                 |
| Hunimum       | 1.         | 13.         | 11.        | 19.         | 12.              | 8.            | Ο.                 | Ο.              | 0.         | Ο.       | Ο.      | Ο.         |                 |
| e dev.        | 36.        | 35.         | 28.        | 49.         | 30.              | 28.           | 16.                | 11.             | 11.        | 7.       | 22      | 34.        |                 |
| cv            | .77        | . 62        | .47        | .60         | . 51             | . 59          | . 63               | 1.61            | 1.70       | 1.76     | 1.37    | 1.24       |                 |

Total monthly rainfall in millimetres

Data flags

Missing - flag "-" Original - no flag set Estimate - flag "e" 🦑

Printed on 22/ 6/1994

\_

|            |         |            |      | Summ         | Instit<br>ary of | tute c<br>E mont | of Hyd:<br>hly da | rology<br>ata - | ,<br>Rainf | al <b>l</b> |           |      |                |
|------------|---------|------------|------|--------------|------------------|------------------|-------------------|-----------------|------------|-------------|-----------|------|----------------|
| )<br>Stati | .on nu  | mber       | :    | 26           |                  | Na               | ume : :           | Sani F          | ass        |             |           |      |                |
| Basin      | no. : 0 |            | Lat  | itude :      | 29:35:           | 05               | Longitude         | : 29:1          | 7:0E       | Altitu      | de : 24   | 40.0 |                |
| )          | Oct     | Nov        | Dec  | Jan          | Feb              | Mar              | Apr               | Мау             | Jun        | Jul         | Aug       | Sep  | Annua<br>Total |
| 15/76      | _       | _          | 258. | 304.         | 228.             |                  |                   |                 |            |             |           |      |                |
| 976/77     | 120.    | - 41.      | 258. | 304.<br>182. | 228.<br>125.     | 316.             | - 58.             | -               | -<br>0.    | -           | 19.       | 7.   | -              |
| 977/78     | 95.     | *1.<br>74. | 122. | 248.         | 86.              | - 84.            | 58.<br>52.        | U.<br>O.        | U.<br>O.   | 0.<br>11.   | 0.<br>25. | 71.  | -              |
| 78/79      | -       | 52.        |      | -            | 218.             |                  | 25.               | 22.             | U.         | 16.         | 25.       | 66.  | 863.           |
| 79/80      | -       | -          | _    | -            | -                | _                | -                 | -               | _          | -           |           | -    | -              |
| 80/81      |         | -          | -    | -            |                  | -                | _                 | -               | -          | _           | _         |      |                |
| 81/82      | -       | -          | _    | -            | -                | -                | -                 | -               |            | -           | -         |      |                |
| 982/83     | -       | -          | -    | -            | -                | -                | -                 |                 | -          | -           | -         | -    | -              |
| 83/84      | -       | -          | -    | -            | -                | -                | -                 | -               | -          | -           | -         |      | -              |
| 84/85      | -       | -          | -    |              | -                | -                | -                 | -               | -          | -           | -         |      | -              |
| 85/86      | 196     | 145.       | 179. | 130.         | 76.              | 85.              | 31.               | Ο.              | 23.        | 8.          | 32.       | 107. | 1012.          |
| 86/87      | 117.    | 118.       | 101. | 88.          | 66.              | 55.              | -                 | -               | 5.         | Ο.          | 84.       | 50.  | -              |
| 87/88      | 103.    | 56.        | 106. | 209.         | -                | -                | 15.               |                 | -          | -           | o. ·      | 55.  | -              |
| 86/89      | 31.     | 106.       | 109. | 116          |                  | 149.             | 81.               |                 | 8.         | 5.          | Ο.        | Ο.   | -              |
| 989/90     | 105     | 136        | 116. | -            | 90.              | 79.              | 51.               | 5.              | 13.        | 7.          | 12.       | 4.   | -              |
| 90/91      | 38.     | -          | -    | 115          |                  | -                | -                 | -               | -          | -           | -         | -    | -              |

| Hean     | 101. | 92.   | 142. | 174. | 127. | 128. | 45.  | 5.   | 8.   | 7.  | 22.  | 46.  | 896. |
|----------|------|-------|------|------|------|------|------|------|------|-----|------|------|------|
| Median   | 103. | 74.   | 116. | 130. | 90.  | 84.  | 51.  | 0.   | 5.   | 7.  | 12.  | 55.  |      |
| ximum    | 196. | 145.  | 258. | 304. | 228. | 316. | 81.  | 22.  | 23.  | 16. | 84.  | 107. |      |
| inimum   | 31.  | 41.   | 101. | 88.  | 66.  | 55.  | 15.  | 0.   | Ο.   | Ο.  | Ο.   | Ο.   |      |
| St. dev. | 52.  | 39    | 58.  | 75   | 68.  | 97.  | 23.  | 10.  | 9.   | б.  | 28.  | 38.  |      |
|          | . 51 | . 4 2 | .41  | .43  | . 54 | . 76 | . 50 | 1.76 | 1.08 | .86 | 1.31 | . 84 |      |

## Total monthly rainfall in millimetres

Data flags Missing - flag \*-\* Original - no flag set Estimate - flag \*e\*

inted on 22/ 6/1994

|                  | • <b>-</b> - |       | <b>-</b> - | Summ    | Instiana ( | tute c<br>f mont | of Hyd<br>hly d | rology<br>ata - | Rainf  | all    | <b></b>  | <b>- </b> |                 |
|------------------|--------------|-------|------------|---------|------------|------------------|-----------------|-----------------|--------|--------|----------|-----------|-----------------|
| Stati            | ion nu       | umber | :          | 76      |            | Na               | ume :           | Sehlab          | batheb | e      |          |           |                 |
| Basin n          | no. : 0      |       | Lat        | itude : | 29:53-     | 05               | Longitude       | e : 29:         | 4; 0 E | Altitu | ide : 22 | 50.0      |                 |
|                  | Oct          | Nov   | Dec        | Jan     | Feb        | Mar              | Apr             | Мау             | Jun    | Jul    | Aug      | Sep       | Annua<br>Tota i |
| 44/45            | 64.          | 93.   | 40.        | 131     | 155.       | 123.             | 18.             | Ο.              | Ο.     | 0.     | 3,       | 8.        | 635.            |
| 1945/46          | 29.          | 14.   | 37.        | 98      | 88.        | 104.             | 21.             | 22.             | Ο.     | 1.     | 1        | 7.        | 422             |
| 946/47           | 63.          | 126.  | 59.        | 99.     | 90.        | 77.              | -               | 1.              | 61.    | 9.     | 4        | 19.       | -               |
| 17/48            | -            | 137.  | 126.       | 146.    | 157.       | 121.             | 17.             | 17.             | 0.     | Ο.     | Ο.       | 4.        | -               |
| 948/49           | 35.          | 19.   | 56.        | 150.    | 102.       | 53.              | 56.             | 9.              | 0.     | 3.     | 4.       | 30.       | 525             |
| 949/50           | 48.          | 84.   | 125.       | 154.    | 157.       | 162.             | 25.             | 29.             | 0.     | 5.     | 97.      | 12.       | 898             |
| 50/51            | 35.          | 77.   | 118.       | 98.     | -          | -                | -               | -               | -      | -      | -        | -         | -               |
| 951/52           | -            | -     | -          | -       | -          |                  | -               | -               | -      | -      | -        | -         | -               |
| 952/53           | -            | -     | -          | -       | -          | -                | -               | -               | -      | -      | -        | -         | -               |
| 53/54            | -            | •     | -          | -       | -          | -                | -               | -               | -      | -      | -        | -         | -               |
| 954/55<br>955/56 | •            | -     | -          | -       | -          | -                | -               | -               | -      | -      | -        | -         | -               |
| 56/57            | -            | •     | -          | -       | -          | -                | -               | -               | -      | -      | -        | -         | -               |
| 957/58           |              |       |            | -       | -          | -                | -               | -               | •      | -      | - '      | -         | -               |
| 958/59           | -            | -     | -          | -       |            |                  | -               | -               | -      | -      | -        | -         | -               |
| 59/60            | -            |       |            | -       |            | _                | -               | -               | -      | •      | -        | -         | -               |
| 960/61           | •            | -     | -          | -       | -          | -                | -               | -               | _      |        |          |           | -               |
| 961/62           | -            | -     | -          | -       | -          | _                | -               | -               | -      |        | _        | -         |                 |
| 62/63            | -            |       |            | -       | -          | -                | -               | _               | -      | -      | _        | -         |                 |
| 563/64           | -            |       | -          | -       |            | -                | -               | -               | -      |        | -        | -         | -               |
| 964/65           | •            |       | -          | •       | -          | -                | -               | -               | -      | -      | _        | -         |                 |
| 65/66            | -            | -     |            | -       | -          | •                | -               | -               | -      | -      | -        |           | -               |
| 566/67           | -            | -     | -          | -       | -          | -                | -               | -               | -      |        | -        | -         | -               |
| 967/68           | -            | -     | -          | -       | -          | -                | -               | -               | -      | -      | -        | -         | -               |
| 68/69            | -            | -     | -          | -       | -          | -                | -               | -               | -      | -      | -        | -         | -               |
| 59/70            | -            | -     |            | -       | -          | -                | -               | -               | -      | -      | -        | -         | -               |
| 970/71           | -            | -     | -          | -       | -          | -                | -               | -               | -      | -      | -        | -         | -               |
| 71/72            | -            | -     | -          | -       | •          | -                | -               | -               | -      | -      | -        | -         | -               |
| 72/73            | •            | -     | -          | -       | -          | -                | -               | -               | -      | -      | -        | -         | -               |
| 973/74           | -            | -     | -          | -       | -          | -                | -               | -               | -      | -      | -        | -         | -               |

-----

### Institute of Hydrology Summary of monthly data - Rainfall

Station number : 76

Name : Sehlabathebe

- - - - - - - - - - - -

Annual

|               |      |      |      |      |      |      |      |            |      |      |      |      | Annual |
|---------------|------|------|------|------|------|------|------|------------|------|------|------|------|--------|
|               | Oct  | Nov  | Dec  | Jan  | Feb  | Mar  | Apr  | Мау        | Jun  | Jul  | Aug  | Sep  | Total  |
| 1974/75       | -    | -    | -    | -    |      | -    |      | 32.        | -    | 10.  |      | 78.  | -      |
| 75/76         | 37.  | 130. | 235. | 285. | 165. | 280. | 44.  | 30.        | 3.   | -    | -    | 43.  |        |
| 1976/77       | 101. | 37.  | 125. | 142. | 106. | 90.  | 16.  | 4.         | Ο.   | Ο.   | 2.   | 39.  | 662.   |
| 1977/78       | 119. | -    | 102. | 151. | 77.  | 85.  | -    | -          | -    | -    | 35.  | 96.  | -      |
| 78/79         | 17.  | 79.  | 114. | 100. | 225. | 81.  | 29.  | 7.         | 5.   | 42.  | 27.  | 41.  | 767.   |
| 1979/80       | 15.  | -    | 114. | 109. | 225. | 195. | 19.  | 34.        | 1.   | Ο.   | 0.   | 86.  | -      |
| 1980/81       | 44.  | 85.  | 87.  | 140. | 132. | 33.  | 43.  | 18.        | 11.  | 1.   | 40.  | 23.  | 657.   |
| 81/82         | 41   | 87.  | 111. | 111. | 56.  | 115. | 67.  | 5.         | 13.  | 14.  | Ο.   | 34.  | 654.   |
| 1982/83       | 138. | 93.  | 41.  | 75.  | 89   | 82.  | 42.  | Β.         | Ο.   | 65.  | 5.   | 17.  | 655.   |
| 1983/84       | 58.  | 95.  | -    | 62.  | 78.  | 145. | 58.  | 16.        | 19.  | 33.  | 26.  | 27.  | -      |
| 84/85         | 71.  | 74.  | 54.  | 158. | 307. | 22.  | 14.  | 2.         | Ο.   | 4    | 11.  | 7.   | 724.   |
| 985/86        | 117. | -    | -    | 207. | 89.  | 61.  | 33.  | 0.         | 33.  | Ο.   | 31.  | 40.  | -      |
| 1986/87       | 139. | 97.  | 104. | 87.  | 132. | 86.  | 33.  | 0.         | 32.  | 8.   | 56.  | 246. | 1020.  |
| 87/88         | 89.  | 75.  | 86.  | 114. | 189. | -    | -    | 29.        | 12,  | 27.  | 21.  | 37.  | -      |
| 988/89        | -    | -    | -    | 34.  | -    | 48.  | 48   | 22.        | -    | -    | 1    | 8.   | -      |
| 1989/90       | 51.  | 199. | 112. | 194. | 44.  | 82.  | 42   | -          | 22.  | 6.   | 34   | 5.   | -      |
| 90/91         | 49.  | 20.  | 111. | -    | 133. | 123. | 10.  | 9.         | 6.   | Ο.   | 2.   | 28.  | -      |
|               | -    | -    | -    | -    | -    | -    | -    | 0.         | 0.   | 0.   | -    | -    | -      |
|               |      |      |      |      |      |      |      |            |      |      |      |      |        |
| Mean          | 65.  | 85.  | 98.  | 130. | 133. | 103. | 33.  | 13.        | 10.  | 11.  | 19.  | 41.  | 742.   |
| edian         | 51.  | 85.  | 104. | 114. | 132. | 86.  | 33.  | 9.         | З.   | 4.   | 5.   | 28.  |        |
| <b>Eximum</b> | 139. | 199. | 235. | 285. | 307. | 280. | 67.  | 34.        | 61.  | 65.  | 97.  | 246. |        |
| Minimum       | 15.  | 14.  | 37.  | 34.  | 44.  | 22.  | 10.  | <b>0</b> . | Ο.   | 0.   | Ο.   | 4.   |        |
| Er. dev.      | 38.  | 45.  | 45.  | 54.  | 64.  | 58.  | 17.  | 12.        | 16.  | 17.  | 24.  | 52.  |        |
|               | . 59 | . 52 | . 46 | .41  | .48  | . 56 | . 50 | . 8 9      | 1.51 | 1.58 | 1.28 | 1.27 |        |
|               |      |      |      |      |      |      |      |            |      |      |      |      |        |

### Total monthly rainfall in millimetres

|                    | Data flags             |                     |
|--------------------|------------------------|---------------------|
| Missing - flag "-" | Original - no flag set | Estimate - flag "e" |

Printed on 30/ 6/1994

| 72/73         8           1973/74         2           1973/74         2           1973/74         2           1973/74         2           1973/74         2           1973/74         2           1975/76         5           1976/77         15           77/78         9           78/79         6           1979/80         7           80/61         3           81/82         2           1982/83         12           1982/83         12           1985/86         144           1985/86         144           1985/86         144           1986/87         204           1988/89         111 | L N<br>0                                                                                                                                                                                                                                                          | ov<br>61.<br>98.<br>10.<br>43.<br>77.<br>07.<br>-<br>34.<br>24.<br>31.<br>03.<br>66.<br>00. | Let<br>Dec<br>86.<br>42.<br>110.<br>111.<br>106.<br>55.<br>67.<br>180.<br>129.<br>126.<br>113.<br>47. | Jan<br>163.<br>77.<br>155.<br>103.<br>116.<br>186.<br>168.<br>61.<br>73.<br>139.<br>103. | <ul> <li>29:17:</li> <li>Feb</li> <li>140.</li> <li>153.</li> <li>195.</li> <li>-</li> <li>93.</li> <li>-</li> <li>85.</li> <li>94.</li> <li>-</li> <li>98.</li> <li>58.</li> </ul> | Mar<br>112.<br>82.<br>49.<br>99.<br>159.<br>119.<br>69.<br>60.<br>50.<br>26. | Apr<br>26.<br>40.<br>51.<br>34.<br>67.<br>20.<br>95.<br>38.<br>11.<br>73. | 25:4<br>May<br>27.<br>5.<br>24.<br>8.<br>27.<br>19.<br>0.<br>40.<br>24.<br>17. | Jun<br>10.<br>2.<br>26.<br>3.<br>22.<br>2.<br>0.<br>5.<br>0. | Altitu<br>Jul<br>12.<br>16.<br>6.<br>22.<br>0.<br>0.<br>0.<br>90.<br>0. | λug<br>11.<br>67.<br>29.<br>13.<br>6.<br>4.<br>27.<br>47.<br>0. | Sep<br>40.<br>42.<br>27.<br>184.<br>59.<br>56.<br>95.<br>54.<br>72. | Annua<br>Total<br>778.<br>711.<br>805.<br>-<br>891.<br>-<br>786. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|
| V1/72       94         172/73       87         1973/74       27         74/75       37         75/76       59         1976/77       159         78/79       87         1979/80       77         80/81       39         81/82       29         1982/83       125         1985/86       144         1985/86       144         1986/87       204         1988/89       111                                                                                                                                                                                                                              | 0,<br>7,<br>1,<br>9, 1,<br>9, 1,<br>5,<br>1, 1,<br>9, 1,<br>9, 1,<br>5, 6<br>2, 1,                                                                                                                                                                                | 61.<br>98.<br>10.<br>43.<br>77.<br>07.<br>-<br>34.<br>24.<br>31.<br>03.                     | 86.<br>42.<br>110.<br>111.<br>106.<br>55.<br>67.<br>180.<br>129.<br>126.<br>113.                      | 163.<br>77.<br>155.<br>103.<br>116.<br>186.<br>168.<br>61.<br>73.<br>139.<br>103.        | 140.<br>153.<br>-<br>93.<br>-<br>85.<br>94.<br>-<br>98.                                                                                                                             | 112.<br>82.<br>49.<br>99.<br>159.<br>119.<br>69.<br>60.<br>50.<br>26.        | 26.<br>40.<br>51.<br>34.<br>67.<br>20.<br>95.<br>38.<br>11.               | 27.<br>5.<br>24.<br>8.<br>27.<br>19.<br>0.<br>40.<br>24.                       | 10.<br>2.<br>26.<br>3.<br>22.<br>2.<br>0.<br>5.              | 12.<br>16.<br>22.<br>0.<br>0.<br>90.                                    | 11.<br>67.<br>29.<br>13.<br>6.<br>4.<br>27.<br>47.<br>0.        | 40.<br>42.<br>27.<br>184.<br>59.<br>56.<br>95.<br>54.<br>72.        | Total<br>778.<br>711.<br>805.<br>-<br>891.<br>-<br>786.          |
| 72/73       8         1973/74       2         74/75       3         75/76       5         1976/77       15         77/78       9         78/79       6         1979/80       7         80/81       3         981/82       29         1982/83       125         1985/86       144         1985/86       144         1986/87       204         1988/89       111                                                                                                                                                                                                                                       | 7. 1<br>7. 1<br>9. 2<br>9. 1<br>5. 3<br>1. 1<br>9. 1<br>9. 1<br>5. 6<br>2. 1                                                                                                                                                                                      | 98.<br>10.<br>43.<br>77.<br>07<br>-<br>34.<br>24.<br>31.<br>03.<br>66.                      | 42.<br>110.<br>111.<br>106.<br>55.<br>67.<br>180.<br>129.<br>126.<br>113.                             | 77.<br>155.<br>103.<br>116.<br>186.<br>168.<br>61.<br>73.<br>139.<br>103.                | 153.<br>195.<br>-<br>93.<br>-<br>85.<br>94.<br>-<br>98.                                                                                                                             | 82.<br>49.<br>99.<br>159.<br>119.<br>69.<br>60.<br>50.<br>26.                | 40.<br>51.<br>34.<br>67.<br>20.<br>95.<br>38.<br>11.                      | 5.<br>24.<br>8.<br>27.<br>19.<br>0.<br>40.<br>24.                              | 2.<br>26.<br>3.<br>22.<br>2.<br>0.<br>5.                     | 16.<br>6.<br>22.<br>0.<br>0.<br>90.<br>0.                               | 67.<br>29.<br>13.<br>6.<br>4.<br>27.<br>47.<br>0.               | 42.<br>27.<br>184.<br>59.<br>56.<br>95.<br>54.<br>72.               | 711.<br>805.<br>-<br>891.<br>-<br>786.                           |
| 1973/74       2:         74/75       3:         75/76       5:         1976/77       15:         77/78       9:         78/79       6:         1979/80       7:         1979/80       7:         1979/80       7:         1979/80       7:         1980/81       3:         1982/83       12:         1982/83       12:         1985/86       144         1985/86       144         1985/86       144         1986/87       204         1988/89       111                                                                                                                                            | 3.       1         7.       1         9.       1         5.       3         1.       1         9.       1         5.       6         5.       6         2.       16                                                                                               | 10.<br>43.<br>77.<br>07<br>-<br>34.<br>24.<br>31.<br>03.<br>66.                             | 110.<br>111.<br>106.<br>55.<br>67.<br>180.<br>129.<br>126.<br>113.                                    | 155.<br>103.<br>116.<br>186.<br>168.<br>61.<br>73.<br>139.<br>103.                       | 195.<br>-<br>93.<br>-<br>85.<br>94.<br>-<br>98.                                                                                                                                     | 49,<br>99,<br>159,<br>119,<br>69,<br>60,<br>50,<br>26,                       | 51.<br>34.<br>67.<br>20.<br>95.<br>38.<br>11.                             | 24.<br>8.<br>27.<br>19.<br>0.<br>40.<br>24.                                    | 26.<br>3.<br>22.<br>2.<br>0.<br>5.                           | 6.<br>22.<br>0.<br>0.<br>90.                                            | 29.<br>13.<br>6.<br>4.<br>27.<br>47.<br>0.                      | 27.<br>184.<br>59.<br>56.<br>95.<br>54.<br>72.                      | 711.<br>805.<br>-<br>891.<br>-<br>-<br>786.                      |
| 74/75         31           75/76         59           1976/77         159           77/78         99           78/79         61           1979/80         71           80/81         39           81/82         29           1982/83         125           1982/83         125           1985/86         144           1985/86         144           1985/86         144           1988/89         111                                                                                                                                                                                               | 7.       1         9.       1         5.       3         1.       1         9.       1         9.       1         9.       1         9.       1         9.       1         9.       1         9.       1         9.       1         9.       1         2.       1 | 43.<br>77.<br>07<br>-<br>34.<br>24.<br>31.<br>03.<br>66.                                    | 111.<br>106.<br>55.<br>67.<br>180.<br>129.<br>126.<br>113.                                            | 103.<br>116.<br>186.<br>168.<br>61.<br>73.<br>139.<br>103.                               | -<br>93.<br>-<br>85.<br>94.<br>-<br>98.                                                                                                                                             | 99.<br>159.<br>119.<br>69.<br>60.<br>50.<br>26.                              | 34.<br>67.<br>20.<br>95.<br>38.<br>11.                                    | 8.<br>27.<br>19.<br>0.<br>40.<br>24.                                           | 3.<br>22.<br>2.<br>0.<br>5.                                  | 22.<br>0.<br>0.<br>90.<br>0.                                            | 13.<br>6.<br>4.<br>27.<br>47.                                   | 184 .<br>59 .<br>56 .<br>95 .<br>54 .<br>72 .                       | 805.<br>-<br>891.<br>-<br>-<br>786.                              |
| 75/76         51           1976/77         151           77/78         91           78/79         81           1979/80         71           80/81         31           81/82         25           1982/83         125           1982/83         125           1982/83         125           1985/86         144           1886/87         204           1985/86         144           1985/86         144           1988/89         111                                                                                                                                                              | 9. 1<br>9. 1<br>5.<br>3.<br>1. 1<br>9. 1<br>9. 1<br>5. 6<br>2. 1                                                                                                                                                                                                  | 77.<br>07<br>-<br>34.<br>24.<br>31.<br>03.<br>66.                                           | 106.<br>55.<br>67.<br>180.<br>129.<br>126.                                                            | 116.<br>186.<br>168.<br>61.<br>73.<br>139.<br>103.                                       | 93.<br>-<br>85.<br>94.<br>-<br>98.                                                                                                                                                  | 159.<br>119.<br>69.<br>60.<br>50.<br>26.                                     | 67.<br>20.<br>95.<br>38.<br>11.                                           | 27.<br>19.<br>0.<br>40.<br>24.                                                 | 22.<br>2.<br>0.<br>5.                                        | 0.<br>0.<br>90.<br>0.                                                   | 6.<br>4.<br>27.<br>47.<br>0.                                    | 59.<br>56.<br>95.<br>54.<br>72.                                     | -<br>891.<br>-<br>-<br>786.                                      |
| 1976/77         159           77/78         99           78/79         81           1979/80         71           1979/80         72           80/81         39           81/82         29           1982/83         125           1982/83         125           1985/86         144           1985/86         144           1986/87         204           1988/89         111                                                                                                                                                                                                                        | 9. 1<br>5.<br>3<br>9. 1<br>9. 1<br>5. 6<br>2. 1                                                                                                                                                                                                                   | 07<br>-<br>24.<br>31.<br>03.                                                                | 55.<br>67.<br>180.<br>129.<br>126.<br>113.                                                            | 186.<br>168.<br>61.<br>73.<br>139.<br>103.                                               | -<br>85.<br>94.<br>98.                                                                                                                                                              | 119.<br>69.<br>60.<br>50.<br>26.                                             | 20.<br>95.<br>38.<br>11.                                                  | 19.<br>0.<br>40.<br>24.                                                        | 2.<br>0.<br>5.<br>0.                                         | 0.<br>0.<br>90.<br>0.                                                   | 4.<br>27.<br>47.<br>0.                                          | 56.<br>95.<br>54.<br>72.                                            | -<br>-<br>786.                                                   |
| 77/78 99<br>78/79 81<br>1979/80 71<br>80/81 35<br>81/82 25<br>1982/83 125<br>1982/83 125<br>1982/83 125<br>1985/86 144<br>1985/86 144<br>1986/87 204<br>17/88 54                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.<br>3.<br>1. 1:<br>9. 1:<br>9. 1:<br>5. 6<br>2. 1:                                                                                                                                                                                                              | -<br>34 .<br>24 .<br>31 .<br>03 .<br>66 .                                                   | 67.<br>180.<br>129.<br>126.<br>113.                                                                   | 168.<br>61.<br>73.<br>139.                                                               | 85.<br>94.<br>-<br>98.                                                                                                                                                              | 69.<br>60.<br>50.<br>26.                                                     | 95.<br>38.<br>11.                                                         | 0.<br>40.<br>24.                                                               | 0.<br>5.<br>0.                                               | 0.<br>90.<br>0.                                                         | 27.<br>47.<br>0.                                                | 95.<br>54.<br>72.                                                   | -<br>786.                                                        |
| 78/79         8:           1979/80         7:           30/81         3:           81/82         2:           1982/83         12:           83/84         10:           983/84         10:           985/86         144           985/86         144           986/87         204           988/89         111                                                                                                                                                                                                                                                                                       | 3. 1.<br>1. 1:<br>9. 1.<br>9. 1.<br>5. 6<br>2. 1:                                                                                                                                                                                                                 | 34 .<br>24 .<br>31 .<br>03 .<br>66 .                                                        | 180.<br>129.<br>126.<br>113.                                                                          | 61.<br>73.<br>139.<br>103.                                                               | 94<br>-<br>98.                                                                                                                                                                      | 60.<br>50.<br>26.                                                            | 38.<br>11.                                                                | 40.<br>24.                                                                     | 5.<br>0.                                                     | 90.<br>0.                                                               | 47.<br>0.                                                       | 54.<br>72.                                                          | 786.                                                             |
| 1979/80         71           80/81         39           81/82         29           982/83         129           983/84         102           985/86         144           186/87         204           988/89         111                                                                                                                                                                                                                                                                                                                                                                            | 1. 1:<br>9. 1.<br>9. 1:<br>5. 6<br>2. 1:                                                                                                                                                                                                                          | 24.<br>31.<br>03.<br>66.                                                                    | 129.<br>126.<br>113.                                                                                  | 73,<br>139,<br>103,                                                                      | -<br>98.                                                                                                                                                                            | 50.<br>26.                                                                   | 11.                                                                       | 24.                                                                            | 0.                                                           | 0.                                                                      | Ο.                                                              | 72.                                                                 |                                                                  |
| 80/81         39           81/82         29           982/83         125           83/84         102           84/85         89           985/86         144           986/87         204           97/88         54           988/89         111                                                                                                                                                                                                                                                                                                                                                    | 9. 1.<br>9. 1.<br>5. (<br>2. 1)                                                                                                                                                                                                                                   | 31.<br>03.<br>66.                                                                           | 126.<br>113.                                                                                          | 139.<br>103.                                                                             | 98.                                                                                                                                                                                 | 26.                                                                          |                                                                           |                                                                                |                                                              |                                                                         |                                                                 |                                                                     | -                                                                |
| 81/82         29           982/83         129           83/84         102           84/85         89           985/86         144           986/87         204           97/88         54           988/89         111                                                                                                                                                                                                                                                                                                                                                                               | 9. 1)<br>5. (                                                                                                                                                                                                                                                     | 03.<br>66.                                                                                  | 113.                                                                                                  | 103.                                                                                     |                                                                                                                                                                                     |                                                                              | 73.                                                                       | 17                                                                             |                                                              |                                                                         |                                                                 |                                                                     |                                                                  |
| 982/83 125<br>83/84 107<br>84/85 85<br>985/86 144<br>986/87 204<br>87/88 54<br>988/89 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5. (<br>2. 1)                                                                                                                                                                                                                                                     | 66.                                                                                         |                                                                                                       |                                                                                          | 58.                                                                                                                                                                                 |                                                                              |                                                                           | <b>1</b> 7.                                                                    | 28.                                                          | 3.                                                                      | 67.                                                             | 27.                                                                 | 774.                                                             |
| 83/84 107<br>64/85 85<br>985/86 144<br>986/87 204<br>87/88 54<br>988/89 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2. 10                                                                                                                                                                                                                                                             |                                                                                             | 47.                                                                                                   |                                                                                          |                                                                                                                                                                                     | 74.                                                                          | 114.                                                                      | 5.                                                                             | Ο.                                                           | 19.                                                                     | 0.                                                              | 15.                                                                 | 633.                                                             |
| 985/86 144<br>186/87 204<br>17/88 54<br>988/89 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   | 00                                                                                          |                                                                                                       | 130.                                                                                     | 63.                                                                                                                                                                                 | 104.                                                                         | 34.                                                                       | 21.                                                                            | Ο.                                                           | 26.                                                                     | Ο.                                                              | 26.                                                                 | 642.                                                             |
| 985/86 144<br>986/87 204<br>97/88 54<br>988/89 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                 |                                                                                             | 124.                                                                                                  | 131.                                                                                     | 65.                                                                                                                                                                                 | 51.                                                                          | 32.                                                                       | 62                                                                             | 1.                                                           | Ο.                                                                      | 64.                                                             | 7.                                                                  | 739.                                                             |
| 988/89 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5. 8                                                                                                                                                                                                                                                              | 82.                                                                                         | 74.                                                                                                   | 94.                                                                                      | 145.                                                                                                                                                                                | 37.                                                                          | 33.                                                                       | 5.                                                                             | Ο.                                                           | Ο.                                                                      | 0.                                                              | 2.                                                                  | 557.                                                             |
| 988/89 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4. (                                                                                                                                                                                                                                                              | 69.                                                                                         | 150.                                                                                                  | 167.                                                                                     | 87.                                                                                                                                                                                 | 59.                                                                          | 78.                                                                       | Ο.                                                                             | 53.                                                          | 1.                                                                      | 59.                                                             | 52.                                                                 | 919.                                                             |
| 988/89 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4. 10                                                                                                                                                                                                                                                             | 06.                                                                                         | 51.                                                                                                   | 76.                                                                                      | 88.                                                                                                                                                                                 | 71.                                                                          | 61.                                                                       | 3.                                                                             | -                                                            | 9.                                                                      | 81.                                                             | 251.                                                                | -                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4. 1:                                                                                                                                                                                                                                                             | 11.                                                                                         | 79.                                                                                                   | 141.                                                                                     | 146.                                                                                                                                                                                | 132.                                                                         | 52.                                                                       | 52.                                                                            | 11.                                                          | 25.                                                                     | 19.                                                             | 44.                                                                 | 866                                                              |
| <b>289/90</b> 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1. 11                                                                                                                                                                                                                                                             | 26.                                                                                         | -                                                                                                     | -                                                                                        | 252.                                                                                                                                                                                | 64.                                                                          | 27.                                                                       | 74.                                                                            | -                                                            | 2.                                                                      | ٦.                                                              | 7.                                                                  | -                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>.</b> .                                                                                                                                                                                                                                                        | -                                                                                           | -                                                                                                     | •                                                                                        | 36.                                                                                                                                                                                 | -                                                                            | 119.                                                                      | 7.                                                                             | 31.                                                          | -                                                                       | 17.                                                             | 1.                                                                  | -                                                                |
| 0/91 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :                                                                                                                                                                                                                                                                 | 22.                                                                                         | 95.                                                                                                   | 93.                                                                                      | •                                                                                                                                                                                   | 94.                                                                          | <b>S</b> .                                                                | -                                                                              | -                                                            | -                                                                       | -                                                               | -                                                                   | -                                                                |
| 991/92 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   | -                                                                                           | -                                                                                                     |                                                                                          | -                                                                                                                                                                                   | -                                                                            | -                                                                         | Ο.                                                                             | 0.                                                           | Ο.                                                                      | -                                                               |                                                                     | -                                                                |
| tean 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                 | 98.                                                                                         | 97.                                                                                                   | 121.                                                                                     | 112.                                                                                                                                                                                | 80.                                                                          | 51.                                                                       | 21.                                                                            |                                                              |                                                                         |                                                                 |                                                                     |                                                                  |
| ian 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                   | 03.                                                                                         | 95.                                                                                                   | 116.                                                                                     | 93.                                                                                                                                                                                 |                                                                              |                                                                           |                                                                                | 11.                                                          | 12.                                                                     | 27.                                                             | 56                                                                  | 773.                                                             |
| aximum 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                   | , co                                                                                        | 95.<br>180.                                                                                           | 186.                                                                                     | 252.                                                                                                                                                                                | 71.                                                                          | 30.                                                                       | 17.                                                                            | 2.                                                           | 3.                                                                      | 17.                                                             | 42.                                                                 |                                                                  |
| inimum 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                 | 22.                                                                                         | 42.                                                                                                   | 61.                                                                                      | 36.                                                                                                                                                                                 | 159.                                                                         | 119.                                                                      | 74.                                                                            | 53.                                                          | 90.                                                                     | 81.                                                             | 251.                                                                |                                                                  |
| dev. 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                   | 22.<br>38.                                                                                  | 42.<br>38.                                                                                            | 61.<br>38.                                                                               | 36.<br>56.                                                                                                                                                                          | 26.                                                                          | 5.                                                                        | 0.                                                                             | 0.                                                           | 0.                                                                      | 0.                                                              | 1.                                                                  |                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                 | . 39                                                                                        | .39                                                                                                   | .31                                                                                      | .50                                                                                                                                                                                 | 35.<br>.43                                                                   | 32.<br>.63                                                                | 21.<br>1.02                                                                    | 15.<br>1.40                                                  | 21.<br>1.73                                                             | 28.<br>1.02                                                     | 63.<br>1.13                                                         |                                                                  |

