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Executive summary

The analysis of stereo aerial photographs and remotely sensed images acquired during the
1990 NERC airborne campaign over the Slapton wood catchment in Devon is described, and
the usefulness of the results for hydrological purposes investigated.

The aerial photographs were analysed under a stereo viewer to provide the exact location of
the stream gauging station, difficult on the ground because of irees, and also to delineate the
catchment boundary.

The remotely sensed images, recorded on a Daedalus AADS 1268 scanner at a 4.5 m
resolution, were analysed to provide the distribution of near surface soil moisture over the
grassland areas, and two land cover classifications.

Soil moisture data recorded with a capacitance probe were used as ‘ground truths’ for the soil
moisture distribution though the final result proved disappointing. This was attributed to the
very dry conditions and to a lack of variation in soil moisture.

The land use classifications were found to compare well with a field survey and the results
of analysing a Landsat image. Evapotranspiration estimates, obtained using neutron probe
measurements at three sites under the three dominant land uses, were extrapolated to the
catchment scale using the land classification. The resulting catchment evapotranspiration
losses compared well with the annual *water use’ of the catchment, given as the difference
between rainfall inputs and streamflow outputs.
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1. Introduction

Slapton Ley, located between Plymouth and Torbay in Devon (Fig. 1.1), is the largest
freshwater lake in southwest England. Since 1970, four catchments draining into the Ley have
been monitored in some detail because of a fear that it was becoming increasingly eutrophic.
Much of the work has concentrated on nitrate leaching (Burt er a/., 1988) from this mainly
agricultural area, but attention has also focused on hillslope runoff processes (Burt er al.,
1983). Because of the interest in the area, the Slapton Ley Field Centre was established as
a major centre for teaching physical geography and ecology to sixth form students and others.
Over 3000 students pass through the field centre every year.

More recently, one of the catchments draining into the Ley (the Slapton Wood catchment,
0.94 sq km in area) has been the location of a study, funded by NIREX, to determine
subsurface hillslope runoff processes. This was done using a distributed hydrological model,
the Systeme Hydrologique Europeen (SHE; Bathurst, 1986). In order to provide the data
requirements of this study, the existing hydrological network has been updated. This will be
described later. Also, it was decided to ascertain what remote sensing could provide.
Although LANDSAT images of the area are available in the NERC library, and further
LANDSAT and SPOT images could have been purchased, it was felt that the ground
resolution achieved by satellites is too coarse to provide the information necessary for
studying this relatively small area and, ultimately, to provide some of the parameter
requirements of SHE. To do this adequately would require images with a pixel resolution of
the order of 2 m.

it was decided that the best way ot obtaining such images was by putting forward the Slapton
Ley area as a ‘community site’ for the 1990 NERC aircraft campaign. This was particularly
50 in view of the continued interest expressed in the area by various university departments -
distributed hydrological modelling (Universities of Newcastle and Lancaster), nitrate leaching
(University of Oxford), and phytoplankton development within the Ley itself (University of
Sheffield).

The application proved successful, and the area was earmarked for the spring and summer
aircraft campaigns. It was decided to conduct a number of field surveys coincident with the
flights and at other times. These included vegetation surveys, soil moisture surveys using
capacitance probes, and vegetation reflectances using a hand-held radiometer.

This report describes the results of the various field surveys and the analysis of the visible
and infrared images of the Slapton Wood catchment. It also describes how the results were
used, in conjunction with data from small plot studies, to calculate a water balance for the
catchment.
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2. Study area and instrumentation

A detailed description of the study area and the instrumentation in existence prior to the
NIREX study is given in Burt er al., 1988 from which the following brief description has
been taken.

The Slapton Wood catchment is 0.94 km? in area underlain by impermeable Dartmouth slates.
The interfluve areas are relatively flat, slopes typically below 5°. The valley sides are much
steeper, up to 25°. The soils are freely-draining brown earths of the Manod series, though
brown podzolic soils of the Denbigh series are found within the wood (Trudgill, 1983). Only
about 15 percent of the catchment is wooded, concentrated towards the bottom .of the
catchment. The remainder is a mixture of arable land, about 30% confined to the interfluve
areas, and permanent pasture.

Initially, rainfall was measured only at the Field Centre, some 800 m below the catchment
boundary, using a Cassella 12" natural syphon autographic raingauge and a standard 5" Mark
II check gauge. Mean annual rainfall for the period 1961-1985 was 1035 mm. For the NIREX
study, four ground-level raingauges were installed within the catchment area (Fig. 2.1). These
were read at approximately weekly intervals and their totals time distributed using data from
two recording raingauges, one attached to an automatic weather station. Rainfall from the
individual gauges were combined to give areal estimates using the Thiessen polygon method
{Thiessen, 1911).

Streamflow at the outfall of the catchment has been measured since 1971 as the head of water
over a 120° thin plate V-notch weir. Originally, water levels were recorded on an OTT R16
recorder, but more recently a potentiometric water level sensor (Strangeways and Templeman,
1974) attached to a solid state logger has been used. The in-built software of this latter logger
allows direct conversion of water level to flow using a theoretical relationship (BSI1, 1981).
Streamflow is gauged at two other points within the catchment. The first point is
approximately 330 m upstream of the V-notch towards the northern edge of Slapton Wood,
whilst the second point is an intermittent stream draining Carness hollow (Fig. 2.1). In both
instances, a prefabricated Forth River Purification Board (FRPB) short throated trapezoidal
flume has been employed. All three flow measuring structures are occasionally calibrated
using dilution gauging, flow metering or gravimetric techniques and, if necessary, changes
made to the theoretical relationships between water level and flow.

A meteorological station is in operation at the Field Centre. The instruments are read
manually at 0900 GMT every day. In addition, an automatic weather station (Strangeways,
1972) has been installed in a grass field within the catchment (Fig. 2. 1). Both stations provide
the climatological variables required to calculate potential evaporation from grassland
(Penman, 1948), at daily intervals.

All data pertaining to the calculation of rainfall, streamflow and evaporation are subject to
rigorous quality control procedures as described in Roberts, 1981,

Three sets of six neutron probe access tubes (Bell, 1976) for measuring soil moisture have
been installed. They are sited within the forested area, in a barley field (to the right in Fig.
2.1) and in the same grassland field as the automatic weather station. A further two access
tubes were subsequently instatled at the grassland site. The tubes are read at approximately
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weekly intervals, the data quality controlled and converted into moisture volume fractions at
the various reading depths and into profile water contents (Roberts, 1972). A number of
tensiometers, designed to give estimates of soil water potential, were also installed next to
some of the neutron access tubes. Also, tensiometers were installed along the length of
Carness hollow (Fig. 2.1). Two sets of gypsum blocks were installed within the grassland soit
moisture site. These are used to give estimates of soil water potential in dry periods, when
the potentials are too low to be read with tensiometers (Wellings er al., 1985). A total of over
30 dipwells were installed within the catchment to give estimates of sub-surface water levels.
A detailed description of the installation and data collection schedule of all soil moisture
measuring instrumentation is given in Boyle, 1991,

3. The NERC airborne campaign

A number of NERC aircraft flights were undertaken over the Slapton area in 1990 using
various scanners in support of three studies. These studies were:-

(i) The identification of phytoplankton within the Ley itself, conducted by the University
of Sheffield.

(ii) Soil moisture monitoring and modelling within the Slapton Wood catchment,
conducted by the University of Lancaster.

(iil) The identification of land cover and distribution of soil moisture for hydrological
modelling, conducted by the Institute of Hydrology.

The rest of the report will concentrate on the latter study.

Two flights were undertaken, on the 28th April and the lith July. In both instances, the
flying height was specified as 800 m thus ensuring remotely-sensed images with a 2 m ground
resolution. Stereo black-and-white aerial photographs using a Wild RC8 camera were obtained
simultaneously with a 11-band image using a Daedalus Airborne Thematic Mapper Scanner
(AADS 1268). Details of the bands recorded using the AADS 1268 scanner and their Landsat
equivalent are given in Table 3.1 below.



Table 3.1 The Daedalus 1268 ATM Scanner

Channel Band edges (microns) Landsat bands
1 0.42-045
2 0.45- 052 1 (BLUE)
3 0.52. 0.60 2 (GREEN)
4 0.605 - 0.625
5 0.63 - 0.69 3 (RED)
6 0.695 - 0.75
7 0.76 - 0.90 4 (NEAR INFRARED)
B 091-1.05
9 1.55-1.75 5 (MIDDLE INFRARED)
10 208-235 7 (FAR INFRARED)
11 85-13.0 6 (THERMAL)

A number of field surveys were undertaken to provide *ground truths’ for the analysis of the
remotely-sensed images:-

(i)

(i1)

(iii)

4.

4.1

Vegetation surveys were conducted on a number of dates to ascertain what crops were
being grown in fields within and immediatety outside the catchment area.

The distribution of soil moisture within the catchment area was assessed on a number
of days using a capacitance probe (Dean er al., 1987). These hand-held probes give
an integrated value of soil moisture in the top 5 ¢m and 10 cm of soil. Data have
been gathered from under different crop types and along transects within grass fields.

Radiances of various crop types obtained using a hand-held IRIS spectroradiometer
(Rollin and Milton, 1988) taken on the same date (11th July) as the second NERC
aircraft flight. This spectroradiometer provides spectra in the wavelength range 0.35
to 2.5 microns, with spectral resolutions varying between 2 nanometres and S
nanometres,

Image analysis

BLACK AND WHITE STEREO AERIAL PHOTOGRAPHS

The photographs taken during both flights were used, together with the results of the
vegetation surveys, to provide ‘ground truths® for, and comparisons with, the image
classifications (see below), and also to help identify the position of the catchment boundary.

For the latter, overlapping photographs were viewed under a stereo viewer. This enabled an
accurate positioning of the lower flow gauging station, difficult on the ground because of the
wood, and the exaggerated vertical scaling generally gave a good indication of the position
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of the boundary. The west and east interfluves of the catchment are particularly flat, and it
was necessary to conduct ground surveys using levelling equipment to resolve the actual
position of the boundary. Figure 4.1.1 shows the ‘new’ caichment boundary together with the
original, simply taken from a 1:25,000 topographic map.

As shown in Fig. 4.1.1, the actual catchment areas are very similar, though the aerial
photographs suggest that there are additional areas within the catchment at the top end,
together with a similar reduction in area at the lower end. The current catchment area in use
is 0.94 sq km.

4.2 THE IRIS SPECTRORADIOMETER

A hand-held IRIS spectroradiometer was used on July 1lth, coincident with the second
aircraft flight, to obtain reflectance spectra of a number of land cover types within the Slapton
Wood catchment. Details of the IRIS spectroradiometer are given in Rollin and Milton, 1988.
The locations of the sampling sites and the land covers sampled are given in Fig. 4.2.1.

In total, 16 sites were sampled, covering 9 different land cover types. At each site, a radiance
spectrum from a barium sulphate plate was taken as well as a radiance spectrum from the
vegetation type. The two spectra were combined to give the percentage of the incoming solar
radiation reflected by the crop. The individual reflectance spectra are shown in Figs 1 to 16
of Appendix I. Values in the two wavelength bands where strong water vapour absorption
takes place have been set to zero.

Those vegetation types - temporary grass, winter barley, spring barley, bare earth, and
permanent grass - where more than one spectrum was oblained, have been plotted in Figures
1 to 5 in Appendix 1. These show that, although differences do exist at various wavelengths,
general patterns are consistent for individual vegetation types. This is particularly so for
temporary grass where differences between the two spectra rarely exceed 5% reflectance. In
contrast, substantial differences occurred in the individual spectra for both winter and spring
barley throughout the spectral range. This, presumably, is a reflection of the incomplete and
varied vegetation cover within these fields, in contrast to the temporary grass field where the
cover was more even and complete. Differences between the four individual bare soil spectra
were small but consistent. Two of the sites (the spectra shown in Figs 11 and 12 of Appendix
I) had recently been irrigated. This resulted in slightly lower reflectances than those obtained
from the drier soils. The two individual permanent grass spectra differ appreciably, probably
as a result of reflectances from different broad-leaved species.

The biggest differences between the spectra of the individual vegetation types is a reflection
of the amount of bare soil that is covered by vegetation i.e. the equivalent of a leaf area
index. This is best illustrated by taking average reflectance values of selected parts of the
spectra for each vegetation type. The regions of the electromagnetic spectrum chosen are:-

(i) The visible bands ~ (0.45 - 0.70 microns)
(i) The near infrared (0.70 - 1.30 microns)
(iii) The middle infrared  (1.50 - 1.75 microns)
(iv)  The far infrared (2.00 - 2.40 microns)

Average, minimum and maximum reflectances in each of the above regions of the
electromagnetic spectrum for each vegetation type are given in Table 4.2.1. The results
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generally agree with past observations and are a consequence of the reflectance properties of
growing vegetation (see, for example, pages 23-28 of Curran, 1985).

Visible radiation (0.45 — 0.70 microns), particularly in the blue and red regions, is highly
absorbed by growing vegetation. This results in the type of pattern shown in Table 4.2.1,
where the highest reflectance value is given by bare earth, and the lowest by the more
vigorously growing vegetation, temporary grass and spring sown barley. Sparse crops and
less vigorous green vegetation show intermediate values. Winter sown barley and cut grass
give relatively high reflectances. At the time when the spectra were taken, the winter sown
barley was a pale yellow colour and well into the ripening stage, whilst the grass had been
cut some weeks previously. In both cases, plant pigments would be breaking down,
accompanied by a rise in reflection of blue and red wavelengths.

In contrast, a vegetation cover reflects radiation in the near infrared regions. This is
confirmed by the results in Table 4.2.1, where the lowest reflectances are shown by the
winter sown barley and bare earth. For the former, not only was the crop senescing, but it
was also very sparse, and most of the area viewed by the IRIS would in fact have been bare
earth. The rest of the vegetation types, in particular the broad-leaved varieties, gave high
reflectance values. Of interest are the relatively low values given by the spring sown barley
and the high values for the cut grass. For the former, the vegetation cover would not be as
complete as, for example, the temporary grass, whilst, for the latter, the ground cover was
very dense, comprising of the uncut growing vegetation and the mat of dead grass.

A much-used measure of vegetation status is the ratio of red to near infrared radiances
(Tucker er al., 1980). This combines the effects of the near infrared band, positively
correlated to green biomass, with the red band, negatively correlated to chlorophyll content.
This is shown in Fig. 4.2.2. using reflectances from the near infrared (0.76 — 0.90 microns)
and the red (0.63 -» 0.69 microns) bands of the IRIS spectra. This suggests that the vegetation
types can be split into three groups:-

(i) Those having a low reflectance in the red band and a high reflectance in the infrared,
the vigorously growing vegetation. This includes temporary grass, cauliflowers, and
swedes.

(ii) Those having a high reflectance in the red band and a low reflectance in the infrared.
This includes bare earth and winter barley ie. dying or no vegetative growth.

(iii) A less vigorously growing class than (i), having a low reflectance in the red and
intermediate reflectance in the infrared. This includes nettles, permanent grass, and
spring barley.

Cut grass, with a high reflectance in both the red and near infrared seems to be a combination
of (i) and (iii) ie. vigorously growing uncut grass and dead grass. Such a vegetation
distinction will be used later when classifying the aircraft images.

The middle infrared bands (1.50 - 1.75 microns) and (2.00 —= 2.40 microns) are negatively
related to both the amount of water in the leaves of the vegetation and the thickness of the
leaves. The results from both bands of the IRIS confirm these observations, with the more
vigorously growing vegetation, temporary grass and spring barley, having the lowest values,
whilst bare earth and cut grass have the highest.
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4.3 THE DETERMINATION OF ATMOSPHERIC EFFECTS

Simultaneous measurements of radiance spectra using the IRIS spectroradiometer and the
Daedalus scanner on board the NERC aircraft, enable an estimate to be made of the effect
of the atmosphere on images recorded by the Daedalus (Wilson, 1988). These effects are
caused by absorption and scattering of radiation by particulate matter or gases within the layer
of atmosphere between the reflecting surface and the sensor. Put in its simplest form, the
radiance measured by the Daedalus, R(ATM) can be given as:-

R(ATM) =a. R + b

where R is the reflected radiance from the land surface, in this case as
measured by the IRIS,
a is a constant associated with absorption within the atmosphere,
b is a constant associated with scattering in the aimosphere.

By plotting radiances from the same area, though with very different sensor footprints,
measured by the Daedalus and the IRIS, some estimates of these atmospheric effects may be
obtained. These effects will vary depending on wavelength and on atmospheric conditions.

A comparison was made between the data acquired by the Daedalus scanner on board the
NERC aircraft and those obtained using the IRIS spectroradiometer on the 11th July. The
latter were obtained between 1035 and 1530 GMT at the sites indicated in Fig. 4.2.1. The
time of overflight of the NERC aircraft was 1150 GMT. Prior to this comparison, the IRIS
data were corrected to what would have been measured at 1150 GMT using the ratios of the
reflectances from the barium sulphate panel.

Figure 4.3.1 shows a plot of hourly solar radiation recorded by a Kipp solarimeter on the
automatic weather station on the day of the overflight. Also shown are the maximum expected -
solar radiation, based on the latitude, day number and hour angle, as described on page 19
of Roberts, 1981, and the net radiation recorded by a Dirmhirn type net radiometer on the
weather station (Strangeways, 1972). The closeness of the measured 10 the maximum expected
solar radiation testifies to the ideal conditions on the day of the overflight.

Figure 4.3.2 shows a plot of hourly specific humidity and dry bulb temperature measured by
the automatic weather siation. Again, the values obtained suggest that the atmospheric

conditions at the time of overpass were conducive to the recording of remotely sensed images.

The data recorded by the Daedalus and the IRIS were converted to a common unit (watts x
107 cm? sr' nm™) prior to comparison. For the former, a relationship of the form

Radiance = Gain x {DN - Base)
was used, where
Radiance = radiance in watts x 107 cm” sr! nm™',
DN = the digital number recorded by the Daedalus.

Gain, Base = constants determined by laboratory calibrations on the Sth July 1990,

Both constants vary with waveband, and also with the gain-setting ot the Daedalus. For this
particular flight, the values used were as follows:-
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Channel Gain-sefting Gain Base
1 8 0.437 16.64
2 8 0.301 31.68
3 8 0.372 29.55
4 8 0.694 33.54
5 4 0.693 19.26
6 4 0.721 19.33
7 2 0.799 10.50
8 4 0.575 19.14
9 4 0.129 15.17
10 4 0.0284 20.00

Because of saturation problems, the calibration for channel 10 for gain setting 4 could not be
done. Instead, the above Gain and Base values were obtained by extrapolations from the
average for Gain 2 values for 19.4.90. 8.590. and 5.7.90. The method (Wilson, 1986)
involves obtaining nearest gain setting values for the same calibration date and double or half
the gain/base to create new gainfbase values at the higher gain setting.

For the IRIS, the recorded values were converted into radiances for the ATM wavebands
using software written at the NERC Equipment Pool for Field Spectroscopy, University of
Southampton following calibration using a uniform light source (Rollin and Milton, 1988).

Regressions of ATM Radiances against IRIS Radiances for the ATM Bands over the various
land covers (Fig. 4.2.1) are given in Appendix Il1. For some of the sites, the precise location
at which the IRIS spectra were obtained could not be ascertained; in these cases Daedalus
values over a larger area were used. The values from two of the sampling sites had to be
ignored; these were over strips of cauliflowers and netties found in one field. The width of
the strip was too narrow to ensure ‘pure’ pixels from the ATM sensor. There is a great deal
of scatter in the points for each of the regressions. This may largely be attributed to the
different areas sampled by the Daedalus scanner and the IRIS, and to the fact that the precise
location at which the IRIS spectra were obtained could not be determined. This is particularly
so for those fields having an incomplete crop cover. In spite of this, similar trends were found
for the regressions of individual ATM bands.

Slopes and intercepts obtained by least squares for each of the ATM bands are shown in
Table 4.3.1 and graphically in.Fig. 4.3.3. Put simply, the slopes shown are a measure of the
atmospheric transmission ie. the amount of radiation absorbed between the ground surface and
the Daedalus sensor. Similarly, the intercepts are a measure of the path radiance ie. the
amount of radiation that the atmosphere contributes by reflection from the sun to the sensor.
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Table 4.3.1 Slopes and intercepts of regressions of ATM against IRIS radiances for the

ATM bands
ATM band Slope Intercept ¢
1 0.23 9.0 0.50
2 0.57 (0.63) 10.0 (5.7) 0.49
3 0.60 (0.43) 12.8{9.2) 0.85
4 0.59 10.9 0.94
5 0.57 (0.31) 16.6 {11.7) 0.94
o 0.74 14.3 0.86
7 0.58 (0.45) 26.1(4.9) 0.93
8 0.59 275 0.8]
9 1.11 23 0.93
10 2.21 0.8 0.76

Both particulate matter and gases absorb radiation. Whereas absorption by the former is a
continuous function of the wavelength, absorption of radiation by gases is a selective process,
and is a function of the energy required to promote a transition between one energy state and
another. For low altitudes, as is the case for aircraft imagery, diatomic oxygen is the main
absorber in the visible region of the electromagnelic spectrum; in the infrared regions water
vapour, carbon dioxide, and oxygen are the main absorbers.

Path radiance, or scattering of radiation by the atmosphere, can be caused by air molecules
(Rayleigh scattering), and by water droplets and dust particles (Mie scattering). Rayleigh
scattering is greatest at shorter wavelengths and is insignificant at wavelengths longer than
visible. Mie scattering is less sensitive to wavelength, because of the variability in the form,
size, and distribution of dust particles, and the effects of the condensation of water droplets.

A more detailed description of the effects of the atmosphere on radiation is given in Igbal
(1983; Chapter 6). In theory, it is possible to estimate the magnitude of the various
contributing components. Normally, this is done to correct satellite images, though Singh
{1988) describes an algorithm for the correction of atmospheric effects in remotely sensed
data collected from any altitude of the sensor. However in the absence of data sets relating
to the atmospheric conditions pertaining at the time of image acquisition, a number of
assumptions and generalisations have 1o be made for applying this, and other, algorithms.
This has not been attempted in this case.

Instead, the estimates of atmospheric transmission and path radiance for the various ATM
bands, shown in Table 4.3.1, have been compared with values obtained during the NERC
1989 airborne campaign over Conington airport, Peterborough (Wilson, 1990). These are

shown in brackets for ATM bands 2, 3, 5 and 7 in Table 4.3.1. There are two unexpected .

values in Table 4.3.1; these are the intercepts of the ATM against IRIS radiances for channels
7 and 8, two of the near-infrared bands. As indicated previously, it would have been
expected that these intercepts, a measure of the path radiance, would have decreased with
longer wavelengths. Whilst this is the case for the other infrared band, it is not so for Band
7 and 8. One possible explanation is that this apparently enhanced contribution to the radiance
measured in Band 7 and 8 is due to scattering by dust particles, as the atmosphere on the 11th
July 1990 was relatively dry (Fig. 4.3.2), whereas the ground surface was extremely dry (see
Section 4.4) and conducive to wind erosion.

10




The values shown in Table 4.3.1 will be used to correct the Daedalus radiances prior to
further analysis.

4.4 SOIL MOISTURE DISTRIBUTIONS

A number of field measurements of soil moisture distribution over the Slapton Wood
catchment were made to coincide with the two aircraft flights and at intermediate dates
between the flights. The instrument used for these surveys was a portable capacitance probe,
a detailed description of which is given in Dean et a/., 1987. Basically, the capacitance probe
produces an estimate of soil moisture in terms of its dielectric constant, utilizing the large
difference in dielectric constant of frec water and typical dry soil at frequencies of less than
1000 Mhz. Because of this, it is necessary to calibrate the results obtained from the
capacitance probe against known estimates of actual soil moisture. Normally, this is done by
simultaneously obtaining soil cores and determining their water content by oven drying at
105°C. In our case, soil samples were not collected; instead, the capacitance probe estimates,
integrated over 5 cm and 10 cm depth below ground level, were calibrated using neutron
probe measurements (Bell, 1976) at 10 ¢cm depths at each of the three sites within the
catchment (Fig. 2.1). Since the main interest of the study was the distribution of soil moisture
over the catchment, any loss in accuracy using such a calibration would be minimized.

Capacitance probe readings were mainly taken in a transect across the valley on either side
of the main stream. Figure 4.4.1 shows the location of the transect. The transect on the east
side of the stream between the farm track and the stream is steep (approx. 30%). On the other
side of the stream is a shallow slope leading to a line of trees. Above the trees on the west
side of the stream up to the fence surrounding Field no. 3 the slope increases o approx. 30%,
before levelling out in Field no. 3. All the transect was under permanent grass except for
Field no. 3 which was sown to various agricultural crops. In addition, a2 number of fields,
under various crops, were sampled, either at single points or as additional transects. The
locations of these fields are indicated in Fig. 4.4.1, and the dates of the surveys and the fields
sampled given in Table 4.4.1.

Table 4.4.1  Capacitance probe surveys

Date Type of survey
28.4.90 VALLEY TRANSECT FARM TRACK - STREAM
POINT VALUES FIELDS 1 -+ 15
10.5.90 VALLEY TRANSECT FARM TRACK -» TREES
21.5.90 VALLEY TRANSECT FARM TRACK - FIELD 2
14.6.90 POINT VALUES FIELDS 13, 14, 15. 18, 11,19
TRANSECTS FIELDS 16, 3, 12,10, 8, 7, WOODLAND
10/11.7.90 VALLEY TRANSECT FARM TRACK - FIELD 2
POINT VALUES FIELDS 38, 15, 14, 13,24, 11,3, 2
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As well as being of general interest for an understanding of the hydrological processes within
the catchment the capacitance probe readings taken on the 28th April and on the 11th July can
be used as ‘ground truths’ in an atiempt to distribute near surface soil moisture using the
Daedalus images. Data from all the wavebands recorded by the Daedalus can provide
information on the distribution of soil moisture.

In the visible and near infrared regions, the albedo of bare soil varies with its moisture
content, with wet soil albedo being half that of the same dry soil {ldso er ai., 1975).
However, this technique is limited because of variations in soil type and roughness, and is
a measure of the soil surface, subject to rapid wetting and drying, and not of the moisture
within the soil matrix itself. For this, the condition of the vegetation can be used as a
surrogate, as this reflects the water availability within the whole of the root zone. Water stress
in green vegetation is manifest as a lowering of near infrared reflectance as leaf turgor -
reduces, followed by an increase in red reflectance as leaf chlorophyll is lost (Richardson and
Everitt, 1987). Also, vegetation indices based on the ratio between red and infrared
reflectances give an indication of crop vigour which, in turn, is subject to the availability of
soil moisture. However, such effects are also dependent on the availability of nutrients
(Blakeman, 1990). For unmanaged grasslands, the distribution of indigenous species is an
indicator of soil moisture availability. Gurnell er al., 1985 used this fact to determine the
extent of waterlogged or runotf contributing areas in the Highland water catchment,
Hampshire. For this technique to be employed in UK situations, aircraft imagery must be
employed as the ground resolution of satellite imagery is too coarse to map small-scale
changes in indigenous vegetation, and hence in soil water availability.

Images in the thermal infrared regions of the electromagnetic spectrum provide the
distribution of surface temperature which, in turn, can be related to soil moisture using the
thermal inertia method. This utilises the fact that wet soil, because of its higher thermal
capacity, has a smaller diurnal range of temperature than dry soil. An analysis of thermal
infrared images obtained using the warmer and colder periods of the day should give some
indication of the distribution in soil moisture. This is the subject of a separate study at Slapton
using images obtained during the NERC 1990 aircraft campaign, and will not be considered
further in this report.

Middle infrared radiation is strongly absorbed by the presence of moisture in soil and
vegetation. Laboratory measurements done on bare soil by Musick and Pelletier, 1986 showed
that the ratio of Landsat bands 5 and 7 (ATM bands 9 and 10) gave a good relationship with
soil moisture over a wide range of moisture conditions, though differem relationships were
obtained for different soils. As with the visible and near infrared techniques, only the thin
surface soil layer is observed, and its relevance for determining the distribution of soil
moisture is limited. For vegetated surfaces, the mid-infrared reflectance is governed by leaf
moisture content (Ripple, 1986), which can be taken as a surrogate for the amount of soil
moisture within the rooting zone.

For hydrological purposes, the spatial distribution of soil moisture within the rooting zone is
much more useful than is the condition of the ground surface which is subject to rapid wetting
and drying cycles. For this reason, it was decided to concentrate capacitance probe surveys
and image analysis on vegetated surfaces. This was further restricted to grassland areas,
because the incomplete canopy coverage associated with arable crops would result in
significant soil reflectance being associated with that from the vegetation canopy.

Most of the analysis has been done on results from the valley transect as this was likely to
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provide the greatest range of soil moisture, though the point values are also considered,
particularly when data from the IRIS spectroradiometer are available.
For this particular study, two indices related to vegetation have been used. These are:-

(i) The normalized difference vegetation index. NDVI, given by:-
NDVI = (Near Infrared - Red)/ (Near Infrared + Red)
(ii) The moisture stress index, MSI, given by:-

MS! = (Middle Infrared) / (Near Infrared)

The ratio of the middle infrared bands (ATM9/ATM 10) was also considered but it was found
that this ratio fluctuated wildly and, if anything, increased with moisture volume fraction. A
similar effect was observed by Musick and Pelletier (1986) for dry bare soils.

In each case, reflectance values have been converted to radiance and, where possible,
corrected for atmospheric effects. Also, the use of two bands for each index will minimize
differences in radiance across the areas of interest.

The results are not presented in chronological order but rather in the order of the dates of
greatest data availability. The object of the analysis is to try to develop relationships between
the soil moisture as given by the capacitance probe and radiances in various ATM bands.
These relationships can then be applied to all of the grassland areas within the Slapton Wood
catchment and the resulting soil moisture distribution compared with the topography.

i) 11th July 1990

Table 4.4.2 gives estimated moisture volume fractions at 5 cm and 10 cm depths across the
valley transect from the farm track to the edge of Field 3. Table 4.4 .3 gives radiance values,
corrected for atmospheric effects using the relationships givenin Table 4.3.1, for ATM Band
5 (Red), ATM Band 7 (Near Infrared), and ATM Band 9 (Middle Infrared). Also shown are
the Normalized Difference Vegetation Index (NDVI) and the Moisture Stress Index (MSI).