Total monthly rainfall in millimetres

----------Data flags Missing - flag \*-\* Original - no flag set Estimate - flag "e" 

Printed on 22/ 6/1994

- - - -

\_ \_ \_ \_ \_ \_ \_ \_ \_ \_

| Stat    | ion nu  | umber | :    | 60      |       | N    | ame :     | Leribe | e (RA) | (NDAT) |         |       |                 |
|---------|---------|-------|------|---------|-------|------|-----------|--------|--------|--------|---------|-------|-----------------|
| Basin   | no. : 0 |       | i.at | itude : | 0: 0: | 0 N  | Longitude | 2 : 0: | 0:0E   | Altitu | ide ⊤.0 | 1     |                 |
|         | OCL     | Nov   | Dec  | Jan     | Feb   | Mar  | Apr       | Мау    | Jun    | Jul    | Aug     | Sep   | Annual<br>Total |
| 86/87   | -       |       | -    | 53.     | 90.   | 149. | 65.       | 69     | 3.     | 31.    | 38.     | 4.    | -               |
| 87/88   | 36.     | 46.   | 104. | 161.    | 199.  | 207. | 150.      | 25.    | 0.     | 34.    | 33.     | 31.   | 1026.           |
| 1888/89 | 89.     | 66.   | 70.  | 161.    | 91.   | 86.  | 60.       | -      | 0.1    | Ο.     | 19.     | 38.   | -               |
| 89/90   | 111.    | 86.   | 60.  | 64.     | 143.  | 56.  | 51.       | Ο.     | 17.    | - 14.  | 18.     | Ο.    | 620.            |
| 50/91   | 63.     | 85.   | 85.  | 235.    | 56.   | 175. | 78.       | 119.   | 60.    | 28.    | 34.     | 2.    | 1020.           |
| 1891/92 | 29.     | 144.  | 128. | 91.     | 149.  | 102. | 17,       | 15.    | 12.    | 0.     | 49      | 61.   | 797.            |
| 92/93   | 130.    | 82.   | 107. | 289.    | 57.   | 71.  | 36.       | 5.     | 1.     | 13.    | Ο.      | 83.   | B74.            |
| 93/94   | 77.     | 135.  | 114. | 141.    | 185.  | 182. | 51.       | 21.    | 28.    | Ο.     | 34.     | -     | -               |
| 1894/95 | 87.     | -     | 103. | 84.     | 133.  | 167. | 54.       | 30.    | Ο.     | Ο.     | Ο.      | 27.   | -               |
| 295/96  | 19.     | 90.   | 171. | 110.    | 51.   | 29.  | 122.      | 64.    | 28.    | Ο.     | 53.     | 28.   | 765             |
| 6/97    | 4.      | 32.   | 308. | 114.    | 49.   | 180. | 15.       | 9.     | Ο.     | 0.     | 13.     | 3.    | 727.            |
| 1897/98 | 121.    | 4.    | 69.  | 415.    | 47.   | 147. | 18.       | 38.    | 0.     | 0.     | 13.     | 11.   | 883.            |
| 1998/99 | 57.     | 73.   | 135. | 152.    | 84.   | 137. | 99.       | 37.    | 19.    | 105.   | 39.     | . 15. | 952.            |
| 9/00    | 64.     | 71.   | 89.  | 207.    | 115.  | 34.  | 61.       | Ο.     | 36.    | 23.    | 80.     | 0.    | 780.            |
| 1900/01 | 37,     | 71.   | 94.  | 125.    | 154.  | 173. | 91.       | 1.     | 1.     |        | -       | -     | -               |
| 1901/02 | -       | -     | -    | -       | -     | -    | -         | -      | -      | -      | -       | -     | -               |
| 2/03    | -       | -     | -    | -       | -     | -    | -         | -      | -      | -      | -       | -     | -               |
| 1903/04 | •       | -     | -    | -       | •     | -    | -         | -      |        | -      |         | -     | -               |
| 1904/05 | -       | -     | •    | •       | -     | -    | -         | -      | 2.     | 0.     | 11.     | 60.   | -               |
| 5/06    | 16.     | 115.  | 103. | 231.    | 68.   | 141. | 32.       | 19.    | 5.     | 0.     | Ο.      | 81.   | 811.            |
| 1906/07 | 115.    | 171.  | 171. | 248.    | 142.  | 102. | 127.      | 69.    | 2.     | Β.     | 0.      | 76    | 1231.           |
| 1907/08 | 126.    | 139.  | 147. | 108.    | 73.   | 173. | 9.        | 5.     | 50.    | 10.    | 33.     | 64.   | 937.            |
| 8/09    | 89.     | 122   | 90.  | 394.    | 267.  | 130. | 53.       | 85.    | Ο.     | 5.     | 16.     | 56.   | 1307.           |
| 1909/10 | 19.     | 77.   | 242. | 240.    | 215.  | 84.  | 26.       | 31.    | 14.    | 4.     | 2.      | 71.   | 1025.           |
| 1910/11 | 192.    | 48.   | 73.  | 86.     | 103.  | 216. | 65.       | 73.    | 6.     | 31.    | 22.     | 34.   | 969.            |
| 1/12    | 83.     | 128.  | 43.  | 55.     | 383.  | 32.  | 139.      | 76.    | 29.    | 8.     | 1.      | 1.    | 978.            |
| 1912/13 | 51.     | 35.   | 190. | 81.     | 106.  | 134. | 30.       | 3.     | 3.     | 9.     | 23.     | 36.   | 701.            |
| 1913/14 | 119.    | 83.   | 5.   | 56.     | 104.  | 70.  | 73.       | 21.    | 8.     | 0.     | 33.     | 18.   | 590.            |
| 4/15    | 95.     | 105.  | 111. | 171.    | 144.  | 39.  | 8.        | 26.    | 1.     | 42.    | 4.      | 40.   | 786.            |
| 1915/16 | 84.     | 210.  | 85.  | 129.    | 75.   | 84.  | 108.      | 21.    | 0.     | З.     | 0.      | 11.   | 810.            |

.

Station number : 60

Name : Leribe (RAINDAT)

-----

- -

|         |      |      |             |      |      |      |      |     |     |     |     |      | Annua l |
|---------|------|------|-------------|------|------|------|------|-----|-----|-----|-----|------|---------|
|         | OCL  | Nov  | Dec         | Jan  | Feb  | Mar  | Apr  | May | Jun | Jul | Aug | Sep  | Total   |
| 916/17  | 66.  | 53.  | 137.        | 153. | 99.  | 57.  | 66.  | 5.  | 44. | 24. | 31. | 27.  | 762.    |
| 17/18   | 37.  | 157. | 103.        | 129. | 97.  | 94.  | Ο.   | 9.  | 1.  | 26. | 50. | 56.  | 759.    |
| 1918/19 | 35.  | 47.  | 107.        | 126  | 25.  | 72.  | 58.  | 11. | 3.  | 8.  | 6.  | 67.  | 565.    |
| 919/20  | 13.  | 142. | 33.         | 136. | 123. | 141. | 39.  | 9.  | 2.  | Ο.  | 18. | 43.  | 699.    |
| 20/21   | 131. | 54.  | 49.         | 86.  | 170. | 199. | 61.  | 28. | 1.  | 0.  | 1.  | 46.  | 826.    |
| 1921/22 | 35.  | 158. | 147.        | 190  | 95.  | 56.  | 5.   | 0.  | 77. | 8.  | 31. | 16.  | 818.    |
| 1922/23 | 65.  | 148. | 118.        | 104. | 80.  | 98.  | 76.  | 52. | 59. | 18. | 32. | 1.   | 851.    |
| 23/24   | 33.  | 115. | 49.         | 114. | 98.  | 169. | 18.  | 7.  | З.  | 2.  | 5.  | 80.  | 696.    |
| 1924/25 | 80.  | 167. | 134.        | 71.  | 155. | 251. | 144. | 22. | 2.  | 6.  | 1.  | 64.  | 1097.   |
| 1925/26 | 86.  | 79.  | 39.         | 94.  | 115. | 168. | 5.   | 23. | 14. | Ο.  | Ο.  | 70.  | 693.    |
| 26/27   | 86.  | 186. | 147.        | 143  | 95.  | 120. | 15.  | ₿.  | 0.  | 23. | 16. | 2.   | 841.    |
| 1927/28 | 85.  | 49.  | 151.        | 199. | 83.  | 102. | 28.  | Ο.  | 2.  | 0.  | 3.  | 34   | 736.    |
| 1928/29 | 147. | 117. | 114.        | 237. | 40.  | 177. | 19.  | 46. | 55. | 29. | 17  | 173. | 1171.   |
| 29/30   | 50.  | 131. | 188.        | 166. | 107. | 172. | 84.  | 15. | 0.  | 4.  | 15. | 10.  | 942.    |
| 1930/31 | 36.  | 74.  | 125.        | 177. | 107. | 90.  | 190. | 8.  | 3.  | 39. | Ο.  | Ο.   | 849.    |
| 1931/32 | 58   | 101. | <b>δΒ</b> . | 90.  | 169. | 89.  | 3.   | 15. | 1.  | Ο.  | Ο.  | 15.  | 609.    |
| 32/33   | 34.  | 72.  | 102.        | 36.  | 91.  | 118. | 48.  | 12. | 9.  | 15. | Ο.  | 6.   | 543.    |
| 1933/34 | 14.  | 306. | 246.        | 330. | 67.  | 175. | 69.  | 89. | 3.  | 46. | 30. | 6.   | 1381.   |
| 1934/35 | 81.  | 257. | 136.        | 155. | 54.  | 121. | 38.  | 49. | Ο.  | 0.  | 17. | 12.  | 920.    |
| 35/36   | 31.  | 61.  | 121.        | 88.  | 22.  | 87.  | 22.  | 74. | 1.  | 2.  | Ο.  | З.   | 512.    |
| 1936/37 | 100. | 227. | 112.        | 210. | 196. | 89.  | 28.  | 9.  | Ο.  | 6.  | 0.  | 28.  | 1005.   |
| 1937/38 | 41.  | 44.  | 90.         | 145. | 206. | 16.  | 90.  | 27. | 39. | 7,  | 44. | 21.  | 770.    |
| 38/39   | 67.  | 39.  | 124.        | 212. | 219. | 59.  | 25.  | 38. | 1.  | 23. | 50. | 24.  | 881.    |
| 1939/40 | 77.  | 144. | 84.         | 63.  | 147. | 61.  | 95.  | 41. | 15. | 8.  | 1.  | 88.  | 824.    |
| 1940/41 | 18.  | 106. | 165.        | 158. | 174. | 26.  | 75.  | 0.  | 0.  | 14. | 0.  | 53.  | 789.    |
| 41/42   | 123. | 5    | 21.         | 130. | 117. | 125. | 59.  | 22. | 36. | 0.  | 67. | 13.  | 718.    |
| 1942/43 | 98.  | 109. | 165.        | 136  | 55.  | 103. | 117. | 89. | 0.  | 92. | 30. | 7.   | 1009.   |
| 1943/44 | 237. | 234. | 219.        | 70.  | 165. | 134. | 4.   | 79. | 72. | 0.  | Ο.  | 71.  | 1185.   |
| 44/45   | 113. | 158. | 27.         | B1.  | 210. | 136. | 51.  | 28. | Ο.  | 1.  | Ο.  | 4.   | 809.    |
| -945/46 | 74.  | 54.  | 49.         | 145  | 76.  | 99.  | 28.  | 66. | 0.  | З.  | 0.  | 9.   | 603.    |

Station number : 60

-----

\_ \_ \_ \_ \_ \_ \_

Name : Leribe (RAINDAT)

\_ \_ \_

| $\bullet$      | Oct  | Nov         | Dec  | Jan  | Feb         | Mar  | Apr  | Мау  | Jun | Jul | Aug | Sep  | Annual<br>Total |
|----------------|------|-------------|------|------|-------------|------|------|------|-----|-----|-----|------|-----------------|
| 1946/47        | 133. | 74.         | 63.  | 82.  | <b>9</b> 0. | 82.  |      |      | ,   | -   |     |      |                 |
| 47/48          | 87.  | 81.         | 261. | 96.  | 90.<br>111. | 218. | 107. | 18.  | 6.  | 9.  | 2.  | 67.  | 733.            |
| 1948/49        | 81.  | 54.         | 281. | 110. | 79.         |      | 55.  | 9.   | 0.  | 0.  | 2.  | 0.   | 920.            |
| 1949/50        | 81.  | 54.<br>141. | 150. | 147. | 120.        | 173. | 38.  | 36.  | 9.  | 4.  | 1   | 30.  | 643.            |
| 50/51          | 47,  | 51.         | 174. | 147. | 120.        | 210. | 111. | 68.  | 9.  | 15, | 80. | 18.  | 1150.           |
| 1951/52        | 154. | 36.         | 56.  |      |             | 147. | 53.  | 29.  | 11. | 4.  | 32. | 13.  | 872.            |
| 1951/52        | 30.  | 38.<br>78.  |      | 134. | 142,        | 52.  | 22.  | 14.  | 6.  | 21. | 8.  | 30.  | 675.            |
| 53/54          | 107. |             | 125. | 48.  | 184.        | 53.  | 38.  | 19.  | 4.  | 0.  | 8.  | 10.  | 597.            |
| 1954/55        |      | 105.        | 112. | 136. | 117.        | 141. | 36.  | 40.  | 3.  | 1.  | Ο.  | 1.   | 799.            |
|                | 29.  | 119.        | 98.  | 176. | 252.        | 43.  | 93.  | 56.  | 10. | 0.  | Ο.  | 0.   | 875.            |
| 1955/56        | 67.  | 129.        | 172. | 171. | 108.        | 131. | 55.  | 67.  | 0.  | 6.  | Ο.  | 24.  | 930.            |
| 66/57          | 104. | 107.        | 271. | 169. | 98.         | 127. | 62.  | 10.  | 30. | 19. | 36. | 131. | 1164.           |
| 1957/58        | 232  | 105.        | 134. | 172. | 95.         | 105. | 98.  | 44.  | 2.  | 0.  | 0.  | 62.  | 1049.           |
| 1958/59        | 41.  | 77.         | 126. | 111. | 39.         | 49.  | 86.  | 113. | θ.  | 46. | Đ.  | 15.  | 711.            |
| 69/60          | 87.  | 118.        | 151. | 98.  | 190.        | 146. | 67.  | ٥.   | 0.  | 9.  | 29. | 49.  | 944.            |
| 1960/61        | 54.  | 97.         | 115. | 121. | 37.         | 106. | 107. | 55.  | 48. | 18. | 9.  | 20.  | 787.            |
| 1961/62        | 8.   | 126.        | 76.  | 79.  | 146.        | 65.  | 62.  | 4.   | 0.  | Ο.  | 7.  | 19.  | 592.            |
| 62/63          | 42.  | 95.         | 36.  | 170. | 126.        | 124. | 118. | 31.  | 15. | 14. | 2.  | 5.   | 775.            |
| 1963/64        | 56.  | 105.        | 102. | 52.  | 55.         | 113. | 42.  | 7.   | 0.  | D . | 14. | 52.  | 593.            |
| 1964/65        | 136  | 45.         | 133. | 148. | 31.         | 13.  | 92.  | Ο.   | 20. | 12, | 15. | 12.  | 657.            |
| 65/66          | 39.  | 62.         | 39.  | 175. | 69.         | 40.  | 43.  | 14.  | 13. | Ο.  | 2.  | 11.  | 507.            |
| -966/67        | 39.  | 69.         | 98.  | 305. | 216.        | 114. | 84.  | 45.  | Ο.  | ٥.  | 4.  | 4.   | 978.            |
| 1967/68        | 85.  | 53.         | 93.  | 25.  | 30.         | 139. | 66.  | 64.  | 0.  | 10. | 17. | 6.   | 588.            |
| 68/69          | 58   | 30.         | 95.  | 66.  | 111.        | 138. | 59.  | 86   | 7.  | 1.  | 9.  | 9.   | 669.            |
| 569/70         | 113. | 38.         | 124. | 69.  | 24.         | 15.  | 19.  | 13.  | 20. | 25. | 22  | 41.  | 523.            |
| 1970/71        | 60.  | 41.         | 158. | 128. | 84.         | 42.  | 46.  | 51.  | Ο.  | 5.  | 2.  | 5.   | 622.            |
| 71/72          | 60.  | 58.         | 65.  | 120. | 167.        | 103. | 50.  | 16.  | 13. | 0.  | Ο.  | Ο.   | 652.            |
| 72/73          | 59.  | 67.         | 20.  | 44.  | 169.        | 49.  | 51.  | Ο.   | Ο.  | 16. | 64. | 34.  | 573.            |
| 1973/74        | 5.   | 21.         | 107. | 171. | 64.         | 112. | 41.  | 9.   | 8.  | 0.  | 11. | ٥.   | 569.            |
| 74/75          | 18.  | 187.        | 49.  | 95.  | 135.        | 112. | 28.  | -    | Ο.  | 15. | 13. | 78.  | -               |
| <b>9</b> 75/76 | 50.  | 136.        | 100. | 87.  | 121.        | 69.  | 38.  | 21.  | 19. | -   | -   | 73.  | -               |

## -----

Station number : 60

Name : Leribe (RAINDAT)

-----

- - - - - -

|          | OCL  | Nov  | Dec  | Jan         | Feb  | Mar  | Apr  | Мау  | Jun  | Jul  | Aug  | Sep  | Annual<br>Total |
|----------|------|------|------|-------------|------|------|------|------|------|------|------|------|-----------------|
|          |      |      |      |             |      |      |      | -    |      |      |      |      |                 |
| 1976/77  | 73.  | 48.  | 55.  | 168.        | 94.  | 136. | 6.   | θ.   | 0.   | 0.   |      | -    | -               |
| 77/78    | -    | -    | -    | -           | -    | -    | -    | -    | -    | -    | -    | -    | -               |
| 1978/79  | -    | -    | -    | -           | -    | -    | -    | 26   | 8.   | -    | -    | -    | -               |
| 1979/80  | -    | -    | -    | -           | -    | 60.  | 24.  | 2.   | 2.   | Ο.   | ۱.   | 108. | -               |
| 80/81    | 12.  | 116. | 69.  | 287.        | 67.  | 79.  | 46.  | 12.  | 23.  | ٥.   | 43.  | 15.  | 769.            |
| 1981/82  | 27.  | 92.  | 105. | 96.         | 79.  | 57.  | 161. | 8.   | 13.  | θ.   | 0.   | 2.   | 648.            |
| 1982/83  | 89.  | -    | 76.  | 45.         | 67.  | 45.  | 39.  |      | 5.   | 11.  | 0.   | 20.  | -               |
| 83/84    | 59.  | 122. | 91.  | 83.         | 35.  | 74.  | 51.  | 34.  | 1.   | 4.   | 51.  | 0.   | 605.            |
| 1984/85  | 41   | 93.  | 39.  | 56.         | 100. | 34.  | Ο.   | 0.   | 1.   | 0.   | 0.   | 1.   | 365.            |
| 1985/86  | 64.  | 63.  | 90.  | 49.         | 104. | 51.  | 47.  | 0.   | 52.  | 0.   | 50.  | 14.  | 584             |
| 86/87    | 174. | 95.  | 38   | 30.         | 96.  | 116. | 78.  | Ο.   | 0.   | 9.   | 60.  | 157. | 853.            |
| 1987/88  | 39.  | 94.  | 88.  | 147.        | 259. | 185. | 89.  | 40.  | 14.  | -    | 12,  | 62.  |                 |
| 1988/89  | 91.  | 45.  | 116. | 128.        | 137. | 69.  | 50.  | 54.  | 32.  | 3.   | 7.   | 0.   | 732.            |
| 89/90    | 48.  | 146. | 50.  | <b>55</b> . | 102. | 130. | 130. | 28.  | 23.  | 16.  | 24.  |      | 752             |
|          |      |      |      |             |      |      |      |      |      |      |      |      |                 |
|          | 71.  | 98.  | 108. | 136.        | 116. | 108. | 59.  | 30.  | 12.  | 11.  | 17.  | 32.  | 800.            |
| Median   | 64.  | 90.  | 103. | 128.        | 104. | :03. | 51.  | 21   | 3.   | 5.   | 11.  | 19.  |                 |
| ximum    | 232  | 306  | 308. | 415.        | 383. | 251. | 190. | 119. | 77,  | 105. | BO.  | 173. |                 |
| inimum   | 4.   | 4.   | 5.   | 25.         | 22.  | 13.  | 0.   | 0.   | 0.   | Ο.   | 0.   | 0.   |                 |
| St. dev. | 43.  | 55.  | 57.  | 74.         | 62.  | 53.  | 39.  | 28.  | 17.  | 17.  | 20.  | 35   |                 |
|          | .60  | . 56 | . 53 | . 55        | . 53 | .49  | . 66 | . 93 | 1.45 | 1.54 | 1.15 | 1.08 |                 |

### Total monthly rainfall in millimetres

Data flags

Missing - flag "-" Original - no flag set Estimate - flag "e"

inted on 22/ 6/1994

| - | Station   | number : | 64         |           | Name :   | Butha   | Buthe  | (RAINDAT)    |   |
|---|-----------|----------|------------|-----------|----------|---------|--------|--------------|---|
|   | Basin no. | : 0      | Latitude : | 0: 0: 0 N | Longitud | le : 0: | 0; 0 £ | Altitude : / | 0 |

|                |      |      |      |      |      |      |     |     |     |     |     |     | Annua 1 |
|----------------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|---------|
|                | Oct  | Nov  | Dec  | Jan  | Feb  | Mar  | Apr | May | Jun | Jul | Aug | Sep | Total   |
| 90/91          | -    | -    | -    | -    | -    | -    | 94. | 60. | 24. | 11. | 38. | 1.  | -       |
| 1891/92        | -    | 141. | -    | -    | 121. | 157. | 11. | 18. | 11. | 0.  | 32. | 81. | -       |
| <b>1892/93</b> | 113. | 81.  | 107. | 213. | 87.  | 69.  | 25. | 1.  | 35. | 7.  | 3.  | 69. | 810.    |
| 93/94          | 75.  | 198. | 114. | 140. | 103. | 74.  | 31. | 31. | 41. | Ο.  | 25. | 67. | 907.    |
| 1894/95        | 74.  | 74.  | 90.  | 87.  | 117. | 106. | 67. | 27. | 0.  | 12. | 0.  | 25. | 679.    |
|                | 32   | 129. | 145. | 77.  | 80.  | 47.  | 86. | 9.  | 10. | Ο.  | 39. | 26. | 680.    |
| 96/97          | 12   | 68.  | 214. | 114. | 103. | 114. | 11. | 29. | 0.  | Ο.  | 10. | 30. | 705.    |
| 1897/98        | 80.  | 5.   | 59.  | 376. | 55.  | 75.  | 37. | 41. | 0.  | Ο.  | 14. | 27. | 769.    |
| 1898/99        | 82.  | 102. | 90.  | 117. | 109. | 151. | 87. | 35. | 18. | 97. | 35. | 18. | 941.    |
| 99/00          | 59.  | 86.  | 64.  | 199. | 130. | 63.  | 74. | Ο.  | 38. | 30. | 82. | Ο.  | 825.    |
| 1900/01        | 68.  | 88.  | 148. | -    | -    | -    | -   | -   | -   | -   | -   | -   | -       |
| 1901/02        | -    | -    | -    | -    | -    | -    | -   | -   | -   | -   | -   | -   | -       |
| 02/03          | -    | -    | -    | •    | -    | -    | -   | -   | -   | -   | •   | • - | -       |
| 1903/04        | -    | -    | -    | -    | -    | -    | -   | -   | -   | -   | -   | -   | -       |
| 1904/05        | -    | -    | -    | -    | -    | •    | -   | -   | -   | -   | -   | -   | •       |
| 05/06          | -    | -    | -    | -    | -    | -    | -   | -   | -   | -   | -   | -   | -       |
| 1906/07        | -    | -    | -    | -    | -    | •    | -   | -   | -   | -   | -   | -   | - ,     |
| 1907/08        | -    | -    | -    | -    | -    | -    | -   | -   | -   | -   | -   | -   | -       |
| 08/09          | -    | -    | -    | -    | -    | -    | -   | -   | -   | •   | -   | -   | -       |
| 1909/10        | -    | -    | -    | -    | -    | -    | -   | -   | -   | -   | -   | -   | •       |
| 1910/11        | -    | -    | -    | -    | -    | -    | -   | -   | -   | -   | -   | -   | -       |
| 11/12          | -    | -    | -    | -    | -    | •    | -   | -   | -   | -   | -   | -   | •       |
| 1912/13        | -    | •    | -    | -    | -    | -    | -   | -   | -   | -   | -   | -   | -       |
| 1913/14        | -    | -    | -    | -    | •    | -    | -   | -   | -   | -   | -   | -   | -       |
| 14/15          | -    | -    | -    | -    | -    | •    | -   | -   | -   | •   | -   | -   | -       |
| 915/16         | -    | -    | -    | -    | -    | -    | -   | -   | -   | -   | -   | -   | •       |
| 1916/17        | -    | -    | -    | -    | •    | -    | -   | -   | -   | -   | -   | -   | •       |
| <b>17/18</b>   | -    | -    | -    | -    | -    | -    | -   | -   | -   | -   | -   | -   | -       |
| 918/19         | -    | -    | -    | -    | -    | -    | -   | -   | -   | -   | -   | -   |         |
| 1919/20        | -    | -    |      | • -  | •    | -    | -   | -   | -   | -   | -   | -   | •       |
|                |      |      |      |      |      |      |     |     |     |     |     |     |         |

· **- -** - -

Station number : 64 Name : Butha Buthe (RAINDAT)

|          | Oct  | Nov  | Dec  | Jan  | Feb  | Mar  | Apr  | May | Jun | Jul | Aug | Sep        | Annual<br>Total |
|----------|------|------|------|------|------|------|------|-----|-----|-----|-----|------------|-----------------|
| _1920/21 | 112. | 68.  | 67.  | 105. | 148. | 157. | 54.  | 21. | Ο.  | Ο.  | 0.  | 55.        | 787.            |
| 21/22    | 20.  | 117. | 116. | 243. | 29.  | 44.  | 0.   | 32. | 30. | 0.  | 39. | 0,         | 670.            |
| 1922/23  | 76.  | 157. | 123. | 126. | 61.  | 30.  | 96.  | 47. | 65. | 23. | 32. | 2.         | 838.            |
| 1923/24  | 40.  | 191. | 59.  | 132. | 100. | 196. | 19.  | 3.  | 4.  | Ο.  | 7.  | 118.       | 779.            |
| 24/25    | 102. | 218. | 128. | 52.  | 127. | 219. | 110. | 49. | 2.  | 0.  | 5.  | 44.        | 1056            |
| 1925/26  | 63.  | 107. | 30.  | 145. | 99.  | 126. | 2.   | 15. | 26  | 3.  | 0.  | 65.        | 681.            |
| 1926/27  | 123. | 146. | 133. | 97.  | 138. | 101. | 27   | 4.  | Ο.  | 38. | 11. | 2.         | 820.            |
| 27/28    | 94.  | 35.  | 191. | 122. | 200. | 84.  | 22.  | 0.  | 3.  | Ο.  | 3.  | 20.        | 774             |
| 1928/29  | 101. | 87.  | 149. | 144. | 89.  | 126. | 20.  | 16. | 68. | 30. | 21. | 126.       | 977.            |
| 1929/30  | 45.  | 127. | 196. | 227. | 107. | 126. | 103. | 14. | 2.  | Ο.  | 14. | 2.         | 963.            |
| 30/31    | 28.  | 44.  | 122. | 120. | 86.  | 129. | 157. | 4.  | Ο.  | 26. | Ο.  | Ο.         | 716.            |
| 1931/32  | 58.  | 102. | 44.  | 77.  | 189. | 159. | 17.  | 8.  | 0.  | Ο.  | 0.  | 19.        | 673.            |
| 1932/33  | 27.  | 92.  | 122. | 35.  | 85.  | 76.  | 29.  | 15. | 4.  | 3.  | Ο.  | 11.        | 499.            |
| 33/34    | 27   | 214. | 232. | 304. | 122. | 147. | 90.  | Ο.  | 76. | 61. | 48. | 6.         | 1327.           |
| 934/35   | 82.  | 231. | 99.  | 97.  | 37.  | 94.  | 32.  | 36. | 3.  | o.  | 14. | 12.        | 737.            |
| 1935/36  | 56.  | 54.  | 109. | 85.  | 103. | 100. | 28.  | 63. | Ο.  | Ο.  | Ο.  | 0.         | 598.            |
| 36/37    | 90.  | 189. | 100. | 232. | 154  | 134. | 16.  | 5.  | Ο.  | 5.  | 1.  | 0.         | 926 .           |
| 937/38   | 50.  | 47.  | 76.  | 193. | 188. | 5.   | 54.  | 28. | 57. | 8.  | 76. | 47.        | 829.            |
| 1938/39  | 91.  | 41.  | 91.  | 109. | 203. | 49.  | Ο.   | 49. | 6.  | 17. | 35. | 37.        | 728.            |
| 39/40    | 87.  | 145. | 81.  | 99.  | 75.  | 82.  | 109. | 38. | 7.  | Ο.  | Ο.  | 59.        | 782.            |
| 40/41    | 4.   | 126. | 139. | 121. | 127. | 65.  | 75   | 9.  | ο.  | 18. | Ο.  | 46.        | 730.            |
| 1941/42  | 110. | 4.   | 77.  | :45. | 126. | 137. | 75.  | 26. | Ο.  | ٥.  | 51  | 46.        | 797.            |
| 42/43    | 114. | 90.  | 167. | 132. | 71,  | 127. | 63.  | 78. | 1.  | 87. | 42  | 18.        | 990.            |
| 43/44    | 139. | 179. | 216. | 131. | 144. | 95.  | 4.   | 26. | 53. | ٥.  | Ο.  | 82.        | 1071.           |
| 1944/45  | 96.  | 111. | 28.  | 59.  | 113. | 179. | 62.  | 28. | Ο.  | 0.  | Ô.  | Ο.         | 676.            |
| 45/46    | 45.  | 44.  | 65.  | 150. | 67.  | 99.  | 34.  | 66. | Ο.  | 3.  | Ο.  | Β.         | 580.            |
| 46/47    | 152. | 166. | 71.  | 84.  | 105. | 75.  | 104. | 11. | 4.  | 7.  | Ο.  | 54.        | 833.            |
| 1947/48  | 104. | 117. | 188. | 104. | 74.  | 208. | 97.  | 13. | Ο.  | 0.  | 4.  | 8.         | 917.            |
| 948/49   | 77.  | -    | 18.  | 131  | 86.  | 203. | 102. | 20. | 3.  | 5.  | 8.  | <b>S</b> . | -               |
| 49/50    | 25.  | 9.   | 88.  | 101. | 125. | 103. | 115. | 82. | 4.  | 18. | 61. | 12.        | 743.            |

Station number : 64

Name : Butha Buthe (RAINDAT)

|         | Oct  | Nov  | Dec  | Jan  | Feb  | Mar   | <b>1</b> |      |            |     |      | _    | Annua l |
|---------|------|------|------|------|------|-------|----------|------|------------|-----|------|------|---------|
|         |      |      | 200  | •••  |      | 1 HOL | Apr      | May  | Jun        | Jul | Aug  | Sep  | Total   |
| 1950/51 | 39.  | 46.  | 185. | 131. | 92.  | 92.   | 75.      | 34.  | 16.        | 1.  | 30.  | 21.  | 762.    |
| 51/52   | 213. | 35.  | 86.  | 82.  | 205. | 90.   | 55.      | 9.   | 2.         | 36. | 16.  | 21.  | 850.    |
| 1952/53 | 36.  | 85.  | 100. | 59.  | 183. | 38.   | 41.      | 17.  | 3.         | 0.  | б.   | 11.  | 579.    |
| 1953/54 | 105. | 59.  | 141. | 149. | 94.  | 103.  | 36.      | 26.  | 7.         | Ο.  | Ο,   | 12.  | 732.    |
| 54/55   | 18.  | 87.  | 76.  | 216. | 196. | 52.   | 64.      | 55.  | 6.         | 6.  | Ο.   | 5.   | 781.    |
| 1955/56 | 58.  | 135. | 133. | 42.  | 116. | 32.   | 66.      | 40.  | Ο,         | 3.  | Ο,   | 20.  | 645     |
| 1956/57 | 109. | 142. | 213. | 117. | 96.  | 208.  | 42       | 4.   | 32.        | 27. | 35.  | 154. | 1179.   |
| 57/58   | 219. | 84.  | 81.  | 199. | 44.  | 53.   | 67.      | 36.  | 8.         | Ο.  | ٥.   | 53.  | 844.    |
| 1958/59 | 69.  | 98.  | 105. | 68.  | 35.  | 18.   | 98.      | 120. | 6.         | 51. | Ο.   | 9.   | 677     |
| 1959/60 | 111. | 78.  | 172. | 54.  | 168. | 164.  | 58.      | 31.  | 5.         | 13. | 28.  | 34.  | 916.    |
| 50/61   | 99   | 145. | 151. | 147  | 75.  | 107.  | 97.      | 58.  | 48.        | 14. | 8.   | 36.  | 985.    |
| 1961/62 | 11   | 160. | 87.  | 64.  | 180. | 84.   | 68.      | 5.   | Ο.         | 0.  | 8.   | 7.   | 674.    |
| 1962/63 | 44.  | 86.  | 25.  | 168. | 87.  | 125.  | 106.     | 34.  | 14.        | 25. | 10.  | 5.   | 729.    |
| 63/64   | 77.  | 106. | 93.  | 143. | 79.  | 174.  | 33.      | 10.  | 33.        | 0.  | 19.  | 24.  | 791.    |
| 1964/65 | 124  | 52.  | 148. | 115. | 20.  | З.    | 73.      | Ο.   | 8.         | 21. | 0.   | 15.  | 579.    |
| 1965/66 | 66.  | 102. | 11.  | 186. | 51.  | 35.   | 26.      | 23.  | 11.        | Ο.  | 6.   | 6.   | 523     |
| 66/67   | 62.  | 78.  | 69.  | 303. | 93.  | 96.   | 86.      | 48.  | Ο.         | 0.  | 7    | 9.   | 851     |
| 1967/68 | 56.  | 96.  | 69.  | 41.  | 34.  | 130.  | 59.      | 76.  | 0.         | 11. | 13.  | 6.   | 591.    |
| 1968/69 | 56.  | 59.  | 83.  | 47.  | 59.  | 113.  | 47.      | 89.  | 14.        | 0.  | 9.   | -    | -       |
| 69/70   | -    | -    | 136. | 98.  | 65.  | 50.   | 15.      | 5.   | 34.        | 26. | 23.  | 32.  | -       |
| 70/71   | 30.  | 62.  | 168. | 138. | 83.  | 115.  | 65.      | 61   | 2.         | 18. | 0.   | 6.   | 748.    |
| 1971/72 | 37.  | 65.  | 103. | 159. | 131. | 133.  | 29.      | 20.  | <b>0</b> . | Ο.  | 9.   | 8.   | 694.    |
| 72/73   | 48.  | 103. | θ.   | 66.  | 139. | 71.   | 55.      | 7.   | Ο.         | 17. | 84.  | 89.  | 687.    |
| 73/74   | 17.  | 100. | 140. | 177. | 107. | 86.   | 28.      | 15.  | 18.        | 0.  | 8.   | 11.  | 707.    |
| 1974/75 | 52.  | 235. | 44.  | 140. | 141. | 128.  | 49.      | 33.  | 3.         | 14. | 5.   | 78.  | 922.    |
| 75/76   | 47.  | 195. | 112. | 113. | 141. | 252.  | 67.      | 29.  | 19.        | 0.  | 3.   | 56.  | 1034.   |
| 16/77   | 134. | 140. | 71.  | 161. | 50.  | 153.  | 16.      | β.   | 0.         | 0.  | Ο.   | 60.  | 793.    |
| 1977/78 | 102. | 19.  | 88.  | 167. | 66.  | 188.  | 92       | 5.   | 6.         | 5.  | 16.  | 44.  | 798.    |
| 78/79   | 53.  | 35.  | 165. | 107. | 137. | 64.   | 11.      | 29.  | η.         | 48. | 126. | 49.  | 831.    |
| 79/80   | 94.  | 108. | 89.  | 61.  | 91.  | 41.   | 4.       | 14.  | 9.         | 0.  | 6.   | 100. | 617.    |

------Institute of Hydrology Summary of monthly data - Rainfall Station number : 64 Name : Butha Buthe (RAINDAT) Annual OCL Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Total 1980/81 9. 108. 124. 237. 87. 86. 56. 10. 35 0. 54. 8. 814. 81/82 В. 111. 122. 90. 23. 62. 133. 11, 19. 17. Ο. 29. 625. 1982/83 131. 102. 49. 63. 84. 84. 44. 17. 25. 32. Ο. 18. 649. 1983/84 121. -68. 71. . --50. 9. -53. 16 -84/85 71 77. 74. 76 83. 54. 26. θ. Ο. 1. ່ວີ 2 464 1985/86 82. 107. 151 71 71. 38. 87. Ο. 35. Ο. 51. 13. 706. 1986/87 -135. 43. 65. 100. 65. 74. 2. ٥ 8. 91. 187 -

90/91 73. 284. 149. 114. 5. 3. 15. Ο. α. 55 751. 991/92 120. 22. 115. 53. 71. 85. 12. Ο. Ο. 3. 74 74. 629. 101. Mean 73. 106. 126. :06. 104. 56. 27. 14. 12. 19. 33. 778. 69. dian. 98. 100. 117. 100. 98. 55. 20. 6. 3. 8. 20. ximum 219. 235. 232 376. 205. 252. 157 120. 76. 97. 126 187. Minimum 4. 4. 8. 20. 20. 3. Ο. Ο. 0. Ο. Ο. 0. dev. 42. 53. 51. 67. 45. 53. 36 24. 18. 19. 26. 37. 53 . 58 . 52 .48 . 42 . 51 . 64 . 91 1.32 1.60 1.34 1.11

219

104.

110.

61

47.

136.

41.

50.

8.

18.

47.

15.

16.

Ο.

17.

------

10.

6.

18.

35.

2.

Ο.

889.

824.

743.

### Total monthly rainfall in millimetres

Data flags

Missing - flag "-" Original - no flag set Estimate - flag "e" 

Printed on 22/ 6/1994

87/88

988/89

1989/90

36.

94.

72.

35.

80.

72.

18.

166.

87.

125.

13.

146

130.

20.

140.

147.

## -----

| Station number : | 73                 | Name : Teyateyaneng (RAINDAT)     |
|------------------|--------------------|-----------------------------------|
| Basin no. : 0    | Latitude : 0:0:0 N | Longitude : 0:0:0 E Altitude : .0 |
|                  |                    |                                   |

|              | Oct  | Nov         | Dec  | Jan  | Feb  | Mar  | Apr  | May        | Jun | Jul        | Aug | Sep | Annual<br>Total |
|--------------|------|-------------|------|------|------|------|------|------------|-----|------------|-----|-----|-----------------|
| 95/96        | -    | -           | -    | 34.  | 74.  | 36.  | 74.  | 61.        | 21. | Ο,         | 80. | 6.  |                 |
| 1896/97      | 13.  | 54          | 273. | 131. | 78.  | 133. | 24,  | 11.        | o   | Ο.         | 5.  | 3.  | 725.            |
| 1897/98      | 66.  | 1.          | 72.  | 343. | 87.  | B2.  | 28.  | 49.        | Ο.  | 1.         | 1.  | 11. | 741.            |
| 98/99        | 89.  | 86.         | 75   | 135. | 102. | 91.  | 103. | 31.        | 27. | 86.        | 47. | 10. | 882.            |
| 1899/00      | 64.  | 36.         | 139. | 186. | 134. | 78.  | 47.  | 0.         | 26. | 16.        | 47. | Ο.  | 773.            |
| 1900/01      | 69.  | 38.         | 142. | 120. | 146. | 206. | 85.  | Ο.         | Ο.  | 4.         | 44. | 33. | 887.            |
| 01/02        | 113. | 86.         | 102. | 160  | 66.  | 244. | 91.  | 3.         | 29. | 17.        | 5.  | 79. | 995.            |
| 1902/03      | 73.  | 28.         | 63.  | 52.  | 108. | 8.   | 125. | 34.        | Ο.  | Ο.         | 0.  | Ο.  | 491.            |
| 1903/04      | 61.  | 83.         | 52.  | 164. | 103. | 43.  | 42.  | 27.        | 54. | Ο.         | 1.  | 16. | 646.            |
| 04/05        | 28.  | 63.         | 81.  | 147. | 180. | 176. | 33.  | Ο.         | 8.  | 0.         | 16. | 61. | 793.            |
| 1905/06      | 16.  | 56.         | 77.  | 124. | 93.  | 106. | 29.  | 15.        | 6.  | Ο.         | Ο.  | 62. | 584.            |
| 1906/07      | 77.  | 95.         | 104  | 151. | 98.  | 156. | 131. | 74.        | Ο.  | Ο.         | Ο.  | 37. | 923.            |
| 07/0B        | 65.  | 136.        | 149. | 88.  | 73.  | 96.  | 24.  | З.         | 49. | 14.        | 31  | 52. | 780.            |
| 1908/09      | 84.  | 64 .        | 115. | 280. | 252. | 54.  | 65.  | 87.        | Ο.  | Ο.         | 5.  | 65. | 1071.           |
| 1909/10      | 28.  | 61.         | 207. | 267. | 79.  | 83.  | 21.  | 25.        | 10. | <b>5</b> . | D.  | 50. | B36             |
| 10/11        | 146. | 35.         | 42.  | 74.  | 27.  | 123. | 71.  | 49.        | 9.  | 28.        | 23. | 16. | 643.            |
| 1911/12      | 70.  | 110.        | 72.  | 75.  | 193. | 60.  | 79.  | 51.        | 18. | 6.         | Ο.  | Q.  | 734.            |
| 1912/13      | 29.  | 25          | 92.  | 82.  | 74.  | 182. | 64.  | 2          | 6.  | 8.         | 15. | 35. | 614.            |
| 13/14        | 84.  | 54.         | C .  | 98.  | 86.  | 41.  | 83.  | 34.        | 5.  | Ο.         | 32. | 20. | 537.            |
| 1914/15      | 60.  | 85.         | 142. | 219. | 118. | 16.  | 13.  | 25.        | 3.  | 40.        | 6.  | 43. | 770.            |
| 1915/16      | 76.  | 179.        | 92.  | 114. | 47.  | 64.  | 49.  | 10.        | Ο.  | <b>S</b> . | 0.  | 15. | 651.            |
| 16/17        | 95.  | 48.         | 122. | 178. | 104. | 83.  | 42.  | 9.         | 16. | 17.        | 74, | 26. | 814.            |
| 917/18       | 26.  | 115.        | 107. | 137. | 77.  | 130. | 1.   | 12.        | ۱.  | 45.        | 40. | 51. | 742.            |
| 1918/19      | 42.  | <b>60</b> . | 114. | 174. | 24.  | 97.  | 50.  | <b>B</b> . | З.  | ٦.         | 11. | 51. | 641.            |
| 19/20        | 28.  | 119         | 20.  | 132. | 112. | 170. | 26   | 17.        | Ο.  | 5.         | 5.  | 40. | 674.            |
| 520/21       | 99.  | 38.         | 36.  | 91   | 190. | 196. | 45.  | 32.        | Ο.  | Ο.         | 0.  | 24. | 751.            |
| 1921/22      | 40.  | 115.        | 219. | 116. | 69.  | 30.  | 2.   | 20.        | 27. | 5.         | 12. | 12. | 667.            |
| <b>22/23</b> | 74.  | 143.        | 72.  | 127. | 105. | 42.  | 63.  | 22.        | 38. | 24.        | 26. | 1.  | 737.            |
| 23/24        | 37.  | 79.         | 22.  | 80.  | 79.  | 173. | 11.  | 9.         | 1.  | 1.         | 1.  | 70. | 563.            |
| 1924/25      | 65.  | 144.        | 94.  | 48.  | 118. | 204. | 86.  | 66.        | 1.  | 4.         | 2.  | 39. | 871.            |
|              |      |             |      |      |      |      |      |            |     |            |     |     |                 |

•

•

Station number : 73

------

Name : Teyateyaneng (RAINDAT)

.

-----

- - -

|         |      |      |        |      |             |      |      | ·   |     |     |     |     | Annual |
|---------|------|------|--------|------|-------------|------|------|-----|-----|-----|-----|-----|--------|
|         | Oct  | Nov  | Dec    | Jan  | Feb         | Mar  | Apr  | May | Jun | Jul | Aug | Sep | Total  |
| 925/26  | 78.  | 58.  | 54.    | 93.  | 66.         | 134. | 6.   | 19. | 15. | Ο.  | ο.  | 32. | 555.   |
| 926/27  | 67.  | 91.  | 61.    | 76.  | 83.         | 146. | 2.   | Ο.  | Ο.  | 31. | 24. | 3.  | 584.   |
| 1927/28 | 100. | 13.  | 134.   | 198. | 88.         | 70.  | 24.  | Ο.  | 7.  | 0.  | 2.  | 4.  | 640.   |
| 928/29  | 73.  | 84.  | 106.   | 141. | 22.         | 137. | 29.  | 24. | 46. | 15. | 14. | 84. | 775.   |
| 29/30   | 35.  | 80.  | 141.   | 49.  | 93.         | 112. | 54.  | 15. | 1.  | 0.  | 12. | 1.  | 594.   |
| 1930/31 | 49   | 39.  | 64.    | 81.  | 87.         | 80.  | 175. | 1.  | 1.  | 46. | Ο.  | 0.  | 623.   |
| 1931/32 | 49.  | 151. | 23.    | 80.  | 94.         | 117. | 5.   | 21. | 0.  | 0.  | Ο.  | 22. | 562.   |
| 32/33   | 16.  | 62.  | 70.    | 24.  | 34.         | 48.  | 28.  | 11. | 7.  | 6.  | Ο.  | 13. | 319.   |
| 1933/34 | 9.   | 199. | 196.   | 340. | 104.        | 90.  | 119. | 80. | Ο.  | 30. | 30. | 13. | 1212.  |
| 1934/35 | 58.  | 146. | 75.    | 64.  | 99.         | 153. | 60.  | 32. | 10. | 1.  | 9.  | 11. | 718.   |
| 35/36   | 60.  | 94.  | 124.   | 56.  | 77.         | 114. | 21.  | 56  | 0.  | 1.  | 0.  | 2.  | 615.   |
| 1936/37 | 101. | 218. | . 107. | 167. | 78.         | 78.  | 32   | 7.  | Ο.  | 5.  | 2.  | 23. | 818.   |
| 1937/36 | 40.  | 99.  | 63.    | 122. | 128         | 17.  | 68   | 15. | 23. | 13. | 20. | 13. | 621.   |
| 38/39   | 72.  | 69.  | 102.   | 156. | 117.        | 40   | 12.  | 32. | 3   | 23. | 45. | 17  | 588.   |
| 1939/40 | 98.  | 103. | 52.    | 54.  | 106.        | 63.  | 68.  | 46. | 6.  | 7.  | Ο.  | 65. | 668.   |
| 1940/41 | 14.  | 71.  | 123.   | 102. | 117.        | 42.  | 92.  | Ο.  | 0   | 11. | Ο.  | 62. | 634.   |
| 41/42   | 94.  | 6    | 28     | 100. | 73.         | 114. | 62   | 19. | 2.  | Ο.  | 46. | 28. | 572.   |
| 1942/43 | 53.  | 130. | 117.   | 70.  | 27.         | 70.  | 78.  | 63. | 1.  | 68. | 40. | 24. | 771.   |
| 1943/44 | 116. | 222. | 134.   | 57.  | 94.         | 70.  | 5.   | 48. | 55. | Q.  | Ο.  | 42. | 845    |
| 44/45   | 89.  | 56.  | 14.    | 57.  | <b>62</b> . | 146. | 9.   | 30. | 0.  | 0.  | Ο.  | Ο.  | 485    |
| 1945/46 | 20.  | 48.  | 50.    | 149. | 17.         | 159. | 37.  | 42. | 3.  | 0.  | Ο.  | 5.  | 530.   |
| 1946/47 | 155. | 63.  | 77.    | 45.  | 75.         | 76.  | 71.  | 7.  | 0.  | Ο.  | Ο.  | 37. | 607.   |
| 47/48   | 98.  | 38.  | 111.   | 85.  | 65.         | 198. | 74.  | 31. | 0.  | 4.  | 2.  | Ο.  | 706.   |
| 1948/49 | 35.  | 16.  | 11.    | 130. | 89.         | 66.  | 19.  | 26. | 7.  | 7.  | 1.  | 18. | 425.   |
| 1949/50 | 55.  | 96.  | 114.   | 70.  | 117.        | 160. | 154. | 74. | 13. | 41. | 80. | 7.  | 981.   |
| 50/51   | 30.  | 80.  | 171.   | 132. | 56.         | 76.  | 86.  | 32. | 9.  | 1.  | 10. | 22. | 705.   |
| 1951/52 | 154  | 88.  | 34.    | 110. | 99.         | 75.  | 17.  | 8.  | 20. | 35. | 13. | 32. | 685.   |
| 1952/53 | 57.  | 101. | 122.   | 147. | 177.        | 68.  | 95.  | 15. | 2.  | 0.  | 14. | 13. | 811.   |
| 53/54   | 129. | 115. | 97.    | 94.  | 108.        | 142. | 18.  | 55. | 4.  | 0.  | 0.  | 6.  | 768.   |
| 1954/55 | 4.   | 72.  | 74.    | 277. | 160.        | 62.  | 57.  | 50. | 19. | 17. | 0.  | 0.  | 792.   |

Station number : 73

- - - - - - - - -

----------

- - - - - -

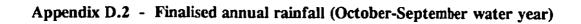
Name : Teyateyaneng (RAINDAT)

- - -

|         | Oct  | Nov  | Dec  | 720  | Pab  |      |      |     |            |            |     |            | Annual |
|---------|------|------|------|------|------|------|------|-----|------------|------------|-----|------------|--------|
|         |      |      | Dec  | Jan  | Feb  | Mar  | Apr  | May | Jun        | Jul        | Aug | Sep        | Total  |
| 1955/56 | 60.  | 88.  | 156. | 74.  | 174. | 136. | 30.  | 26. | 5.         | 7.         | Ο.  | 18.        | 774.   |
| 956/57  | 102. | 46.  | 240. | 123. | 72.  | 84.  | 52,  | 12. | 26.        | 16.        | 50. | 145.       | 968.   |
| 1957/58 | 218. | 107. | 111. | 171. | 141. | 86.  | 94.  | 73. | 2.         | 0.         | 0   | 39.        | 1042.  |
| 1958/59 | 22.  | 118. | B3.  | 160. | 91,  | 79   | 113. | 89. | 2.         | 52.        | 0.  | 6.         | 815.   |
| 959/60  | 58.  | 33.  | 179. | 95.  | 107. | 145  | 74,  | 9.  | 10         | 10.        | 40. | 32         | 792    |
| 1960/61 | 76.  | 155. | 115. | 132. | 60.  | 105. | 96.  | 52. | 55.        | 12.        | 12. | 1.         | 871.   |
| 1961/62 | 1.   | 128. | 87.  | 45.  | 230. | 79   | 58.  | 7.  | <b>0</b> . | 0          | Ο.  | 8,         | 643.   |
| 962/63  | 30.  | 153. | 35.  | 165. | 83.  | 98.  | 123. | 33. | 15.        | 18.        | 1.  | 4.         | 758.   |
| 1963/64 | 48.  | 146. | 80.  | 51.  | 74.  | 199. | 25.  | Ο.  | 31.        | 0.         | 8.  | 16         | 678.   |
| 1964/65 | 199. | 69.  | 140. | 132. | 28.  | 19.  | 82.  | 4.  | 25.        | 9.         | 22. | 24         | 753.   |
| 965/66  | 40.  | 111. | 21.  | 173. | 76.  | 59.  | 31.  | 16. | 8.         | <b>0</b> . | 6.  | Ο.         | 541.   |
| 1966/67 | 28.  | 19.  | 113. | 248. | 116. | 61.  | 106. | 54  | <b>S</b> . | 1.         | 5.  | 7.         | 763.   |
| 1967/68 | 40.  | 51.  | 80.  | 45.  | 43.  | 115. | 81.  | 82. | 0.         | 13.        | 10. | 6.         | 566    |
| 968/69  | 24.  | 13.  | 66.  | 71   | 105. | 116. | 56.  | 84. | 9          | <b>Q</b> . | 28. | 12         | 587.   |
| 969/70  | 98.  | 23.  | 52.  | 80.  | 40.  | 25.  | 29.  | 7.  | 19.        | 17.        | -   | 69.        |        |
| 1970/71 | -    | -    | -    | -    | 18.  | 52.  | 37.  | 71. | 0.         | 12.        | Ο.  | 3          | -      |
| 971/72  | 45.  | 65.  | 74.  | 181  | 163. | 182. | 49.  | 14  | 27.        | 0.         | 7.  | 14.        | 821.   |
| 972/73  | 78.  | 107. | 17.  | 39.  | 236  | 41.  | 0.   | 0.  | 3          | 6.         | 79. | 40.        | 646.   |
| 1973/74 | 48.  | 50.  | 90.  | •    | 68.  | 156. | 58.  | 14. | 5.         | 0.         | -   | -          | -      |
| 974/75  | 25.  | 215. | 60.  | 160  | 173. | 142. | 47.  | 22. | 9.         | 19.        | 2.  | 6.         | 860.   |
| 975/76  | 29.  | 168. | 166  | 179. | 174. | 175. | 80.  | 32. | 21.        | 0.         | 2.  | 0.         | 1026   |
| 1976/77 | 121. | 78.  | 44.  | 101. | 139. | 101. | 139. | 6   | 60.        | 6.         | ο.  | 0.         | 795.   |
| 977/78  | -    | -    | 80.  | 172  | 22.  | 129. | 126. | 1.  | 18.        | 12.        | 29. | 46.        | -      |
| 978/79  | 37.  | 36.  | 188. | 75.  | 64.  | 37.  | 41.  | Ο.  | -          | -          | 90. | 84.        | -      |
| 1979/80 | 99.  | 113. | 91.  | 38.  | 48.  | 83.  | 28.  | 1.  | 0.         | Ο.         | 2.  | 0.         | 503.   |
| 1980/81 | 8.   | 135. | 92.  | 362. | 178. | 102. | 43.  | 37. | 25.        | 0.         | 73. | 9.         | 1064.  |
| 81/82   | 40.  | 87.  | 112. | 54   | 57.  | 24.  | 117. | 0.  | 17.        | 10,        | 0.  | 34.        | 552.   |
| 1982/83 | 35.  | :25. | 47.  | 19.  | 69.  | 0.   | 44.  | 30. | 28         | 32.        | 5.  | 2.         | 436.   |
| 1983/84 | 54.  | 150. | 63,  | 87.  | 16.  | 39.  | 15.  | 79  | Ο.         | Ο.         | 0.  | • ·<br>• · | 503.   |
| 84/85   | 36.  | 30.  | 46.  | 63.  | 101. | 60.  | 29.  | 0.  | Ο.         | Ο.         | 0.  | 0.         | 365.   |
|         |      |      |      |      |      |      |      |     |            |            |     |            |        |

Name : Teyateyaneng (RAINDAT)

Station number : 73


Annua 1 Oct Nov Dec Jan Feb Mar Apr Мау Jun Jul Aug Sep Total - 92 985/86 50. -42. . 54 Ο. 45. 1. 54. 21. -113. 86/87 168 39. 17. 60. 58. 75. Ο. 1. 9. 54. --1987/88 16. 145 124. -56. 132. 121 30. 18. -10. 30. -988/89 141 49 108. 63. 203. 89. 75. 1. 69. 20. 12. 6. 836. .. 0. 5. 9/90 50. 139 23. 4. 169. 83. 108. 106. 26. 25. 738. 12. 10. ean **5**5. 58. 93. 119. 97. 98. 58. 27. 16. 24. 709 Median 58. 84. 87. 102. 88. 89. 54. 21. б. 5. 5. 16. kimum 218. 222. 273. 362. 252. **244**. 175. 89. 60. 86. 90. 145. 

 17.
 16.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 0.
 < inimum 1. 1. 0. 50. 53, .56 .56 St. dev. 42, . 65 . 56

Total monthly rainfall in millimetres

Data flags Missing - flag \*-\* Original - no flag set Estimate - flag \*e\*





| Table A3.1 Annual rainfall 1930-91 for stations included in the stochastic m | lodel |
|------------------------------------------------------------------------------|-------|
| October-September water year                                                 |       |

| 1930<br>1931<br>1932<br>1933<br>1934<br>1935<br>1936<br>1937 | 9 Tsoelike<br>343<br>674 | 41 Pelaneng | 42 Lelingoana | 71 Mokhotlong<br>572 | 44 Quthing | 60 Leribe      |
|--------------------------------------------------------------|--------------------------|-------------|---------------|----------------------|------------|----------------|
| 1931<br>1932<br>1933<br>1934<br>1935<br>1936<br>1937         |                          |             |               | 670                  | 700        |                |
| 1932<br>1933<br>1934<br>1935<br>1936<br>1937                 |                          |             |               |                      | 756        | 849            |
| 1933<br>1934<br>1935<br>1936<br>1937                         |                          |             |               | 435                  | 705        | 612            |
| 1934<br>1935<br>1936<br>1937                                 | 674                      | 464         |               | 469                  | 424        | 546            |
| 1935<br>1936<br>1937                                         |                          | 830         | 705           | 635                  | 843        | 1381           |
| 1936<br>1937                                                 | 740                      | 817         | 639           | 624                  | 875        | 921            |
| 1937                                                         | 483                      | 494         | 477           | 453                  | 637        | 510            |
|                                                              | 636                      | 809         | 761           | 636                  | 779        | 1005           |
| 4000                                                         | 532                      | 606         | 554           | 559                  | 647        | 773            |
| 1938                                                         | 633                      | 678         | 547           | 595                  | 852        | 880            |
| 1939                                                         | 653                      | 726         | 681           |                      | 921        | 826            |
| 1940                                                         | 505                      | 600         | 619           | 555                  | 709        | 789            |
| 1941                                                         | 414                      | 660         | 469           | 458                  | 646        | 717            |
| 1942                                                         | 538                      | 964         | 675           | 572                  | 830        | 1010           |
| 1943                                                         | 762                      | 883         | 715           | 727                  | 871        | 1184           |
| 1944                                                         | 488                      | 456         | 524           | 484                  | 447        | 810            |
| 1945                                                         | 391                      | 495         | 300           | 437                  | 619        | 602            |
| 1946                                                         | 521                      | 583         | 490           | 580                  | 535        | 733            |
| 1947                                                         | 672                      | 661         | 516           | 522                  | 622        | 921            |
| 1948                                                         | 459                      | 416         | 413           | 403                  | 461        |                |
| 1949                                                         | 949                      | 907         | 574           | 772                  |            | 642            |
| 1949                                                         | 458                      |             | 360           |                      | 984        | 1147           |
| 1950                                                         |                          | 450         |               | 436                  | 802        | 871            |
|                                                              | 499                      | 525         | 389           | 544                  | 761        | 680            |
| 1952                                                         | 464                      | 479         | 393           | 505                  | 658        | 596            |
| 1953                                                         | 512                      | 521         | 370           | 495                  | 792        | 800            |
| 1954                                                         | 590                      | 616         | 475           | 517                  | 7 12       | 875            |
| 1955                                                         | 669                      |             | 475           | 556                  | 853        | 928            |
| 1956                                                         |                          |             | 742           | 822                  | 996        | 1163           |
| 1957                                                         |                          |             |               |                      |            | 1050           |
| 1958                                                         |                          |             |               |                      | 723        | 707            |
| 1959¦                                                        |                          |             |               |                      |            | 945            |
| 1960                                                         | 459                      |             |               |                      | 904        | 789 #          |
| 1961                                                         |                          |             |               | 683                  | 746        | 592 #          |
| 1962                                                         |                          |             |               | 655                  | 829        | 777 #          |
| 1963                                                         | 743                      |             |               | 742                  | 635        | 595 #          |
| 1964                                                         | 556                      |             |               | . –                  | 610        | 654 #          |
| 1965                                                         | 409                      | 626         |               | 420                  | 486        | 509 #          |
| 1966                                                         | 633                      | 703         |               | 619                  | 879        | 981 #          |
| 1967                                                         | 403                      | 681         |               | 503                  | 495        | 587 #          |
| 1968                                                         | 363                      | 476         |               | 441                  | 677        | 668 #          |
| 1969                                                         | 316                      | 470         |               |                      | 481        |                |
| 1970                                                         | 0.0                      |             |               |                      | 709        | 519 #<br>622 # |
| 1971                                                         |                          |             |               | 664                  | 709        | 622 #          |
| 1972                                                         | 413                      |             | 545           | 622                  |            | 652 #          |
| 1972                                                         | 413                      |             |               |                      | 560        | 573 #          |
| 1973                                                         | 514                      |             | 555           | 611                  | 797        | 569 #          |
|                                                              |                          |             | 722           | 699                  | 751        |                |
| 1975                                                         | 723                      |             | 810           | 788                  | 1023       |                |
| 1976                                                         | 584                      |             | 527           |                      | 819        |                |
| 1977                                                         | 616                      |             | 522           |                      | 867        |                |
| 1978                                                         | 463                      |             | 660           |                      | 504        |                |
| 1979                                                         | 503                      |             | 501           |                      | 537        |                |
| 1980                                                         | 490                      |             | 508           | 510                  | 782        | 769 #          |
| 1981                                                         | 448                      |             | 487           | 383                  |            | 648 #          |
| 1982                                                         | 267                      |             | 379           | 452                  | 549        |                |
| 1983                                                         | 525                      |             | 554           | 739                  | 1          | 605 #          |
| 1984                                                         |                          |             | 313           | 477                  | 532        | 365 #          |
| 1985                                                         | 805                      |             |               | 729                  | 624        | 584 #          |
| 1986                                                         | 601                      |             | 691           | 773                  |            | 853 #          |
| 1987                                                         |                          |             | 695           | 570                  |            | 000 "          |
| 1988                                                         | 564                      |             | 535           | 582                  | 1          | 732 #          |
| 1989                                                         |                          |             | 461           | 535                  | 850        | 752 #          |
| 1990                                                         |                          |             |               | 497                  | 650        | 132 #          |
| 1991                                                         |                          |             |               | 497                  | 1          |                |

# Data judged inconsistent - of limited use

|              | Stations in Lesoth | o (cont)       |             |                  | · - ]           |
|--------------|--------------------|----------------|-------------|------------------|-----------------|
|              | 63 Qacha's Nek     | 64 Butha Buthe | 70 Mafeteng | 72 Mohale's Hoek | 73 Teyateyaneng |
| 1930         | 893                | 717            | 673         | 716              | 623             |
| 1931         | 696                | 673            | 645         | 607              | 564             |
| 1932         | 560                | 500            | 455         | 469              | 318             |
| 1933         | 1076               | 1327           | 801         | 818              | 1213            |
| 1934         | 1023               | 738            | 888         | 832              | 720             |
| 1935         | 620                | 599            | 586         | 653              | 614             |
| 1936         |                    | 925            | 886         | 1007             | 818             |
| 1937         |                    | 831            | 586         | 604              | 621             |
| 1938         |                    | 728            | 838         | 817              | 689             |
| 1939         |                    | 780            | 743         | 766              | 668             |
| 1940         |                    | 729            | 703         | 614              | 635             |
| 1941         | 973                | 769            | 863         | 776              | 572             |
| 1942         |                    | 990            | 854         | 1103             | 771             |
| 1943         |                    | 1071           | 789         | 842              | 872             |
| 1944         |                    | 676            | 524         | 460              | 485<br>528      |
| 1945         |                    | 578            | 638         | 563              | 607             |
| 1946         |                    | 836            | 792         | 608              | 706             |
| 1947         |                    | 916            |             | 769              | 425             |
| 1948         |                    |                | 0.05        | 466              | 425<br>981      |
| 1949         |                    | 744            | 935         | 1048<br>738      | 705             |
| 1950         |                    | 763            | 720         |                  | 686             |
| 1951         |                    | 850            | 676         | 623<br>565       | 812             |
| 1952         |                    | 578            | 529<br>690  | 565<br>737       | 768             |
| 1953         |                    | 733            | 090         | 848              | 790             |
| 1954         |                    | 782            | 861         | 797              | 730             |
| 1955         |                    | 646            | 906         | 1003             | 967             |
| 1956         |                    | 1178<br>849    | 748         | 898              | 1040            |
| 1957         |                    | 678            | 681         | 882              | 815             |
| 1958         |                    | 920            | 631         | 959              | 790             |
| 1959         |                    | 920            | 831         | 737              | 872             |
| 1960         |                    | 680            | 751         | 784              | 645             |
| 1961<br>1962 |                    | 734            | 843         | 878              | 760             |
| 1962         |                    | 796            | 685         | 759              | 677             |
| 1963         |                    | 593            | 571         | 531              | 752             |
| 1965         |                    | 521            | 486         | 645              | 536             |
| 1966         |                    | 850            | 880         | 914              | 761             |
| 1967         |                    | 589            | 546         | 582              | 567             |
| 1968         |                    |                |             | 684              | 585             |
| 1969         |                    |                | 484         | 616              |                 |
| 1970         | 1                  | 748            | 700         | 627              |                 |
| 1971         |                    | 694            | 1           | 802              | 821             |
| 1972         |                    | 687            | 592         | 565              | 646             |
| 1973         |                    | 707            | 844         | 689              |                 |
| 1974         |                    | 922            | 695         | 797              | 880             |
| 1975         | ; <b>!</b>         | 1034           | 1050        | 1                | 1026            |
| 1976         | i]                 | 793            | 875         | 677              | 795             |
| 1977         |                    | 798            | 793         | 743              | ļ               |
| 1978         |                    | 831            |             | 727              |                 |
| 1979         | 813 #              | 617            |             |                  | 503             |
| 1980         | 750 #              | 814            | 1           |                  | 1064            |
| 1981         | 632 #              | 625            | 696         | 668              | 552             |
| 1982         |                    | 649            | 452         | 662              | 436             |
| 1983         | [                  |                | 543         | 680              | 503             |
| 1984         |                    | 464            | 334         | 579              | 365             |
| 1985         |                    | 706            | 529         | 753              |                 |
| 1986         |                    |                |             | 858              |                 |
| 1987         |                    | 889            |             | 1196             | 0.00            |
| 1988         |                    | 824            |             | 762              | 836             |
| 1989         |                    | 743            | 745         | 754              | 738             |
| 1990         |                    | 751            |             |                  |                 |
| 1991         | <u> </u>           | 629            | 1           |                  | <u> </u>        |

.