Figure 4.4.2 shows the variations in moisture volume fractions and the two vegetation indices
over the valley transect. Also shown is the general topography of the transect. As expected,
the moisture content at both depths increases downslope from the farm track to the stream.
This increase continues to the line of trees. Borehole studies showed that the trees are
- growing on a spring line. Unfortunately, no capacitance probe data could be obtained within
the spring line. Above the line of trees, lower moisture volume fractions were obtained, with
the values, if anything, increasing up slope.

The patterns in the two vegetation indices generally reflect the soil moisture distributions for
the main transect (Track - Line of Trees). The Normalized Difference: Vegetation Index
increases downslope reflecting healthier vegetation in the valley bottom whilst the Moisture
Stress Index decreases, reflecting higher leaf water contents in the valley bottom. Above the
line of trees, the NDVI decreases upslope whilst the MSI increases. Both of these trends are
as expected but are at variance with the pattern in the moisture volume fractions. A
comparison of capacitance probe values and vegetation indices from the IRIS
spectroradiometer for the two grassland sites (Fig.4.2.1) confirm the patterns shown for the
main valley transect:-
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Table 4.4.2  Moisture Volume Fractions for the Valley Transect 11th July

Distance from Som MVF 10 cm MVF
track (m)
TRACK
10 0.096 0.111
15 0.137 0.145
20 0.125 0.147
25 0.124 0.143
30 0.120 0.138
35 0.131 0.139
40 0.125 0.133
45 0.111 0127
50 0.143 0.151
55 0.154 0.161
60 0.140 0.151
65 0,130 0.158
70 0.137 0.156
75 0.140 0.155
80 0.157 0.178
85 0.134 0.162
90 0.153 ' 0.168
92 0.152 0.166
STREAM
94 0.130 0.158
99 Q.161 0.174
104 0.143 0.158
109 0162 0.176
114 0.164 0.174
118 0.161 0.182
TREES
144 0.145 0.162
149 0127 0.150
154 0.130 0.163
156 118 0.156
159 0.141 0.160
164 0.139 0.168
165 0.134 0.157
169 0.136 0.154
174 0.130 0.161
176 0.150 0.162
179 0.145 0.158
184 0.148 0.173
189 0.136 ) 0.154
194 0.133 0.137
14



Table 4.4.3  Corrected Radiances (w x 107 cm” sr' nm') and Vegetation Indices for the
Valley Transect 11th July .
Distance from ATMS ATM? ATMY NDVI MSI
track .
TRACK
8 25.0 57.4 6.5 0.39 0.113
12 224 66.7 6.4 0.50 0.096 .
16 23.7 65.5 7.2 0.47 0.110
20 19.7 66.7 5.4 0.54 0.081
24 19.7 64.3 6.5 0.53 0.101 .
28 19.7 69.0 5.7 0.56 0.083
a2 17.0 66.7 5.7 0.59 0.085
36 17.0 71.3 6.3 0.6l 0.088
40 18.4 71.3 5.4 0.59 0.076 .
44 19.7 73.6 6.0 0.58 0.082
48 23.7 77.1 6.3 0.53 0.082
52 19.7 760 5.8 0.59 0.076 .
56 15.7 69.0 5.8 0.63 0.084
60 19.7 71.3 6.0 0.57 0.084
64 18.4 73.6 5.4 0.60 0.073
68 19.7 71.3 6.1 0.57 0.086 .
72 19.7 78.2 5.5 0.60 0.070
76 7.4 £0.6 5.5 0.57 0.068
80 2.4 82.9 5.3 057 0.064
g4 1.4 80.6 6.4 0.57 0.079 .
88 23.7 4.1 6.0 0.56 0.071
92 21.0 79.4 6.0 0.58 0.076
STREAM .
96 22.4 725 5.7 0.53 0.079
100 21.0 101.5 7.0 0.66 0.069
104 18.4 98.0 63 0.6 0 064 .
108 15.7 107.2 6.4 0.74 0.060
112 19.7 103.8 7.1 0.68 0.074
116 21.0 107.2 5.4 0.67 0.050 .
TREES
144 31.7 94.5 6.4 0.50 0.068
148 26.4 91.0 .2 0.55 0.080 .
152 27.7 94.5 6.8 0.55 0.072
156 26.4 94.5 7.0 0.56 0.074
160 23.7 991 6.4 0.61 0.065
164 29.0 87.6 6.3 0.50 0.072 .
168 29.0 829 7.4 0.48 0.089
172 33.0 922 8.0 0.47 0.087
176 30.4 93.3 7.2 0.51 0.078
180 343 100.3 7 0.49 007 .
184 33.0 94.5 7.1 0.48 0.075
188 35.7 922 7.4 0.44 0.080
192 31.7 9.4 7.0 0.43 0.088 .
196 43.7 86.4 7.0 0.33 0.081
) °
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MOISTURE YVOLUME FRACTIONS hDVI S

5 CM DEPTH 10 CM_DEPTH

TEMPORARY GRASS 0.130 0.148 0.86 0.028

PERMANENT GRASS 0.119 0.129 0.67 0.059

There is a great deal of scatter in all of the trends. Also, the point values of moisture volume
fractions do not necessarily correspond to the position of the pixels of vegetation indices.
Another problem concerns the representivity of the various data values. Whilst the moisture
volume fractions represent a very small sphere of influence around the capacitance probe (a
few square centimetres in area), each value of the vegetation indices represents an area of 16
sq metres. For these reasons, it was found necessary to smooth the data sets before direct
comparisons could be made.

Figure 4.4.3 shows these smoothed patterns (running means of 3 values). The dashed line for
each data set was obtained by least squares. The slopes of these regressions highlight the
patterns found in the original data sets. For the main transect (track to the line of trees), the
trends are as expected and agree with the two point values taken with the IRIS
spectroradiometer. Above the line of trees, the trends in the vegetation indices are as
expected, whilst the trends in the soil moisture are opposite to what would have been
expected. The soil moisture at 5 cm depth, in particular, increases upslope, though this may
be a reflection of the scatter in the data set; the water content at the bottom of the slope is,
in fact, higher than that at the top of the slope. The same is true for the water content at 10
cm depth. For this reason, the trends in this transect have not been used for distributing soil
moisture over the grassland areas of the catchment. '

To do this, the regressions of moisture volume fraction against distance have been combined
with regressions of vegetation indices against distance for the main transect to produce
regressions of moisture volume fractions against vegetation indices. The relevant relationships
are:-

0.00037 DIST + 0.1146
0.00040 DIST + 0.1290

Moisture volume fraction S cm depth  MVF
10 cm depth  MVF

Normalized Difference Vegetation Index NDVI 0.0013 DIST + 0.499

- Moisture Stress Index MSI = -0.000317 DIST + 0.0987

Combining these various regressions gives:-

5 cm depth MVF
MVF

0.300 NDVI - 0.036
-1.273 MSI + 0.239

0.307 NDVI - 0.025

10 cm depth  MVF
- -1.303 MSI + 0.257

MVF

i

These are the relationships that have been used in an attempt to determine the distribution of
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near surface moisture content over the grasstand areas of the Slapton Wood catchment. The
derived distribution using the Normalized Difference Vegetation Index is shown in Fig. 4.4.4
whilst that using the Moisture Stress Index is shown in Fig. 4.4.5. The distributions,
particularly for 5 cm depth, are similar, though this is not altogether surprising in view of the
fact that most of the distribution is caused by variations in ATM Band 7 (Near Infrared), used
in both indices. However, there are differences, particularly at 10 cm,

In terms of type of grass, the catchment can be divided by a line drawn through its centre
from south west to north east. To the north west of this line, temporary grass is dominant,
whereas to the south east, permanent grass predominates. The major exception to this is a
temporary grass field immediately below Field no. 15 in Fig. 4.4.1. This is shown at the
extreme south east in Figs. 4.4.4 and 4.4.5.

Inspection of the derived distributions suggests that both the Normalized Difference
Vegetation Index and the Moisture Stress Index are actually differentiating between temporary
and permanent grass. Whilst this is hardly surprising for the former, it is disappointing for
the latter, although it could be argued that the radiance in ATM Band 9 (middle infrared) is
governed by the leaf water content and the amount of vegetation.

Assuming that the distributions do in fact reflect, to some extent, near surface soil moisture,
it is interesting to note that the NDVI suggests that moisture volume fractions are lower at
10 cm depth than at 5 cm, whereas the MSI suggests the opposite. This alone suggests that
the distribution given by the MSl is closer to the true soil moisture distribution than is the one
given by the NDVI. Unfortunately, no time was available for an intensive capacitance probe
survey of the grassland areas apart from the valley transect. For the two grassland sites used
for the atmospheric corrections (Fig. 4.2.1), the following was found:-

TEMPORARY GRASS MEASURED MVF 5 ¢m 0.13 10 cem O.15
ESTIMATED (NDVI) 0.24 0.26
ESTIMATED (MSI) 0.21 0.23
PERMANENT GRASS MEASURED MVF 5 cm 0.12 10¢m 0.13
ESTIMATED (NDVI) 0.14 0.15
ESTIMATED (MSI) 0.15 0.16

The above figures show that, whereas the moisture volume fractions under the permanent
grass site were well predicted, with the NDVI being slightly better than the MSI, the MVFs
under the temporary grass site were substantially overestimated. This again suggests that the
indices are not really a reflection of the soil moisture, certainly not in the case of temporary
grass. On reflection, it would have been useful to have derived separate moisture regressions
for temporary and permanent grass.

(i) 28th April 1990

The capacitance probe survey of the valley transect on the 28th April was confined to the area

17



POLIBIN IAGN ~ 0661 AINM L | JUBLIYAIBD POOM UOIdEIS JO SBALY PUBISSEID BU) JBAD UORIBLY BWINJOA BINSIO O UORNGUISIP 841 by Bl

¥0 -0 N

€0 -go N
yidep wo gL (1)

co - 10 ERE
1°0 - 00 k&

AJA




Poyla ISW - 0661 AINP yiLL Juswydleo poop uojdelg o sealy PUBISSEID 8U) J8A0 UOJOBI4 8WwnoA emisioN JO uopnquisip eyl  Sv'y Bi4

#0-c0 N

£0-z0 W

yidep woQlL (N yidep wog (1)

c0-T10
1°0 - 00 &

A3




between the farm track and the stream. Table 4.4.4 lists the moisture volume fractions at S
cm and 10 cm depth, whilst Table 4.4.5 lists radiances for ATMS, ATM7 and ATMSY, the
Normalized Difference Vegetation Index and the Moisture Stress Index. In the absence of
spectra from the IRIS spectroradiometer, no atmospheric correction could be applied to the
Daedalus images.

Variations in moisture volume fractions and the vegetation indices are shown in Fig. 4.4.6.
The trends are generally as expected with the moisture volume fractions and normalized
difference vegetation index increasing downstope, whilst the moisture stress index decreases
downslope. However, the rates of change are rather different. For the moisture volume
fractions, the greatest increases occur within about 6 m of the stream, whilst the vegelation
indices change most rapidly just below the farm track. As a result, realistic relationships
between moisture volume fractions and vegetation indices could not be obtained. it is unlikely
that the situation could be improved even if atmospheric corrections could be applied, and the
attempt to map near surface soil moisture over the grassland area of the catchment using these
data sets was abandoned.

Capacitance probe values were obtained from Fields-1 to 15 (Fig. 4.4.1) on the 28th April
1990. Of these, 6 fields (nos. 1, 2, 6, 7, 8 and 10) were under temporary grass, whilst 3
(nos. 4, 5 and 12) were under permanent grass. Fig. 4.4.7 shows plots of moisture volume
fraction against NDVI for S and 10 cm depth, whilst Fig. 4.4.8 shows the same for MSI. For
the temporary grass sites, the patterns are as expected with NDVI increasing and MSI
decreasing with increasing moisture volume fractions. At 5 cm depth, the moisture volume
fraction at one site (Field 8) is substantially higher than expected. In fact, the moisture
volume fraction, as measured by the capacitance probe, is greater at 5 cm depth than at 10
cm depth. Only one value was taken at each depth, so it was not possible to establish whether
the measured values were correct. Moisture volume fractions obtained by capacitance probe
along a transect of this field on the 14th June 1990 gave consistently higher values at 10 cm
depth. This suggests that the 28th April S cm depth moisture volume fraction was in error.

The situation is less clear for the permanent grass sites. This is partly due to the small
number of sites sampled and to the results from one site (Field 12, Fig. 4.4.1) in particular.
This field was on a very steep slope and gave, not surprisingly, low values of moisture
volume fraction at both the 5 cm and 10 cm depths. This was not reflected in either the NDVI
or the MSI. In fact, the graphs shown in Figs. 4.4.7 and 4.4.8 suggest that the vegetation in
this field could be regarded as temporary as opposed to permanent pasture. Visual inspection
of the vegetation suggested that this is not the case, and it is the low moisture volume
fractions, as a result of the severe slope, that caused the discrepancy.

The results given in Figs. 4.4.7 and 4.4.8 show that, as suggested for the 11th July
distributions, it is necessary to obtain separate regressions for permanent and temporary grass.
However, the biggest problem in attempting to distribute near surface soil moisture over the
Slapton Wood catchment using the aircraft images is the very dry conditions and the small
variation in moisture conditions. This problem was also experienced by Musick and Pelletier,
1986 for bare soil. Perhaps a fairer test of these techniques would be in an area experiencing
wetter conditions and a wider variation in soil moisture. A survey of a valley transect under -
rough pasture at Plynlimon, mid Wales on the 4th June 1992 gave a range of moisture
volume fractions of 0.30 to 0.90. The range for the 11th July 1990 Slapton transect was 0.09
t0 0.17. It is proposed that an area such as Plynlimon would be more appropriate 10 test these
techniques. |
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Table 4.4.4  Moisture Volume Fractions for the Valley Transect 28th April

Distance from S cm MVF 10 cn MYF

track (sn)

TRACK
6 0.115 0.139
12 0.125 0.149
18 0.125 0.145
24 0.126 0.141
30 0.123 0.156
36 0.130 0.150
42 0.129 0.143
48 0.134 0.155
54 0.140 0.168
60 0.136 0.155
66 0.135 0.157
72 0.140 0.163
78 0.136 0.160
80 0.133 0.147
82 0.143 0.160
84 . 0.134 0.158
26 0.148 0.158
88 0.153 0.168
90 0.162 0.174
92 0.184 0.196

STREAM

Table 4.4.5  Radiances (w x 107 cm? sr' nm”) and Vegetation Indices for the Valley
Transect 28th April

Distance from ATMS ATM? ATM9 NDVI MSI
track
TRACK
8 49.7 863 11.7 0.27 0.136
12 40.6 1049 11.6 0.44 0.111
16 36.4 108.2 11.4 0.50 0.105
20 336 108.2 10.1 0.53 0.093
24 322 113.0 9.6 0.56 0.085
28 35.0 105.7 10.5 Q.50 0.099
32 329 1082 10.1 Q.53 0.093
a6 30.8 1122 9.7 0.57 0.086
40 343 105.7 10.5 0.51 0.099
44 329 110.6 10.1 0.54 0.091
48 28.7 113.0 9.2 0.59 0.081
52 28.7 110.6 9.6 0.59 0.087
56 29.4 115.4 9.0 0.59 0.078
60 28.7 113.0 8.5 0.59 0.075
64 28.7 1171 8.5 0.61 0.073
68 28.7 116.3 9.4 0.60 0.080
72 28.7 1154 8.5 0.60 0.074
76 294 117.6 8.8 .60 0.075
80 294 117.1 89 ¢.60 0.076
84 28.7 116.3 8.9 0.60 0.077
88 28.7 113.8 9.0 0.60 0.079
92 28.7 116.3 8.6 0.60 0.074
STREAM
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4.5 LAND USE CLASSIFICATIONS

The land cover within the catchment was determined in three ways:-
{i) Ground surveys

(ii) The analysis of the aircraft remotely sensed images

(ili)  The analysis of a Landsat image.

The methods used and the results obtained tor all three will be described individually.
Following this, a comparison will be made of the land cover distributions obtained.

{i) Ground surveys
For the non-forested areas, the ground surveys were simply done by superimposing field

numbers on a map of the area (Fig. 4.5.1), and asking people involved in the study to make
a note of the land cover in each field during visits to the area. Also, a questionnaire was sent

" 1o all the farmers with land in the area. The results obtained were collated with the ground

surveys to produce a time series of cover for each parcel of land within the area. This is
shown in Table 4.5.1. It was found that, in terms of percentages of grassland to arable land,
there was little change during the period of study. There were, however, changes in the
arable cropping cycles, and occasional conversions of arable land to temporary grassland and
vice versa.

The forested area was obtained by digitizing a 1: 10K scale map. It was a reverted mixed
natural forest with no cropping. There had been a great deal of windthrow in recent years,
and an extensive understorey vegetation had been established.

The percentages of each vegetation type found within the catchment boundary from ground

surveys undertaken on the 28th April and on the 1lth July, coincident with the aircraft
overpasses, is given in Table 4.5.2.
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Table 4.5.1  Land cover at Slapton from the field surveys

Field 28.4.90 10.5.90 14.6.90 11.7.90 25.3.91 11.11.91

1 TG T.G. T.G. T

2 T.G. ' T.G. T.G. TG. T

3 R B.E. S 5 T.G. T.G.

4 P.G. P.G. P.G. P.G.

5 P.G. P.G. PG. P.G.

6 T.G. T.G. T.G. T.G. TG.

7 T.G. T.G. TG, T.G.

8 T.G ' T.G. T.G. B

9 B.E./P P P WB. B.E.

10 T.G. T.G. B.E. B.E.

11 B.E./B P/B.E/B  B.E./BIN W.B. T.G.

12 P.G. P.G. P.G. P.G.

13 B/B.E. B.E./SB. B.E./S.B B W.B.

14 B.E. S.B./P S.B./P WB. w.B.

15 W.B. W.B. W.B. W.B. T.G. T.G.

16 P.G. P.G. P.G. P.G. P.G/K

17 B.E. . S.B./P B.E./B B B

18 B.E. p P BE. B.E.

19 T.G. - T.G. B.E. B/B.E.

20 P W.B. B.E.

21 P.G. P.G. P.G. PG. P.G.

22 T.G. T.G. TG. TG

23 T.G. T.G, T.G. T.G.

24 P.G. P.G. P.G. PG.

25 T.G. T.G. T.G..

26 P.G. P.G. PG. P.G.

27 P.G. P.G. PG. PG.

28 P.G. P.G. PG. P.G.

29 P.G. PG. P.G.

30 P.G. P.G. P.G. PG.

31 P.G. P.G. PG. PG.

32 P.G. P.G. PG.

33 P.G. P.G.

34 W.B. W.B. B.E.

35 P.G. TG T.G. T.G.

36 T.G. T.G. T.G. T.G

37 T.G. T.G. T.G. T.G.

38 T.G. T.G. T.G. B.E.

39 S.B. S.B. 5.B. B.E.

40 S.B. S.B. TG T.G.

41 T.G. T.G. T.G.
ABBREVIATIONS
T.G. = TEMPORARY GRASS P = POTATOES
P.G. = PERMANENT GRASS W.B = WINTER BARLEY
T = TURNIPS N = NETTLES
R = RAPE $.B. = SPRING BARLEY
B.E. = BARE EARTH K = KALE
s = SWEDES
B = BRASSICAS
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Table 4.5.2  Percentages of each vegeration rype within the Slapton Wood catchment
obtained from ground surveys on the 28th April and 11th July 1990

28th April 11th July
GRASSLAND 64.9 64.9
TEMPORARY 39.3 40.5
PERMANENT 25.6 24 .4
ARABLE 18.5 18.2
RAPE _ 4.0 -
POTATOES 3.8 49
BARE EARTH _ 6.0 .27
WINTER BARLEY 2.0 21
BRASSICAS 08 0.8
SPRING BARLEY 1.9 3.7
SWEDES - 4.0
FOREST 14.3 14.3
OTHER 2.2 2.4
(ii) The aircraft remotely sensed images

As indicated previously, two sets of airborne images of the Slapton Wood catchment were
obtained; details of these are given in Chapter 3. These images were analysed on an
International Imaging Systems (I°S) Model 75 processor at the Institute of Hydrology.

The first step in the processing involved registering the images to a 1: 10K base map. This
was done by noting the map and pixel (picture element) coordinates of a number,
approximately 20, easily identifiable points, and using these as input to a warping routine
written specifically for aircraft imagery (Devereaux er al., 1990). At the same time, the
images were re-sampled to provide a pixel resolution of 4.5 m. This was done to simplify
further analysis. As a result of the warping and resampling, a mean error of registration of
less than one pixel (< 4.5 m) was found between the final images and the base map.

Early inspection of the aircraft images showed that it was not possible to generate a land
cover classification based on a fixed number of bands using conventional software written
mainly for satellite imagery. The higher spatial resolution of the aircraft imagery resulted in
a wider range of radiances than obtained from lower resolution satellite imagery. This was
particularly so over the forest, where areas affected by windthrow, in particular, resulted in
widely varying radiance values. Also, the availability of eleven bands from the Daedalus
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scanner (Table 3.1) meant that a greater number of combinations could be used compared
with, for instance, the seven bands of Landsat imagery.

The technique adopted was to analyse and compare radiance values in each band for selected
areas of the catchment and to develop algorithms, based on threshold values, that would
identify individual vegetation types or differentiate between two similar types. Many of these
algorithms were developed as a result of analysing the [RIS spectra (section 4.2). Some were
based on single bands whereas others were based on combinations of bands. For the latter,
the resulting combination often had to be scaled, and no Digital Number (DN) threshold is
quoted in the accompanying tables. When more than one algorithm was used for an individual
identification, it was decided to adopt the policy that more than a half of the criteria had to
be satisfied before a vegetation identification could be justified.

A process of elimination was adopted, ie. those vegetation already identified were not subject
to successive algorithms. By doing this, complications due to similar spectral responses of
already classified vegetation were eliminated. Using this technique, each vegetation type was
eliminated in turn. This resulted in a non-classified residual area that, in some cases, had to
be subjected to additional algorithms before it could be predicted with any accuracy that the
residual was composed of only one vegetation type.

Because of small changes in vegetation type, and different spectral responses at different
times, the algorithms used and the order in which the different vegetation types were
eliminated were different for the two sets of aircraft imagery.

28th April 1990

Table 4.5.3 outlines the sequence of algorithms that had to be applied to the aircraft images
of the 28th April 1990. In this case, three iterations were needed to provide the final
classifications. The algorithms employed reflect, to a great extent, the amount of green

vegetation within each picture element, as suggested in section 4.2

Table 4.5.4 shows the percentages of crop types within the Slapton Wood catchment as given
by the Field Survey and the classification of the aircraft images.
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Table 4.5.3  Bands and threshold digital numbers (DN) used for classifying the vegetation
using the aircraft images of the 28th April 1990
WHOLE AREA TREES BAND 5 (DN <41), BAND 6 (DN < 80)
BAND 7 (DN <58), BAND 9 (DN < 43)
BAND 11 (DN <102)
BARE EARTH BAND 2 (DN > 148), BAND 3 (DN > j80)
BAND 4 (DN > 114), BAND 5 (DN > 105)
BAND 9 (DN >120), BAND 10 (DN >130)
TATQES BAND 7 (DN < 70), BAND 8 (DN <81)
T GRASS BANDS (6+7+8) - BANDS (2+4+5) HIGH
S BARLEY BAND 9 (DN < 54), BAND 10 (DN <43)
BRASSICAS BAND 2 (DN >132), BAND 3 (DN > 170)
BAND 4 (DN >104), BAND $ (DN >95)
BAND 10 (DN >126)
RAPE BANDS (3+4+5) - BANDS (7+8+9)
MEDIUM
W.BARLE BAND 7 (132<DN < 142)
RESIDUE | BRASSICAS BAND 1 (DN >61), BAND 2 (DN > 132)
BAND 3 (DN >158), BAND 4 (DN >94)
BAND 5 (DN >84), BAND 10 (DN > 104)
S.BARLEY BAND 9 (DN <56), BAND 10 (DN <43)
BAND 11 (DN < 113)
W.BARLEY/T GRASS BAND 8 W.B. (DN>147) T.G. (DN < 147)
BAND 10 W.B. (DN >48) T.G. (DN < 48)
S.BARLEY/P GRASS BAND 7 5.B. (DN<128) P.G. (DN > 128)
BAND 8 $.B. (DN <155) P.G. (DN > 155)
RESIDUE 2 T.GRASS/P.GRASS BANDS (7-3) T.G. (DN > 158)
P.G. (DN < 158)
P.GRASS/RAPE BANDS (8-3) P.G. (DN > 100)
RAPE (DN < 100)
T.GRASS/W.BARLEY BANDS (3+5+12) T.G. (DN <220)
W.B. (DN >220)
P.GRASS/S.BARLEY BANDS (6+7+9+11) P.G. (DN >196)
S.B. (DN <196)
RESIDUE 3 REES
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Table 4.5.4  Percemtages of crops within the Slapton Wood catchment - 28th April 1990

Crop Field survey A'TM classification
T.GRASS 393 393
P.GRASS 256 26.4
RAPE 4.0 5.4
POTS 38 3.7
BARE EARTH 6.0 6.}
W.BARLEY 2.0 2.2
BRASSICAS 0.8 1.2
S.BARLEY 1.9 3.9
FOREST 14.3 11.8
OTHER 22

In terms of percentage areas, the agreement is very good, the only significant differences
being underestimation of the forested area and overestimation of oil seed rape and spring
barley. This is confirmed in Table 4.5.5 which shows a pixel by pixel comparison of the field
survey and the ATM classification. The figures in the brackets indicate number of pixels for
each vegetation type in the ATM classification as a percentage of the total in the ground
survey. These values show that the ATM classification correctly identified the vegetation
types in the range 91.6% (temporary grass) to 35.8% (winter barley). The biggest mis-
classifications occurred for permanent grass (temporary grass}, rape (permanent grass); winter
barley (temporary grass and permanent grass), brassicas (permanent grass), spring barley
(permanent grass), and forest (permanent grass and spring barley). These mis-classifications
are as suggested by the need to use multiple algorithms (Table 4.5.3), and are hardly
surprising bearing in mind that various cereal crops and grass look very similar during the
spring months.

The results in Table 4.5.5 also show that the good agreement shown between the ground
survey and the ATM classification, Table 4.5.4, is somewhat fortuitous for permanent grass
and the cereal crops, errors of omission being generally balanced by errors of inclusion. In
contrast, the forested area has been underestimated, windthrow areas having been classified
either as permanent grass or spring barley.

When the land classification is degraded into grassland, arable land, and forest, the classes
required for hydrological modelling purposes, the patterns shown in Fig. 4.5.2 are obtained.
Percentage areas and a pixel by pixel comparison of the results of the Field survey and the
ATM classification are shown in Table 4.5.6 and Table 4.5.7, respectively.
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Table 4.5.6  Percentage land use within the Slapton Wood catchment - 28th April 1990

Land use Field survey ATM classification
GRASSLAND 64.9 65.7
ARABLE LAND 18.5 225
FORESTRY 14.3 11.8
OTHER 22

Table 4.5.7  Pixel by pixel comparison of land use within the Slapion Wood catchment -
28th April 1990

Ground/ATM Grassland Arable land Forest
GRASSLAND 30318 (90.5) . 2929 (8.3) 318 (0.9)
ARABLE LAND 1695 (17.4) 7961 (81.8) 71 (0.7
FOREST 888 (11.8) 1333 (17. 1 5316 (70.5)

These results show that; for grassland areas, the comparison between the Field survey and
ATM classification is excellent, and well within the agreement expected in lowland Britain
for grassland areas (Atkinson et al., 1985; Fuller er al., 1989). The main misclassification
was in heavily used areas within grass fields, where the grass had virtually disappeared, and
was classified as bare earth. In this case, the misclassification was ‘correct’.

The arable fand classification was less good, but within the error expected (Atkinson ez al.,
1985). As indicated previously, most of the misclassification was caused by similar responses
from cereal crops and grassland. The underestimate in the forested area is realistic because,
as indicated earlier, there were a number of areas affected by windthrow. Whether these
should be classified as grassland or arable (bare earth/sparse vegetation) is uncertain.

11th July 1990

Table 4.5.8 outlines the sequence of algorithms that had to be applied to the aircraft images
of the 11th July 1990. In this case only one iteration was used. The reason for this was not
that this classification was simpler than the April one; on the contrary, it was very difficult
10 separate some vegetation types having complete ground cover. In fact the residual
following the one iteration consisted of part of a potato field and part of a field of swedes.
It proved impossible to separate these satisfactorily. In the event, this residual was classified
as potatoes. This will obviously distort the classification based on individual vegetation types,
but not the land use classification.