# Data judged inconsistent - of limited use

|      | Stations in South |        | 1.177.70      |        |         |
|------|-------------------|--------|---------------|--------|---------|
| 1000 | 176372            | 177045 | 177178        | 177552 | 179344  |
| 1930 | 743               | 689    | 689           | 703    | 1225    |
| 1931 |                   | 763    | 529           | 743    | 1057    |
| 1932 | 411               | 535    | 370           | 532    | 845     |
| 1933 | 1172              | 973    | 735           | 851    | 1317    |
| 1934 | 907               | 1049   | 696           | 868    | 1077    |
| 1935 | 730               | 665    | 515           | 518    | 821     |
| 1936 | 770               | 872    | 637           | 724    | 1248    |
| 1937 |                   | 857    | 595           | 868    | 1137    |
| 1938 | 915               | 1182   | 595           | 945    | 1431    |
| 1939 | 787               | 923    | 486           | 891    |         |
| 1940 | 595               | 870    | 544           | 856    | 1068    |
| 1941 | 624               | 850    | 474           |        |         |
| 1942 | 024               | 1049   | 1             | 780    | 1081    |
|      |                   |        | 671           | 1030   | 1334    |
| 1943 |                   | 1074   | 770           | 912    | 1269    |
| 1944 | 371               | 560    | 412           | 438    | 831     |
| 1945 | 715               | 895    | 549           | 773    | 912     |
| 1946 |                   | 842    | 564           | 708    | 1108    |
| 1947 |                   | 868    | 672           | 839    | 1135    |
| 1948 |                   | 652    | 360           | 575    | 807     |
| 1949 |                   | 1222   | 713           | 933    | 1059    |
| 1950 |                   |        | 615           | 927    | 1089    |
| 1951 |                   | 650    | 565           | 716    | 893     |
| 1952 |                   | 543    | 492           | 796    | 1194    |
| 1953 | 810               | 768    | 301           | 822    | 1155    |
| 1954 | 801               | 1014   | 295           |        |         |
|      |                   |        |               | 935    | 1510    |
| 1955 | 795               | 986    | 358           | 976    | 1048    |
| 1956 | 913               | 1137   | 763           | 817    | 1559    |
| 1957 | 834               | 1093   | 703           | 935    | 1084    |
| 1958 | 738               | 1054   | 796           | 900    | 1274    |
| 1959 | 678               | 937    | 643           | 891    | 859     |
| 1960 | 796               | 1043   | 860           | 928    | 903     |
| 1961 | 777               | 756    | 663           | 702    | 960     |
| 1962 | 978               |        | 784           | 918    | 1290    |
| 1963 | 597               | 792    | 578           | 725    | 1356    |
| 1964 | 673               | 713    | 594           | 590    | 980     |
| 1965 | 484               |        | 414           | 697    | 1032    |
| 1966 | 809               | 1045   | 717           | 987    | 1152    |
| 1967 | 400               | 481    | 362           | 522    |         |
| 1968 | 652               |        |               |        | 823     |
|      |                   | 661    | 649           | 770    | 928     |
| 1969 | 459               | 568    | 410           | 510    | 1118    |
| 1970 | 669               | 901    | 709           | 845    | 1057    |
| 1971 | 617               | 913    | 630           | 810    | 870     |
| 1972 | 442               | 662    | 454           | 660    | 1148    |
| 1973 | 1169              | 1283   | 937           | 993    | 1375    |
| 1974 | 642               | 1019   | 594           | 1034   | 1026    |
| 1975 | 928               | 1270   | 896           | 1136   | 1855    |
| 1976 | 718               | 844    | 638           | 813    | 1039    |
| 1977 | 708               | 964    | 720           | 1022   | 949     |
| 1978 | 719 \$            | 831    | 525           | 808    | 724     |
| 1979 | 495 \$            | 782    | 593           | 811    | 1164 \$ |
| 1980 | 714 S             | 967    | 530           | 756    | 1136    |
| 1981 | 685               | 843    | 581 <b>\$</b> |        |         |
| 1982 | 634 <b>\$</b>     |        |               | 779    | 1077    |
| 1983 | -                 | 913    | 528 <b>\$</b> | 740 \$ | 645     |
|      | 490               | 658    | 364           | 743    |         |
| 1984 | 602               | 685    | 464 \$        | 563    | 1126 \$ |
| 1985 | 657               | 902    | 756           | 902    | 1337 \$ |
| 1986 | 797 \$            | 943    | 640           | 849    | 1358 \$ |
| 1987 | 877               | 1239   | 821           | 1093   | 1148    |
| 1988 | 883               | 954    | 804           | 947    | 1403    |
| 1989 | 564               | 1005   | 681           | 1081   |         |
| 1990 | 724               | 849    | 635           | 707    |         |
| 1991 | 679               | 416    | 557           | 857    |         |

.

•

\$ Flagged unreliable by RSA DWA Note that although listed in RSA DWA files, annual totals are not given where one or more month of data is missing

- -\_\_\_

| <u></u> | Stations in South | Africa (cont) |               |        | T             |
|---------|-------------------|---------------|---------------|--------|---------------|
|         | 204138            | 204640        | 208635        | 208733 |               |
| 1930    | 727               |               | 895           | 834    | 233239        |
| 1931    | 517               |               | 770           | 794    | 643           |
| 1932    | 326               |               | 697           |        | 450           |
| 1933    | 775               | 786           | 1055          | 734    | 430           |
| 1934    | 740               | /00           |               | 047    | 808           |
| 1935    | 651               | 590           | 880           | 917    |               |
| 1935    | 723               |               | 756           | 801    | 620 <b>\$</b> |
|         |                   | 781           |               | 862    | 926           |
| 1937    | 686               | •             | 765           | 751    | 624           |
| 1938    | 777               | 1             | 1038          | 1072   | 814           |
| 1939    |                   | 749           | 1019          | 986    | 635           |
| 1940    | 809               |               | 939           | 841    | 564           |
| 1941    | 564               | 543           |               | 827    | 592 \$        |
| 1942    | 1099              |               | 1238          | 1283   | 924           |
| 1943    | 851               | 739           | 1069          | 1009   | 624           |
| 1944    | 309               | 419           | 751           | 700    | 508           |
| 1945    | 563               | 564           |               | 667    | 612           |
| 1946    | 609               | 561           | 741           | 888    | 591           |
| 1947    | 720               | 716           | 867 \$        | 944    | 787           |
| 1948    | 379               | 441           | 640 <b>\$</b> | 672    | 392           |
| 1949    | 872               |               | 915           | 924    | 838           |
| 1950    | 755               | 624           | 832           | 821    |               |
| 1951    | 552               | 593           | 675           | 604    |               |
| 1952    |                   |               | 694           | 00%    | 648           |
| 1953    |                   |               | 823           | 005    |               |
| 1954    |                   |               |               | 905    | 691           |
| 1955    |                   |               | 997           | 1101   | 689           |
|         |                   | ļ             | 703           | 706    | 713           |
| 1956    |                   |               | 907           | 1059   | 779           |
| 1957    |                   |               | 767           | 777    |               |
| 1958    |                   |               | 1055          | 1136   |               |
| 1959    | 842               | 817           | 651           | 669    | 795           |
| 1960    | 927               | 756           | 870           | 898    | 667           |
| 1961    | 701               |               | 656           | 737    | 610           |
| 1962    | 829               | 823           | 837           | 1002   | 981           |
| 1963    | 560               | 624           | 891           | 1068   | 685           |
| 1964    | 502               | 481           | 978 <b>\$</b> | 904    | 583           |
| 1965    | 530               | 522           | 798           | 833    | 517           |
| 1966    | 992               | 766           | 969           | 1002   | 766           |
| 1967    | 487               | 486           | 626           | 740    | 486           |
| 1968    | 580               | 501           | 781           | 700    | 678           |
| 1969    | 424               | 339           | 737           |        | 492           |
| 1970    | 686               |               | 905           | 839    | 703           |
| 1971    | 777               | 776           | 962           | 881    | 882           |
| 1972    | 467               | 436           | 779           | 1019   | 520           |
| 1973    | 1170              | 847           | 816           | 1139   |               |
| 1974    | 713               | 675           | 755           | 805    | 850           |
| 1975    | 1078              | 1236          |               | ••••   | 704           |
| 1975    | 620               |               | 1122          | 1224   | 1066          |
| 1970    |                   | 649           | 636<br>840    | 866    | 732           |
|         | 785               | 957           | 842           | 1017   | 919           |
| 1978    | 553 \$            | 664 <b>\$</b> | 988           | 903    | 764 <b>\$</b> |
| 1979    | 391 \$            | 578           | 532 <b>\$</b> | 673    | 535           |
| 1980    | 619               | 753 <b>\$</b> | 740           | 672    | 796           |
| 1981    | 560               | 600 S         | 691           | 717    | 563           |
| 1982    | 578               | 734           | 648           | 495    | 549           |
| 1983    | 513               | 567           | 884           | 893    | 631           |
| 1984    | 614               | 522           | 744           | 652    | 554           |
| 1985    | 778               | 840           | 1203          | 1041   | 660           |
| 1986    | 688               | 788 \$        | 1018          | 1138   | 718 \$        |
| 1987    | 1153              | 1113          | 1296          | 942    | 1117          |
| 1988    | 808               | 854           | 866           | 825    | 777           |
| 1989    | 599               | 569           | 953           | 893    | 570           |
| 1990    | 762               | 731           | 865           | 727    | 675           |
| 1991    | 532               | 503           | 782           | 745    | 398           |
|         |                   |               | 102           |        |               |

\$ Flagged unreliable by RSA DWA Note that atthough listed in RSA DWA files, annual totals are not given where one or more month of data is missing

| []   | Stations in South | Africa (cont) |         |               |         |
|------|-------------------|---------------|---------|---------------|---------|
|      | 237405            | 237471        | 237606  | 238045        | 238132  |
| 1930 |                   |               |         |               | 876     |
| 1931 |                   |               |         |               | 779     |
| 1932 |                   |               |         |               | 694     |
| 1933 |                   |               |         | 982           | 1040    |
| 1934 |                   |               |         |               | 905     |
| 1935 |                   |               |         | 722           | 756     |
| 1936 |                   | 1290          |         | 823           | 815     |
| 1937 |                   | 1130          |         | 874           | 939     |
| 1938 |                   |               |         | 1153          |         |
| 1939 |                   | 1322          |         | 939           | 978     |
| 1940 |                   |               |         | 923           | 3.0     |
| 1941 |                   | 1139          |         | 1064          | 999     |
| 1942 |                   | 1407          |         | 1348          | 1389    |
| 1943 |                   | 1572          |         | 1126          | 1033    |
| 1944 |                   | 987           |         | 806           |         |
| 1945 |                   | 1005          |         |               | 855     |
| 1946 |                   |               |         | 687           | 587     |
| 1940 |                   | 1024          | ]       | 868           | 945     |
|      |                   | 1332          | 1       |               | 894     |
| 1948 |                   | 920           | 1       | 924           | 731     |
| 1949 |                   | 1231          | 1       | 844           | 994     |
| 1950 |                   | 1051          |         | 920           | 908     |
| 1951 |                   | 1081          |         | 880           | 909     |
| 1952 |                   |               |         |               |         |
| 1953 |                   | 1226          |         | 876           | 1091    |
| 1954 |                   | 1204          |         | 892           | 998     |
| 1955 |                   | 1077          |         | 868           | 879     |
| 1956 |                   | 1663          |         | 1299          | 1219    |
| 1957 |                   | 1057          |         | 809           | 980     |
| 1958 |                   | 1261          |         | 1034          | 1149    |
| 1959 |                   | 1108          |         | 734           |         |
| 1960 |                   | 1114          |         | 1010          | 1001    |
| 1961 |                   | 954           |         | 947           | 1111    |
| 1962 |                   | 1391          |         | 1038          | 1083    |
| 1963 |                   | 1376          |         | 1034          | 1107    |
| 1964 |                   | 10/0          |         | 1018          | 994     |
| 1965 |                   | 1234          |         | 839           |         |
| 1966 |                   | 1311          |         |               | 768     |
| 1967 | 786               | 984           |         | 910           | 1001    |
| 1968 | 943               |               |         | 724           | 783     |
|      | 343               | 928           | 000     | 773           | 747     |
| 1969 |                   | 934           | 992     | 944           | 977     |
| 1970 |                   | 1206          | 1097    | 1014          | 840     |
| 1971 | 4000              | 1369          | 1378    | 1021          | 886     |
| 1972 | 1260              | 1111          | 1054    | 998           | 753     |
| 1973 | 1574              | 1452          | 1616    | 1000          | 1064    |
| 1974 |                   | 1004          | 1073    | 883           | 901     |
| 1975 | 1689              | 2034          | 1820    | 1391          | 1377    |
| 1976 | 1197              | 1151          | 981     | 709           | 868     |
| 1977 | 1440              | 1314          | 1375 \$ | 925           | 968     |
| 1978 | 1206              | 1156          | 1154    | 1006          | 953     |
| 1979 | 1061 <b>\$</b>    | 1110          | 1315    | 948           | 852 \$  |
| 1980 | 1015              | 1019          | 1141    | 905           | 925     |
| 1981 | 1017              | 839 \$        | 1101    | 755           | 751     |
| 1982 | 756               | 702           | 815     | 531           | 650     |
| 1983 | 1285              | 1247          | 1337    | 953 \$        | 1181    |
| 1984 | 1077 \$           | 886 \$        | 1072    | 694 \$        | 780     |
| 1985 | 1243              | 1293          | 1316    | 910 <b>\$</b> | 1195 \$ |
| 1986 | 1502              | .230          | 1295    | 1357          | 1389    |
| 1987 | 1543              |               | 1293    |               |         |
| 1988 | 1370              |               | 1148    | 1478          | 1242    |
| 1989 | 1290              |               |         | 791           | 1076    |
| 1989 |                   |               | 1140    | 998           | 1018    |
|      | 1023<br>1168      |               | 1094    | 994           | 909     |
| 1991 |                   |               | 935     | 824           | 796     |

\$ Flagged unreliable by RSA DWA Note that although listed in RSA DWA files, annual totals are not given where one or more month of data is missing

|              | Stations in South           | Africa (cont) |                                       |        |         |
|--------------|-----------------------------|---------------|---------------------------------------|--------|---------|
|              | 238636                      | 263280        | 263792                                | 267693 | 267887  |
| 1930         | 794                         |               | · · · · · · · · · · · · · · · · · · · |        |         |
| 1931         | 863                         | 643           | 708                                   |        |         |
| 1932         | 719                         | 312           | 348                                   |        |         |
| 1933         | 1341                        | 934           | 1118                                  |        |         |
| 1934         | 1163                        | 597           | 683                                   |        |         |
| 1935         | 860                         |               | 608                                   |        |         |
| 1936         | 848                         | 846           | 807                                   |        |         |
| 1937         | 937                         | 580           | 610                                   |        |         |
| 1938         | 1432                        | 758           | 715                                   |        |         |
| 1939         | 1206                        | 831           | 802                                   |        |         |
| 1940         |                             |               | 649                                   |        |         |
| 1941         | 1111                        | 805           | 615                                   |        |         |
| 1942         | 1661                        | 993           | 924                                   |        |         |
| 1943         | 1105                        | 872           | 917                                   |        |         |
| 1944         | 817                         | 558           | 496                                   |        |         |
| 1945         | 712                         | 780           | 542                                   |        |         |
| 1946         | 1162                        | 738           | 696                                   |        |         |
| 1947         | 926                         | 763 \$        | 823                                   | 1      |         |
| 1948         | 759                         | 366           | 398                                   |        | 691     |
| 1949         | 991                         | 869           | 939                                   |        | 1111    |
| 1950         | 1032                        | 504           | 623                                   |        | 769     |
| 1951         | 851                         | 568           | 636                                   |        | 861     |
| 1952         | 927                         | 661           | 785                                   |        | 1090    |
| 1953         | 883                         | 656           | 602                                   |        | 1086    |
| 1954         | 924                         | 000           | 701                                   |        | 1181    |
| 1955         | 819                         | 715           | 840                                   |        | 964     |
| 1956         | 1491                        | 874           | 1014                                  |        | 1310    |
| 1957         | 869                         | 746           | 924 \$                                |        | 962     |
| 1958         | 1141                        | 655           | 680                                   |        | 962     |
| 1959         | 750                         | 000           | 747                                   |        | 1058    |
| 1960         | 979                         | 730           | 829                                   |        | 889     |
| 1961         | 985                         | 624           | 765                                   |        | 1043 \$ |
| 1962         | 1043                        | 024           | 807 \$                                |        | 915     |
| 1963         | 1045                        | 684           | 742                                   | 1408   | 1078    |
| 1964         | 995                         | 004           | 562                                   | 1534   | 1078    |
| 1965         | 744                         |               | 501                                   | 1274   | 834     |
| 1966         | 1010                        |               | 775                                   | 1882   | 1371    |
| 1967         | 804                         | 603           | 613                                   | 790    | 790     |
| 1968         | 574                         | 677           | 519                                   | 1369   | 975     |
| 1969         | 717                         | UT I          | 529                                   | 1241   | 997     |
| 1970         | 1033                        | 617           | 702                                   | 1373   | 963     |
| 1971         | 1302                        | 734           | 738                                   | 1375   | 1002    |
| 1972         | 1217                        | 469           | 439                                   | 1429   | 1002    |
| 1973         | 938                         | 743           | 654                                   | 1916   | 1390    |
| 1974         | 915                         | 743           | 724                                   | 2480   | 1030    |
| 1975         | 1294                        | 880           | 992                                   | 2372   | 1387    |
| 1976         | 973                         | 862           | 738                                   | 1428   | 871 \$  |
| 1977         | 755                         | 891           | 944                                   | 1454   | 1028    |
| 1978         | 1084                        | 619           | 620                                   | 1534   | 1141    |
| 1979         | 748 <b>\$</b>               | 577           | 508                                   | 1151   | 947     |
| 1980         | 1007 \$                     | 885           | 872                                   | 1482   | 1164    |
| 1981         | 753                         | 727           | 678                                   | 1192   | 790     |
| 1981         | 608 <b>\$</b>               | 510           | 0/0                                   | 914    | 918     |
| 1962         | 1232                        | 621           | 615                                   | 1432   | 1159    |
| 1984         | 992                         | 521           | 507                                   | 880    | 896 \$  |
| 1985         | 1348                        | 640           | 715                                   | 1408   | 1088    |
| 1985         | 1348                        | 781           | 872                                   | 1673   | 1401 \$ |
| 1980         | 1219                        | 1030          |                                       | 1673   | 1292    |
| 1987         | 1021                        | 682           | 863                                   | 1385   | 963     |
| 1988         | 1021                        | 582<br>748    | 738                                   |        |         |
|              |                             |               | 735                                   | 1159   | 886     |
| 1990<br>1991 | 109 <b>1</b><br>73 <b>7</b> | 594           | 606                                   | 1302   | 1096    |
| <u> 1981</u> | 131                         | 519           | 400                                   | 1145   | 1029    |

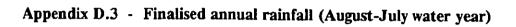
٠,

\$ Flagged unreliable by RSA DWA Note that although listed in RSA DWA files, annual totals are not given where one or more month of data is missing

•

| [            | Stations in South | Africa (cont) |                |               |               |                |
|--------------|-------------------|---------------|----------------|---------------|---------------|----------------|
|              | 296379            | 296682        | 298244         | 298512        | 298791        | 299223         |
| 1930         | 699               | 894           | 1              | 835           |               |                |
| 1931         | 496               | 614           |                | 675           |               |                |
| 1932         |                   | 417           | 648            | 472           |               |                |
| 1933         | 1098              | 1064          | 1178           | 1050          |               |                |
| 1934         | 674               | 641           | 1222           | 881           |               |                |
| 1935         | 615               | 546           | 623            | 547           |               |                |
| 1936         | 752               | 819           |                |               |               |                |
| 1937         | 672               |               | 785            | 838           |               |                |
| 1938         |                   | 680           |                | 759           |               |                |
|              | 756               | 759           |                | 897           |               |                |
| 1939         | 706               | 689           | 1143           | 1070          |               |                |
| 1940         | 563               | 585           | 940            | 766           |               |                |
| 1941         | 706               | 655           | 966            |               |               |                |
| 1942         | 990               | 1011          | 1255           | 988           |               |                |
| 1943         | 927               | 940           | 1036           | 1231          |               |                |
| 1944         | 593               | 560           |                | 703           |               |                |
| 1945         | 586               | 456           | 654            | 469           |               |                |
| 1946         | 685               | 606           | 1121           |               |               |                |
| 1947         | 827               | 750           | 1061           | 674           |               |                |
| 1948         | 404               | 491           | 587            | 588           |               |                |
| 1949         | 990               | 1020          | 1210           |               | 1471          | 913            |
| 1950         | 562 \$            | 759           | 916            |               | 1058          | 919            |
| 1951         | 615               | 776           |                | 603           | 1185          |                |
| 1952         | 560               | 551           |                | 544           |               | 914            |
| 1953         | 500               | 688           | 830            | 344           | 1312          | 1002           |
| 1954         | 754               | 720           |                |               | 1084          | 840 \$         |
| 1955         | 675               |               | 1007           |               | 1395          |                |
| 1955         | 0/5               | 786           | 1098           | 953           | 1315          | 987            |
|              | 021               | 1150          | 1450           | 1411          | 1888          | 1401           |
| 1957         | 831               | 989           | 908            | 850           | 1297          | 1101           |
| 1958         | 698               | 684           | 988            | 881           |               | 941            |
| 1959         | 822               | 790           | 1209           | 944           | 1256          | 935            |
| 1960         | 731               | 727           | 1006           | 793           | 1389          | 960            |
| 1961         |                   | 437           | 786            | 724           | 1093          | 782            |
| 1962 j       |                   | 680           | 1014           |               |               | 903            |
| 1963         | 638               | 680           | 921            | 909           | 1227          | 789            |
| 1964         | 544               | 610           | 856            | 703           | 1328          | 952            |
| 1965         | 471               | 550           | 743            |               |               | 741            |
| 1966         | 906               | 944           | 1284           | 829           | ì             | 1118           |
| 1967         | 691               | 620           | 690            | 507           | 1011          | 581            |
| 1968         | 644               | 712           | 534            | 564           |               | 753            |
| 1969         | 473               |               | 860            | 698           | 1288          | 837            |
| 1970         | 650               |               | 1033           | 615           | 1372          | 963            |
| 1971         | 726               |               | 797            | 373 <b>\$</b> | 1268          | 804            |
| 1972         | 469               | 660           | 777            | 423 \$        | 1139          | 877            |
| 1973         | 644               | 763           | 883            | 648           | 1785          |                |
| 1974         | 809               | 896           | 1074           | 1055          |               | 1040           |
| 1975         | 1038              | 999           | 10/*           |               | 1674          | 1004           |
| 1976         | 695               | 665           | 1005           | 1124          | 1981          |                |
| 1977         | 835               |               | 1095           | 983           | 1535          |                |
|              |                   | 994           | 945            | 678           | 1368          |                |
| 1978         | 727               | 717           | 850 \$         | 730           | 1413 \$       | 126            |
| 1979         | 646               | 626 \$        | 971 \$         | 635           | 1193          | 1055 <b>\$</b> |
| 1980         | 747               | 822 \$        | 1193 <b>\$</b> | 698           | 1429 \$       |                |
| 1981         | 659               | 631 .         | 840            | 502           | 875 \$        |                |
| 1982         | 490               | 551           |                | 511           | 827           |                |
| 1983         | 583               | 687           |                | 743           | 1305          |                |
| 1984         | 575               | 497           |                | 645           | 1155          | 705 <b>\$</b>  |
| 1985         | 710               | 690           |                | 820 \$        | 1186 <b>S</b> |                |
|              | 807               | 865           |                | 991           | 1711          |                |
| 1986         |                   |               |                |               |               |                |
|              |                   | 882 1         |                | 1167          |               |                |
| 1987         | 923               | 882<br>774    |                | 1167<br>851   | 1632          |                |
| 1987<br>1988 | 923<br>763        | 774           |                | 851           |               | į              |
| 1987         | 923               |               |                |               | 1350<br>1103  |                |

\$ Flagged unreliable by RSA DWA Note that although listed in RSA DWA files, annual totals are not given where one or more month of data is missing


•

r

.

.





- -

.

- • -

-

· · -· ·

- - -

- --

.

.

.

. . . . . . . . . . . .

### Table A3.2 Annual rainfall 1930-91 for stations included in the stochastic model August - July water year

|                     | Stations in Lesoth | <u>o_</u>   |               |               |            | · — — — — — — — — — — — — — — — — — — — |
|---------------------|--------------------|-------------|---------------|---------------|------------|-----------------------------------------|
|                     | 9 Tsoelike         | 41 Pelaneng | 42 Lelingoana | 71 Mokhotlong | 44 Outhing | 60 Leribe                               |
| 1930                |                    |             |               |               | 792        | 874                                     |
| 1931                |                    |             |               | 421           | 659        | 594                                     |
| 1932                | 050                |             |               | 478           | 462        | 552                                     |
| 1933                |                    | 806         |               | 616           | 836        | 1351                                    |
| 1934                | 729                | 821         | 681           | 612           | 820        | 927                                     |
| 1935                | 517                | 522         | 633           | 478           | 696        | 538                                     |
| 1936                | 632                | 797         | 503           | 645           | 792        | 980                                     |
| 1937<br>1938        | 506<br>614         | 556<br>690  | 759           | 503           | 615        | 733                                     |
| 1939                | 624                | 678         | 504           | 617           | 803        | 872                                     |
| 1939                | 581                | 641         | 561           | 692           | 879        | 809                                     |
| 1940                | 381                |             | 643           | 450           | 741        | 825                                     |
| 1942                | 552                | 643<br>914  | 665<br>466    | 453           | 678        | 691                                     |
| 1942                | 725                | 935         |               | 574           | 820        | 1044                                    |
| 1944                | 545                | 534         | 649<br>731    | 713<br>542    | 894        | 1159                                    |
| 1945                | 402                | 476         | 576           | 442           | 494        | 876                                     |
| 1946                | 472                | 563         | 299           | 511           | 585        | 598                                     |
| 1940                | 719                | 706         | 433           |               | 471        | 673                                     |
| 1948                | 436                | 369         | 433<br>570    | 585<br>373    | 717        | 987                                     |
| 1948                | 901                | 828         | 372           | 717           | 448        | 614                                     |
| 1949                | 476                | 543         | 372<br>564    | 502           | 888        | 1083                                    |
| 1950                | 496                | 543         | 395           | 500           | 829<br>740 | 925                                     |
| 1952                | 449                | 505         | 395           | 538           | 740<br>708 | 682<br>617                              |
| 1953                | 571                | 529         | 427           | 518           | 816        |                                         |
| 1954                |                    | 651         | 405           | 521           | 734        | 816<br>877                              |
| 1955                | 664                | 001         | 484           | 548           | 840        | 906                                     |
| 1956                | 001                |             | 463           | 689           | 803        | 1021                                    |
| 1957                |                    |             | 610           | 003           | 003        | 1154                                    |
| 1958                |                    |             | 010           |               | 728        | 758                                     |
| 1959                |                    |             |               |               | 120        | 750                                     |
| 1960                | 462                |             |               |               | 976        | Ì                                       |
| 1961                |                    |             |               | 709           | 768        |                                         |
| 1962                |                    |             |               | 663           | 771        |                                         |
| 1963                |                    |             |               | 702           | 667        |                                         |
| 1964                | 567                |             |               |               | 613        |                                         |
| 1965                | 408                | 645         |               |               | 507        |                                         |
| 1966                | 660                | 692         |               | 638           | 869        |                                         |
| 1967                | 350                | 699         |               | 499           | 466        |                                         |
| 1968                | 399                | 492         |               | 453           | 689        |                                         |
| 1969                | 238                |             |               |               | 409        |                                         |
| 1970                |                    |             |               |               | 792        |                                         |
| 1971                |                    |             |               | 617           | 797        |                                         |
| 1972                | 397                |             |               | 614           | 505        |                                         |
| 1973                |                    |             | 455           | 657           | 783        |                                         |
| 1974                | 461                |             | 627           | 598           | 723        |                                         |
| 1975                | 738                |             | 647           | 878           | 1039       |                                         |
| 1976                | 624                |             | 890           |               | 821        |                                         |
| 1977                | 588                |             | 516           | 708           | 860        |                                         |
| 1978 <mark> </mark> | 481                |             | 514           |               | 506        |                                         |
| 1979                | 497                |             | 614           |               | 587        |                                         |
| 1980                | 486                |             | 514           | 575           | 746        |                                         |
| 1981                | 676                |             | 533           | 395           |            |                                         |
| 1982                | 290                |             | 529           | 459           | 542        |                                         |
| 1983                | 500                |             | 386           | 702           |            |                                         |
| 1984                |                    |             | 518           | 522           | 558        |                                         |
| 1985                | 744                |             | 354           | 658           | 551        |                                         |
| 1986                | 622                |             |               | 581           | 757        |                                         |
| 1987                |                    |             | 515           | 792           |            |                                         |
| 1988                | 604                |             | 877           | 619           |            |                                         |
| 1989                |                    |             |               | 525           | 837        |                                         |
| 1990                |                    |             |               | 452           |            |                                         |
| 1991                |                    |             |               |               |            |                                         |

|      | Stations in Lesoth |                |             | · · · · · · · · · · · · · · · · · · · |                 |
|------|--------------------|----------------|-------------|---------------------------------------|-----------------|
|      | 63 Qacha's Nek     | 64 Butha Buthe | 70 Maleteng | 72 Mohale's Hoek                      | 73 Teyateyaneng |
| 1930 | 981                | 732            | 685         | 740                                   | 636             |
| 1931 | 667                | 654            | 595         | 558                                   | 540             |
| 1932 | 582                | 507            | 503         | 517                                   | 328             |
| 1933 | 1068               | 1284           | 781         | 806                                   | 1182            |
| 1934 | 992                | 765            | 855         | 789                                   | 741             |
| 1935 | 668                | 624            | 627         | 697                                   | 633             |
| 1936 | 901                | 925            | 896         | 1021                                  | 795             |
| 1937 | 828                | 707            | 546         | 584                                   | 613             |
| 1938 | 1023               | 779            | 824         | 759                                   | 659             |
| 1939 | 940                | 795            | 709         | 747                                   | 665             |
| 1940 | 864                | 743            | 758         | 691                                   | 637             |
| 1941 | 881                | 746            | 830         | 715                                   | 560             |
| 1942 | 1326               | 1027           | 857         | 1128                                  | 781             |
| 1943 | 1185               | 1049           | 788         | 851                                   | 867             |
| 1944 | 862                | 758            | 602         | 515                                   | 527             |
| 1945 | 718                | 572            | 628         | 540                                   | 525             |
| 1946 | 1098               | 787            | 730         | 552                                   | 575             |
| 1947 | 1305               | 959            |             | 844                                   | 741             |
| 1948 | 911                |                |             | 457                                   | 408             |
| 1949 | ÷                  | 683            | 826         | 941                                   | 913             |
| 1950 | 974                | 784            | 765         | 799                                   | 760             |
| 1951 | 971                | 864            | 659         | 578                                   | 672             |
| 1952 | 994                | 599            | 588         | 642                                   | 829             |
| 1953 | 1050               | 737            | 716         | 734                                   |                 |
| 1954 | 936                | 788            | /10         |                                       | 789             |
| 1955 | 931                |                | 071         | 876                                   | 798             |
| 1955 | 1039               | 630            | 871         | 787                                   | 756             |
|      |                    | 1010           | 751         | 790                                   | 791             |
| 1957 | 1063               | 980            | 917         | 1107                                  | 1198            |
| 1958 | 1035               | 721            | 702         | 906                                   | 848             |
| 1959 |                    | 863            | 576         | 874                                   | 726             |
| 1960 |                    | 1003           | 875         | 802                                   | 930             |
| 1961 |                    | 703            | 767         | 802                                   | 648             |
| 1962 |                    | 729            | 838         | 874                                   | 761             |
| 1963 |                    | 763            | 679         | 753                                   | 659             |
| 1964 |                    | 607            | 552         | 529                                   | 731             |
| 1965 |                    | 526            | 515         | 667                                   | 581             |
| 1966 |                    | 847            | 860         | 887                                   | 757             |
| 1967 |                    | 588            | 522         | 578                                   | 562             |
| 1968 | ľ                  | 586            |             | 679                                   | 563             |
| 1969 |                    |                | 432         | 522                                   | 430             |
| 1970 |                    | 797            | 789         | 745                                   |                 |
| 1971 |                    | . 683          |             | B11                                   | 803             |
| 1972 |                    | 531            | 497         | 477                                   | 548             |
| 1973 |                    | 861            | 905         | 724                                   |                 |
| 1974 |                    | 858            | 668         | 775                                   |                 |
| 1975 |                    | 1058           | 1035        |                                       | 1032            |
| 1976 |                    | 792            | 839         | 686                                   | 797             |
| 1977 |                    | 798            | 852         | 762                                   | / 3/            |
| 1978 | 1                  | 730            | 002         | 672                                   |                 |
| 1979 |                    | 686            |             | 0/2                                   | 675             |
| 1980 |                    | 858            | 647         | 0.05                                  | 675             |
| 1981 |                    |                | 047         | 805                                   | 984             |
|      |                    | 658            | 470         |                                       | 600             |
| 1982 |                    | 660            | 472         | 691                                   | 463             |
| 1983 |                    | <i></i>        | 492         | 622                                   | 510             |
| 1984 |                    | 531            | 403         | 651                                   | 365             |
| 1985 |                    | 644            | 457         | 693                                   |                 |
| 1986 |                    |                |             | 699                                   | 615             |
| 1987 |                    | 1122           |             | 1349                                  |                 |
| 1988 | Ì                  | 861            | l           | 793                                   | 858             |
| 1989 |                    | 733            | 735         | 739                                   | 731             |
| 1990 |                    | 714            |             |                                       |                 |
| 1991 |                    | 536            |             |                                       |                 |

١

•

.