The percentage of vegetation types within the Slapton Wood catchment as given by the Field
Survey and the classification of the aircraft imagery is given in Table 4.5.9.
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Table 4.5.8  Bands and threshold digital numbers used for classifying the vegetation using
the aircraft images of the 11th July 1990

WHOLE AREA TREES

BARE EARTH

S.BARLEY/W BARLEY

BRASSICAS

I.GRASS/P.GRASS
POTATOES

S.BARLEY

T.GRASS
RESIDUAL POTATOES/SWEDES

BAND 2 (DN <65). BAND 3 (DN <83}
BAND 4 (DN <52), BAND 9 (DN <42)
BAND 10 (DN <36), BAND 11 (DN <52)

BAND 4 (DN >103), BAND 5 (DN >94)
BAND 10 (DN >110), BAND 11 (DN>110)

BAND (6+7+8) LOW
BAND 6 S.B. (DN >90) W.B. (DN <90)
BAND 7 S.B. (DN>75) W.B. (DN <75)

BAND 2 (DN >125), BAND 3 (DN > 150}
BAND 4 (DN >90), BAND 5 (DN >80)

BAND 5 T.G. (DN<63) P.G. (DN >63)

BAND (6-5) HIGH
BAND 6 (DN <102)
BAND (6+7-9-10) LOW

nol resolvable

Table 4.5.9  Percentages of crops within the Slapton Wood catchment - I1th July 1990

Crop Field survey ATM classification
T.GRASS 40.5 58.1
P.GRASS 24.4 16.2
POTS 4.9 4.6
BARE EARTH 2.7 4.4
BRASSICAS 0.8 0.1
S.BARLEY 3.7 52
FOREST 14.3 92
W.BARLEY 2.1 22
SWEDES 4.0 -
OTHER 2.4 -

As expected, the agreement between the Field Survey and ATM classification is poor with
temporary grass being substantially overestimated, with smaller underestimations of
permanent grass, the forested areas, and as indicated earlier, swedes. This is confirmed by
the pixel by pixel comparison shown in Table 4.5.10. These values show that the ATM
classification correctly identified the vegetation types in the range 90.0% (spring barley) to
1.8% (brassicas). A number of gross mis-classifications occurred including temporary grass
(permanent grass), permanent grass (temporary grass), potatoes (permanent grass), brassicas
(temporary grass and permanent grass), forest (temporary grass), and winter barley
(permanent grass).
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A degraded classification - grassland, arable land, and forest is given in Fig. 4.5.3.
Percentage areas and a pixel by pixel comparison of the results of the Field Survey and the
ATM classification are shown in Table 4.5.11 and Table 4.5.12, respectively.

Table 4.5.11  Percentage land use within the Stapton Wood catchmenr - 11th July 1990

Land use Field survey ATM classification
GRASSLAND 64.9 743
ARABLE LAND 18l.2 16.5
FORESTRY 14.3 9.2
OTHER 2.4

Table 4.5.12  Pixel by pixel comparison of land use within the Stapton Wood carchment -
11th July 1990

Ground/ATM Grassland Arable tand Forest
GRASSLAND 32466 (95.1) 1457 (4.3) 226 (0.7)
ARABLE LAND 3463 (35.9) 6158 (63.8) 27 {0.3)
FOREST 2579 (34.3) 404 (5.4) 4541 (60.4)

These show that, whilst 95.1% of the grassland pixels were correctly classified, substantial
areas of arable land and forest were also classified as grassland. Whilst this is acceptable for
windthrow areas within the forest, it is unreasonable for the arable areas, and results in an
unacceptable overestimation of the grassland areas within the catchment.

(iii) The Landsat image

The Landsat image was acquired on the 4th May 1990. It was recorded in seven bands - three
visible, three infrared, and one thermal (Table 3.1) - at a ground resolution of 28.5 m.

The image was analysed on the International Imaging System (I’S) Model 75 processor at IH.
The first step involved registering the image to a base map. This was done by identifying a
number of readily recognisable points on the image and on a 1:25K base map, and warping
the coordinates of the points on the image to those on the base map using a bilinear routine
available on the processor. This resulted in a root mean square error of one pixel (picture
element) ie. approximately 28.5 m.

An initial visual analysis of the resulting image suggested that a detailed analysis of the
radiances in the various bands would not achieve the kind of differentiation obtained using
the aircraft images. This being the case, an unsupervised classification was attempted. In this
routine, six bands of the image - the maximum permissable - are used to generate a
classification based on the different radiances in the bands. Of the seven Landsat bands, the
thermal band was omitted, as this band provided the least information.
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A total of sixteen separate classes were identified. There was also a residual class which, in
this case, could be regarded as a single class. Figure 4.5.4 shows average near infrared
against red reflectances for all of the classes. The various classes were assigned to vegetation
types by comparison with the land survey of the 28th April. The resulting pattern is as
expected and very similar to the one given by the data from the IRIS spectroradiometer (Fig.
4.2.2). In terms of the Normalized Difference Vegetation Index, NDVI ((band 4-band
3)/(band 4 + band 3)), the average values were:-

Vegetation type NDVI
Temp. Grass 0.68
Perm. Grass 0.57
Forest 052
Rape 0.48
Arable 0.25
Bare Earth 0.22
Water -0.27

When this classification was reduced to grassland, arable, forest, and other, and applied to
the Slapton Wood catchment, the pattern in Figure 4.5.5 is obtained. Percentage land covers
are given in Table 4.5.13 whilst a pixel-by-pixel comparison with the land survey of the 28th
April given in Table 4.5.14.

Table 4.5.13  Percentage land use within the Siapton Wood catchment - Landsat image

Land use Field survey Landsat classification
GRASSLAND 64.9 71.5
ARABLE LAND 18.2 17.5
FORESTRY 14.3 10.9
OTHER | 2.4
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Table 4.5.14  Pixel by pixel comparison of land use within the Slapton Wood catchment -
Landsat image

Ground/Landsat Grassland  Arable land Forest

GRASSLAND 32168 (94.1) 1782 (5.2) 219 {0.6)
ARABLE LAND 2748 (2B.2) 6866 (70.6) 114 {1.2)
FOREST 1910 (25.3) 73 (L.0y 5555 (731

The results in these two tables show that a satisfactory agreement has been obtained between
the land survey and the Landsat classification. In this case, the windthrow areas within the
catchment have been classed exclusively as grassland. Some areas of arable land, notably a
field of spring barley at the bottom left hand corner of the catchment, have also been
classified as grassland. As a result, the grassland areas have been overestimated in the
Landsat classification by about 10%, with smaller underestimations in the forested and arable
areas. ‘ . - : :

(iv) Comparison of the various classifications
Table 4.5.15 shows the percentages of land use within the Slapton Wood catchment based on

the field surveys, the two aircraft images, and the Landsat image.

Table 4.5.15 Comparisons of the percentage land cover within the Stapton Wood catchment

Land use Field survey ATM 28th April ATM 11th July Landsat
GRASSLAND 64.9 65.7 743 7.5
ARABLE LAND 18.5 225 16.5 17.5
FORESTRY 143 11.3 9.2 109
OTHER 2.2

TOTAL ERROR 9.5 18.7 13.2

Assuming that the field survey is correct, then summing the ‘errors’ in the classifications
suggests that the classification based on the aircraft image of the 28th Agril is the best and
the aircraft image of the 1lth July is the worst. A similar conclusion is reached when

comparing the percentages of pixels correctly identified for each land use classification (Table
4.5.16). :
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Table 4.5.16  Percentage of pixels correcily identified for each land use classification

Land use ATM 28th April ATM 11th July Landsat
GRASSLAND 90.5 95.1 94.1
ARABLE LAND 81.8 63.8 70.6
FORESTRY 70.5 60.4 73.7
TOTAL ERROR 58.2 80.7 61.6

These comparisons are slightly misleading in the sense thai, as indicated earlier, the extent
of forestry given by the field survey is almost certainly on overestimation because of the areas
of windthrow. Of importance is what these areas are classified as. In the case of the 28th
April aircraft image, they are classified as arable whereas, for the other two images, they are
classified as grassland. For modelling purposes, it is uncertain which of these is correct.
Because of this uncertainty, and bearing in mind the relatively small differences between the
errors in the classifications from the aircraft 28th April and Landsat images it is concluded
that the Landsat classification is adequate if, as in this application, percentages of different
arable crops are not required.
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S. Estimating actual evapotranspiration from the
different vegetation types

In order to utilize the results from the land cover classification (Section 4.5) for catchment
water balance purposes (Section 6), it is necessary to have some estimate of actual
evapotranspiration from the different vegetation types. As indicated previously (Section 1.4),

soil moisture data are available under three vegetation types - grass, barley, and the forested
area - and these data have been used to estimate actual evapotranspiration. For water halance
purposes, it has been assumed that the barley field represents all the arable areas in the
catchment, whilst the results from the temporary grass field are applicable also to permanent
grassland.

The techniques involved in estimating actual evapotranspiration Iosses from each vegetation
type were:-

(i) calculate the field capacity of each neutron access site as the mean water content for all
reading dates in the months December to March (inc.) when there was little or no rain for
the preceding five days,

(i1) identify periods between soil moisture measuring dates when no rain fell,

(ii1) for the grass field, include low rainfall periods, when it could be predicted with some
confidence, that no losses to streamflow occurred. For the barley tield and the forested area,

these latter periods were used to calculate interception losses,

(iv) calculate actual transpiration losses for all the periods considered as the mean change in

water content for all the neutron access tubes read, correcting for rainfall where necessary
for the grass field, '

(v) if the calculated actual transpiration is greater than potenual the difference is assumed to
be drainage,

(vi) compute the ratio of actual to potential evapotranspiration as given from the automatic
weather station data for grass for each of these periods,

(vii) calculate an average soil moisture deficit over each period considered as the mean of the
neutron access sites,

(viii) obtain relationships between the ratio of actual to potential evapotranspiration and soil
moisture deficit,

(ix) obtain relationships between drainage and soil moisture deficit,

(x) use these relatlonshlps to calculate soil moisture deficit and actual evapotranspiration on
a da:ly basis using the following techniques (Calder ef al., 1983).

SMD(i+1) = SMD(i) + ETa(i) - P(i) + INT(i) + DRAIN(i) SMD() > 0

SMD(i+1) = ETa(i) - P(i) + INT(i) + DRAIN(G) SMD() < 0
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ETa(i)ETp(i) = f(SMD(i))

where SMD(i) = soil moisture deficit on day i,

ETa(i) = actual evapotranspiration on day i,

ETp(i) = potential evapotranspiration on day i,

P(i) = precipitation on day i,

INT(i} = canopy intercéplion on day i,

DRAIN(i} = drainage from the soil profile on day i.
All values are in mm per day. The results obtained for the three neutron access networks
were as follows.
5.1 GRASSLAND SITE
Six neutron access tubes were installed in the grassland site during September 1989. The
depth of installation varied between 80 and 120 cm below ground level. Two additional tubes
were installed to depths of 300 ¢m and 550 ¢m during July 1990.
For the sake of uniformity, 80 cm below ground level has been adopted as the depth to which
soil moisture changes, and hence actual evapotranspiration, have been calculated, though
changes over greater depths have been estimated to ensure that significant deep seepage was
not occurring. Again, for the sake of consistency. only those dates during the winter months
1989/1990 when data from all six original tubes were deemed ‘correct’ have been used to
calculate field capacity. Only one date, 7.3.90, satisfied this criterion; the soil moisture totals

to 80 cm depth have been taken as the field capacities for the individual tubes. These are as
follows:-

Tables 5.1.1  Field capacity values for the grassland siie

JUBE 1 2 3 4 5 6 MEAN

234.8 223.2 209.6 246.5 2358 196.9 224.5

This particular day was, in fact, one of the wettest experienced in terms of soil moisture. No
field capacity values have been calculated for Tubes 7 and 8.

A total of 23 periods were identified which satisfied the criteria given in (ii) and (iii) above,
and which could be used to provide estimates of actual evapotranspiration from the grass
field. These periods are listed in Table 5.1.2, together with the period rainfall, the ratio of
actual to potential evapotranspiration, and the average soil moisture deficit over the period
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Table 5.1.2  Periods used for estimating actual evapotranspiration from the grassiand field
showing Total Precipitation (P), Actual/Potential Daily Evapotranspiration
(ETa/ETp), and Average Soil Moisture Deficit (SMD)

Period P Tube 1 2 3 4 5 6
29.09-10.10.89 57 ETW/ETp 0.88 103 1.0 1.11
SMD 25.5 41.0 2713 36.7
10.10-18.10.89 00 ET«/ETp 0.87 0.92 0.58 0.82 0.65 0.71
SMD 35.7 52.3 37.1 469 380 31.5
21.11-06.12.89 3.5 ETe/ETp 1.08 1.43 1.06
SMD 0.7 15.8 25
01.03-07.03.90 20 ETa/ETp 2.81 2.44 3.77 3.23 1.60
SMD 5.8 -4.9 8.0 638 2.9
07.03-15.03.90 6.0 ETa/ETp 1.67 2.10 1.66 1.80
: SMD 3.4 5.0 3.3 39
15.03-23.03.90 5.5  ETa/ETp 0.52 1.2 0.61 0.90
SMD 6.0 12.0 6.2 8.4
23.03-28.03.90 0.5 ETW/ETp 0.85 1.10 0.91 0.69 0.68
SMD 9.6 19.8 10.6 12.7 13.0
28.03-04.04.50 7.5 ETW/ETp 1.00 1.05 113 1.09 1.06 0.80
SMD 17.0 28.5 18.9 19.8 185 18.]
04.04-11.04.90 0.5 ETa/ETp 0.53 0.60 0.49 0.45 0.42 0.48
SMD 254 383 275 279 2.2 24.6
18.04-25.04.90 70  ETe/ETp 087  0.83 0.66 066 057 0.68
A SMD 35.1 476 37.1 392 334 34.7
25.04-02,05.90 0.5 ETa/ETp 0.78 1.03 0.78 086  0.62° 0.83
SMD 50.6 657 50.2 533 435 48.7
02.05-11.05.90 55 ETa/ETp 0.78 0.89 0.60 093 079 0.74'
SMD 703 906 66.8 76.5 614 68.4
13.06-19.06.90 70 ETWETp 078 077
SMD 1000 89.9
12.07-01.08.90 9.5  ETa/ETp 0.42 042 - 0.37
SMD 106.2 107.1 91.3
01.08-08.08.90 00 ETa/ETp 0.12 010 0.7
SMD 123.1 124.0  107.1
08.08-13.08.90 00 ETa/ETp 0.06 002  0.03
SMD 125.8 1258 1103
22.08-29.08.90 0.0 ETWETp 042 053 048  0.18
. SMD 103.7 1049 1013 100.1
29.08-05.09.90 1.5 ETa/ETp 0.43 0.44 073 04l 0.49
SMD 1060  109.0 1079 1005 100.0
05.09-12.09.90 40 ET«ETp 0.43 0.48 033 03] 0.15
SMD 1081 111.0 111.5  100.5 99.1
12.09-26.09.90 9.0 ETWETp 0.48 0.41 052 048 0.47
SMD 1129 127 1165 1021 98.7
03.10-17.10.90 140 ETa/ETp 063  0.82. 0.7t 0.6 0.44
SMD 103.9 987 1049 955 88.2
15.11-21.11.90 125 ET&ETp  1.25 1.43 0.91 1.27  0.56 111
SMD 322 352 32.7 39.4  48.0 13.0
28.11-08.12.90 40 ETa/ETp 1.41 0.90 1.57 0.94 0.87
SMD 8.4 203 16.4 21.9 8.9
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for each access tube. In order to determine whether in fact the adoption of 80 cm depth below
ground level for the calculation of evapotranspiration losses is reasonable, mean soil moisture
changes to a depth of 80 cm for Tubes 1-6 were compared to those for Tube 7 (300 ¢cm
depth) and Tube 8 (550 ¢m depth) for the accounting periods later than July 1990 shown in
Table 5.1.2. This comparison shows that, whilst differences did occur, they were random
rather than systematic, and generally within the variation exhibited in Tubes 1 to 6. An
overall r? value of 0.73 was obtained, and it has been assumed that the data shown in Table
5.1.2 are sufficient for this purpose.

As far as possible, each period relates to the time between consecutive neutron probe
readings, normally one week. In some cases, however, it was found necessary to combine
two periods in order to produce ‘sensible’ values. The gaps in Table 5.1.2 were caused by
a number of factors apart from data rejected following quality control. In some cases, the
neutron access tubes were not read to 80 cm depth, or readings were taken at the incorrect
depths. Also, the grass was cut for silage on the 14th June 1990, some of the access tubes
could not be read after this.

Inspection of Table 5.1.2 shows that for some periods, particularly at the beginning of the
monitoring, actual evapotranspiration at some sites was greater than potential
evapotranspiration. This could be caused by a number of factors. In the first place, the
original six access tubes were installed during September 1989, and may have taken time to
“settle down” ie. the actual moisture volume fraction measurements may have been in error
as a result of soil disturbance during installation. Also, the soil profile could have been
draining during these periods, and the reduction in soil moisture would have been greater than
actual evapotranspiration. It is possible that the estimate of potential evapotranspiration as
given by the automatic weather station may have been in error. Whatever the cause it has
been assumed that, for those times when actual evapotranspiration was greater than potential,
the grass was transpiring at potential, and the difference assumed to be drainage from the soil
profile.

Also, there were some periods, notably 4.4 - 11.4.90, when the ratio of actual to potential
evapotranspiration was much lower than would have been expected considering the soil
moisture deficit pertaining at the time. This suggests an additional constraint on actual
evapotranspiration, apart from soil moisture deficit. One obvious possibility is temperature,
as it is well known that growth is curtailed when the air temperature is below about 6°C.
Investigating whether temperature is having an effect and correcting for this effect is difficult
because, potentially, the following processes may be occurring simultaneously in each of the
periods considered in Table 5.1.2:-

@) the profile may be draining,
(b) actual evapotranspiration may be reduced as a result of soil moisture deficit,
(c) actual evapotranspiration may be reduced as a result of low temperatures,

and separating the effects of each process may be rather subjective. This will be considered
later. :

Values from individual tubes have been averaged for each period. These are shown in Table
5.1.3 together with standard deviations. Point values for some individual sites were deemed
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Table 5.1.3  Mean and standard deviation of actual/potential daily evapotranspiration,
daily drainage and average soil moisture deficit for the iemporary grass field

Period Actual/Potential Drainage Soil moisture
evapotranspiration (min/day) deficit {mm)
29.09-10.10.89 0.97 (0.06) 0.07 {0.09) 327 (1.3)
10.10-18.10.89 0.76 0.13) ¢o 40.3 (7.8)
21.11-06.12.89 1.00 0.15 {0.16} 6.3 (8.2)
07.03-15.03.90 1.00 0.77 {0.20) 39 {0.8)
23.03-28.03.9¢ 0.99 {0.01} 0.04 (0.09) 13.1 (4.0)
28.03-04.04.90 1.00 011 (0.10) 20.1 (4.2)
18.04-25.04.90 0.85 (0.11) 00 379 (4.7)
25.04-02.05.90 0.81 (0.12) 0.0 52.0 (7.5)
02.05-11.05.90 0.79 (0.12) 0o 7.3 (10.2)
13.06-19.06.90 0.78 (0.01) 0.0 95.0 {7.1)
12.07-01.08.90 0.40 (0.03) 0.0 101.5 (8.9
01.08-08.08.90 0.13 (0.04) 0.0 118.1 (9.5)
08.08-13.08.90 0.04 {0.02) 6.0 120.6 (8.9}
22.08-29.08.90 0.40 (0.18) 0.0 102.5 2.2
29.08-05.09.90 0.50 013) 0.0 104.8 “.2)
05.09-12.09.90 0.34 {0.13) 00 106.0 (5.9)
12.09-26.09.90 0.47 (0.04) 0.0 108.6 (mj
03.10-17.10.90 0.64 (0.19) 0.0 98.2 (6.8)
28.11-08.12.90 1.60 0.12 (0.17) 15.2 6.3)
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‘suspect’, and were not used 1o calculate those averages. Also, periods when no soil moisture
deficit was evident have been omitted. For these periods, it is assumed that rapid runoff
occurs, and the drainage values are not relevant.

The values given in Table 5.1.3 are shown graphically in Fig. 5.1.1. The regression of
actual/potential evapotranspiration against soil moisture deficit is represented by two straight
lines, in this case the transition point is at a deficit of 95 mm. The drainage decreases
exponentially with deficit. There is some degree of scatter in the relationships. In particular,
at lower soil moisture deficits, the relationship between actual/potential evapotranspiration to
deficit is not particularly good. As indicated previously, this could be due to a number of
factors, including low temperatures, for which some correction will be made. It is gratifying
to note however, that, at higher deficits, where ETa/ETp changes most rapidly against deficit,
the agreement is very good indeed. The relationship between drainage and deficit is also not
particularly good, being influenced by one high drainage value. In spite of these reservations,
these were the regressions used to estimate actual evapotranspiration from the grass field.

Continuous hydrological data from the Slapton Wood catchment were available for the period
October 1989 to July 1991 (inclusive). Ideally, it would have been better to start the analysis
during a period when the soil was at or close to field capacity. The relative shortness of the
data records meant that this could not be done. and it was decided to carry out the analysis
on the whole data set, The first 15 months (Oct 1989 - Dec 1990) can be regarded as the
calibration period (Table 5.1.3), though only a third of the available data were used for
calibration purposes. The analysis was conducted using rainfall and potential
evapotranspiration estimates from the automatic weather station. Average soil moisture values
from the grassland sites were used. The initial soil moisture deficit was calculated as the
difference between the water content in the top 80 ¢cm of soil on the 29th September 1989 and
the field capacity value (Table 5.1.1). A time step of one day was employed; the calculations
employed were as follows:-

() Calculate the actual evapotranspiration (ETa) from the potential evapotranspiration
(ETp) and soil moisture deficit (SMD),

ETa = ETp (2.SMD + b)

where a and b, dependent on SMD, are as given in Fig. 5.1.1.

(i) Modify the estimated actual evapotranspiration according to the mean daily air
temperature (T) as follows:
T > 8.0°C , ETa = ETa
0°C =< T < 8.0°C ETa = ETa =0.125+T
0°C > T ETa = 0

A number of relationships of the type suggested by Andersson and Harding (1991) were
artempted. It was found that the above gave the best “fit” for those periods, particularly during
April 1990 (Table 5.1.2), when actual evapotranspiration, uncorrected for temperature, was
lower than expected.

(iii) Calculate the drainage from the soil profile (Fig. 5.1.1).
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DRAINAGE = 0.482 exp (-0.081 SMD)

(iv) Update the soil moisture deficit.

SMD(i+l) = SMD (i)- RAIN(i+1) + ETa(i+1) + DRAINAGE(i+1)

(v) Calculate the amount of rapid runoff (RUNOFF)

SMD > 0 RUNOFF = 0.0
SMD < 0 RUNOFF = ABS (SMD)
SMD = 0.0

ie. it is assumed that if the soil moisture is above field capacity, then this ‘excess’ becomes
rapid runoff and the new soil moisture is put to zero.

{vi) Continue t0 next day

Figure 5.1.2 shows the estimated and measured soil moisture deficits for the grassland site
at Slapton. The agreement is generally very good (normally within + 5 mm), though there
are some periods where significant differences occur. For instance, the soil moisture deficit
is underestimated for most of the winter 1990/91. The differences between estimated and
measured deficits shown in Fig. 5.1.2 are exaggerated because an ‘error’ in one accounting
period will result in a difference that will be manifest in succeeding periods until the soil
moisture deficit becomes zero. This particular “error’ occurred in the period 17.9 - 26.9.90
when the estimated soil moisture deficit fell by 12.9 mm whilst the measured SMD fell by
3.4 mm. There were no low temperatures during this particular period nor was it likely that
the soil profile was draining. Therefore, the discrepancy is likely to be due to the calculation
of actual evapotranspiration; the regression used suggested a ETa/ETp ratio of 0.38; measured
soil moisture measurements suggested a value of 0.68.

Another discrepancy occurred in the period 6.2 - 13.291. Again, estimated SMD was
underestimated. The measured soil moisture values suggested an increase in SMD of 8.8 mm
whilst the estimated value fell by 0.1 mm. This period was characterized by very low
temperatures (mean daily air temperatures between -5.8°C and +1.5°C), and the estimated
actual evapotranspiration over the whote period was only 0.1 mm. Even if no temperature
correction was applied, and the evapotranspiration assumed to be at potential rate, then the
estimated drop in SMD would have been only half of that measured.

In contrast, soil moisture deficit was overestimated at the end of May 1991. During the period
22nd May to the 29th May the estimated SMD increased by 18.8 mm whilst the measured
SMD increased by 12.3 mm. In this case it would appear that ETa/ETp is an overestimation,
in contrast to the situation during September 1990,

Table 5.1.4 shows the monthly totals (mm) of measured rainfall, potential evapotranspiration,
and flow, and estimated actual evapotranspiration, drainage, rapid runoff, and total flow. Also
shown are annual totals (January to January) for 1990. For the latter, the difference between
measured rainfall and flow (the SMD was insignificant at the beginning and end of the year)
gives_ an annual ‘water use’ .of 477.1 mm.. .
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Table 5.1.4  Measured and estimated monthly totals (mm) of hydrological variables for the
temporary grass field at Slapton

Month Measured Estimated

Rain ETp Flow ETa Drainage  Rapid Runoff  Total Now
1989
ocCcT 105.5 44.3 15.0 39.7 35 5.7 39.2
NOV 70.9 26.4 50.8 3.4 11.6 42.1 53.7
DEC 191.5 25.6 1559 224 11.5 156.2 167.7
1990
JAN 191.0 5.6 107.3 53 14.9 165.4 180.3
FEB 287.5 18.9 2745 17.1 13.5 2572 2707
MARCH 15.5 37.6 578 31.7 18 1.3 9.1
APRIL 36.0 87.0 21.2 66.1 1.1 0.0 1.1
MAY 235 110.1 14.1 69.3 0.0 0.0 0.0
JUNE 78.5 85.8 11.5 55.3 00 0.0 0.0
JULY 38.0 133.6 10.0 69.9 0.0 0.0 0.0
AUG 53.0 109.5 3.0 37.6 0.0 0.0 0.0
SEPT 43.5 835 6.7 36.9 0.0 0.0 0.0
ocCT 76.5 48.3 89 343 0.0 0.0 0.0
NOV 87.0 30.7 9.5 228 4.0 17.6 21.6
DEC 89.5 27.8 12.9 19.5 9.8 57.5 61.5
TOTAL 1019.5 718.4 542.4 465.8 511 499.2 550.3
1991
JAN 136.5 217.4 90.1 i7.8 13.4 1102 123.6
FEB 69.5 24.0 41.1 10.5 10.1 48.6 58.7
MARCH 136.0 454 129.8 377 11.8 104.0 115.8
APRIL 67.0 68.4 38.6 53.3 4.0 0.0 4.0
MAY 35 96.8 19.8 79.2 1.0 0.0 1.0
JUNE 150.0 82.8 17.1 64.9 1.0 0.0 1.0
JULY 88.0 94.4 246 88.6 11 16.7 23.8

The yearly estimate of evapotranspiration , 465.8 mm, is similar to, but slightly greater than,
other values reported in the literature. Roberts and Roberts (1992), in their study at Grendon
Underwood reported a 22-year mean annual estimate of 422 mm (363460 mm). McGowan
and Williams (1980), in their study at Kingston Brook, Nottinghamshire reported values of
435 and 390 mm for May 1969 to April 1970 and April 1970 to March 1971, respectively.
Finally, Kristensen (1974), in his study in Denmark, reported annual evapotranspiration totals
in the range 358 to 409 mm (mean 394 mm). The enhanced value at Slapton presumably
reflects better growing conditions in 1990, and the fact that potential evaporation was
exceptionally high. This was caused by windspeeds and net radiation that are higher than
those experienced at inland sites.
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52 ARABLE SITE

Six neutron access tubes were also installed in the arable field during September 1989. At the
time of installation the land was fallow, having been prepared for the sowing of winter barley.
The depth of instaliation varied between 60 and 130 cm below ground level.

As with the grassland site, 80 cm below ground level has been adopted as the depth to which
soil moisture changes, and hence actual evapotranspiration, have been calculated. This being
the case, the data from one site (Tube no. 1) have not been used. Apgain, for the sake of
consistency with the grassland site, the water contents measured to 80 cm depth on the 7.3.90
have been adopted as the field capacity values.

Table 5.2.1  Field capacity values for the arable site

TUBE 2 3 4 5 6 MEAN

169.6 199.0 198.7 182.7 231.2 196.2

(Obtaining relationships between the ratio of actual to potential evapotranspiration and soil
moisture deficit for an arable crop is more difficult than for grassland because of the different
phases of the growth cycle. Doorenbos and Pruit, 1984 identified five typical stages for an
arable crop cycle. These are:-

Stage 1 Germination —» 10% cover,

2 10% cover —» 75% cover,

3 75% cover — start of maturing,
4 Start of maturing — harvesting,
5

Harvesting — Re-germination,

and it is necessary to consider each stage separately, as their evapotranspiration losses may
differ appreciably. For the arable field at Slapton, winter barley was grown in the year
1989/90, whilst the field was sown to temporary grass in the autumn 1990, Table 5.2.2 shows
the different stages of the crop cycle within the arable field. The duration of each stage has
been ascertained following discussions with the farmer.
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Table 5.2.2  Growing cycle of the winter barley and temporary grass at Slapton

Stage 1 Bare Earth 13.989% « 1.11.89
2 Germination ~+ 10% cover 1.11.89 - 28.2.90
3 10% — 75% cover (70 em high) 1.3.9 - 11.5%0
4 15% cover -+ start of matunng 11.5.90 = 30.6.90
5 Start of maturing - harvest 1.7.99 - 20.7.90
6 Stubble 20790 - 10.9.90
7 Bare Eanh 10.9.50 - 30.9.90
8 Germination - 10% cover 1.10.90 - 28.2.91
9 10% cover = 75% cover (23 cm highy  1.3.91 - 8.591
10 Established sward 9591 +31.791

Table 5.2.3  Processes and Factors likely to be significant during the various stages of the
Arable Crop Cycle

Stage Drainage B.S. Evap. Crop Interceplion Low SMD
Trans. Temps.

1 Y

2 Y Y

3 Y Y Y Y Y

4 Y Y Y Y

5 Y Y Y

6,7 Y

8 Y Y

9 Y

10 Y Y

It is appreciated that some of these stages merge into one another. Also, in terms of
evapotranspiration losses, some of the stages may be considered as similar and combined.

A number of different processes are likely to be occurring during the individual stages of the
arable crop cycle (Table 5.2.3). These include drainage from the soil profile, bare soil
evaporation, crop transpiration, and crop interception. Bare soi! evaporation and crop
transpiration will occur simultaneously during the growing phases (less than 100% cover) of
the crop. Bare soil evaporation will be limited by the amount of water in the profile; crop
transpiration will be limited by soil moisture and temperature. These parameters will vary
significantly-during-the cycle..