•

|      | Stations in South                     |        |        |        |        |
|------|---------------------------------------|--------|--------|--------|--------|
| 1000 | 176372                                | 177045 | 177178 | 177552 | 179344 |
| 1930 | 799                                   | 758    | 766    | 779    | 1359   |
| 1931 | 1                                     | 653    | 476    | 671    | 989    |
| 1932 |                                       | 606    | 401    | 576    | 871    |
| 1933 |                                       | 1004   | 757    | 864    | 1354   |
| 1934 |                                       | 962    | 640    | 796    | 1007   |
| 1935 |                                       | 726    | 549    | 578    | 881    |
| 1936 |                                       | 901    | 657    | 743    | 1217   |
| 1937 |                                       | 800    | 574    | 829    | 1129   |
| 1938 | -                                     | 1134   | 572    | 900    | 1307   |
| 1939 | 781                                   | 921    | 493    | 886    |        |
| 1940 | 642                                   | 923    | 555    | 915    | 1116   |
| 1941 | 569                                   | 774    | 412    | 677    | 1022   |
| 1942 |                                       | 1070   | 712    | 1075   | 1219   |
| 1943 |                                       | 1058   | . 726  | 950    |        |
| 1944 | 478                                   | 699    | 506    | 497    | 1284   |
| 1945 |                                       | 849    | 542    |        | 1024   |
| 1946 |                                       | 790    |        | 715    | 894    |
| 1947 |                                       | 962    | 491    | 677    | 1094   |
| 1948 |                                       |        | 750    | 930    | 1164   |
| 1940 |                                       | 633    | 348    | 563    | 768    |
| 1949 | i i i i i i i i i i i i i i i i i i i | 1085   | 654    | 783    | 987    |
|      |                                       |        | 629    | 1008   | 1040   |
| 1951 |                                       | 639    | 542    | 693    | 1000   |
| 1952 | •                                     | 640    | 552    | 816    | 1089   |
| 1953 | 853                                   | 787    | 316    | 895    | 1271   |
| 1954 | 800                                   | 994    | 294    | 932    | 1500   |
| 1955 | 777                                   | 984    | 320    | 950    | 1086   |
| 1956 | 763                                   |        | 670    | 645    | 1417   |
| 1957 | 992                                   |        | 813    | 1138   | 1225   |
| 1958 | 753                                   |        | 805    | 911    | 1223   |
| 1959 | 626                                   |        | 594    | 792    | 845    |
| 1960 | 816                                   | 1072   | 874    | 940    | 962    |
| 1961 | 809                                   | 808    | 711    | 777    | 949    |
| 1962 | 953                                   |        | 775    | 922    | 1346   |
| 1963 | 620                                   |        | 567    | 687    | 1260   |
| 1964 | 667                                   | 721    | 596    | 604    |        |
| 1965 | 491                                   |        | 418    | 704    | 969    |
| 1966 | 795                                   | 1049   | 728    |        | 1028   |
| 1967 | 386                                   | 438    |        | 983    | 1248   |
| 1968 | 651                                   |        | 335    | 470    | 762    |
|      |                                       | 642    | 648    | 786    | 956    |
| 1969 | 369<br>776                            | 000    | 343    | 439    | 993    |
| 1970 | 776                                   | 983    | 793    | 947    | 1176   |
| 1971 | 632                                   | 930    | 647    | 818    | 898    |
| 1972 | 410                                   | 610    | 437    | 635    | 1091   |
| 1973 | 1108                                  | 1225   | 898    | 953    | 1446   |
| 1974 | 691                                   | 1037   | 585    | 1012   | 884    |
| 1975 | 901                                   |        | 896    | 1119   | 1906   |
| 1976 | 698                                   | 860    | 632    | 856    | 1019   |
| 1977 | 711                                   | 922    | 705    | 977    | 1015   |
| 1978 | 767                                   | 839    | 567    | 842    | 700    |
| 1979 | 494                                   | 802    | 614    | 829    | 1027   |
| 1980 | 656                                   | 899    | 486    | 723    | 1225   |
| 1981 | 789                                   | 961    | 655    | 864    | 1108   |
| 1982 | 601                                   | 901    | 488    | 710    | 722    |
| 1983 | 491                                   | 655    | 363    | 726    | 983    |
| 1984 | 636                                   | 729    | 491    | 628    | 303    |
| 1985 | 592                                   | 795    | 689    | 774    | 1240   |
| 1986 | 651                                   | 838    | 601    | 800    | 1248   |
| 1987 | 1014                                  | 1273   | 860    |        | 1064   |
| 1988 | 912                                   | 1096   | 856    | 1089   | 1461   |
| 1989 | 573                                   |        |        | 1086   | 1488   |
| 1989 | 627                                   | 1000   | 686    | 1103   | 804    |
| 1990 | 743                                   | 850    | 613    | 681    |        |
| 1331 |                                       | 377    | 570    | 814    |        |

(

ł

١

|       | Stations in South | Africa (cont) |        |        | · · · · · · · · · · · · · · · · · · · |
|-------|-------------------|---------------|--------|--------|---------------------------------------|
|       | 204138            | 204640        | 208635 | 208733 | 233239                                |
| 1930  | 748               | 1             | 999    | 920    | 660                                   |
| 1931  | 457               |               | 752    | 755    | 395                                   |
| 1932  | 381               |               | 703    | 763    | 484                                   |
| 1933  | 771               | 780           | 1037   | 1 100  |                                       |
| 1934  | 675               | 760           | 870    | 000    | 775                                   |
| 1935  | 709               | 600           |        | 898    |                                       |
|       |                   | 633           | 772    | 809    | 679                                   |
| 1936  | 736               |               |        | 881    | 923                                   |
| 1937  | 667               |               | 717    | 707    | 602                                   |
| 1938  | 741               |               | 994    | 1006   | 780                                   |
| 1939  |                   |               | 1054   | 1065   |                                       |
| 1940  | 865               |               | 981    | 858    | 635                                   |
| 1941  | 531               |               |        | 838    | 550                                   |
| 1942  | 1111              |               | 1197   |        | 917                                   |
| 1943  | 845               | 732           | 1084   | 1092   | 621                                   |
| 1944  | 380               | 479           | 829    | 768    | 589                                   |
| 1945  | 542               | 540           |        | 672    | 597                                   |
| 1946  | 541               | 494           | 714    | 878    |                                       |
| 1947  | 809               | 805           | 883    | 966    | 520                                   |
| 1948  | 363               | 431           |        |        | 875                                   |
| 1940  | 805               | 401           | 603    | 633    | 374                                   |
|       |                   |               | 862    | 853    | 760                                   |
| 1950  | 783               | 678           | 845    | 845    |                                       |
| 1951  | 506               | 565           | 724    | 675    |                                       |
| 1952  |                   |               | 636    |        | 717                                   |
| 1953  |                   | ĺ             | 890    | 946    | 717                                   |
| 1954  |                   |               | 999    | 1106   | 688                                   |
| 1955  |                   |               | 681    | 685    | 695                                   |
| 1956  |                   |               | 781    | 935    | 592                                   |
| 1957  |                   |               | 912    | 943    |                                       |
| 1958  |                   |               | 1030   | 1115   |                                       |
| 1959  | 747               | 715           | 633    | 655    | 716                                   |
| 1960  | 996               | 846           | 908    | 905    | 727                                   |
| 1961  | 726               | 040           | 649    | 755    | 625                                   |
| 1962  | 813               | 809           | 872    | 1012   |                                       |
| 1963  | 570               | 623           |        |        | 973                                   |
| 1964  | 482               |               | 896    | 1050   | 690                                   |
|       |                   | 472           | 884    | 864    | 577                                   |
| 1965  | 559               | 541           | 802    | 784    | 532                                   |
| 1966  | 959               | 736           | 1058   | 1125   | 752                                   |
| 1967  | 500               | 497           | 564    | 670    | 481                                   |
| 1968  | 575               | 487           | 824    | 746    | 663                                   |
| 1969  | 342               | 282           | 623    |        | 400                                   |
| 1970  | 776               |               | 1007   | 974    | 832                                   |
| 1971  | 798               | 785           | 957    | · 891  | 878                                   |
| 1972  | 401               | 346           | 763    | 976    | 435                                   |
| 1973  | 1166              | 901           | 840    | 1188   | 890                                   |
| 1974  | 726               | 639           | 687    | 748    | 695                                   |
| 1975  | 1070              | 1200          | 1160   | 1247   | 1041                                  |
| 1976  | 591               | 675           | 651    | 849    | 709                                   |
| 1977  | 824               | 973           | 827    | 1013   | 954                                   |
| 1978  | 525               | 662           | 992    | 943    | 721                                   |
| 1979  | 429               | 589           | 490    | 636    |                                       |
| 1980  | 560               | 715           | 490    |        | 593                                   |
| 1981  |                   |               |        | 687    | 759                                   |
| 1982  | 618               | 663           | 710    | 752    | 620                                   |
| 1     | 592               | 744           | 677    | 509    | 570                                   |
| 1983  | 480               | 528           | 847    | 885    | 574                                   |
| 1984  | 674               | 584           | 777    | 678    | 630                                   |
| 1985  | 717               | 782           | 1142   | 969    | 580                                   |
| 1986  | 578               | 662           | 657    | 816    | 632                                   |
| 1987  | 1164              | 1217          | 1700   | 1320   | 1191                                  |
| 1988  | 942               | 940           | 889    | 856    |                                       |
| 1989  | 605               | 542           | 909    | 822    |                                       |
| 1990  | 712               | 732           | 894    | 758    | 678                                   |
| 19901 |                   |               |        |        |                                       |

|      | Stations In South |        |             |            |        |
|------|-------------------|--------|-------------|------------|--------|
|      | 237405            | 237471 | 237606      | 238045     | 238132 |
| 1930 |                   |        |             |            | 944    |
| 1931 |                   |        |             | 1          | 754    |
| 1932 |                   |        |             |            | 710    |
| 1933 |                   |        |             |            | 1010   |
| 1934 |                   |        |             |            | 906    |
| 1935 |                   |        |             | 722        | 748    |
| 1936 |                   | 1312   |             | 832        | 842    |
| 1937 |                   | 1098   |             | 836        | 889    |
| 1938 |                   |        |             | 1118       |        |
| 1939 |                   | 1359   |             | 967        | 1048   |
| 1940 |                   |        |             | 974        | 1040   |
| 1941 |                   | 1076   |             | 1024       | 968    |
| 1942 |                   | 1387   |             | 1298       | 1322   |
| 1943 |                   | 1556   |             | 1125       |        |
| 1944 |                   | 1065   |             |            | 1054   |
| 1945 |                   | 1024   |             | 892        | 933    |
| 1946 |                   | 986    |             | 677        | 582    |
| 1947 |                   |        |             | 860        | 924    |
| 1947 |                   | 1362   |             |            | 914    |
| 1948 |                   | 869    | 1           | 888        | 695    |
|      |                   | 1211   |             | 807        | 960    |
| 1950 |                   | 1063   | 1           | 929        | 890    |
| 1951 |                   | 1088   |             | 931        | 969    |
| 1952 |                   | -1     |             |            |        |
| 1953 |                   | 1275   |             | 890        | 1111   |
| 1954 |                   | 1206   |             | 912        | 1014   |
| 1955 |                   | 1084   |             | 844        | 855    |
| 1956 |                   | 1543   |             | 1219       | 1111   |
| 1957 |                   | 1155   | ł           | 920        | 1116   |
| 1958 |                   | 1295   |             | 1013       | 1139   |
| 1959 |                   | 1075   |             | 716        |        |
| 1960 |                   | 1097   |             | 1032       | 1018   |
| 1961 |                   | 989    |             | 918        | 1062   |
| 1962 |                   | 1419   |             | 1091       | 1165   |
| 1963 |                   | 1361   |             | 999        | 1067   |
| 1964 |                   |        |             | 977        | 960    |
| 1965 |                   | 1251   | i i         | 857        | 770    |
| 1966 |                   | 1396   |             | 972        |        |
| 1967 | 732               | 929    |             |            | 1069   |
| 1968 | 1010              | 937    |             | 646<br>810 | 740    |
| 1969 |                   | 866    | 000         | 819        | 780    |
| 1970 |                   |        | 882         | 806        | 813    |
| 1970 |                   | 1256   | 1191        | 1125       | 967    |
|      |                   | 1400   | 1365        | 1057       | 921    |
| 1972 | 1014              | 1056   | 965         | 943        | 679    |
| 1973 | 1614              | 1535   | 1763        | 1062       | 1158   |
| 1974 | 1765              | 941    | 973         | 790        | 785    |
| 1975 | 1758              | 2073   | 1895        | 1473       | 1449   |
| 976  | 1103              | 1101   | 929         | 679        | 844    |
| 1977 | 1441              | 1297   | 1303        | 882        | 956    |
| 1978 | 1252              | 1195   | 1219        | 1050       | 978    |
| 1979 | 1017              | 1071   | 1278        | 883        | 792    |
| 1980 | 1039              | 1035   | 1136        | 947        | 952    |
| 1981 | 1078              | 903    | 1164        | 791        | 805    |
| 1982 | 758               | 707    | 846         | 547        | 633    |
| 1983 | 1272              | 1244   | 1344        | 950        | 1186   |
| 1984 | 1097              | 877    | 1057        | 709        | 813    |
| 1985 | 1195              | 1245   | 1267        | 842        | 1126   |
| 1986 | 1160              | 1      | 998         | 988        | 1017   |
| 1987 | 1901              |        | 1793        |            | -      |
| 1988 | 1426              |        |             | 1903       | 1674   |
| 1989 | 1229              |        | 1244        | 795        | 1092   |
|      |                   |        | 1086<br>991 | 970<br>995 | 960    |
| 1990 | 1019              |        |             |            | 926    |

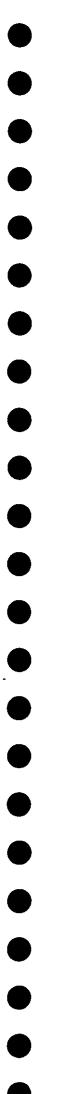
١

۱

|      | Stations in Courts          | Atrian (cont) |            |         |        |
|------|-----------------------------|---------------|------------|---------|--------|
|      | Stations in South<br>238636 | 263280        | 263792     | 007000  | T      |
| 1930 | 867                         | 203200        | 203/92     | 267693  | 267887 |
| 1931 | 833                         | 600           | 670        |         |        |
| 1932 | 749                         | 347           | 670<br>382 |         |        |
| 1932 |                             | 1             |            | 1       |        |
|      |                             | 912           | 1084       |         |        |
| 1934 | 1199                        | 587           | 691        |         |        |
| 1935 |                             |               | 636        |         |        |
| 1936 |                             | 824           | 787        |         |        |
| 1937 | 900                         | 573           | 612        |         |        |
| 1938 | 1292                        | 707           | 669        |         |        |
| 1939 | 1359                        | 864           | 798        |         |        |
| 1940 |                             |               | 681        | 1       |        |
| 1941 | 1065                        | 751           | 583        |         |        |
| 1942 | 1573                        | 992           | 890        |         |        |
| 1943 | 1164                        | 924           | 984        | <i></i> |        |
| 1944 | 901                         | 603           | 538        |         |        |
| 1945 | 707                         | 767           | 531        |         |        |
| 1946 | 1143                        | 702           | 679        |         |        |
| 1947 | 959                         | 812           | 852        |         |        |
| 1948 | 713                         | 337           | 377        |         | 632    |
| 1949 | 973                         | 819           | 865        |         | 1074   |
| 1950 | 973                         |               | 698        | [       | 795    |
| 1951 | 932                         | 526           | 593        | ]       |        |
| 1951 | 887                         | 526<br>690    | 831        | 1       | 899    |
| 1953 |                             |               |            |         | 1005   |
|      | 928                         | 679           | 615        |         | 1166   |
| 1954 | 947                         |               | 690        |         | 1209   |
| 1955 | 780                         | 700           | 842        |         | 924    |
| 1956 | 1350                        | 732           | 839        |         | 1159   |
| 1957 | 1057                        | 844           | 1079       |         | 1139   |
| 1958 | 1097                        | 699           | 707        |         | 976    |
| 1959 | 748                         |               | 698        |         | 1039   |
| 1960 | 979                         | 762           | 875        |         | 877    |
| 1961 | 992                         | 629           | 771        |         | 1053   |
| 1962 | 1082                        |               | 813        |         | 952    |
| 1963 | 1030                        | 691           | 730        | 1281    | 968    |
| 1964 | 1024                        |               | 560        | 1498    | 1059   |
| 1965 | 702                         |               | 523        | 1362    | 856    |
| 1966 | 1057                        |               | 771        | 1937    | 1438   |
| 1967 | 772                         | 575           | 563        | 770     | 771    |
| 1968 | 622                         | 674           | 535        | 1305    | 936    |
| 1969 | 512                         |               | 500        | 1168    | 850    |
| 1970 | 1153                        | 691           | 759        | 1489    | 1091   |
| 1971 | 1384                        | 728           | 727        | 1394    | 1072   |
| 1972 | 1083                        | 383           | 340        | 1197    |        |
| 1973 | 1082                        | 793           | 734        | 2179    | 1591   |
| 1974 | 803                         | 753           | 704        | 2314    |        |
| 1975 | 1272                        | 891           | 989        | 2394    | 1497   |
| 1976 | 1028                        | 807           | 729        | 1490    | 847    |
| 1977 | 772                         | 918           | 955        | 1459    | 1009   |
| 1978 | 1089                        | 635           | 609        | 1433    | 1107   |
| 1979 | 670                         | 525           | 513        | 1122    | 938    |
| 1980 | 1044                        | 876           |            |         |        |
| 1980 |                             |               | 846        | 1524    | 1165   |
|      | 815                         | 817           | 740        | 1240    | 861    |
| 1982 | 620                         | 525           | -1         | 969     | 923    |
|      | 1238                        | 556           | 576        | 1376    | 1151   |
| 1984 | 1013                        | 597           | 556        | 930     | 925    |
| 1985 | 1290                        | 572           | 638        | 1356    | 994    |
| 1986 | 957                         | 615           | 723        | 1319    | 1049   |
| 1987 | 1677                        | 1195          | 1035       | 1988    | 1711   |
| 1988 | 1033                        | 736           | 794        | 1444    | 1009   |
| 1989 | 982                         | 757           | 717        | 1090    | 772    |
| 1990 | 1107                        | 533           | 570        | 1315    | 1 168  |
| 1991 | 750                         | 539           | 430        | 1157    | 1055   |

# Table A3.2 (cont)

|                 | •     | •    |
|-----------------|-------|------|
| August - July v | vater | year |


|      | Stations in South<br>296379 | 296682 | 298244     | 209512 | 200204 |         |
|------|-----------------------------|--------|------------|--------|--------|---------|
| 1930 | 230313                      | 927    | 230244     | 298512 | 298791 | 299223  |
| 1931 | 480                         | 598    |            | 881    |        |         |
|      |                             | 290    | <b>664</b> | 646    |        |         |
| 1932 | 415                         | 1 1013 | 664        | 496    |        |         |
| 1933 | 1088                        | 1047   | 1126       |        |        |         |
| 1934 | 660                         | 643    | 1258       | 937    |        |         |
| 1935 | 641                         | 569    | 649        | 561    |        |         |
| 1936 | 726                         | 800    | 789        | 837    | }      |         |
| 1937 | 666                         | 652    |            | 680    |        |         |
| 1938 | 735                         | 747    | 1020       | 917    |        |         |
| 1939 | 693                         | 637    |            | 1033   |        |         |
| 1940 | 604                         | 665    | 961        | 827    |        |         |
| 1941 | 668                         | 610    | 944        |        |        |         |
| 1942 | 991                         | 1036   | 1299       | 968    |        |         |
| 1943 | 940                         | 934    | 939        | 1222   |        |         |
| 1944 | 651                         | 616    |            | 785    |        |         |
| 1945 | 583                         | 452    | 641        | 465    |        |         |
| 1946 | 647                         | 559    | 1044       | 405    |        |         |
| 1947 | 868                         | 802    | 1130       |        |        |         |
| 1948 | 391                         | 463    | 576        | 570    |        |         |
| 1949 | 930                         | 964    | 1147       | 3/0    | 1440   | <u></u> |
| 1950 | 603                         | 803    | 962        |        | 1448   | 928     |
| 1951 | 619                         | 779    | 902        |        | 1024   | 853     |
| 1952 | 570                         | 574    |            |        | 1264   | 998     |
| 1953 | 5/0                         |        |            | 553    | 1316   | 1022    |
|      | 746                         | 696    | 814        | 482    | 1052   | 805     |
| 1954 | 745                         | 723    | 1047       |        | 1462   |         |
| 1955 | 658                         | 767    | 1078       | 927    | 1271   | 952     |
| 1956 |                             | 988    | 1132       | 1108   | 1616   | 1157    |
| 1957 | 957                         | 1117   | 1151       | 1110   | 1545   | 1325    |
| 1958 | 744                         | 728    | 1094       | 948    |        | 992     |
| 1959 | 783                         | 742    | 1100       | 882    |        | 884     |
| 1960 | 761                         | 772    | 1065       | 830    | 1410   | 977     |
| 1961 |                             | 442    | 792        | 719    | 1117   | 794     |
| 1962 |                             | 688    | 1060       |        |        | 933     |
| 1963 | 620                         | 664    | 852        | 846    | 1152   | 716     |
| 1964 | 540                         | 615    | 870        | 684    | 1216   | 875     |
| 1965 | 491                         | 560    | 772        |        |        | 857     |
| 1966 | 902                         | 944    | 1254       | 852    |        | 1147    |
| 1967 | 662                         | 605    | 705        | 496    | 976    | 532     |
| 1968 | 663                         | 717    | 549        | 584    | 5/0    | 779     |
| 969  | 426                         |        | 773        | 596    | 1160   |         |
| 970  | 712                         |        | 1112       |        | 1163   | 754     |
| 971  | 733                         |        | 808        | 703    | 1491   | 1051    |
| 972  | 364                         | 560    |            | 389    | 1304   | 828     |
| 973  | 724                         | 559    | 655        | en.    | 947    | 728     |
| 974  | 748                         | 851    | 998        | 681    | 1963   | 1190    |
| 975  |                             | 831    | 986        | 930    | 1545   | 940     |
|      | 1035                        | 1004   |            |        | 2051   |         |
| 976  | 699                         | 675    | 1116       | 951    | 1436   |         |
| 977  | 873                         | 1016   | 902        | 694    | 1452   |         |
| 978  | 646                         | 634    | 740        | 622    | 1311   |         |
| 979  | 671                         | 645    | 1057       | 710    | 1269   | 1066    |
| 980  | 784                         | 882    | 1191       | 688    | 1401   |         |
| 981  | 695                         | 675    | 905        | 558    | 1002   |         |
| 982  | 505                         | 562    | 691        | 525    | 814    |         |
| 983  | 547                         | 648    |            | 679    | 1269   |         |
| 984  | 618                         | 542    | ]          | 733    | 1212   | 790     |
| 985  | 651                         | 616    |            | 773    | 1111   | 719     |
| 986  | 625                         | 688    |            | 753    | 1313   | ~ (3    |
| 987  | 1108                        | 1081   |            | 1414   | 2024   |         |
| 988  | 816                         | 820    |            | 889    | 2024   |         |
| 989  | 766                         | 789    |            | 740    | 1200   |         |
| 990  | 640                         | 726    |            |        | 1290   |         |
| 991  | 420                         | 398    |            | 788    | 1130   |         |

- \*

. .

.

. . . -





. ·

.

.

.....

# ......

Institute of Hydrology Annual summary of daily data - Flow

Station number : 9171

Name : Marakabei Crump (file MARA1.DLY)

| Basin no. | : 0   | Latitude | : | 0: 0: 0 N | Longitude | : | 0:0:0E | Altitude | : .0 |
|-----------|-------|----------|---|-----------|-----------|---|--------|----------|------|
| Area      | : 1.0 |          |   |           |           |   |        |          |      |

Year : 1985/1986

|                | Oct | Nov | Dec    | Jan    | feb    | Mar    | Арг    | May    | Jun    | Jul    | Aug    | Sep    |
|----------------|-----|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| <b>•</b> 1     | -   | -   | 13.4   | 7.4    | 4.5    | 1.4    | .9     | 3.1    | .4     | 1.3    | .4     | 38.9   |
| 2              | -   | •   | 9.0    | 6.4    | 5.8    | 1.2    | .8     | 2.7    | .4     | 1.2    | .4     | 25.4   |
| 3              | -   | -   | 6.4    | 10.0   | 5.0    | 1.1    | .7     | 2.3    | .6     | 1.1    | .4     | 17.6   |
|                | -   | • . | 37.7   | 11.1   | 41.4   | .9     | .6     | 2.1    | 34.7   | 1.2    | .4     | 13.3   |
| 5              | -   | •   | 28.5   | 12.2   | 45.8   | .9     | .5     | 1.8    | 30.7   | 1.5    | .3     | 10.5   |
| 6              |     | -   | 22.8   | 9.3    | 20.3   | 1.7    | .5     | 1.4    | 22.9   | 1.3    | .3     | 8.6    |
| 7              | •   | -   | 22.1   | 6.6    | 16.4   | 2.3    | .4     | 1.3    | 16.6   | 1.1    | .3     | 6.9    |
| 8              | -   | -   | 16.1   | 5.0    | 15.9   | 1.9    | .4     | 1.2    | 13.3   | 1.0    | .3     | 5.7    |
| _ 9            |     | -   | 13.4   | 4.2    | 12.1   | 1.3    | .4     | 1.1    | 10.5   | 1.0    | .3     | 4.9    |
| 10             | -   | -   | 10.8   | 3.4    | 6.7    | 1.2    | 5.4    | 1.0    | 8.7    | .9     | .3     | 4.2    |
| 11             | -   | -   | 7.9    | 3.0    | 5.1    | 1.7    | 6.1    | .9     | 7.6    | .9     | .3     | 3.8    |
| 12             | •   | -   | 6.0    | 2.8    | 4.2    | 2.3    | 3.7    | .8     | 8.9    | .9     | .3     | 3.5    |
| 13             |     | -   | 4.7    | 2.5    | 3.2    | 2.3    | 3.0    | .8     | 8.6    | .9     | .3     | 3.1    |
| 14             |     | -   | 6.4    | 2.1    | 2.6    | 2.2    | 12.3   | .7     | 7.1    | .9     | .3     | 3.4    |
| 15             | -   | -   | 15.9   | 1.7    | 2.2    | 2.5    | 23.4   | .6     | 6.0    | .9     | .3     | 7.8    |
| 16             | -   | -   | 19.6   | 1.3    | 4.1    | 9.7    | 13.3   | .6     | 5.1    | .9     | .3     | 10.8   |
| 17             |     | •   | 13.2   | 1.3    | 12.5   | 9.3    | 9.6    | .6     | 4.4    | .9     | .3     | 7.6    |
| 18             | •   | •   | 10.1   | 1.4    | 6.9    | 6.5    | 7.4    | .5     | 3.5    | .9     | .3     | 6.1    |
| 19             | -   | •   | 12.9   | 1.5    | 4.3    | 5.0    | 5.7    | .5     | 3.1    | .9     | .3     | 5.0    |
| 20             | -   | •   | 27.1   | 1.4    | 3.1    | 3.9    | 4.6    | .5     | 2.7    | .8     | .3     | 4.2    |
| 21             | •   | -   | 60.8   | 1.5    | 2.6    | 3.3    | 3.7    | .5     | 2.5    | .7     | .3     | 3.7    |
| 22             | •   | •   | 85.7   | 1.2    | 3.2    | 2.7    | 3.1    | .4     | 2.3    | .7     | .3     | 3.3    |
| 23             | -   | •   | 69.3   | 1.0    | 5.2    | 2.2    | 2.7    | .4     | 2.0    | .7     | .3     | 3.2    |
| 24             | -   | •   | 50.3   | 1.1    | 5.1    | 2.0    | 2.4    | .4     | 1.8    | .7     | .3     | 3.2    |
| 25             |     | -   | 50.2   | 3.5    | 3.4    | 2.1    | 2.1    | .4     | 1.7    | .7     | .3     | 2.6    |
| 26             | -   | •   | 39.4   | 5.6    | 2.6    | 1.8    | 2.2    | .4     | 1.6    | .5     | .3     | 2.2    |
| 27             | -   | -   | 42.2   | 3.3    | 2.1    | 1.4    | 2.8    | _4     | 1.5    | .4     | .3     | 2.1    |
| 28             |     | •   | 28.1   | 2.7    | 1.7    | 1.3    | 2.5    | .4     | 1.4    | .4     | .3     | 1.9    |
| 29             | -   | •   | 18.7   | 3.4    |        | 1.2    | 2.8    | .3     | 1.3    | .4     | .7     | 1.8    |
| 30             | -   | •   | 13.1   | 2.8    |        | 1.1    | 3.8    | .4     | 1.3    | .4     | 76.Z   | 2.3    |
| 31             | •   |     | 9.5    | 1.9    |        | .9     |        | .4     |        | .4     | 65.6   |        |
| Rean           |     | -   | 24.871 | 3,9438 | 8.8525 | 2.5673 | 4.2556 | .93245 | 7.1045 | .87139 | 4.8759 | 7.2447 |
| Maximum        | -   | •   | 85.7   | 12.223 | 45.808 | 9.734  | 23.387 | 3.107  | 34.739 | 1.457  | 76.187 | 38.913 |
| <b></b> inimum | -   | -   | 4.704  | 1.023  | 1.715  | .869   | . 365  | .311   | .365   | .447   | .281   | 1.83   |
| off mm         | -   | -   | •      | •      | •      | •      | -      | •      | -      | -      | -      | -      |

Flows in cubic metres per second

Insufficient data for annual statistics

Possible data flags

Missing - flag "-"

Printed on 1/ 7/1994

Original - no flag set ..... Estimate - flag "e"

#### -----

Institute of Hydrology

Annual summary of daily data - Flow

Station number : 9171

. . . . . . . . . . .

Name : Marakabei Crump (file MARA1.DLY)

| Basin no. | : | 0   | Latitude | : | 0: 0: 0 N | Longitude | : | 0: 0: 0 E | Altitude | : .0 |
|-----------|---|-----|----------|---|-----------|-----------|---|-----------|----------|------|
| Агеа      | : | 1.0 |          |   |           |           |   |           |          |      |

Year : 1986/1987

|        |             | Oct    | Nov    | Dec    | Jan    | Feb    | Маг      | Apr             | Nay    | Jun    | Jul    | Aug         | Sep   |
|--------|-------------|--------|--------|--------|--------|--------|----------|-----------------|--------|--------|--------|-------------|-------|
|        | 1           | 3.1    | 156.7  | 9.6    | 1.2    | .1     | 2.6      | 5.8             | 2.3    | .5     | .6     | .5          | 5.8   |
|        | 2           | 3.2    | 73.2   | 7.1    | .9     | .1     | 3.6      | 4.4             | 2.1    | .5     | .6     | .4          | 5.2   |
|        | 3           | 71.4   | 41.6   | 6.7    | .7     | .1     | 2.1      | 3.3             | 1.9    | .5     | .6     | .4          | 7.2   |
|        | 4           | 71.9   | 28.0   | 6.4    | .6     | .1     | 1.6      | 2.6             | 1.7    | .5     | .5     | .4          | 13.4  |
|        | 5           | 74.3   | 22.6   | 5.1    | .6     | .1     | 1.4      | 2.2             | 1.6    | .5     | .5     | .4          | 14.5  |
| •      | 6           | 47.1   | 52.7   | 5.0    | .5     | .1     | 12.2     | 1.9             | 1.5    | .5     | .4     | .3          | 11.9  |
|        | 7           | 35.8   | 93.6   | 4.5    | .5     | .1     | 4.7      | 1.7             | 1.3    | .5     | .4     | .4          | 10.4  |
|        | 8           | 24.2   | 300.6  | 3.5    | .4     | .5     | 2.8      | 1.5             | 1.2    | .4     | .4     | .3          | 39.6  |
| _      | 9           | 17.3   | 221.6  | 2.9    | .4     | .9     | 1.9      | 1.4             | 1.2    | .4     | .4     | .4          | 78.1  |
|        | 10          | 20.Z   | 108.4  | 2.5    | .3     | .7     | 1.5      | 10.0            | 1.1    | .4     | .4     | .4          | 38.2  |
|        | 11          | 17.4   | 74.4   | 5.2    | .3     | .9     | 1.2      | 7.2             | 1.1    | .4     | .4     | <b>`.</b> 3 | 25.2  |
|        | 12          | 13.7   | 48.4   | 4.0    | .6     | .6     | 1.0      | 5.9             | 1.2    | .4     | .3     | .3          | 17.8  |
|        | 13          | 10.9   | 32.9   | 3.1    | 1.2    | 1.2    | .8       | 6.2             | 1.1    | .4     | .4     | .3          | 14.5  |
|        | 14          | 8.8    | 23.3   | 2.8    | .9     | 3.5    | .7       | 10.0            | 1.1    | .4     | .3     | .3          | 12.3  |
|        | 15          | 7.2    | 17.5   | 2.3    | .6     | 3.8    | .6       | 169.2           | 1.0    | .4     | .3     | .4          | 9.0   |
|        | 16          | 6.9    | 13.4   | 1.9    | .4     | 7.3    | .7       | 69.5            | .9     | .4     | .3     | 30.8        | 7.2   |
|        | 17          | 6.0    | 11.6   | 2.1    | 1.1    | 3.6    | .9       | 32.7            | .8     | .4     | .3     | 41.1        | 6.1   |
|        | 18          | 6.6    | 10.3   | 2.6    | 1.3    | 2.1    | 1.2      | 20.4            | .7     | .4     | .3     | 32.2        | 5.7   |
|        | 19          | 7.0    | 8.9    | 2.1    | .8     | 1.6    | 18.2     | 14.5            | .7     | .4     | .3     | 32.2        | 5.0   |
|        | 20          | 8.8    | 8.1    | 1.8    | .6     | 2.0    | 12.5     | 11.1            | .7     | .4     | .5     | 28.0        | 5.0   |
| -      | 21          | 7.0    | 10.0   | 1.4    | .6     | 1.5    | 7.9      | 8.7             | .6     | .3     | .8     | 25.1        | 8.5   |
| _      | 22          | 5.7    | 74.4   | 1.1    | .5     | 1.1    | 9.2      | 7.0             | .6     | .3     | .8     | 21.1        | 455.0 |
|        | 23          | 4.7    | 38.3   | 1.0    | .5     | 17.0   | 16.9     | 5.8             | .5     | .3     | .9     | 17.2        | 357.0 |
|        | 24          | 5.2    | 26.8   | .9     | .4     | 5.8    | 17.5     | 4.8             | .5     | .3     | .9     | 13.7        | 142.1 |
| _      | 25          | 9.9    | 19.5   | .8     | .3     | 6.3    | 11.2     | 4.0             | .5     | .3     | .8     | 11.7        | 78.8  |
|        | 26          | 36.8   | 14.5   | .9     | .3     | 5.5    | 8.7      | 3.5             | .5     | .4     | .7     | 10.6        | 50.8  |
|        | 27          | 39.6   | 15.9   | 1.7    | .2     | 4.9    | 6.6      | 3.3             | 4      | .4     | .7     | 10.0        | 61.4  |
|        | 28          | 30.3   | 12.5   | 1.2    | . 2    | 3.6    | 5.3      | 3.5             | .5     | .5     | .6     | 9.1         | 68.4  |
|        | 29          | 145.1  | 9.3    | 1.0    | .1     |        | 4.3      | 3.1             | .5     | .5     | .6     | 8.3         | 119.9 |
|        | 30          | 87.5   | 10.3   | 1.2    | .1     |        | 3.6      | 2.6             | .5     | .6     | .6     | 7.1         | 108.3 |
|        | 31          | 179.7  |        | 1_4    | .1     |        | 5.5      |                 | .5     |        | .5     | 6.5         |       |
|        |             | 37 /07 |        |        | ****   |        | <b>.</b> | <b></b> - · · · |        |        |        |             |       |
| - Hean |             | 32.682 | 52.645 | 3.0238 | .55997 | 2.6761 | 5.4449   | 14.261          | .99352 | .43017 | .52319 | 10.004      | 59.41 |
| Maxi   |             | 179.71 | 300.65 | 9.639  | 1.322  | 16.986 | 18.163   | 169.24          | 2.29   | .61    | .93    | 41.123      | 455.0 |
|        | mum.<br>fmm | 3.08   | 8.142  | . 785  | .083   | .055   | .631     | 1.383           | .447   | . 285  | . 289  | .276        | 4.998 |

Flows in cubic metres per second

Annual statistics

| Kaximum | Minimum<br>477.576 million |                           | 15.144<br>µnoff | cubic metres per second<br>.000 millimetres |
|---------|----------------------------|---------------------------|-----------------|---------------------------------------------|
| •       | data flags                 | <br>• • • • • • • • • • • | -               |                                             |

Missing - flag "-" Original - no flag set Estimate - flag "e" . .....