To illustrate this point, Figure 5.2.1 shows how the percentage crop cover and the soil
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moisture deficit, as given by the neutron probe readings, varied over the measurement period.
The vertical dashed lines show the duration of each stage, with the stage no. (Table 5.2.2)
denoted. The horizontal dashed line is a ‘first guess’ estimate of soil moisture deficit (30 mm)
below which profile drainage occurs, and above which evaporative losses will be limited by
the amount of soil moisture. Assuming that this soil moisture ‘cut off” point is sensible, Table
5.2.3 indicates what processes are likely to be significant during each stage. This shows the
problems involved in obtaining estimates of the rates of soil moisture losses by the various
processes.

The approach adopted was to start with the ‘simpler’ stages i.¢. those in which only a small
number of processes were likely to occur, and to derive estimates of the rates of losses as a
result of these processes. These rates of losses are assumed to be similar when considering
the more complicated stages. In this way, it is hoped to obtain estimates of all the processes
during each stage, though it is recognised that a number of assumptions are involved, some
of which are rather tenuous.

Inspection of Table 5.2.3 shows that stages 1, 6 and 7 are the simplest. These relate to those
periods when no crop was actually growing, and it is with these stages that the analysis
begins.

(i) Bare earth and stubble

These two stages in the crop cycle represent those periods when crop transpiration losses are
zero and only evaporation from the surface layers of the soil need be considered. It could be
argued that there is a difference between the two stages, in the sense that, strictly speaking,
the barley stubble will intercept some of the rainfall and lose it subsequently by evaporation
without it entering the soil store. However, since this process is considered insignificant for
grassland, it is unlikely to be significant for barley stubble, a less dense vegetation cover than
grass.

Two situations need be considered; one in which zero or litle rain fell in the period
considered, and the other in which significant rainfall occurred. Past experience suggests that
evaporation from bare earth during periods of rainfall are much greater than for dry periods
(Doorenbos and Pruit, 1984).

Table 5.2.4 gives the ratio of actual/potential evaporation to soil moisture deficit for zero or
low rainfall periods during the bare earth and stubble stages of the winter barley growth
cycle. Of the five periods, four have low actual/potential evaporation ratios whilst the other,
the first considered, has substantially higher ratios. These high ratios are consistent. In two
cases, tubes 4 and 6, the data suggest that the protiles were still draining at significant rates.
This period was the first from which soil moisture data were collected following ploughing
a few weeks previously. It is possible that the soil profile had not yet settled tollowing the
ploughing, and the evaporation rate was greater than would have been under a consolidated
soil. In addition, the soil moisture deficit (15.9 mm) was such that some drainage would have
been expected, judging by what was found under the grass tield. This also applies, to a lesser
extent, to the other two periods in 1989. Unfortunately, the data from these two periods are
required to give some estimate of the change in bare soil evaporation with soil moisture
deficit. This being the case, it has been assumed that drainage from the soil profile is
negligible at.a soil moisture deficit of 20 mm, and that the changes in soil moisture for the
last four periods in Table 5.2.4 are due solely 10 evaporation losses. This will be discussed
later.
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Mean values of the ratio of actual to potential evaporation are plotted against soil moisture
deficit in Fig. 5.2.2. Although only four points are available, the data do suggest an inverse
lincar relationship, and the regression obtained by least squares is used to calculate actual
evaporation from bare soil/stubble during no rainfall periods. However, it is possible that
other inverse relationships e.g. exponential, would be more appropriate outside the range of
soil moisture deficit experienced.

Calculating evaporation losses from bare soil during rainfall periods is rather more difficult.
To do this, simple models were applied on a daily basis t0 the bare earth/ stubble period for
the 1990/91 growing cycle. The reason why only the 1990/91 bare earth period was
considered was as a result of the soil moisture deficits prevalent during the two years. In
contrast to the bare earth period of 1989/90, the deficits in 1990/91 were sufficiently high that
it was highly unlikely that any profile drainage was occurring (stages 6 and 7 in Fig. 5.2.1).
This means that, during this period, only bare earth evaporation is significant. Knowing the
relationship between bare earth evaporation and soil moisture deficit during non-rainy days,
then evaporation losses during rainy days could be optimised by comparing estimated and
measured soil moisture deficits at the beginning and end of each period. Evaporation during
no rainfall days was given by the relationship in Fig. 5.2.2. For rainy days, the best
formulation tested was the assumption that any rainfall during the day would be lost as
evaporation up to the rate of Penman open water evaporation {(given as 1.17 ETp from the
annual totals from Slapton for 1990) for that particular day. If the rainfall total for the day
was less than open water evaporation, it was further assumed that evaporation from the soil
profile, given by Fig. 5.2.2, also occurred. Any excess rainfall over open water evaporation
would act to reduce the soil moisture deficit within the soil profile, or, if of sufficient
intensity, would run off the soil surface.

Having obtained estimates of evaporation losses from bare earth during rainy and non-rainy
periods, it is now possible to estimate drainage losses. This can only be done using data for
the 1989/90 season because, for the 1990/91 season, the soil moisture deficit was
approximately 50 mm when the grass seed was sown, and did not reduce to levels at which
drainage would be significant until mid-November, at which time the grass sward was well
established and transpiration losses would be significant. In contrast, the winter barley was
sown approximately a month later than the temporary grass, at which time the deficit had
fallen to 12 mm and drainage likely to be significant. Unfortunately, this restriction reduces
the number of suitable periods to three; these are given in Table 5.2.5.

A straight line regression was fitted to these points and the following felationship obtained:-
DRAINAGE = 0.05 SMD + 1.015

This gave a surprisingly good fit considering the assumptions involved. In particular, it is

gratifying to note that drainage becomes insignificant at about 20 mm; this being the basic

assumption used for calculating evaporation losses from bare soil.

In brief, the steps employed for calculating soil moisture losses during the bare soil/stubble
periods were as follows:-

) Calculate the drainage from the soil profile as

DRAINAGE = -0.05 SMD + 1.015
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Table 5.2.4  Actual/Potential Evaporation (ETa/ETp) and‘Soil Moisture Deficit (mm) for
the bare soil and stubble

Period Tube 2 Tube 3 Tube 4 Tube § Tube 6 Mean
29.09-05.10.89 ETa/ETp 0.83 0.87 1.00 1.00
SMD 129 15.2 17.8 17.5
05.10-10.10.89 ETa/ETp 0.07 0.13 0.20 0.33 0.09 0.16
SMD 15.0 17.8 229 12.4 28.9 19.4
10.10-19.10.8% ET«/ETp .Q.IO 0.23 0.24 0.19 0.19
SMD 15.0 18.9 24.4 21.7 20.0
01.08-08.08.90 ETa/ETp 0.09 0.09 0.0%
SMD 523 61.8 57.1
08.08-13.08.90 ETa/ETp 0.06 0.03 .07 0.06 0.06
SMD 54.5 631.6 68.1 107.8 73.5

Table 5.2.5  Periods used for estimating drainage losses from bare soil

Period Drainage rate (tnm/day) Deficit (imm)
29.9 - 10.10.89 0.24 16.4
10.10 - 19.10.89 0.01 19 4
15.11 - 21.11.89 1.02 0.0

(ii) Calculate the actual evaporation,

(a) For non-rainy days:-
ETa = ETp (-0.0022 SMD + 0.219)

(b) For rainy days (daily rainfall = P):-
ETa = ETp * 1.17 (open water evaporation)

If P < ETa, ETa = P + ETp (-0.0022 SMD + 0.219) up to
a limitof ETp * 1.17

When these formulations were applied to the appropriate periods, allowing for rapid runoff
when the soil moisture deficit became negative, the agreement between measured and
estimated soil moisture deficit was acceptable, generally within +5 mm.

(ii) Established Temporary Grass Sward

This stage in the arable crop cycle (stage 10 in Fig. 5.2.1 and Table 5.2.3) is the next
considered as it involves the least unknowns. Of three significant factors (Table 5.2.3), the
rate of change of drainage with-soil-moisture deficit has already been estimated;-and-it-only -
remains to consider changes in grass transpiration with deficit. Bare soil evaporation is not
likely to be significant because, using a degree day value of 303°C from March 1st 1991, as

46
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suggested by Olesen (1992), the maximum leaf area index would have been achieved on the
10th April, using mean daily air temperatures recorded by the automatic weather station.
Although this degree day value was derived for a *normal’ year in Denmark, the adoption of
alternative values would not significantly change the date at which a low value of leaf area
index would restrict transpiration. In brief, an analysis of the data obtained during this stage
will provide information on transpiration losses from a complete grass canopy cover. These
losses should, in theory, be similar to those obtained for the grass field (Section 5.1) under
similar conditions,

A total of six periods were suitable from which soil moisture data were available for
calculating actual transpiration losses for this stage. The ratio of actual {corrected for drainage
losses) to potential transpiration and soil moisture deficit for each neutron access site for each
of the periods is shown in Table 5.2.6. Losses from the individual sites vary significantly,
more so than for the grass field (Table 5.1.2) suggesting that the grass cover may not have
been completely uniform. Also shown in Table 5.2.6 are average values for each of the
periods. Surprisingly, the ratios of actual/potential transpiration are remarkably consistent,
considering that the soil moisture deficit varies between 9.6 mm and 61.6 mm. Certainly
there is no sign of the ratio decreasing with increasing deficit as is the case of the grass field
in 1990 (Fig. 5.1.1). Also, the mean values of the ratio of actual/potential transpiration do
not approach unity, even at a deficit of 9.6 mm. It seems that some factor is restricting
transpiration other than soil moisture,

In order to attempt to explain these values, Fig. 5.2.3 shows a plot of average actual/
potential transpiration ratios against soil moisture deficit for the temporary grass and the
permanent grass for the periods shown in Table 5.2.6. Also shown is the regression obtained
for the 1990 data over the soil moisture deficit range from the permanent grass field. This
plot shows that, if the 1991 data for the two grass fields are taken together, there is a trend
of a decrease in ETa/ETp with an increase in soil moisture deficit, admittedly with a great
deal of scatter. More importantly perhaps, the data shown in Fig. §.2.3 indicate that, with
one exception, ETa/ETp values for 1991 are consistently lower for an equivalent soil moisture
deficit, than for 1990. There are a number of possible reasons for this.

One obvious possibility was the occurrence of low temperatures during the periods selected
for 1991, as was the case for 1990 (Section 5.1). Fig. 5.2.4 shows soil temperatures at 20
c¢m depth measured at 0900 GMT at the Field Centre at Slapton. Although the Field Centre
is some 3 km away from the catchment, the soil temperatures shown were felt to be
sufficiently representative to demonstrate the temperature differences between the two years.
The horizontal dashed line is at 6°C, the soil temperature below which it is generally
considered that growth is restricted. The vertical dashed lines for 1990/91 show
approximately the limits of the period from which the data values shown in Fig. 5.2.3 were
obtained. An inspection of the soil temperatures within these two vertical lines show that they
were well above 6°C, this suggests that the temperatures experienced during these periods
were not restricting growth to any appreciable extent.

Another possibility is antecedent conditions. Whereas soil temperatures in the winter 1989/90
rarely dropped below 6°C (top graph in Fig. 5.2.4), there were many instances of low
temperatures in the winter 1990/91 (bottom graph in Fig. 5.2.4). In particular, there was a
" very cold spell in February 1991 with soil temperatures as low as 1°C. It is possible that such
a cold spell may have had a ‘knock-on’ effect on growth in the spring. The pattern of soil
moisture deficit also differed, for the grass field at least, for the two winters. Whilst field
capacity. extended from the beginning of November 1989 to the end of February 1990, there
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was a lag of approximately one month in the following winter, with field capacity being
attained from the beginning of December 1990 to the beginning of April 1991 (Fig. 5.1.2).

Again, the delay of the onset of a deficit in the spring may have had some effect on crop
growth,

Table 5.2.6  Rario of actual/potential transpiration and soil moisture deficit Sfor the
established temporary grass sward

Period Tube 2 Tube 3 Tube 4 Tube § Tube 6 Mean

17.04-24.04.91 ETa/ETp 0.83 0.92 0.59 0.78
SMD 17.3 23.6 13.7 18.2

01.05-08.05.91 ETa/ETp 0.69 0.68 0.79 0.72
SMD 11.4 84 9.1 9.6

08.05-15.05.91 - ETa/ETp 0.59 - - 0.57 . 0.95 0.70
SMD 24.5 212 27.0 242

15.05-22.05.91 ETa/ETp 0.48 0.75 0.74 0.93 0.73
SMD 36.1 53.1 35.6 475 43.1

22.05-29.05.91 ETa/ETp 0.47 0.67 1.08 1.02 0.81
SMD 47.5 70.1 57.8 71.1 61.6

. 24.07-30.07.91 ETa/ETp 024 0.69 0.69 0.48 0.53
SMD 14.0 14.5 14.5 10.8 11.3

Possibly a more realistic explanation of the differing transpiration rates during the two years,
involves the effects of cutting the grass for silage. This practice has the result in severely
reducing the leaf area index, and thus the transpiration rate, though, after a suitable lag,
replacing mainly dying vegetation with young vigorous growth. Generally speaking, it can
be assumed that transpiration will be restricted prior to and following cutting.

The permanent grass field was cut for silage on the 14th June 1990 and again between the
29th May and the 5th June 1991. The temporary grass field was cut between the 22nd and
the 29th May 1991. For 1990, when obtaining the ETa/ETp against SMD relationship, data
from only one period, 13th to the 19th June, would have been affected. For 1991, it is
possible that a number of the periods shown in Table 5.2.6 and in Fig. 5.2.3 may have
experienced reduced transpiration as a result of pre-harvesting senescence. This hypothesis
is supported by overestimation of transpiration, manifest as overestimated soil moisture
deficits for the permanent grass crop in late May and early June 1990 (Fig. 5.1.2).

Whatever the reason for the discrepancies shown in Fig. 5.2.3, it would seem that
transpiration losses from this stage of the arable crop cycle are not controlled primarily by
soil moisture deficit, and a mean value of ETa/ETp = 0.71 has been used, this given as the
mean value for the six periods shown in Table 5.2.6.

In brief, the steps employed for calculating soil moisture losses for the established termporary
grass sward stage were as follows:-
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(a) Calculate the drainage trom the profile as:-
DRAINAGE = 0.05 SMD + 1.015
(b) Calculate the actual transpiration as:-
ETa = 0.71 ETp
(ii}) Developing Temporary Grass Sward

Two stages (8 and 9) of the arable crop cycle are involved. Stage 8 covers the period between
seedling emergence at the beginning of October to 10% crop cover at the end of February;
whilst stage 9 is the next stage along and covers rapid growth to 70% crop cover during the
month of May. Estimates of all significant processes have been made in the previous two
sections; the difficulty in this part of the arable crop cycle is determining how much of the
total evaporative loss is as a result of crop transpiration and how much is bare soil
evaporation. This partitioning depends very much on the stage of growth of the grass for the
periods considered.

In theory, this is given by the values quoted in Table 5.2.2 ie 0% crop cover at the beginning
of October, 10% at the end of February, and 70% in the middle of May. However, when
these percentages were applied, and estimated soil moisture deficits compared with those
measured, it was found that evapotranspiration losses were significantly underestimated. The
best fit was obtained by assuming that total evaporative losses could be partitioned into grass
transpiration and bare soil evaporation as follows:-

Stage 8, germination — 10% crop cover:- . 50% bare soil
50% grass
Stage 9, 10% — 70% crop cover:- Bare soil 50% —» O
Grass 50% ~ 100%

and these were the percentages adopted. Drainage and bare soil evaporation were as
calculated for stages 1,6 and 7, grass transpiration was as calculated for stage 10, modified
for low temperatures as indicated in Section 5.1.