Printed on 1/ 7/1994

# 

# Institute of Hydrology

Annual summary of daily data - Flow 

Station number : 9171

Name : Marakabei Crump (file MARA1.DLY)

| Basin no. | : 0   | Latitude | : | 0: 0: 0 N | Longitude | : | 0: 0: 0 E | Altitude | : .0 |
|-----------|-------|----------|---|-----------|-----------|---|-----------|----------|------|
| Area      | : 1.0 |          |   |           |           |   |           |          |      |

Year : 1987/1988

|        |    | Oct    | Nov    | Dec    | Jan    | Feb    | Маг    | Арг    | Нау       | Jun    | Jul    | Aug    | Sep   |
|--------|----|--------|--------|--------|--------|--------|--------|--------|-----------|--------|--------|--------|-------|
|        | 1  | 87.6   | 14.4   | 45.2   | 5.1    | 2.6    | 45.4   | 3.2    | 14.6      | 17.3   | 4.9    | 3.4    | 7.9   |
|        | 2  | 62.0   | 12.5   | 26.5   | 4.0    | 2.2    | 40.6   | 2.8    | 12.4      | 15.0   | 5.6    | 3.1    | 6.5   |
|        | 3  | 39.5   | 19.2   | 20.4   | 3.3    | 2.0    | 42.Z   | 3.1    | 10.9      | 13.8   | 26.0   | 2.9    | 48.0  |
|        | 4  | 30.4   | 15.3   | 13.8   | 2.9    | 1.6    | 47.6   | 4.6    | 9.3       | 14.0   | 55.3   | 2.8    | 55.   |
|        | 5  | 23.9   | 13.0   | 12.2   | 2.6    | 1.5    | 46.9   | 13.4   | 8.4       | 14.5   | 40.6   | 2.4    | 32.4  |
|        | 6  | 17.7   | 11.8   | 23.7   | 2.2    | 1.4    | 137.8  | 40.6   | 7.6       | 13.9   | 28.1   | 2.2    | 22.3  |
|        | 7  | 16.6   | 11.2   | 21.0   | 2.1    | 3.7    | 86.4   | 58.5   | 6.9       | 12.7   | 22.1   | 2.1    | 16.5  |
|        | 8  | 15.4   | 8.1    | 15.7   | 2.3    | 2.8    | 52.6   | 186.0  | 6.5       | 13.6   | 17.2   | 2.1    | 13.6  |
| _      | 9  | 15.1   | 6.7    | 11.0   | 2.0    | 2.6    | 39.5   | 84.4   | 6.1       | 12.2   | 14.0   | 2.0    | 10.1  |
|        | 10 | 23.9   | 9.5    | 8.3    | 1.9    | 3.1    | 131.9  | 47.2   | 5.8       | 10.7   | 13.8   | 2.0    | 8.0   |
|        | 11 | 17.9   | 7.1    | 6.7    | 1.7    | 2.2    | 231.0  | 31.9   | 5.2       | 9.6    | 13.5   | 1.9    | 6.4   |
| 1      | 12 | 12.8   | 195.Z  | 10.7   | 1.8    | 1.8    | 425.0  | 23.5   | 4.7       | 8.5    | 12.8   | 2.1    | 5.4   |
|        | 13 | 10.8   | 104.5  | 9.0    | 2.3    | 1.6    | 139.6  | 17.2   | 4.2       | 8.3    | 13.5   | 1.8    | 4.7   |
|        | 14 | 11.2   | 127.7  | 6.7    | 2.1    | 7.4    | 91.2   | 14.0   | 3.9       | 7.3    | 14.4   | 1.8    | 5.0   |
| 1      | 15 | 9.5    | 68.9   | 6.0    | 26.1   | 9.5    | 58.0   | 15.4   | 3.5       | 6.5    | 13.4   | 1.7    | 31.6  |
|        | 16 | 7.6    | 41.7   | 11.9   | 19.6   | 6.4    | 39.1   | 17.6   | 3.4       | 5.8    | 12.7   | 1.6    | 160.0 |
|        | 17 | 7.0    | 27.4   | 13.2   | 10.9   | 31.9   | 28.7   | 19.7   | 3.5       | 5.7    | 10.3   | 1.6    | 87.4  |
| 1      | 18 | 5.8    | 20.7   | 38.7   | 8.2    | 22.1   | 21.9   | 19.7   | 3.7       | 5.0    | 9.9    | 1.5    | 58.5  |
|        | 19 | 4.8    | 37.0   | 23.9   | 6.0    | 13.8   | 16.9   | 40.0   | 3.5       | 4.7    | 8.8    | 1.5    | 38.1  |
|        | 20 | 4.7    | 35.2   | 15.5   | 22.4   | 10.7   | 13.7   | 28.6   | 4.5       | 3.9    | 8.1    | 1.5    | 28.   |
| -<br>2 | 21 | 6.7    | 24.0   | 11.0   | 21.3   | 8.3    | 11.4   | 20.5   | 5.4       | 3.7    | 7.2    | 1.5    | 21.0  |
| . 2    | 22 | 14.8   | 17.3   | 11.4   | 17.5   | 45.2   | 10.4   | 15.7   | 4.2       | 3.4    | 6.2    | 1.5    | 16.   |
|        | 23 | 12.5   | 13.0   | 189.0  | 10.6   | 43.0   | 9.3    | 16.9   | 3.4       | 3.0    | 5.8    | 1.5    | 13.2  |
|        | 24 | 10.2   | 19.3   | 55.4   | 7.9    | 25.5   | 5.5    | 13.6   | 3.2       | 2.8    | 5.4    | 1.6    | 10.6  |
| _ 7    | 25 | 11.8   | 18.6   | 31.6   | 15.1   | 18.8   | 5.2    | 79.8   | 2.9       | 2.7    | 5.0    | 1.6    | 8.9   |
|        | 26 | 10.4   | 10.3   | 22.4   | 11.6   | 47.1   | 5.2    | 60.0   | 2.7       | 2.7    | 4.7    | 1.6    | 7.2   |
|        | 27 | 13.7   | 7.4    | 16.7   | 7.8    | 220.8  | 5.2    | 39.2   | 2.7       | 2.8    | 4.6    | 1.7    | 6.2   |
| 2      | 28 | 10.4   | 5.8    | 11.9   | 5.9    | 147.9  | 4.7    | 29.3   | 20.4      | 3.9    | 4.2    | 1.7    | 5.5   |
|        | 29 | 8.1    | 8.0    | 9.3    | 4.8    | 74.2   | 5.4    | 22.8   | 39.8      | 4.8    | 3.7    | 6.3    | 4.    |
|        | 30 | 6.6    | 25.3   | 7.6    | 3.8    |        | 4.3    | 18.3   | 28.3      | 4.8    | 3.5    | 15.7   | 4.(   |
| 3      | 31 | 9.0    |        | 6.3    | 2.9    |        | 3.5    |        | 21.7      |        | 3.5    | 10.4   |       |
| lean   |    | 17.362 | 31.204 | 22.985 | 7.6948 | 26.264 | 58.262 | 32.918 | 9 / 0 7 / | 7 021  | 12 842 | 2 80/5 | 24.81 |
| Haxim  | -  | 87.63  | 195.16 | 189.0  | 26.057 | 20.204 |        |        | 8.4924    | 7.921  | 12.862 | 2.8045 |       |
| Haxia. |    | 4.653  | 5.81   | 6.011  | 1.663  |        | 425.0  | 186.0  | 39.835    | 17.333 | 55.341 | 15.7   | 160.0 |
| /off   |    | 4.077  | 3+01   | 0.011  | 1,003  | 1.402  | 3.55   | 2.85   | 2.681     | 2.675  | 3.496  | 1.46   | 4.019 |

Flows in cubic metres per second

.....

Annual statistics

| Maximum | Minimum<br>666.298 million |               | <br>21.070<br>"moff | cubic metres per second<br>.000 millimetres |
|---------|----------------------------|---------------|---------------------|---------------------------------------------|
|         | data flags                 | ••••••••••••• | <br>                |                                             |

Missing - flag "-" Original - no flag set Estimate - flag "e" .....

Printed on 1/ 7/1994

| • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • | <br>••••• | · • • • • • • • • • • • • • • • • • • • |
|-----------------------------------------|-------------------------------------|-----------|-----------------------------------------|
|                                         |                                     |           |                                         |

### Institute of Hydrology Annual summary of daily date - Flow

Station number : 9171

Name : Marakabei Crump (file MARA1.DLY)

| Basin no. | : 0   | Latitude | : | 0: 0: 0 N | Longitude | : | 0:0:0 E | Altitude | : .0 |
|-----------|-------|----------|---|-----------|-----------|---|---------|----------|------|
| Area      | : 1.0 |          |   |           |           |   |         |          |      |

Year : 1988/1989

|          | 0ct    | Nov    | Dec    | Jan    | Feb   | Mar    | Apr    | May    | Jun    | Jul    | Aug    | Sep  |
|----------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|------|
| 1        | 3.5    | 31.3   | 19.5   | 23.7   | 13.4  | 10.0   | 8.6    | 22.8   | 238.0  | 14.0   | 1.9    | 1.   |
| 2        | 3.0    | 26.5   | 17.7   | 27.4   | 9.2   | 9.3    | 7.0    | 19.4   | 168.1  | 13.0   | 2.0    | 1.   |
| 3        | 2.7    | 34.2   | 16.2   | 26.0   | 10.5  | 8.5    | 6.2    | 15.5   | 71.1   | 10.2   | 3.9    | 1.   |
| 4        | 2.5    | 27.4   | 16.1   | 21.9   | 15.2  | 6.3    | 5.3    | 14.3   | 44.1   | 8.2    | 3.7    | 1.   |
| 5        | 2.3    | 19.9   | 20.1   | 22.2   | 17.2  | 4.9    | 4.4    | 23.9   | 30.7   | 7.0    | 3.0    | 1.   |
| 6        | 2.1    | 14.4   | 16.7   | 31.5   | 17.6  | 4.Z    | 3.8    | 21.6   | 22.4   | 5.9    | 2.6    | 1.   |
| 7        | 2.1    | 11.2   | 12.9   | 57.9   | 31.3  | 3.7    | 3.5    | 17.7   | 17.6   | 5.3    | 2.4    | •    |
| 8        | 1.9    | 9.3    | 11.3   | 49.0   | 22.0  | 3.6    | 4.0    | 14.7   | 14.7   | 4.7    | 2.2    |      |
| 9        | 1.8    | 17.8   | 11.1   | 46.4   | 17.2  | 3.2    | 7.2    | 12.3   | 12.2   | 4.4    | 2.0    |      |
| 10       | 3.0    | 12.8   | 19.5   | 32.6   | 21.3  | 2.8    | 8.5    | 10.7   | 10.1   | 4.4    | 1.9    |      |
| 11       | 3.4    | 9.8    | 13.7   | 29.7   | 29.8  | 2.4    | 7.1    | 9.2    | 8.5    | 3.9    | 1.7    | •    |
| 12       | 6.6    | 8.2    | 10.4   | 31.8   | 195.4 | 2.3    | 6.6    | 7.6    | 7.3    | 3.6    | 1.7    | 1.   |
| 13       | 21.6   | 8.5    | 9.0    | 25.8   | 144.0 | 4.0    | 7.0    | 6.3    | 6.4    | 3.3    | 1.7    | 1.   |
| 14       | 66.9   | 9.9    | 12.2   | 18.5   | 70.8  | 41.3   | 6.8    | 5.5    | 5.6    | 3.0    | 1.7    | 1.   |
| 15       | 95.7   | 9.4    | 9.7    | 49.7   | 287.0 | 44.5   | 6.4    | 4.9    | 5.1    | 2.8    | 2.9    | 1.   |
| 16       | 106.6  | 9.0    | 9.4    | 28.9   | 340.0 | 22.3   | 12.0   | 24.6   | 4.6    | 2.7    | 4.7    | 1.   |
| 17       | 98.5   | 8.5    | 15.9   | 30.3   | 207.0 | 15.7   | 16.5   | 21.8   | 4.1    | 2.5    | 4.2    |      |
| 18       | 76.6   | 9.Z    | 12.2   | 32.3   | 117.0 | 11.4   | 13.7   | 15.6   | 3.8    | 3.3    | 3.4    |      |
| 19       | 46.1   | 9.1    | 12.2   | 29.0   | 66.6  | 8.8    | 10.9   | 11.9   | 3.6    | 5.2    | 3.2    |      |
| 20       | 33.2   | 7.0    | 19.2   | 20.7   | 38.7  | 7.5    | 8.5    | 9.3    | 3.4    | 4.0    | 3.0    |      |
| 21       | 29.7   | 7.6    | 16.6   | 18.8   | 25.8  | 6.8    | 7.2    | 7.7    | 3.2    | 3.4    | 2.8    | •    |
| 22       | 48.1   | 9.8    | 12.1   | 21.1   | 19.6  | 14.5   | 7.5    | 6.6    | 3.1    | 3.2    | 2.7    |      |
| 23       | 37.7   | 7.8    | 9.4    | 14.5   | 16.6  | 13.5   | 15.7   | 5.6    | 3.0    | 3.0    | 2.6    | •    |
| 24       | 26.1   | 9.2    | 9.8    | 12.7   | 14.1  | 12.6   | 12.9   | 4.9    | 5.9    | 2.8    | 2.4    | •    |
| 25       | 19.4   | 14.4   | 156.5  | 10.8   | 12.8  | 16.6   | 10.2   | 4.5    | 11.6   | 2.5    | 2.3    | •    |
| 26       | 19.8   | 13.5   | 142.1  | 9.8    | 11.2  | 16.1   | 8.4    | 7.3    | 11.8   | 2.4    | 2.1    | •    |
| 27       | 14.4   | 20.3   | 95.3   | 8.4    | 10.3  | 15.5   | 7.1    | 81.0   | 9.9    | 2.3    | 2.0    |      |
| 28       | 64.0   | 58.0   | 53.9   | 8.9    | 10.4  | 11.4   | 6.5    | 50.6   | 8.2    | 2.2    | 1.9    |      |
| 29       | 57.2   | 46.8   | 48.0   | 10.2   |       | 8.6    | 6.4    | 34.7   | 8.1    | 2.0    | 1.8    |      |
| 30       | 34.9   | 28.0   | 39.6   | 10.3   |       | 7.7    | 9.6    | 26.1   | 13.7   | 1.9    | 1.7    |      |
| 31       | 24.4   |        | 34.6   | 16.9   |       | 11.9   |        | 27.6   |        | 1.9    | 1.5    |      |
| Nean     | 30.837 | 16.962 | 29.13  | 25.082 | 64.0  | 11.355 | 8.1777 | 17.618 | 25.332 | 4.4839 | 2.4967 | .915 |
| Maximum  | 106.61 | 58.008 | 156.53 | 57.926 | 340.0 | 44.5   | 16.5   | 81.0   | 238.0  | 13.981 | 4.73   | 1.4  |
| Minimum  | 1.847  | 7.046  | 8.989  | 8.35   | 9.164 | 2.35   | 3.47   | 4.53   | 2.983  | 1.92   | 1.517  | .36  |
| R/off mm | -      | •      | • .    | -      | •     | -      | -      | -      | •      |        |        |      |

Flows in cubic metres per second

.....

Annual statistics

| Maximum | Total | Hinimum<br>612.117 million | R    | 19.410<br>unoff | cubic metres per<br>.000 millimetres | second |
|---------|-------|----------------------------|------|-----------------|--------------------------------------|--------|
|         |       | data flags                 | <br> | ••              |                                      |        |

Missing - flag "-" Original - no flag set Estimate - flag "e" .

#### ----------

# Institute of Hydrology Annual summary of daily data - Flow

| - | -    |      | -         |   |
|---|------|------|-----------|---|
|   | C+n+ | 100  | number    | • |
|   | 3(0) | 1041 | 110110001 |   |

Name : Marakabei Crump (file MARA1.DLY)

| Basin no. | : 0 |    | Latitude | : | 0: 0: | 0 N | Longitude | : | 0:0:0 E | Altitude | : .0 |
|-----------|-----|----|----------|---|-------|-----|-----------|---|---------|----------|------|
| Area      | : 1 | .0 |          |   |       |     |           |   |         |          |      |

Year : 1989/1990

9171

|     |                     | Oct    | Nov    | Dec    | Jan    | Feb    | Mar    | Apr    | May    | Jun    | Jul    | Aug    | Sep   |
|-----|---------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
|     | 1                   | .4     | 3.3    | 17.8   | 1.8    | 3.6    | 2.9    | 93.7   | 49.1   | 2.0    | 12.4   | 3.5    | 1.9   |
|     | 2                   | .3     | 3.6    | 14.6   | 2.3    | 5.8    | 2.0    | 94.2   | 33.2   | 1.9    | 10.0   | 3.3    | 1.8   |
|     | 3                   | .3     | 94.3   | 16.7   | 3.2    | 11.0   | 1.5    | 47.5   | 24.2   | 1.9    | 8.2    | 3.0    | 1.8   |
|     | 4                   | .3     | 51.1   | 12.8   | 2.8    | 8.1    | 1.3    | 92.8   | 20.1   | 1.8    | 8.5    | 2.7    | 1.8   |
|     | 5                   | .3     | 27.0   | 8.7    | 1.9    | 6.7    | 1.5    | 93.6   | 16.2   | 2.5    | 9.9    | 2.8    | 1.7   |
|     | 6                   | .2     | 20.9   | 6.2    | 1.3    | 6.4    | 12.1   | 61.2   | 13.3   | 2.9    | 8.5    | 4.7    | 1.7   |
|     | 7                   | .3     | 24.0   | 4.7    | 1.1    | 8.8    | 49.6   | 38.7   | 11.2   | 2.3    | 7.1    | 8.6    | 1.5   |
|     | 8                   | .3     | 27.0   | 4.5    | 1.4    | 7.9    | 21.8   | 27.3   | 9.3    | Z.O    | 6.0    | 10.6   | 1.5   |
| _   | 9                   | .3     | 22.1   | 7.1    | 1.0    | 7.9    | 12.7   | 20.3   | 7.9    | 1.8    | 5.2    | 10.3   | 1.5   |
|     | 10                  | .6     | 17.0   | 5.5    | 1.9    | 5.6    | 8.8    | 16.9   | 7.6    | 1.6    | 4.7    | 8.9    | 1.4   |
|     | 11                  | 1.1    | 12.5   | 4.0    | 3.1    | 25.6   | 6.3    | 14.1   | 9.6    | 1.5    | 4.1    | 7.7    | 1.4   |
|     | 12                  | .9     | 11.4   | 4.7    | 2.0    | 16.1   | 4.7    | 11.3   | 8.5    | 1.4    | 3.6    | 6.6    | 1.3   |
|     | 13                  | .8     | 17.4   | 4.0    | 1.6    | 10.8   | 3.7    | 10.7   | 10.6   | 1.3    | 3.3    | 6.3    | 1.3   |
|     | 14                  | .5     | 17.1   | 3.3    | 1.6    | 9.1    | 3.4    | 15.8   | 10.0   | 1.3    | 3.0    | 5.4    | 1.2   |
|     | 15                  | .4     | 31.1   | 4.0    | 1.5    | 24.1   | 4.7    | 13.3   | 8.6    | 1.3    | 2.6    | 5.2    | 1.1   |
|     | 16                  | .4     | 101.0  | 4.8    | 2.3    | 22.1   | 7.1    | 10.8   | 7.1    | 1.2    | 2.6    | 3.9    | 1.0   |
|     | 17                  | .4     | 55.9   | 3.6    | 6.7    | 15.0   | 28.5   | 8.7    | 6.4    | 1.2    | 3.0    | 3.7    | 1.1   |
|     | 18                  | .5     | 31.9   | 3.1    | 4.1    | 10.3   | 21.9   | 7.2    | 5.8    | 1.2    | 4.0    | 4.2    | 1.3   |
|     | 19                  | .4     | 21.8   | 2.6    | 2.5    | 7.1    | 13.9   | 6.4    | 5.1    | 1.1    | 4.6    | 3.4    |       |
|     | 20                  | .5     | 15.8   | 2.2    | 2.4    | 5.3    | 15.9   | 5.5    | 4.6    | 1.1    | 3.6    | 3.1    |       |
| -   | 21                  | .8     | 11.5   | 1.9    | 3.3    | 4.3    | 32.3   | 4.7    | 4.3    | 1.2    | 3.0    | 2.9    | .8    |
| -   | 2Z                  | 3.3    | 9.9    | 1.5    | 3.2    | 3.4    | 20.5   | 4.3    | 3.9    | 1.7    | 2.8    | 2.6    |       |
|     | 23                  | 3.5    | 9.5    | 1.3    | 2.7    | 2.9    | 14.0   | 4.4    | 3.4    | 1.8    | 2.6    | 2.4    |       |
|     | 24                  | 3.5    | 7.8    | 1.1    | 3.0    | 2.5    | 10.7   | 5.3    | 3.0    | 1.5    | 2.4    | 2.1    | •     |
| _   | 25                  | 8.5    | 6.1    | 1.0    | 7.6    | 2.2    | 12.3   | 22.5   | 2.9    | 1.5    | 2.2    | 2.0    |       |
|     | 26                  | 8.7    | 5.2    | .9     | 9.5    | 1.9    | 11.0   | 129.0  | 2.8    | 1.3    | 2.0    | 1.9    |       |
|     | 27                  | 6.2    | 5.7    | 1.8    | 7.6    | 1.8    | 8.5    | 72.6   | 2.7    | 1.9    | 1.9    | 1.8    |       |
|     | 28                  | 4.5    | 9.7    | 1.0    | 5.5    | 3.1    | 6.9    | 42.9   | 2.5    | 23.2   | 1.8    | 1.7    |       |
|     | 29                  | 3.4    | 31.6   | .9     | 5.4    |        | 5.6    | 57.0   | 2.3    | 27.5   | 2.0    | 1.5    |       |
|     | 30                  | 4.3    | 21.6   | 1.5    | 4.4    |        | 4.9    | 69.9   | 2.2    | 16.9   | 4.1    | 1.8    |       |
| _   | 31                  | 4.2    |        | 2.3    | 4.6    |        | 11.4   |        | 2.2    |        | 4.3    | 2.0    |       |
|     |                     | 1.9358 | 7/ 141 | / 9741 | 2 7767 | 8 6647 | 11 407 | 36.749 | 0 7010 | 3 720/ | 1 410  | 1 2100 | 1 1/5 |
| Hea |                     | 8.658  | 24.161 | 4.8361 | 3.3357 | 8.5517 | 11.697 |        | 9.7018 | 3.7304 | 4.649  | 4.2189 | 1.145 |
|     | cimum<br>           |        | 101.0  | 17.8   | 9.53   | 25.6   | 49.646 | 129.0  | 49.116 | 27.5   | 12.409 | 10.6   | 1.9   |
|     | nionuon<br>offorman | .23    | 3.33   | .87    | 1.02   | 1.784  | 1.342  | 4.309  | 2.193  | 1.066  | 1.8    | 1.544  | .534  |

Flows in cubic metres per second

Annual statistics

| Maximum | Total | Hinimum<br>299.347 million |                                   |       | 9,492<br>Jnoff | cubic metres per second<br>.000 millimetres |
|---------|-------|----------------------------|-----------------------------------|-------|----------------|---------------------------------------------|
|         |       |                            | • • • • • • • • • • • • • • • • • | ••••• | ••             |                                             |

Possible data flags

Original - no flag set  Estimate - flag "e"、

Printed on 1/ 7/1994

Hissing - flag "-"

-

|           | · · · • • • • • • • • • • • • • • • • • |            |            |           |            |            |        |      |         |       |     |
|-----------|-----------------------------------------|------------|------------|-----------|------------|------------|--------|------|---------|-------|-----|
|           |                                         |            | titute of  |           |            |            |        |      |         |       |     |
|           | AI                                      | nnual summ | ary of dai | ly data - | Flow       |            |        |      |         |       |     |
|           |                                         |            |            |           |            |            |        |      |         |       |     |
| Station n | mber :                                  | 9171       | Name       | : Marakab | ei Crump ( | file MARA1 | .DLY)  |      |         |       |     |
| Basin no  | b. : 0                                  |            | Latitud    | • : O:    | 0: 0 N     | Longitux   | de: 0: | 0:0E | Altitud | e :.0 |     |
| Area      | : 1.0                                   |            |            |           |            |            |        |      |         |       |     |
|           |                                         |            |            |           |            |            |        |      |         |       |     |
|           |                                         | Year       | : 1990/199 | 21        |            |            |        |      |         |       |     |
|           | Oct                                     | Nov        | Dec        | Jan       | Feb        | Mar        | Apr    | May  | Jun     | Jul   | Aug |
| 1         | .5                                      | .3         | .0         | 1.6       | 65.0       | 4.4        | 6.1    | .9   | .4      | .5    | .2  |
| 2         | .5                                      | .5         | .0         | 1.0       | 36.4       | 3.7        | 5.2    | .9   | .4      | .5    | .2  |
| 3         | .5                                      | .8         | 1.3        | .6        | 26.8       | 3.6        | 4.6    | .8   | .4      | .5    | .3  |
| 4         | .5                                      | .8         | 2.6        | .4        | 25.0       | 4.6        | 4.0    | .8   | .4      | .4    | .3  |
| 5         | .6                                      | .6         | 1.5        | .3        | 169.3      | 3.7        | 3.5    | .8   | .4      | .4    | .2  |
| 6         | .7                                      | .5         | 19.5       | .3        | 150.0      | 3.0        | 3.3    | .8   | .4      | .4    | .2  |
| 7         | .7                                      | .4         | 30.5       | .4        | 127.0      | 3.9        | 4.3    | .8   | .4      | .4    | .2  |
| 8         | .8                                      | .4         | 16.9       | 5.1       | 90.6       | 5.2        | 3.9    | .7   | .4      | .4    | .2  |
| 9         | 1.6                                     | .4         | 9.7        | 15.3      | 59.3       | 11.2       | 3.2    | .7   | .4      | .4    | .2  |

Sep

.2 .1 .2 .2 .2

| off mm  | •      | -     | -      |       | -      | -      | •     | -      | •      | -      | •      | -      |
|---------|--------|-------|--------|-------|--------|--------|-------|--------|--------|--------|--------|--------|
| Tinimum | .24    | .0    | .019   | .31   | 5.34   | 3.01   | .93   | .447   | .41    | .22    | .157   | , 103  |
| Kaxinum | 2.0    | .83   | 30.455 | 212.0 | 169.26 | 201.0  | 6.13  | .93    | 1.426  | .534   | .268   | 6.198  |
| an      | .59961 | .2326 | 4.5558 | 45.21 | 45.994 | 38.416 | 2.344 | .63271 | .56873 | .35694 | .20613 | 1.0278 |
| 31      | .2     |       | 1.6    | 116.0 |        | 7.4    |       | .4     |        | .2     | .2     |        |
| 30      | .3     | .0    | .7     | 170.0 |        | 9.3    | .9    | .4     | .5     | .2     | .2     | 4 )    |
| 29      | .3     | .0    | .5     | 212.0 |        | 11.5   | .9    | .4     | .5     | .3     | .2     | 6.2    |
| 28      | .3     | .0    | .5     | 148.0 | 5.3    | 14.4   | 1.0   | .4     | .5     | .3     | .2     |        |
| 27      | .3     | .0    | .7     | 198.0 | 6.5    | 18.2   | 1.0   | .4     | .5     | .3     | .2     | .4     |
| 26      | .3     | .0    | .9     | 88.1  | 8.1    | 22.0   | 1.0   | .5     | .6     | .3     | .2     | .5     |
| 25      | .3     | .0    | 1.0    | 98.3  | 10.6   | 29.1   | 1.1   | .5     | .6     | .3     | .2     | .4     |
| 24      | .4     | .0    | 1.1    | 153.0 | 14.3   | 35.4   | 1.1   | .5     | .7     | .3     | .2     | .4     |
| 23      | .4     | .0    | 1.3    | 70.9  | 18.8   | 51.0   | 1.2   | .5     | .8     | .3     | .2     | .4     |
| 22      | .5     | .0    | 1.5    | 63.2  | 25.6   | 72.8   | 1.3   | .5     | .9     | .3     | .2     | .4     |
| 21      | .5     | .1    | 2.0    | 17.4  | 38.9   | 66.5   | 1.3   | .6     | 1.1    | .3     | .2     | .5     |
| 20      | .5     | .1    | 2.5    | 3.2   | 66.0   | 101.0  | 1.4   | .5     | 1.4    | .3     | .2     | .6     |
| 19      | .7     | .1    | 3.4    | 4.1   | 118.0  | 175.0  | 1.5   | .5     | .8     | .3     | .2     | .6     |
| 18      | 1.0    | .1    | 4.4    | 3.2   | 34.4   | 201.0  | 1.5   | .6     | .5     | .3     | .2     | .9     |
| 17      | 1.6    | .1    | 6.9    | 1.8   | 26.8   | 27.8   | 1.6   | .6     | .4     | .3     | .2     | 1.2    |
| 16      | 2.0    | .2    | 4.5    | 1.4   | 17.6   | 37.2   | 1.7   | .6     | .5     | .4     | .2     | 1.7    |
| 15      | .7     | .2    | 3.0    | 1.7   | 17.8   | 52.0   | 1.9   | .6     | .5     | .4     | .2     | 3.0    |
| 14      | .3     | .2    | 4.5    | 2.3   | 15.7   | 116.0  | 2.0   | .6     | .4     | .4     | .2     | 5.1    |
| 13      | .3     | .2    | 3.3    | 3.1   | 18.1   | 81.5   | 2.1   | .6     | .4     | .4     | .2     | .4     |
| 12      | .3     | .2    | 3.6    | 4.4   | 23.3   | 6.2    | 2.3   | .6     | .4     | .4     | .2     | .2     |
| 11      | .3     | .3    | 4.8    | 6.8   | 33.8   | 5.3    | 2.5   | .7     | .5     | .4     | .2     | .2     |
| 10      | .3     | .3    | 6.5    | 9.3   | 38.8   | 7.0    | 2.8   | .7     | .4     | .4     | .2     | .3     |
| 9       | 1.6    | .4    | 9.7    | 15.3  | 59.3   | 11.2   | 3.2   | .7     | .4     | .4     | .2     | .3     |
| 8       | .8     | .4    | 16.9   | 5.1   | 90.6   | 5.2    | 3.9   | .7     | .4     | .4     | .2     | .4     |
| 7       | .7     | . 4   | 30.5   | .4    | 127.0  | 3.9    | 4.3   | .8     | .4     | .4     | .2     | .4     |
| 6       | .7     | .5    | 19.5   | .3    | 150.0  | 3.0    | 3.3   | .8     | .4     | .4     | .2     | .5     |

Flows in cubic metres per second

.....

Annual statistics

|   |  | Minimum<br>363.082 million | <br>      | 11.513<br>unoff | cubic metres per<br>.000 millimetres | second |
|---|--|----------------------------|-----------|-----------------|--------------------------------------|--------|
| , |  | data flags                 | <br>••••• | •               |                                      |        |

Missing - flag "-" Original - no flag set Estimate - flag "e" .

.....

.......

Institute of Hydrology

Annual summary of daily data - Flow

Station number : 9171

. . . . . . . . .

171 Name : Marakabei Crump (file MARA1.DLY)

| Basin no. | : | 0   | Latitude | : | 0: 0: 0 N | Longitude | : | 0:0:0 E | Altitude | : .0 |
|-----------|---|-----|----------|---|-----------|-----------|---|---------|----------|------|
| Area      | : | 1.0 |          |   |           |           |   |         |          |      |

Year : 1991/1992

|                  | Oct    | Nov    | Dec    | Jan   | Feb    | Mar    | Apr    | May    | Jun   | ากเ   | Aug    | Sep    |
|------------------|--------|--------|--------|-------|--------|--------|--------|--------|-------|-------|--------|--------|
| 1                | 3.3    | 43.6   | 1.8    | 1.5   | .2     | 1.3    | 1.4    | .2     | .1    | .1    | .1     | 13.7   |
| 2                | 2.6    | 29.3   | 1.5    | 1.5   | .6     | .9     | .7     | .2     | .1    | .1    | .2     | 6.3    |
| 3                | 2.5    | 24.3   | 1.3    | 1.4   | 1.0    | .8     | .5     | .2     | .1    | .1    | .2     | 3.9    |
| 4                | 2.3    | 19.2   | 1.3    | 1.3   | .8     | 1.0    | .4     | .2     | .1    | .2    | .Z     | 2.6    |
| 5                | 2.0    | 15.6   | 1.9    | 1.1   | .5     | .8     | .6     | .2     | .2    | .2    | .2     | 2.0    |
| 6                | 1.6    | 12.8   | 3.0    | .9    | .4     | .6     | 1.1    | .2     | .2    | .1    | .3     | 1.6    |
| 7                | 1.4    | 9.9    | 2.5    | .8    | .3     | .5     | .6     | . 1    | .2    | .1    | .4     | 1.2    |
| 8                | 1.2    | 7.8    | 2.0    | .6    | .3     | .4     | .4     | .1     | .2    | .1    | .4     | 1.1    |
| 9                | 1.1    | 7.4    | 2.6    | .6    | .2     | .3     | .4     | .1     | .2    | .1    | .4     | .9     |
| 10               | 1.1    | 9.5    | 3.7    | .5    | .2     | .3     | .4     | .1     | .Z    | .1    | .4     | .8     |
| 11               | 1.1    | 7.8    | 4.5    | .4    | .3     | .2     | .4     | .1     | .2    | .1    | .4     | .7     |
| 12               | 1.2    | 6.2    | 5.8    | .4    | .3     | .2     | .6     | .1     | .2    | .1    | .4     | .6     |
| 13               | 5.7    | 5.7    | 3.7    | .4    | .3     | .1     | .5     | .1     | .2    | .1    | .3     | .5     |
| 14               | 20.1   | 21.8   | 2.9    | 1.3   | .3     | .1     | .4     | .1     | .2    | .2    | .3     | .5     |
| 15               | 94.6   | 14.0   | 2.3    | .4    | .2     | .1     | .4     | .1     | .2    | .2    | .3     | .4     |
| 16               | 43.8   | 9.9    | 2.7    | .4    | .2     | .1     | .3     | .1     | .2    | .2    | .2     | .4     |
| 17               | 25.0   | 7.4    | 4.7    | .4    | .1     | .1     | .3     | .1     | .2    | .2    | .2     | .3     |
| 18               | 17.5   | 6.0    | 4.8    | .4    | .1     | .1     | .3     | .1     | .2    | .2    | .2     | .3     |
| 19               | 34.6   | 5.6    | 4.4    | .4    | .1     | .1     | .3     | .1     | .2    | .2    | .2     | .3     |
| 20               | 93.3   | 5.8    | 15.1   | .4    | .2     | .1     | .3     | .1     | .2    | .2    | .2     | .2     |
| 21               | 224.5  | 5.1    | 11.5   | .4    | 2.7    | .2     | .3     | .1     | .2    | .2    | .2     | .2     |
| 22               | 267.8  | 4.1    | 7.4    | .4    | 1.7    | .2     | .3     | .1     | .2    | .2    | .2     | .z     |
| 23               | 174.9  | 3.3    | 5.2    | .4    | 1.3    | .3     | .5     | .1     | .2    | .2    | .2     | .2     |
| 24               | 90.7   | 2.8    | 3.9    | .3    | .8     | .6     | .6     | .1     | .2    | .2    | .1     | .2     |
| 25               | 53.1   | 2.4    | 3.1    | .3    | .6     | .6     | .5     | .1     | .2    | .1    | .1     | .2     |
| 26               | 44.3   | 2.1    | 2.5    | .2    | .5     | .5     | .4     | .1     | .1    | .1    | .1     | .2     |
| 27               | 32.1   | 1.8    | 2.4    | .2    | .4     | .8     | .3     | .1     | .1    | .1    | .1     | .2     |
| 28               | 25.5   | 1.9    | 3.2    | .2    | .4     | .8     | .3     | .1     | .1    | .1    | .1     | .2     |
| 29               | 20.8   | 2.5    | 2.2    | .2    | .6     | .6     | .3     | .1     | .1    | .1    | .1     | .2     |
| 30               | 61.5   | 2.2    | 1.8    | .2    |        | .6     | .2     | .2     | .1    | .1    | .9     | .2     |
| 31               | 72.1   |        | 1.5    | 3     |        | .9     |        | .2     |       | .1    | 5.6    |        |
| ean              | 45.922 | 9.9353 | 3.777  | .5851 | .54034 | .45239 | .46373 | .12365 | .1428 | . 129 | .42152 | 1.3324 |
| Maximum          | 267.84 | 43.555 | 15.056 | 1.512 | 2.745  | 1.29   | 1.437  | .22    | . 157 | . 157 | 5.556  | 13.654 |
| inimum<br>off mm | 1.11   | 1.805  | 1.272  | .164  | . 101  | .055   | .22    | . 101  | . 101 | . 101 | .101   | .156   |

Flows in cubic metres per second

.....

Annual statistics

| Maxim | <br>Minimum<br>169.831 million | .055<br>cubic metres                         | Mean<br>Ru | 5.371<br>Inoff | cubic metres per second<br>.000 millimetres |  |
|-------|--------------------------------|----------------------------------------------|------------|----------------|---------------------------------------------|--|
|       | e data flags                   | · · · <b>· · · · · · · · · · · · · · ·</b> · |            | -              |                                             |  |

Missing - flag "-" Original - no flag set Estimate - flag "e" \_

.....

Institute of Hydrology

Annual summary of daily data - Flow \_\_\_\_\_\_

Station number : 9171 Name : Marakabei Crump (file MARA1.DLY)

| Basin no.<br>Area |  | Latitude | : | 0: 0: 0 N | Longitude | : | 0: 0: 0 E | Altitude | : .0 |
|-------------------|--|----------|---|-----------|-----------|---|-----------|----------|------|
|-------------------|--|----------|---|-----------|-----------|---|-----------|----------|------|

Year : 1992/1993

| _       | Oct    | Nov   | Dec    | Jan    | Feb    | Mar    | Арг        | May    | Jun      | Jul                   | Aug        | Sep |
|---------|--------|-------|--------|--------|--------|--------|------------|--------|----------|-----------------------|------------|-----|
| 1       | .1     | 1.2   | 4.7    | .5     | 5.5    | 18.1   | 2.3        | 6.0    | 1.0      | .8                    | ,          |     |
| 2       | .1     | 1.8   | 3.7    | .4     | 3.6    | 13.9   | 1.8        | 5.3    | 1.0      | .8                    | _4         | -   |
| 3       | -1     | 6.8   | 3.1    | .4     | 2.7    | 14.2   | 1.6        | 5.1    | 1.0      | .7                    | 4          | -   |
| 4       | .1     | 5.7   | 2.6    | 2.0    | 4.4    | 46.2   | 2.8        | 5.2    | 1.1      | .6                    | .4         | -   |
| 5       | .1     | 19.2  | 2.2    | 1.8    | 18.0   | 25.9   | 4.7        | 4.5    | 1.1      | .6                    | .4         | -   |
| 6       | .1     | 29.5  | 1.9    | .9     | 9.7    | 18.7   | 3.6        | 4.1    | 1.1      | .6                    | .4         | -   |
| 7       | .1     | 15.1  | 1.8    | .6     | 6.9    | 14.1   | 4.1        | 3.5    | 1.0      | .5                    | .3         | •   |
| 8       | .1     | 17.0  | 1.7    | .5     | 47.9   | 10.2   | 5.4        | 3.0    | .9       | .5                    | .3         | -   |
| 9       | .1     | 76.9  | 1.6    | .4     | 45.1   | 10.9   | 4.3        | 2.6    | .9       | .5                    | .3         | •   |
| 10      | 2.6    | 147.8 | 1.6    | .4     | 28.0   | 10.1   | 3.5        | 2.5    | .8       | .5                    |            | -   |
| 11      | 4.0    | 65.7  | 1.8    | .6     | 23.7   | 11.9   | 3.8        | 2.4    | .8       | .5                    | .3<br>.5   | -   |
| 12      | 71.6   | 66.4  | 2.3    | 1.5    | 28.4   | 9.8    | 322.0      | 2.3    | .8       | .4                    |            | -   |
| 13      | 22.3   | 36.5  | 1.9    | 1.4    | 33.6   | 10.0   | 88.7       | 2.0    | .8       | . <del>4</del><br>_ 4 | 1.6<br>3.2 | •   |
| 14      | 12.1   | 23.2  | 3.4    | .9     | 40.3   | 8.6    | 52.0       | 1.9    | .0<br>.8 | .4                    |            | -   |
| 15      | 7.6    | 18.0  | 3.1    | .6     | 28.5   | 9.1    | 33.1       | 2.4    | ь.<br>8. |                       | 2.3        | •   |
| 16      | 4.9    | 12.8  | 2.1    | .5     | 26.2   | 12.6   | 24.0       | 3.5    | .8<br>.8 | .4                    | 1.8        | •   |
| 17      | 3.3    | 9.2   | 1.5    | .4     | 19.0   | 9.7    | 19.2       | 2.8    | .8       | .4                    | 1.3        | •   |
| 18      | 2.5    | 7.0   | 1.2    | .4     | 56.4   | 10.5   | 37.3       | 2.4    | .8       | -4                    | 1.0        | -   |
| 19      | 1.8    | -     | 1.0    | .3     | 34.6   | 9.0    | 30.5       | 2.1    | .7       | _4                    | .9         | -   |
| 20      | 1.5    | -     | .9     | .3     | 30.9   | 10.2   | 24.0       | 1.9    | .7       | .4                    | .9         | -   |
| 21      | 1.1    | -     | .8     | .3     | 23.9   | 8.2    | 18.7       | 1.9    | .6       | .4                    | .8         | -   |
| 22      | 1.0    | -     | .7     | 7.7    | 31.5   | 6.2    | 14.6       | 1.7    |          | .4                    | .7         | -   |
| 23      | .8     | -     | .8     | 25.7   | 20.9   | 4.9    | 12.1       | 1.6    | .6       | .4                    | .7         | •   |
| 24      | 2.9    | -     | 1.1    | 8.4    | 21.7   | 4.0    | 10.2       | 1.5    | .6       | .4                    | .6         | •   |
| 25      | 7.3    | -     | 1.6    | 5.1    | 18.6   | 3.4    | 8.6        |        | .6       | .4                    | .5         | -   |
| 26      | 4.8    | -     | 2.0    | 6.9    | 15.5   | 2.9    | 8.8<br>7.5 | 1.4    | .5       | .4                    | .5         | -   |
| 27      | 3.3    | -     | 1.3    | 7.3    | 21.4   | 2.5    | 7.3        | 1.3    | .5       | .4                    | .5         | -   |
| 28      | 2.5    | -     | .9     | 8.4    | 26.8   | 2.1    | 7.5        | 1.2    | .5       | .4                    | .4         | •   |
| 29      | 2.0    | -     | .8     | 10.1   | 20.0   | 2.7    | 7.5        | 1.1    | .6       | .4                    | .4         | -   |
| 30      | 1.6    | -     | .8     | 6.8    |        | 3.2    |            | 1.1    | .7       | .4                    | .4         | -   |
| 31      | 1.4    |       | .6     | 7.0    |        | 3.0    | 7.0        | 1.1    | .8       | .4                    | .4         | -   |
|         |        |       |        | 1.0    |        | 2.0    |            | 1.0    |          | .4                    | -          |     |
| an      | 5.2793 | -     | 1.7874 | 3.5039 | 24.061 | 10.521 | 25 / 7/    | 3 5004 |          |                       |            |     |
| Haximum | 71.646 | -     | 4.69   | 25.7   | 56.4   | 46.2   | 25.676     | 2.5901 | .782     | .48355                | .7677      | -   |
| Minimum | .055   | -     | .64    | .28    | 2.68   |        | 322.0      | 6.042  | 1.11     | .79                   | 3.177      | -   |
| off mm  | -      | •     | -      |        | c.00   | 2.08   | 1.62       | 1.05   | .51      | .39                   | .289       | -   |

Flows in cubic metres per second

.....

Insufficient data for annual statistics

.....

Possible data flags

Missing - flag "-"

Original - no flag set \_\_\_\_\_

Estimate - flag "e"

# .....

Institute of Hydrology Annual summary of daily data - Flow

-----

Station number : 9081

Name : Paray Crump (file PARA1.DLY)

| Basin no. | : 0   | Latitu | ude | : | 0: 0: 0 N | Longitude | : | 0:0:0 E | Altitude | : .0 |
|-----------|-------|--------|-----|---|-----------|-----------|---|---------|----------|------|
| Area      | : 1.0 |        |     |   |           |           |   |         |          |      |

Year : 1985/1986

|        | 0          | ct | Nov | Dec    | Jan    | Feb    | Mar    | Арг    | Мау    | Jun    | Jul    | Aug    | Sep    |
|--------|------------|----|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|        | 1          | •  | -   | 42.3   | 29.2   | 15.7   | 5.3    | 2.2    | 14.1   | 1.2    | 2.8    | .9     | 81.5   |
|        | 2          | -  | -   | 28.7   | 23.4   | 30.4   | 4.8    | 2.0    | 12.0   | 1.2    | 2.7    | .9     | 60.3   |
|        | 3          | -  | •   | 18.2   | 25.0   | 31.7   | 4.0    | 1.9    | 10.0   | 1.2    | 2.6    | .8     | 48.7   |
|        | 4          | -  | •   | 49.2   | 23.0   | 100.7  | 3.0    | 1.8    | 8.5    | 11.6   | 2.6    | .8     | 39.2   |
| -      | 5          | -  | •   | 139.9  | 28.9   | 195.1  | 3.0    | 1.6    | 7.2    | 51.1   | 2.5    | .8     | 31.7   |
|        | 6          | -  | -   | 97.0   | 25.4   | 88.6   | 7.0    | 1.4    | 6.3    | 38.8   | 2.5    | .8     | 25.7   |
|        | 7          | •  | •   | 116.5  | 18.7   | 72.6   | 8.1    | 1.3    | 5.5    | 29.2   | 2.5    | .7     | 21.4   |
|        | 8          | -  | -   | 66.1   | 14.2   | 57.0   | 6.2    | 1.2    | 5.1    | 23.7   | 2.4    | .7     | 17.8   |
| -      | 9          | -  | -   | 54.4   | 11.8   | 42.6   | 6.7    | 1.1    | 4.6    | 19.5   | 2.3    | .7     | 14.5   |
| 1      | 0.         | -  | -   | 48.6   | 9.7    | 31.9   | 7.0    | 1.6    | 4.3    | 16.2   | 2.3    | .7     | 12.5   |
| 1      | 1 .        | -  | -   | 37.8   | 8.1    | 24.9   | 8.9    | 2.1    | 3.8    | 14.3   | 2.2    | .6     | 10.9   |
| 1      | 2          | •  | -   | 28.8   | 7.3    | 21.2   | 6.9    | 3.0    | 3.3    | 14.9   | 2.2    | .6     | 9.7    |
| 1      | 3          | -  | -   | 22.7   | 6.1    | 16.8   | 6.0    | 3.3    | 3.0    | 13.7   | 2.2    | .6     | 9.5    |
| 1      | 4          | -  | •   | 52.8   | 5.2    | 13.3   | 5.5    | 23.1   | 2.8    | 13.1   | 2.1    | .6     | 9.7    |
| 15     | 5 ·        | -  | •   | 107.5  | 4.6    | 16.8   | 5.5    | 129.2  | 2.7    | 11.8   | 2.1    | .6     | 13.2   |
| 1      | 6          | •  | -   | 149.4  | 4.1    | 20.6   | 8.9    | 76.6   | 2.3    | 10.2   | 2.1    | .5     | 27.1   |
| 1      | 7          | -  | -   | 107.0  | 3.7    | 22.3   | 12.8   | 45.4   | 2.2    | 9.0    | 1.9    | .5     | 24.5   |
| 1;     | 8 .        | -  | •   | 71.4   | 3.4    | 21.3   | 13.8   | 31.6   | 2.1    | 7.9    | 1.9    | .5     | 19.3   |
| 1      | <b>9</b> · | •  | -   | 76.4   | 4.5    | 14.1   | 12.6   | 24.0   | 2.0    | 7.1    | 1.9    | .5     | 15.7   |
| 2 Z    | 0 ·        | -  | •   | 76.0   | 4.2    | 11.2   | 10.1   | 18.5   | 1.9    | 6.2    | 1.7    | .5     | 13.4   |
| 2      | 1          | -  | -   | 120.2  | 4.0    | 9.7    | 8.4    | 15.5   | 1.9    | 5.7    | 1.6    | .4     | 11.8   |
| 2      | 2          | •  | •   | 275.0  | 9.4    | 9.3    | 10.6   | 13.1   | 1.7    | 5.4    | 1.6    | .4     | 10_4   |
| 2      | 3          | •  | -   | 229.4  | 6.0    | 10.2   | 6.7    | 11.2   | 1.6    | 4.9    | 1.4    | .4     | 9.4    |
| 2      | 4          | •  | •   | 165.3  | 16.0   | 10.4   | 6.2    | 9.9    | 1.5    | 4.5    | 1.5    | .4     | 8.7    |
| 2      | 5          | -  | -   | 212.8  | 9.8    | 9.8    | 5.4    | 11.7   | 1.4    | 4.2    | 1.3    | .4     | 7.6    |
| 2      |            | -  | •   | 160.3  | 8.0    | 8.1    | 5.0    | 12.7   | 1.3    | 4.0    | 1.3    | .4     | 6.4    |
| 2      | 7          | -  | -   | 148.7  | 6.7    | 6.9    | 4.3    | 13.1   | 1.4    | 3.6    | 1.2    | .4     | 5.8    |
| 2      |            | -  | •   | 104.0  | 12.2   | 6.1    | 3.8    | 11.9   | 1.2    | 3.4    | 1.3    | .4     | 5.3    |
| 2      | 9          | -  | -   | 72.0   | 11.1   |        | 3.3    | 12.1   | 1.3    | 3.1    | 1.1    | .4     | 5.2    |
| 3      |            | -  | •   | 52.3   | 10.5   |        | 2.9    | 15.4   | 1.3    | 3.0    | .9     | 19.2   | 5.0    |
| 3      | 1 .        | -  |     | 39.0   | 15.2   |        | 2.6    |        | 1.2    |        | .9     | 133.2  |        |
|        |            |    |     |        |        |        |        |        |        |        |        |        |        |
| Hean   |            | -  | •   | 95.795 | 11.915 | 32.829 | 6.6211 | 16.645 | 3.8599 | 11.457 | 1.9196 | 5.4766 | 19.394 |
| Maximu |            | -  | •   | 274.99 | 29.249 | 195.13 | 13.79  | 129.16 | 14_147 | 51.118 | 2.805  | 133.17 | 81.499 |
| inimu  |            | -  | •   | 18.23  | 3.445  | 6.08   | 2.581  | 1.095  | 1.183  | 1.155  | .93    | .365   | 5.023  |
| off    |            | -  | •   | -      | -      | -      | -      | -      | -      | -      | -      | -      | -      |

Flows in cubic metres per second

Insufficient data for annual statistics

.....

Possible data flags

Missing - flag "-"

Original - no flag set  Estimate - flag "e"

#### 

Institute of Hydrology Annual summary of daily data - Flow

.....

Station number :

....

Name : Paray Crump (file PARA1.DLY)

| Basin no. | : 0   | Latitude | : | 0: 0: 0 N | Longitude | : | 0: 0: 0 E | Altitude | : .0 |
|-----------|-------|----------|---|-----------|-----------|---|-----------|----------|------|
| Area      | : 1.0 |          |   |           |           |   |           |          |      |

Year : 1986/1987

9081

| _       | Oct    | Nov    | Dec          | Jan    | Feb    | Mar     | Арг    | May    | Jun    | Jul    | Aug     | Sep    |
|---------|--------|--------|--------------|--------|--------|---------|--------|--------|--------|--------|---------|--------|
|         | 5.6    | 445.5  | 18.9         | 8.4    | 3.4    | 9.2     | 10.1   | 6.3    | .9     | .7     | .5      | 27.9   |
| 2       | 7.5    | 192.1  | 15.9         | 8.1    | 3.0    | 9.4     | 9.4    | 5.5    | .9     | .7     | .5      | 29.6   |
| 3       | 50.8   | 121.4  | 14.0         | 7.1    | 2.6    | 7.9     | 7.8    | 4.8    | .9     | .7     | .5      | 45.0   |
| 4       | 106.2  | 82.2   | 18.3         | 7.2    | 2.5    | 6.7     | 6.4    | 4.4    | .9     | .7     | .4      | 82.9   |
| 5       | 120.6  | 272.2  | 15.9         | 6.9    | 6.0    | 5.5     | 5.3    | 3.9    | .8     | .7     | .5      | 77.5   |
| 6       | 91.0   | 362.5  | 12.8         | 5.6    | 4.6    | 7.9     | 4.7    | 3.6    | .7     | .7     | .5      | 56.3   |
| 7       | 67.6   | 293.8  | 11.6         | 4.7    | 7.3    | 20.4    | 4.1    | 3.2    | .7     | .7     | .5      | 50.8   |
| 8       | 49.7   | 492.0  | 10.9         | 4.6    | 7.6    | 14.0    | 3.8    | 3.0    | .7     | .7     | .5      | 135.8  |
| 9       | 38.4   | 561.7  | 9.3          | 4.5    | 13.3   | 10.3    | 3.5    | 2.7    | .8     | .7     | .4      | 195.9  |
| 10      | 35.3   | 288.5  | 9.3          | 4.4    | 8.9    | 8.2     | 4.7    | 2.5    | .7     | .7     | .4      | 127.3  |
| 11      | 30.3   | 185.8  | 14.6         | 4.7    | 7.3    | 6.6     | 8.9    | 2.3    | .7     | .7     | .4      | 87.1   |
| 12      | 24.4   | 126.3  | 25.5         | 5.7    | 8.6    | 5.6     | 21.0   | 2.1    | .7     | .7     | .4      | 64.3   |
| 13      | 19.9   | 87.8   | 16.9         | 5.8    | 8.3    | 4.7     | 17.7   | 2.1    | .7     | .6     | .4      | 51.3   |
| 14      | 16.2   | 66.8   | 13.1         | 6.2    | 9.7    | 4.0     | 21.4   | 2.3    | .7     | .6     | .4      | 41.6   |
| 15      | 13.5   | 50.3   | 14.9         | 5.5    | 16.1   | 3.5     | 194.3  | 2.1    | .7     | .6     | .5      | 32.8   |
| 16      | 12.2   | 38.8   | 10.1         | 6.4    | 21.5   | 3.1     | 148.1  | 1.9    | .7     | .6     | 45.5    | 26.7   |
| 17      | 12.1   | 31.2   | 15.0         | 12.6   | 14.4   | 2.8     | 70.8   | 1.8    | .7     | .6     | 71.3    | 23.7   |
| 18      | 27.0   | 26.9   | 11.8         | 24.2   | 11.6   | 3.2     | 46.6   | 1.6    | .7     | .4     | 52.2    | 22.6   |
| 19      | 42.8   | 24.0   | 10.5         | 9.5    | 9.6    | 19.8    | 34.7   | 1.5    | .7     | .4     | 48.5    | 20.1   |
| 20      | 39.8   | 21.1   | 8.3          | 25.8   | 7.5    | 24.6    | 27.1   | 1.4    | .7     | .5     | 49.2    | 18.3   |
| 21      | 43.9   | 22.1   | 6.9          | 23.0   | 7.1    | 15.8    | 21.4   | 1.3    | .6     | .6     | 52.1    | 20.9   |
| 22      | 36.7   | 50.4   | 5.9          | 16.8   | 6.5    | 12.4    | 17.7   | 1.3    | .6     | .6     | 51.0    | 692.7  |
| 23      | 26.8   | 53.6   | 5.0          | 12.2   | 27.7   | 11.2    | 14.4   | 1.2    | .6     | .7     | 47.1    | 871.1  |
| 24      | 22.0   | 43.5   | 4.5          | 9.1    | 14.8   | 18.5    | 12.6   | 1.2    | .6     | .7     | 44.3    | 373.5  |
| 25      | 27.1   | 35.5   | 4.1          | 7.2    | 12.8   | 16.6    | 10.6   | 1.2    | .6     | .7     | 40.6    | 204.6  |
| 26      | 91.4   | 27.3   | 4.7          | 6.1    | 11.0   | 14.7    | 9.1    | 1.2    | .6     | .7     | 36.8    | 158.9  |
| 27      | 106.8  | 24.6   | 6.3          | 5.7    | 10.6   | 14.7    | 8.2    | 1.2    | .7     | .6     | 32.8    | 252.2  |
| 28      | 82.9   | 28.9   | 7.8          | 5.6    | 8.6    | 12.9    | 7.5    | 1.2    | .7     | .6     | 30.2    | 334.3  |
| 29      | 274.1  | 23.2   | 6.5          | 4.6    |        | 11.5    | 7.4    | 1.1    | .6     | .6     | 30.2    | 515.3  |
| 30      | 236.4  | 19.1   | 6.0          | 3.8    |        | 10.4    | 6.9    | 1.0    | .7     | .5     | 30.7    | 391.8  |
| 31      | 292.7  |        | 8.1          | 3.2    |        | 9.1     |        | 1.0    |        | .5     | 31.8    |        |
|         | 66.186 | 136.63 | 11.083       | 8.562  | 9.7518 | 10 / 99 | 76 677 | 3 2463 | 710/7  | 41400  | 22 / 74 |        |
| Haximum | 292.73 | 561.73 | 25.53        | 25.841 | 27.743 | 10.488  | 25.532 | 2.3152 | .72947 | .64629 | 22.631  | 167.77 |
| inum -  | 5.6    | 19.115 | 4.108        | 3.202  | 27.743 | 24.575  | 194.25 | 6.313  | .93    | .723   | 71.288  | 871.09 |
|         | 2.0    | -      | <b>4.100</b> | 5.202  | C+3 14 | 2.814   | 3.518  | .984   | .626   | .447   | .427    | 18.26  |

Flows in cubic metres per second

Annual statistics

|  | Minimum<br>1207.189 million | <br>      | 38.280<br>moff | cubic metres per<br>.000 millimetres | second |
|--|-----------------------------|-----------|----------------|--------------------------------------|--------|
|  | data flags                  | <br>••••• | -              |                                      |        |

| <b>M</b> i | ssing - flag "-"                        | Original - no flag set                | Estimate - flag "e" 🚬 |
|------------|-----------------------------------------|---------------------------------------|-----------------------|
| ••••••     | ••••••••••••••••••••••••••••••••••••••• | · · · · · · · · · · · · · · · · · · · |                       |

#### •••••

Institute of Hydrology Annual summary of daily data - Flow

Station number : 9081

Name : Paray Crump (file PARA1.DLY)

| Basin no. | : | 0   | Latitude | : | 0: 0: 0 N | Longitude | : | 0: 0: 0 E | Altitude | · : | .0 |
|-----------|---|-----|----------|---|-----------|-----------|---|-----------|----------|-----|----|
| Area      | : | 1.0 |          |   |           |           |   |           |          |     |    |

Year : 1987/1988

| _             | Oct    | Nov    | Dec    | jan    | Feb    | Mar    | Apr    | May    | Jun    | Jul    | Aug    | Sep    |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|               | 397.3  | 26.4   | 97.6   | 14.1   | 14.2   | 115.8  | 11.0   | 21.1   | 15.3   | 5.7    | 7.1    | 18.8   |
| 2             | 323.5  | 23.6   | 65.0   | 11.7   | 12.0   | 118.9  | 11.5   | 17.3   | 13.8   | 5.6    | 7.2    | 15.5   |
| 3             | 233.1  | 52.5   | 57.8   | 9.5    | 10.4   | 104.8  | 10.2   | 14.9   | 12.8   | 6.9    | 6.7    | 36.7   |
| 4             | 191.5  | 51.7   | 42.4   | 7.9    | 8.6    | 111.9  | 10.9   | 13.5   | 12.7   | 19.1   | 6.0    | 75.1   |
| 5             | 169.2  | 36.5   | 34.6   | 6.6    | 7.5    | 93.3   | 14.7   | 12.1   | 14.3   | 24.1   | 5.7    | 59.8   |
| 6             | 159.8  | 29.8   | 32.0   | 5.6    | 6.8    | 166.2  | 19.8   | 10.8   | 16.9   | 19.7   | 5.5    | 46.2   |
| 7             | 146.3  | 57.4   | 70.3   | 5.1    | 12.2   | 151.3  | 28.3   | 9.9    | 18.9   | 16.1   | 5.3    | 37.7   |
| 8             | 184.9  | 53.6   | 54.7   | 5.8    | 6.5    | 100.2  | 52.8   | 9.2    | 20.1   | 13.8   | 5.3    | 31.3   |
| 9             | 197.6  | 40.8   | 36.1   | 5.4    | 8.1    | 80.9   | 70.0   | 8.3    | 18.8   | 12.7   | 5.3    | 28.2   |
| 10            | 206.7  | 36.1   | 25.8   | 5.0    | 9.7    | 94.3   | 45.8   | 7.8    | 16.3   | 12.3   | 5.3    | 23.3   |
| 11            | 145.6  | 37.9   | 19.8   | 4.2    | 14.8   | 662.7  | 34.3   | 7.2    | 13.9   | 12.6   | 5.1    | 20.1   |
| 12            | 110.2  | 146.9  | 18.9   | 4.5    | 12.3   | 2804.1 | 29.8   | 6.8    | 12.6   | 12.1   | 5.0    | 16.5   |
| 13            | 96.5   | 145.2  | 21.1   | 4.4    | 9.4    | -      | 28.6   | 6.7    | 11.2   | 10.8   | 5.0    | 13.7   |
| 14            | 81.2   | 153.1  | 16.9   | 5.0    | 9.1    | •      | 27.9   | 6.3    | 10.3   | 11.2   | 4.8    | 13.0   |
| 15            | 72.6   | 106.7  | 13.6   | 8.2    | 24.7   | •      | 27.2   | 5.8    | 9.4    | 11.7   | 4.7    | 25.3   |
| 16            | 60.9   | 71.6   | 13.8   | 49.6   | 36.7   | -      | 26.7   | 5.4    | 8.4    | 11.9   | 4.6    | 378.7  |
| 17            | 51.8   | 51.7   | 18.4   | 32.0   | 56.3   | 85.1   | 26.7   | 5.4    | 7.8    | 10.7   | 4.4    | 241.2  |
| 18            | 44.7   | 41.5   | 73.5   | 21.3   | 39.4   | 67.7   | 26.7   | 5.1    | 7.0    | 10.2   | 4.4    | 154 J  |
| 19            | 38.7   | 181.0  | 65.9   | 20.8   | 28.8   | 53.5   | 25.9   | 5.0    | 6.4    | 10.0   | 4.3    | 107.9  |
| 20            | 39.5   | 113.2  | 43.0   | 109.1  | ZZ.2   | 42.5   | 26.1   | 5.0    | 5.9    | 9.5    | 4.1    | 79.2   |
| 21            | 59.7   | 77.3   | 38.6   | 171.9  | 17.6   | 35.3   | 25.6   | 5.3    | 5.7    | 9.1    | 4.1    | 61.9   |
| 22            | 99.7   | 57.9   | 49.3   | 128.3  | 33.6   | 29.7   | 24.6   | 5.7    | 5.4    | 8.5    | 4.2    | 48.9   |
| 23            | 94.3   | 45.0   | 206.5  | 74.2   | 74.0   | 25.7   | 24.4   | 5.2    | 5.1    | 8.0    | 4.5    | 40.1   |
| <u> </u>      | 76.8   | 39.8   | 107.2  | 52.5   | 49.5   | 22.2   | 23.1   | 4.8    | 4.7    | 7.5    | 5.1    | 33.6   |
| 25            | 62.5   | 37.9   | 65.1   | 66.6   | 45.1   | 19.7   | 49.0   | 4.5    | 4.5    | 7.2    | 5.7    | 28.3   |
| 26            | 51.3   | 32.7   | 47.5   | 57.6   | 72.5   | 18.2   | 92.3   | 4.2    | 4.3    | 7.1    | 6.3    | 23.4   |
| 27            | 50.4   | 24.6   | 51.0   | 42.0   | 151.0  | 16.0   | 58.8   | 3.8    | 4.1    | 7.1    | 6.8    | 20.0   |
| 28            | 41.6   | 19.7   | 38.2   | 32.7   | 208.4  | 14.0   | 38.8   | 6.0    | 4.8    | 6.8    | 6.8    | 17.1   |
| 29            | 35.3   | 18.3   | 28.2   | 26.2   | 115.6  | 13.5   | 29.7   | 19.9   | 5.3    | 6.8    | 8.2    | 14.9   |
| 30            | 31.5   | 20.3   | 21.3   | 21.8   |        | 13.4   | 24.1   | 23.8   | 5.5    | 6.8    | 20.9   | 13.1   |
| 31            | 27.7   |        | 17.9   | 17.4   |        | 11.7   |        | 19.0   |        | 6.9    | 23.7   |        |
| an            | 115.56 | 61.021 | 48.137 | 33.126 | 38.517 | 187.88 | 31.523 | 9.2136 | 10.086 | 10.596 | 6.525  | 57.453 |
| Maximum       | 397.25 | 180.99 | 206.46 | 171.95 | 208.39 | 2804.1 | 92.289 | 23.811 | 20.088 | 24.07  | 23.734 | 378.72 |
| <b>G</b> ff m | 27.741 | 18.309 | 13.592 | 4.211  | 6.47   | 11.666 | 10.249 | 3.828  | 4.126  | 5.559  | 4.092  | 12.994 |

Flows in cubic metres per second

Annual statistics

| Maximum            | 2804.100 | Minimum 3.828                           | Mean 49.475 | cubic metres per second |
|--------------------|----------|-----------------------------------------|-------------|-------------------------|
|                    | Total    | 1564.527 million cubic metres           | Runoff      | .000 millimetres        |
| •••••••••••••••••• | •••••    | ••••••••••••••••••••••••••••••••••••••• | •••••       |                         |

Possible data flags

Missing - flag "-"

Original - no flag set

Estimate - flag "e" 🛓

Institute of Hydrology Annual summary of daily data - Flow 9081 Station number : Name : Paray Crump (file PARA1.DLY) Basin no. : O Latitude : 0:0:0 N Longitude : 0:0:0 E Altitude : .0 Area : 1.0 Year : 1988/1989 Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aua Sep 1 11.5 52.3 69.4 58.2 34.5 72.3 25.0 40.0 236.0 56.6 4.9 4.2 2 10.2 48.0 54.0 48.0 27.8 70.5 19.7 42.6 418.0 66.3 5.0 4.0 3 8.9 48.5 56.3 42.5 39.2 62.8 16.9 37.2 185.0 56.3 5.6 3.7 4 8.2 60.6 74.2 37.6 120.6 48.5 15.0 32.0 119.0 42.7 6.0 3.5 5 7.3 45.2 36.2 110.9 102.8 38.9 13.2 35.8 89.1 31.9 5.7 3.2 6 6.6 35.6 85.7 37.0 31.9 96.6 11.7 36.0 69.4 27.0 5.1 3.1 7 6.1 29.5 90.5 65.0 56.7 26.9 10.3 31.2 53.2 23.0 4.9 2.9 8 5.7 25.5 74.6 55.6 84.1 25.5 9.7 26.6 45.0 22.2 4.5 2.8 0 5.7 35.9 47.8 81.8 57.9 23.3 11.1 23.1 38.0 20.3 4.1 2.7 10 5.7 36.1 50.0 19.1 62.1 55.9 12.1 20.8 32.2 19.3 4.0 2.6 11 6.0 26.4 38.2 47.1 67.0 15.6 10.4 18.7 27.7 17.3 3.8 2.6 12 8.7 21.7 29.9 43.7 134.5 13.3 10.7 15.7 16.Z 24.1 3.7 2.6 13 13.5 26.6 25.4 309.8 54.8 13.6 11.1 21.4 13.9 15.0 3.7 2.8 14 18.1 22.6 23.0 43.9 151.0 40.1 11.5 12.7 19.1 13.5 3.6 2.7 15 25.8 40.4 60.1 23.8 10.2 242.6 76.6 11.2 16.6 12.1 4.4 2.4 16 39.1 86.7 20.5 43.5 661.1 52.4 10.3 13.1 14.5 10.7 6.3 2.3 17 81.8 61.4 50.0 53.4 747.0 36.3 27.5 19.3 13.1 10.1 7.5 2.0 18 111.2 56.8 51.1 47.1 341.4 28.0 36.2 20.0 12.1 10.9 7.3 2.1 19 75.8 51.7 42.2 41.0 198.1 22.5 17.2 28.5 11.3 11.4 6.6 2.0 20 61.3 38.9 54.8 35.1 133.2 22.7 23.3 15.1 10.5 10.0 5.9 2.0 21 66.0 47.5 51.7 33.2 94.2 13.4 20.2 19.5 9.7 8.6 5.7 2.0 22 100.4 52.2 40.6 32.1 73.7 23.1 17.0 12.5 9.2 7.7 5.7 2.0 23 94.0 78.4 31.5 29.7 25.8 11.5 72.8 35.2 8.8 7.4 5.7 2.0 24 63.8 64.4 36.8 26.5 23.6 63.0 34.1 10.4 12.7 7.1 5.8 1.9 25 47.9 57.2 196.3 23.0 28.7 9.5 61.4 36.7 18.2 6.8 5.5 1.7 40.9 63.0 26 297.3 21.7 56.7 34.1 23.6 9.3 22.9 6.4 5.4 1.7 27 32.7 256.3 84.8 17.9 30,9 54.9 20.2 35.8 24.6 5.9 5.4 1.5 28 75.2 153.6 131.1 26.7 83.1 29.3 17.8 52.8 21.6 5.7 5.3 1.5 29 158.6 139.0 97.3 30.0 23.8 18.0 44.1 24.6 5.6 4.9 1.4 30 95.5 75.5 94.5 33.6 20.1 25.4 36.3 51.3 5.0 4.8 1.2 31 65.0 71.9 45.5 23.4 37.2 5.1 4.7 43.788 56.163 151.93 74.062 42.934 33.93 18.566 24.376 55.299 18.189 5.2154 2.442 Naximum 158.6 153.6 297.33 84.094 747.0 76.58 36.842 52.846 418.0 66.302 7.526 4.238 5.708 numia 21.652 20.517 17.945 27.759 13.338 9.682 9.31 8.822 5.022 3.648 1.219 fran -• . ---• • ----Flows in cubic metres per second ..... **Annual statistics** Maximum 747.000 Minimum 1,219 Mean 43.138 cubic metres per second Total 1360.397 million cubic metres Runoff .000 millimetres . ..... Possible data flags

Nissing - flag "-" Original - no flag set Estimate - flag "e" .

Printed on 1/ 7/1994

1

| <br>· · · • • • • • • • • • • • • • • • • • |
|---------------------------------------------|
|                                             |

Institute of Hydrology Annual summary of daily data - Flow

.....

Station number : 9081

Name : Paray Crump (file PARA1.DLY)

| Basin no. | : 0   | Latitude | : | 0: 0: 0 N | Longitude | : | 0: 0: 0 E | Altitude | • n  |
|-----------|-------|----------|---|-----------|-----------|---|-----------|----------|------|
| Area      | : 1.0 |          |   |           | -         |   |           |          | • .• |

- -

Year : 1989/1990

|                    | Oct    | Nov    | Dec    | Jan    | Feb    | Mar    | Apr    | May    | Jun        | Jut          | Aug          | Sep        |
|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------------|--------------|------------|
|                    | 1.2    | 12.4   | 98.2   | 9.7    | 13.8   | 6.1    | 44.1   | 132.2  | 5.0        | 15 3         |              |            |
| 2                  | 1.1    | 13.1   | 74.4   | 9.8    | 18.1   | 6.0    | 103.9  | 91.8   | 4.7        | 15.2<br>12.0 | 11.5         | 9.3        |
| 3                  | 1.0    | 84.7   | 69.8   | 8.8    | 23.5   | 5.4    | 76.7   | 68.4   | 4.7        | 12.0         | 10.4         | 8.4        |
| 4                  | 1.0    | 253.9  | 58.5   | 8.4    | 14.0   | 10.8   | 80.2   | 55.1   | 4.2        | 9.1          | 9.6          | 7.1        |
| 5                  | .9     | 106.8  | 44.6   | 7.9    | 10.4   | 13.1   | 150.5  | 45.9   | 4.2        |              | 8.9          | 6.8        |
| 6                  | .8     | 70.9   | 35.0   | 9.5    | 10,7   | 19.4   | 102.2  | 37.9   | 4.a<br>5.2 | 9.4          | 8.6          | 6.8        |
| 7                  | .9     | 71.5   | 26.7   | 6.4    | 16.3   | 79.5   | 74.4   | 31.1   | 5.3        | 10.0<br>9.3  | 20.3         | 6.8        |
| 8                  | 1.0    | 144.8  | 22.8   | 5.9    | 18.3   | 61.4   | 56.4   | 26.5   | 4.7        | ¥.3<br>8.2   | 35.8         | 7.1        |
| 9                  | 1.4    | 176.0  | 25.3   | 5.9    | 18.7   | 36.6   | 44.4   | 22.7   | 4.7        | 7.3          | 37.8         | 8.7        |
| 10                 | 1.5    | 150.0  | 21.8   | 6.4    | 23.2   | 25.7   | 37.1   | 20.6   | 4.1        | 6.7          | 35.3         | 9.2        |
| 11                 | 3.0    | 91.6   | 19.3   | 5.6    | 59.4   | 18.9   | 33.1   | 20.1   | 3.8        | 6.1          | 31.5<br>28.8 | 8.8        |
| 12                 | 4.1    | 68.9   | 18.5   | 9.0    | 61.7   | 14.3   | 31.2   | 21.8   | 3.7        | 5.5          |              | 8.1        |
| 13                 | 3.3    | 67.3   | 18.3   | 7.9    | 39.0   | 12.2   | 29.6   | 26.0   | 3.5        | 5.0          | 26.0<br>21.7 | 7.5        |
| 14                 | 2.9    | 60.9   | 19.4   | 7.2    | 31.1   | 10.4   | 37.1   | 23.5   | 3.3        | 4.6          | 19.7         | 7.2<br>6.9 |
| 15                 | 2.5    | 56.9   | 39.0   | 7.3    | 90.4   | 9.2    | 56.1   | 20.0   | 3.2        | 4.3          | 17.5         | 6.4        |
| 16                 | 2.2    | 110.6  | 33.3   | 13.3   | 91.8   | 12.3   | 41.9   | 17.1   | 3.0        | 4.0          | 14.9         | 6.2        |
| 17                 | 2.0    | 104.6  | 31.0   | 13.0   | 58.6   | 19.3   | 33.5   | 14.8   | 2.9        | 4.3          | 13.1         | 5.6        |
| 18                 | 1.9    | 69.9   | 30.9   | 9.6    | 40.5   | 26.5   | 30.5   | 13.3   | 2.7        | 10.1         | 12.1         | 5.1        |
| 19                 | 1.7    | 51.8   | 30.9   | 7.5    | 29.4   | 21.0   | 26.4   | 12.3   | 2.7        | 19.4         | 11.2         | 4.7        |
| 20                 | 1.8    | 39.0   | 25.4   | 6.5    | 22.4   | 22.0   | 23.2   | 11.2   | 2.6        | 14.2         | 10.0         | 4.2        |
| 21                 | 2.8    | 30.1   | 22.8   | 5.7    | 17.7   | 68.4   | 19.5   | 9.9    | 2.5        | 11.3         | 9.3          | 4.0        |
| 22                 | 10.2   | 27.2   | 17.2   | 5.5    | 15.3   | 59.3   | 16.5   | 9.1    | 2.5        | 9.5          | 8.6          | 3.3        |
| 23                 | 36.5   | 34.2   | 13.2   | 5.5    | 12.9   | 40.0   | 14.8   | 8.1    | 2.7        | 8.2          | 7.8          | 3.0        |
| 24                 | 24.0   | 30.3   | 11.5   | 5.2    | 9.4    | 29.0   | 15.6   | 7.5    | 2.7        | 7.2          | 7.3          | 2.7        |
| 25                 | 20.6   | 24.9   | 9.7    | 9.4    | 7.8    | 25.6   | 21.7   | 6.6    | 2.8        | 6.5          | 7.2          | 2.5        |
| 26                 | 23.8   | 21.1   | 8.3    | 9.8    | 6.6    | 27.9   | 174.0  | 6.3    | 2.7        | 6.1          | 7.3          | 2.3        |
| 27                 | 24.0   | 21.1   | 7.7    | 11.4   | 5.8    | 22.5   | 161.6  | 5.9    | 2.7        | 6.0          | 7.7          | 2.3        |
| 28                 | 18.2   | 37.2   | 8.7    | 11.9   | 5.7    | 19.1   | 97.6   | 6.1    | 9.6        | 6.1          | 7.9          | 2.2        |
| 29                 | 14.0   | 102.6  | 9.3    | 9.2    |        | 15.5   | 150.0  | 5.6    | 28.9       | 6.2          | 7.9          | 2.1        |
| 30                 | 12.2   | 108.9  | 9.5    | 8.8    |        | 13.3   | 196.4  | 5.4    | 20.9       | 8.8          | 8.0          | 2.0        |
| 31                 | 10.8   |        | 13.0   | 15.2   |        | 14.2   |        | 5.Z    |            | 13.2         | 8.6          | 2          |
|                    | 7 5000 |        |        |        |        |        |        |        |            |              |              |            |
|                    | 7.5292 | 74.776 | 28.197 | 8.4933 | 27.587 | 24.671 | 66.003 | 25.415 | 5.2166     | 8.5103       | 15.236       | 5,5901     |
| Maximum<br>Misimum | 36.547 | 253.95 | 98.192 | 15.166 | 91.8   | 79.507 | 196.4  | 132.16 | 28.9       | 19.4         | 37.8         | 9.334      |
| tioimum            | .841   | 12.36  | 7.656  | 5.167  | 5.708  | 5.4    | 14.756 | 5.159  | 2.521      | 4.03         | 7.201        | 1.97       |
| Tf m               | -      | -      | •      | •      | -      | -      | •      | •      | •          | •            | -            |            |
| I                  |        |        |        |        |        |        |        |        |            |              |              |            |

Flows in cubic metres per second

------

Annual statistics

|  | Minimum<br>775,838 million |           | 24.602<br>unoff | cubic metres per second<br>.000 millimetres |
|--|----------------------------|-----------|-----------------|---------------------------------------------|
|  | data flags                 | <br>••••• | ••              |                                             |

Original - no flag set

.....

Missing - flag M-M

|                   | ••••••       |                  | ····                         |            | ••••••      | • • • • • • • • • • • • | ••••  |        |         |       |     |            |
|-------------------|--------------|------------------|------------------------------|------------|-------------|-------------------------|-------|--------|---------|-------|-----|------------|
|                   |              | uns<br>nous suma | stitute of H<br>mary of dail | ydrology   | <b>61</b>   |                         |       |        |         |       |     |            |
| ·····             |              |                  |                              | y cuarta - | FLOW        |                         |       |        |         |       |     |            |
| Station nu        | mber :       | 9081             | Name                         | : Paray (  | Crump (file |                         |       |        |         |       |     |            |
| Basin no.<br>Area | . :0<br>:1.0 |                  | Latitude                     | : 0:       | 0: 0 N      | Longitu                 | de:0: | 0: 0 E | Altitud | e :.0 |     |            |
| •                 |              | Year             | : 1990/199                   | I          |             |                         |       |        |         |       |     |            |
| •                 | Oct          | Nov              | Dec                          | Jan        | Feb         | Nar                     | Apr   | May    | Jun     | Jul   | Aug | Sep        |
| 1                 | 1.7          | 4.4              | .5                           | 3.5        | 141.0       | 17.5                    | 19.3  | 1.7    | .8      | .8    | .4  | -          |
| 2                 | 1.6          | 5.8              | .6                           | 3.1        | 145.0       | 14.3                    | 16.0  | 1.6    | .8      | .8    | .4  | .2         |
| 3                 | 1.5          | 6.6              | .6                           | 2.6        | 97.1        | 12.8                    | 13.5  | 1.5    | .8      | .0    | .4  | .2         |
| <b>–</b> 4        | 1.4          | 8.6              | .5                           | 2.0        | 76.8        | 11.6                    | 12.3  | 1.4    | .8      | .7    | .4  | .2         |
| 5                 | 1.3          | 7.3              | .6                           | 1.6        | 91.1        | 11.6                    | 11.2  | 1.6    | .8      | .7    | .3  | .2.<br>.2  |
| ه                 | 1.3          | 6.6              | 1.3                          | 1.3        | 84.6        | 11.3                    | 10.3  | 1.3    | .7      | .8    | .4  | .2         |
| 7                 | 1.2          | 5.9              | 13.0                         | 1.3        | 87.2        | 12.5                    | 9.7   | 1.3    | .7      | .8    | .4  | .3         |
| 8                 | 1.2          | 4.9              | 27.0                         | 5.8        | 117,7       | 11.6                    | 9.2   | 1.3    | .7      | .8    | .4  | .4         |
| 9                 | 1.2          | 4.1              | 16.3                         | 31.9       | 106.9       | 11.9                    | 8.8   | 1.2    | .7      | .7    | .3  | .4         |
| 10                | 1.3          | 3.6              | 11.8                         | 23.2       | 81.9        | 10.6                    | 8.0   | 1.3    | .7      | .7    | .3  | .4         |
| - 11              | 1.4          | 3.1              | 8.7                          | 15.8       | 68.5        | 10.7                    | 7.5   | 1.2    | .7      | .7    | .3  | .4         |
| 12                | 2.1          | 2.7              | 7.5                          | 11.3       | 56.3        | 10.3                    | 6.9   | 1.2    | .8      | .7    | .3  | .4         |
| 13                | 2.4          | 2.4              | 21.7                         | 8.1        | 46.0        | 17.4                    | 6.4   | 1.2    | .7      | .7    | .3  | .6         |
| 14                | 2.3          | 2.0              | 14.3                         | 6.1        | 40.4        | 135.4                   | 6.1   | 1.2    | .7      | .7    | .3  | 1.9        |
| 15                | 2.6          | 1.7              | 13.1                         | 4.7        | 45.5        | 74.2                    | 5.6   | 1.2    | .8      | .7    | .3  | 6.5        |
| <b>1</b> 6        | 16.1         | 1.5              | 14.0                         | 3.8        | 50.6        | 51.2                    | 5.2   | 1.1    | .7      | .6    | .3  | 4.3        |
| 17                | 15.1         | 1.3              | 17.6                         | 3.1        | 149.9       | 42.6                    | 4.8   | 1.1    | .7      | .6    | .3  | 4.J<br>3.0 |
| 18                | 10.7         | 1.2              | 17.9                         | 3.5        | 125.0       | 73.6                    | 4.4   | 1.0    | .8      | .6    | .2  | 2.3        |
| <b>1</b> 9        | 8.5          | 1.1              | 11.2                         | 3.8        | 266.3       | 168.3                   | 4.2   | 1.0    | .8      | .6    | .2  | 1.8        |
| 20                | 6.7          | .9               | 8.9                          | 11.8       | 171.1       | 110.8                   | 4.1   | 1.0    | .8      | .6    | .2  | 1.5        |
| 21                | 4 7          | ~                |                              |            |             |                         |       |        |         | ••    | • • | L          |

| 10             | 10.7   | 1.2    | 17.9   | 5.5    | 125.0  | 73.6   | 4.4    | 1.0    | .8    | .6     | .2     | 2.3            |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|----------------|
| 19             | 8.5    | 1.1    | 11.2   | 3.8    | 266.3  | 168.3  | 4.2    | 1.0    | .8    | .6     | .2     | 1.8            |
| 20             | 6.7    | .9     | 8.9    | 11.8   | 171.1  | 110.8  | 4.1    | 1.0    | .8    | .6     | .2     | 1.5            |
| 21             | 6.2    | .9     | 7.1    | 13.4   | 113.6  | 80.3   | 3.8    | 1.0    | .8    | .6     | .2     | 1.4            |
| 22             | 5.7    | .8     | 5.6    | 43.5   | 82.8   | 84.8   | 3.5    | 1.0    | 1.0   | .5     | .2     | 1.2            |
| 23             | 5.3    | .7     | 4.6    | 58.0   | 61.1   | 84.1   | 3.5    | .9     | 1.0   | .6     | .2     | 1.1            |
| 24             | 5.0    | .7     | 4.2    | 138.0  | 47.7   | 70.2   | 3.3    | .9     | 1.0   | .5     | .2     | 1.0            |
| 25             | 5.0    | .7     | 4.0    | 116.0  | 38.1   | 57.6   | 3.2    | .9     | 1.0   | .5     | .2     | .9             |
| 26             | 10.6   | .6     | 3.7    | 102.0  | 30.8   | 48.8   | 2.8    | .9     | .9    | .5     | .2     | .8             |
| 27             | 10.4   | .6     | 3.2    | 123.0  | 25.7   | 42.8   | 3.0    | .8     | .9    | .4     | .2     | .0             |
| 28             | 8.1    | .6     | 2.6    | 144.0  | 21.3   | 37.1   | 3.0    | .8     | .8    | .4     | .1     | .9             |
| 29             | 6.7    | .6     | 2.3    | 222.0  |        | 31.0   | 2.9    | .8     | .8    | .4     | .1     | 4.7            |
| 30             | 5.7    | .5     | 4.2    | 169.0  |        | 26.1   | 2.6    | .8     | .8    | .4     | .1     | 10.2           |
| 31             | 4.9    |        | 3.2    | 148.0  |        | 22.6   |        | .8     |       | .4     | .1     | 10.2           |
|                | 5.0178 | 2.7429 | 8.1267 | 45.977 | 88.203 | 45.339 | 6.8402 | 1.1224 | .8197 | .63552 | .25671 | 1 4145         |
| Maximum        | 16.125 | 8.614  | 27.011 | 222.0  | 266.26 | 168.33 | 19.335 | 1.698  | 1.041 | .825   | .25671 | 1.6165         |
| <u>Hinim</u> m | 1.235  | .537   | .534   | 1.28   | 21.334 | 10.309 | 2.558  | .783   | .723  | .623   | . 138  | 10.225<br>.157 |
| T mm           | •      | -      | -      | -      | •      | •      | •      | -      | •     |        | -      | -              |

Flows in cubic metres per second

.....

Annual statistics

| Maximum | Total | Hinimum<br>529.720 million |                | <br>unoff | cubic metres per second<br>.000 millimetres |
|---------|-------|----------------------------|----------------|-----------|---------------------------------------------|
|         |       | data flags                 | •••••••••••••• | <br>      |                                             |

Missing - flag "-" Original - no flag set 

Estimate - flag "e" 🕔

.

. 2 .2 .2 .2 .2 .3 .3 .4 .4 .4 .4 .4 .6

Printed on 1/ 7/1994

..... Institute of Hydrology Annual summary of daily data - Flow ..... Station number : 9081 Name : Paray Crump (file PARA1.DLY) Latitude : 0:0:0 N Longitude : 0:0:0 E Attitude : .0 Basin no. : O Агеа : 1.0 Year : 1991/1992 Oct Nov Dec Jan Feb Nar Арг May Jun Jul Aug 7.4 74.8 7.8 12.1 2.7 1.3 1.2 1.0 .2 .2 .2 1

Sep

|                          | 1  | 7.4          | 74.8            | 7.8             | 12.1           | 2.7           | 1.3            | 1.2         | 1.0          | .2          | .2           | .2            | 36.4           |
|--------------------------|----|--------------|-----------------|-----------------|----------------|---------------|----------------|-------------|--------------|-------------|--------------|---------------|----------------|
|                          | 2  | 5.7          | 58.7            | 6.9             | 11.6           | 2.8           | 1.8            | 1.1         | 1.0          | .2          | .2           | .2            | 26.1           |
|                          | 3  | 4.7          | 47.5            | 6.3             | 12.8           | 2.4           | 14.3           | 1.3         | .9           | .2          | .2           | .2            | 18.8           |
|                          | 4  | 3.9          | 56.7            | 6.2             | 11.0           | 1.8           | 12.9           | 1.6         | .9           | .2          | .1           | .2            | 13.0           |
|                          | 5  | 3.5          | 49.7            | 6.9             | 10.2           | 1.5           | 8.5            | 1.4         | .8           | .2          | .2           | .2            | 9.9            |
|                          | 6  | 2.8          | 44.8            | 9.6             | 14.3           | 1.5           | 6.0            | 1.3         | .7           | .2          | .2           | .2            | 7.7            |
|                          | 7  | 2.4          | 38.5            | 9.1             | 18.4           | 1.2           | 4.9            | 1.1         | .7           | .2          | .2           | .3            | 6.6            |
|                          | 8  | 2.0          | 31.1            | 7.7             | 10.1           | 1.6           | 3.7            | 1.4         | .6           | .2          | .2           | .3            | 5.9            |
|                          | 9  | 1.9          | 25.0            | 7.0             | 7.7            | .9            | 3.0            | 1.4         | .6           | .2          | .2           | .3            | 5.1            |
|                          | 10 | 2.1          | 21.0            | 8.9             | 6.0            | .9            | 2.5            | 1.4         | .5           | .2          | .2           | .4            | 4.4            |
|                          | 11 | 2.1          | 18.7            | 9.5             | 4.9            | .9            | 2.0            | 1.4         | .5           | .2          | .2           | .4            | 3.7            |
|                          | 12 | 1.9          | 17.4            | 12.7            | 4.2            | 1.0           | 1.7            | 1.6         | .5           | .2          | .2           | .3            | 3.1            |
|                          | 13 | 7.4          | 15.2            | 11.2            | 4.1            | 1.3           | 1.5            | 1.7         | .5           | .2          | .2           | .3            | 2.8            |
|                          | 14 | 31.7         | 16.9            | 10.2            | 9.8            | 1.0           | 1.3            | 1.5         | .4           | .2          | .2           | .3            | 2.4            |
|                          | 15 | 111.0        | 20.6            | 10.0            | 3.6            | .9            | 1.2            | 1.3         | .4           | .2          | .2           | .3            | 2.2            |
|                          | 16 | 83.6         | 16.6            | 12.7            | 3.6            | .9            | 1.1            | 1.3         | -4           | .2          | .2           | .3            | 1.9            |
|                          | 17 | 50.2         | 13.4            | 23.1            | 3.1            | .9            | 1.0            | 1.1         | .4           | .2          | .2           | .2            | 1.7            |
|                          | 18 | 35.1         | 11.1            | 25.8            | 2.6            | 1.0           | 1.0            | 1.0         | .3           | .2          | .2           | .2            | 1.6            |
|                          | 19 | 33.0         | 19.6            | 20.5            | 2.1            | 1.3           | 2.8            | .9          | .3           | .2          | .2           | .2            | 1.3            |
|                          | 20 | 114.0        | 66.3            | 29.1            | 1.8            | 2.1           | .9             | .9          | .3           | .2          | .2           | .2            | 1.2            |
|                          | 21 | 333.0        | 55.6            | 28.1            | 1.6            | 4.1           | .8             | 1.0         | .4           | .2          | .2           | .2            | 1.1            |
|                          | 22 | 254.0        | 35.5            | 22.1            | 1.4            | 3.2           | .9             | 1.1         | .3           | .2          | .2           | .2            | .9             |
|                          | 23 | 237.0        | 25.6            | 16.6            | 1.2            | 2.0           | .8             | 1.2         | .3           | .2          | .2           | .2            | .9             |
|                          | 24 | 179.0        | 19.6            | 12.8            | 1.0            | 1.8           | .9             | 1.Z         | .3           | .2          | .2           | .2            | .8             |
|                          | 25 | 131.0        | 15.6            | 10.6            | .9             | 1.7           | 1.1            | 1.6         | .2           | .2          | .2           | .2            | .7             |
|                          | 26 | 97.1         | 12.7            | 8.9             | .8             | 1.5           | 1.1            | 2.0         | .2           | .2          | .2           | .2            | .7             |
|                          | 27 | 79.4         | 10.9            | 15.0            | .7             | 1.3           | 1.3            | 1.7         | .2           | .2          | .2           | .2            | .6             |
| _                        | 28 | 89.2         | 9.6             | 27.8            | 1.2            | 1.8           | 1.3            | 1.4         | .2           | .2          | .2           | .2            | .5             |
|                          | 29 | 84.7         | 8.6             | 19.6            | 1.0            | 1.2           | 1.1            | 1.2         | .2           | .2          | .2           | .2            | .5             |
|                          | 30 | 71.5         | 8.9             | 13.9            | .9             |               | 1.0            | 1.1         | .2           | .2          | .2           | .2            | .4             |
|                          | 31 | 91.9         |                 | 11.6            | 2.6            |               | 1.0            |             | .2           |             | .2           | 6.2           |                |
|                          |    |              |                 |                 |                |               |                |             |              |             |              |               |                |
| <b>The second second</b> |    | 69.488       | 28.868          | 13.814          | 5.4002         | 1.6253        | 2.7345         | 1.3081      | .47029       | .20673      | . 15548      | .43313        | 5.4385         |
|                          | -  |              | <b>.</b>        |                 |                |               |                |             |              |             |              |               |                |
| Maxio                    |    | 333.0        | 74.772          | 29.099          | 18.426         | 4.082         | 14.252         | 2.02        | 1.041        | .22         | . 157        | 6.171         | 36.387         |
| linin                    |    | 333.0<br>1.9 | 74.772<br>8.562 | 29.099<br>6.192 | 18.426<br>.747 | 4.082<br>.854 | 14.252<br>.834 | 2.02<br>.87 | 1.041<br>.22 | .22<br>.157 | .157<br>.111 | 6.171<br>.157 | 36.387<br>.447 |

Flows in cubic metres per second

Annual statistics

|  | Minimum<br>344.659 million |        |       | 10.899<br>unoff | cubic metres per second<br>.000 millimetres |
|--|----------------------------|--------|-------|-----------------|---------------------------------------------|
|  | data flags                 | •••••• | ••••• |                 |                                             |

Original - no flag set

Estimate - flag "e"

Printed on 1/ 7/1994

Missing - flag ----

Institute of Hydrology

Annual summary of daily data - Flow .....

Station number: 9081

Name : Paray Crump (file PARA1.DLY)

| Basin no. | : 0   | Latitude | : | 0: 0: 0 N | Longitude | : | 0: 0: 0 E | Altítude | : .0 |
|-----------|-------|----------|---|-----------|-----------|---|-----------|----------|------|
| Агеа      | : 1.0 |          |   |           |           |   |           |          |      |

Year : 1992/1993

|        | Oct    | Nov    | Dec    | Jan    | Feb    | Mar    | Apr    | May    | Jun    | ากเ    | Aug    | Sep    |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1      | .4     | 8.0    | 21.4   | 3.8    | 26.1   | 18.2   | 5.9    | 11.3   | 2.1    | 1.0    | .6     | .9     |
| 2      | .4     | 70.6   | 17.3   | 3.2    | 19.6   | 19.8   | 5.2    | 9.8    | 1.9    | 1.0    | .6     | .8     |
| 3      | .3     | 105.5  | 13.5   | 3.4    | 13.6   | 24.5   | 5.2    | 8.9    | 1.9    | 1.1    | .6     | .8     |
| 4      | .4     | 59.1   | 11.2   | 3.2    | 10.3   | 23.6   | 5.5    | 8.4    | 1.8    | 1.1    | .6     |        |
| 5      | .3     | 48.2   | 9.4    | 2.6    | 12.8   | 20.0   | 5.9    | 7.9    | 2.0    | 1.0    | .6     |        |
| 6      | .3     | 61.6   | 7.8    | 2.8    | 13.7   | 15.5   | 5.4    | 7.2    | 2.1    | 1.0    | .5     | 1.0    |
| 7      | .3     | 42.8   | 7.2    | 3.3    | 13.2   | 17.6   | 4.9    | 6.3    | 2.1    | 1.0    | .5     | .9     |
| 8      | 4      | 36.7   | 7.1    | 2.7    | 13.6   | 23.4   | 4.7    | 5.7    | 2.0    | 1.0    | .4     | . 9    |
| 9      | .9     | 158.1  | 6.5    | 2.2    | 51.8   | 32.4   | 4.6    | 5.2    | 2.1    | .9     | .4     | .8     |
| 10     | 1.8    | 314.6  | 7.4    | 2.0    | 62.0   | 26.7   | 3.8    | 4.9    | 1.9    | .9     | .4     | .8     |
| 11     | 6.7    | 153.9  | 8.3    | 2.1    | 49.4   | 29.6   | 3.2    | 4.8    | 1.7    | .9     | .6     | .7     |
| 12     | 35.5   | 102.4  | 14.9   | 1.9    | 52.5   | 35.9   | 300.2  | 5.0    | 1.6    | .7     | .8     | .6     |
| 13     | 25.7   | 71.0   | 19.7   | 1.7    | 64.5   | 32.0   | 236.0  | 4.8    | 1.6    | .8     | 2.5    | .6     |
| 14     | 17.7   | 51.8   | 21.8   | 2.1    | 58.1   | 33.7   | 86.7   | 4 4    | 1.6    | .8     | 7.0    | .5     |
| 15     | 12.1   | 41.4   | 20.0   | 2.0    | 44 4   | 32.1   | 64.3   | 5.2    | 1.5    | .7     | 5.3    | .5     |
| 16     | 8.4    | 37.7   | 13.9   | 4.8    | 34.2   | 30.5   | 49.8   | 5.9    | 1.5    | .7     | 4.1    | .4     |
| 17     | 6.2    | 27.6   | 10.9   | 2.9    | 27.0   | 26.4   | 39.8   | 6.3    | 1.4    | .7     | 3.2    | .4     |
| 18     | 5.0    | 21.3   | 8.1    | 3.5    | 30.0   | 25.9   | 51.7   | 6.1    | 1.4    | .7     | 2.7    | .4     |
| 19     | 3.8    | 19.2   | 6.7    | 3.2    | 25.7   | 26.8   | 51.9   | 5.5    | 1.3    | .7     | 2.4    | .3     |
| 20     | 3.0    | 61.8   | 5.6    | 2.4    | 34.8   | 25.3   | 39.7   | 5.3    | 1.3    | .7     | 2.1    | .3     |
| 21     | 2.5    | 79.4   | 4.7    | 1.8    | 37.1   | 21.1   | 32.9   | 4.8    | 1.4    | .7     | 1.9    | .3     |
| 22     | 2.1    | 54.0   | 4.7    | 7.8    | 34.8   | 18.2   | 27.3   | 4.5    | 1.3    | .7     | 1.7    | .3     |
| 23     | 2.0    | 39.0   | 4.5    | 27.4   | 27.7   | 14.6   | 22.5   | 4.0    | 1.2    | .6     | 1.4    | .2     |
| 24     | 5.6    | 31.0   | 10.9   | 17.1   | 26.5   | 12.5   | 18.8   | 3.5    | 1.2    | .7     | 1.4    | .3     |
| _ 25   | 27.8   | 69.7   | 9.1    | 10.5   | 27.2   | 10.5   | 16.1   | 3.1    | 1.2    | .7     | 1.4    | .3     |
| 26     | 23.6   | 60.7   | 6.7    | 11.1   | 24.5   | 9.3    | 13.9   | 2.9    | 1.1    | .7     | 1.2    | .3     |
| 27     | 16.1   | 42.8   | 8.7    | 14.0   | 26.0   | 8.2    | 12.7   | 2.7    | 1.0    | .7     | 1.2    | .3     |
| 28     | 11.9   | 33.2   | 7.4    | 10.6   | 20.8   | 8.6    | 12.1   | 2.5    | 1.0    | .7     | 1.1    | .4     |
| 29     | 9.2    | 26.3   | 5.3    | 13.2   |        | 7.4    | 13.0   | 2.3    | 1.0    | .6     | 1.0    | .4     |
| 30     | 10.0   | 24.0   | 5.0    | 23.3   |        | 8.0    | 12.9   | 2.3    | 1.0    | .6     | 1.0    | .6     |
| 31     | 9.6    |        | 4.8    | 27.9   |        | 7.2    |        | 2.2    |        | .6     | 1.1    |        |
|        | 8.0646 | 65.119 | 10.015 | 7.113  | 31.503 | 20.82  | 38.549 | 5.2815 | 1.5467 | .81623 | 1.6295 | . 5601 |
| aximum | 35.536 | 314.61 | 21.755 | 27.913 | 64.511 | 35.906 | 300.16 | 11.314 | 2.102  | 1.139  | 6.962  | .974   |
| inum 🕹 | .289   | 7,98   | 4.509  | 1.657  | 10.338 | 7.152  | 3.24   | 2.152  | 1.041  | .626   | .447   | .22    |
| fam    | -      | -      | •      | -      |        | -      | -      |        |        |        |        |        |

Flows in cubic metres per second

Annual statistics

|  | Minimum<br>494.319 million |        | unoff  | cubic metres per second<br>.000 millimetres |
|--|----------------------------|--------|--------|---------------------------------------------|
|  | data flags                 | •••••• | <br>•• |                                             |

Missing - flag "-" Original - no flag set Estimate - flag "e" 🔍 

Printed on 1/ 7/1994