(iv) The Winter Barley crop

Estimating actual evapotranspiration losses from the winter sown barley is difficult because
of the other various processes that are likely to be occurring simultaneously. Because of this,
the growth cycle has not been split into its various stages; instead assumptions have been
made regarding these processes. The significance of these various processes - drainage, bare
soil evaporation, crop transpiration, and interception by the crop, will vary according to the
-stage of the crop cycle. Drainage rates and bare soil evaporation have already been estimated;
for the latter an estimate of percentage crop cover is required. Knowing all of these factors,

it will then be possible to calculate crop transpiration losses and relate them to soil moisture

deficit.
Percentage crob cover and rainfall interception losses by the crop canopy over the growth

cycle of the winter barley are shown in Fig. 5.2.5. The former is as given in Table 5.2.2,
based on local observations, whilst the Jatter is similar to the pattern used by Robers and
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Roberts, 1992 based on observations made at Long Ashton Agricultural Research Center
(LARC, 1982). Using these patterns, together with the previously estimated drainage and bare
soil evaporation values, crop transpiration estimates have been made for seven low rainfall
periods. These are shown in Table 5.2.7; also a plot of crop transpiration given as a fraction
of the Penman potential evaporation against the average soil moisture deficit for each period
is given in Fig. 5.2.6. The data show a great deal of scatter with, in particular high values
of ETa/ETp during 25.4-28.4.90, and low values during 16.5-23.5.90. One possible reason
for the latter is the emergence of the barley seed head, as unpublished previous work has
suggested that, during this period, transpiration rates are low. This may have also contributed
to the low values found for the permanent and temporary grain fields in May 1991.
Unfortunately, insufficient data were available for this period to test this hypothesis further,
and it was assumed that ETa/ETp for the barley crop declined linearly with SMD as shown
in Fig. 5.2.6. A least squares regression of the points shown in Fig. 5.2.6 gave the following
relationship:-
ETa/ETp = 1.10 - 0.0066 SMD

and this is the relationship that has been used for calculating transpiration for the barley crop
throughout the cycle.

This formulation and the others described previously was applied on a daily basis. The
resulting soil moisture deficits were compared with measured values and, in general, the
agreement was good, usually within £10 mm,

mplete arable ¢rop cycle

The formulations obtained for the various stages of the arable crop cycle were applied on a
daily basis for the period 1.10.89 to 31.7.91. The initial soil moisture deficit at the beginning
was set at 12.1 mm, as given by neutron probe measurements on 29.9.89. Also, it was found
necessary to ‘reset’ the soil moisture deficit between two of the stages (7 and 8) shown in
Fig. 5.2.1. This particular period coincided with the time that the field was ploughed, and
it was found that, not surprisingly, the measured soil moisture deficit was much greater than
that estimated. Apart from this, the estimated soil moisture deficit was passed over from one
stage to the next. The resulting estimated daily soil moisture deficits, together with the less
frequent values measured by neutron probe are shown in Fig. 5.2.7.

In general, the agreement between the measured and estimated soil moisture deficits is very
good, normally within + 10 mm. The effect of ‘re-setting’ the soil moisture deficit is seen as
a discontinuity of approximately 11 mm in the middle of September. The reason for this is
almost certainly as a result of enhanced bare soil evaporation following the burning of stubble
and ploughing during the early part of September. This particular period was not used during
the calibration.

Measured and estimated monthly totals of hydrological variables for the arable field are given
in Table 5.2.8. For 1990, it was found that actual evaporation losses were 404.4 mm;
comprised of 51.8 mm interception (12.8%), 155.2 mm bare soil evaporation (38.4%), and
197.9 mm crop transpiration (48.9%). These total losses were 61.4 mm less than those under
grassland (Table 5.1.4). These reduced evaporation losses were compensated by increased
drainage losses (116.4 mm) from the arable field and 51.1 mm from the grass field. Rapid
flow losses were similar to those from the grass field.
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The annual estimated actual evaporation losses from the arable field (404.4 mm) was 73 mm
less than the water use of the whole catchment, given as the difference between the rainfall
and runoff totals. However, allowance has to be made for the increased bare soil evaporation
following stubble burning and ploughing, referred to earlier. The necessary correction, given
by the difference between estimated and measured soil moisture was 10.3 mm; this must be
added to the estimated evaporation, resulting in an annval total of 414.7 mm evaporative
losses from the arable field.

This value is similar to transpiration losses from barley quoted in the literature. For example
Kristensen (1974) estimated losses in the range 378 to 420 mm (average 395 mm), whilst
McGowan and Williams (1980} quote estimates of 426 and 371 mm.
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5.3 FORESTRY SITE

Six neutron access tubes were installed in the forested areaduring September 1989. The depth
of installation varied between 74 and 170 cm below ground level.

In contrast to the grassland and arable sites, it was found that significant changes in soil
moisture occurred throughout the soil profile and it was not reajistic to adopt a common depth
for computing transpiration losses for the six sites. Field capacity values, given as the total
profile water contents on the 7th March 1990, and the depths of installation for the six
forestry neutron access tubes are given in Table 5.3.1.

Table 5.3.1  Field capacity values {mm} and depth of installation (cm) for the forestry site

Tube 1 2 3 4 5 6
F.C. 131.5 27119 3479 193.5 1764 2876
Depth 74 120 170 94 100 100

Three processes need to be considered for the forested area. These are forest transpiration,
canopy interception, and drainage. The techniques employed are similar to those described
for the arable site.

Table 5.3.2 shows the zero or low rainfall periods used to calculate forest transpiration and
drainage for the six neutron access tubes. When calculating transpiration and drainage rates
for non-zero rainfall periods, a maximum daily rainfall interception of 0.5 mm has been
assumed. Although this introduces some degree of uncertainty into the calculations, any error
resulting is likely to be small as the changes in soil moisture are much greater than the
rainfall input. In any case, as will be seen later, a canopy interception value of 0.5 mm/day
is appropriate for most of the periods considered.

An initial analysis of the data in Table 5.3.2 showed that the ratio of actual to potential
transpiration was negatively correlated with both potential evapotranspiration and specific
humidity deficit. In the event, it was decided to use a regression based on potential
evapotranspiration, as suggested for beech and ash plantations in southern England by
Harding et al., (in press).

It was also found that the set of six access tubes could be separated into two groups according
to the soil moisture deficits generated in the summer months. This was as a result of
difficulties in installing the access tubes due to the presence of rocks, whilst it is likely that
the roots of trees would be able to abstract water from deeper down the profile. In general,
the shallower tubes (1, 4, and 5) had lower transpiration rates, and hence lower deficits, than
the deeper tubes (2, 3, and 6). The difference was so pronounced that the analysis had to be
conducted separately on the two sets of tubes. It is likely that both sets of tubes underestimate
transpiration by the trees but, in the absence of changes in soil moisture at greater depth,
some estimate has to be made using the available data.
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For those periods where the ratio of actual to potential transpiration was greater than unity,
it has been assumed that transpiration is at potential, and the difference is equal to drainage
from the s0il profile. Interception by the forest canopy was estimated by carrying out a water
balance for all the soil moisture periods and minimizing the differences between the observed
and predicted soil moisture totals. An analysis of the rainfall totals in the four period gauges
within the catchment (Fig. 2.1) suggested that the rainfall totals in the valley bottom were
significantly smaller than those in the interfluve areas. Therefore, the daily rainfall totals
from the automatic weather station were reduced (by 13%) to compensate for this whilst
computing these interception losses. :

Table 5.3.2  Periods used for estimating actual transpiration Jrom the forested area
showing precipitation (P), actual/potential daily transpiration (ETa/ETp) and
average soil moisture deficit (SMD)

Period P Tube 1 2 3 4 5 6
10.10-18.10.89 0.0 ETa/ETp 0.73 0.61
SMD 56 8 34.2
30.11-6.12.89 0.0 ETa/ETp £.84 0.74
SMD 12.1 10.0
1.8-8.8.90 0.0 ETa/ETp 0.17 0.30 0.45 0.38 0.18 0.65
SMD 57.5 118.3 125.0 452 53.7 i19.0
8.8-13.8.90 0.0 ETa/ETp 0.07 0.06 0.25 0.05 0.32
SMD 6l.1 124.0 135.0 572 133.0
22.8-29.8.90 00 ETs/ETp 0.12 0.48 0.37 0.13 0.27 0.14
SMD 59.6 120.4 126.4 43.0 52.5 131.8
12.9-17.9.90 0.0 ETa/ETp 0.20 0.18 0.23 0.22
SMD : 122.4 146.7 57.6 137.1
17.10-23.10.90 00 ET«/ETp 0.45 0.35
SMD 49.5 63.0
8.5-15.5.91 0.0 ETa/ETp 0.33 0.37 0.83 0.35 (.40 0.33
SMD 4.7 269 251 10.7 16.5 234
15.5-22.5.91 0.0 ETa/ETp 0.24 0.45 0.27 0.27 0.63 0.29
SMD 11.4 38.0 37.0 17.4 258 29.7
22.5-29.59] 0.0 ETa/ETp 0.27 0.42 0.48 0.30 0.28 0.40
SMD 18.1 50.6 46.3 24.3 34.5 37.6
23.3-28.3.90 0.5 ETa/ETp 0.25 0.47 0.97 0.23 0.44 0.37
SMD 6.2 16.1 9.3 4.8 12.9 14.5
4.4-11.4.90 0.5 ETa/ETp 0.26 0.15 0.17 0.07 0.30 0.25
SMD 9.2 233 21.6 8.0 19.3 245
25.4-2.5.90 0.5 ETa/ETp 0.33 0.43 0.31 0.31 0.21 0.14
SMD 17.0 38.2 334 12.1 26.7 30.6
17.4-24 4 91 0.5 ETa/ETp 0.47 0.42 0.37 0.42 035
SMD 19.6 16.9 9.6 15.0 24.1
1.3-7.3.90 2.0 ETa/ETp 2.90 6,92 1.21 1.88 5.06
SMD -7.0 -16.6 20 -4.5 -12.2
16.5-23.5.90 2.0 ETa/ETp 0.19 0.31 0.55 0.25 0.11 0.24
SMD 32.0 67.5 61.3 333 41.6 495
31.10-7.11.90 3.0 ETa/ETp 1.29 1.19 0.88
SMD 106.4 109.8 8.2
23.1-30.1.91 2.0 ETa/ETp 1.22 a.51 2.04 2.55
SMD 04 53 7.9 15.1
1.5-8.5.91 3.0 ETa/ETp 0.41 0.33 0.26 0.37 0.38 0.31
SMD =27 19.9 13.9 3.6 86 17.0
49-11.9.91 0.5 ETa/ETp 0.24 0.23 0.22 0.31 0.28 0.23
SMD 37.6 67.1 5038 13.5 41.0 72.6
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i) Shallow tubes (1, 4, and 5)

Figure 5.3.1 shows plots of the ratio of actual to potential transpiration against potential, and
of drainage against soil moisture deficit. For the former, it was found that the ratio of actual
to potential transpiration initially fell sharply against potential before levelling out at higher
potentials. Two straight line regressions, crossing at a potential transpiration value of 2.2
mm/day, were used to describe this relationship. The regression coefficients obtained by least
squares were:-

ETa/ETp

1.08 - 0.34 ETp ETp < 2.2 mm/day

ETa/ETp = 0.46 - 0.053 ETp ETp > 2.2 mm/day
There is no real pattern in the plot of drainage against soil moisture deficit though, at positive
deficits, the drainage rates were either zero or so low that they could be ignored.

Applying the above transpiration regressions with zero drainage rates to the whole soil
moisture data set produced the following daily equivalent canopy capacities (mm) for each
month;

0.5 0.5 0.5 2.0 2.0 35 s 35 20 1.0 0.5 0.5

A time series plot of measured and daily estimated soil moisture deficit is given in Figure
5.3.2. In general, the agreement is good, normally within 10 mm. The only significant
differences occur during November and December 1990. Here, estimated soil moisture
deficits are much lower than measured ie. the model predicts that the profile reaches field
capacity quicker than it actually does. Most of these differences are due to one particular
period, 23.10 ~ 31.10.90. During this period, 57.3 mm of rainfall was recorded at the met.
site, and it is quite possible that much of this may have acwally been lost as surface runoff
without contributing to the profile soil water.

(ii) Deep tubes (2, 3, and 6)

Figure 5.3.3 shows plots of the ratio of actual to potential transpiration against potential for
the three deep tubes in the forested area. The pattern is similar 10 that shown for the shallow
tubes. Again, two straight line regressions were derived, in this case crossing at a potential
transpiration of about 2.7 mm/day. Above this value, the ratio of actual to potential
_ transpiration seemed to increase, unlike the situation for the shallow tubes. The regression
coefficients obtained by least squares were:-

ETa/ETp = 1.24 - 0.34 ETp ETp < 2.7 mm/day
ETa/ETp = 0.18 + 0.044 ETp ETp > 2.7 mm/day
A plot of drainage rate (mmlday) against soil moisture deficit (mm) for positive and one

slightly negative deficit is given in Fig. 5.3.4. It was found that drainage was linearly
inversely proportional to deficit, and the followmg straight line regression was obtained by
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least squares:-
DRAINAGE = 1.29 - 0.052 SMD

Applying the above transpiration and drainage regressions to the whole soil moisture data set
produced the following daily equivalent canopy capacities (mm) for each month;

J F M A M J J A S 0 N D

0.5 0.5 05§ 1.0 2.0 2.5 3.0 30 2.0 1.0 0.5 0.5

these are similar to, but slightly smaller, than those for the shallow tubes.

A time series plot of measured and daily estimated soil moisture deficit is given in Figure
5.3.5. The agreement between observed and estimated is again very good apart from two
periods. The first is during the spring 1990 when the estimated soil moisture deficit is
consistently greater than observed by about 10 mm. This is solely due to differences during
one period, the st to the 7th March. During this period, 2 mm of rain fell, and the model
predicted that the deficit would increase from 0.6 mm to 10.7 mm, most of which was as a
result of drainage from the soil profile. When the measured soil moisture changes were
averaged, no change in deficit was suggested, though there was a great deal of variation
between the three sites.

The second period was at the end of 1990 when, 4s was the case of the shallow tubes, the
estimated soil moisture deficits suggest that the profile reached tield capacity sooner than
observed. In the case of the deeper tubes, this was due to changes during one period only,
20.12.90 - 1.1.91. For this, the model predicted a fall in deficit of 76.6 mm whilst the
observed values gave a fall of 5.2 mm. This was a particularly wet period when 73.8 mm of
rainfall occurred. It is quite possible that most of this may have been lost as surface runoff
without contributing to the soil moisture store.

The soil moisture deficits generated at the deep forest sites (Fig. 5.3.5) in the summer months
are approximately twice those at the shallow sites (Fig. 5.3.2). This is as a result of higher
evaporation losses (120 mm over the 22 months period) from the deeper sites compared to
the shallow sites (Table 5.3.3). These greater evaporation losses are balanced by higher flows
from the shallower sites.

Average values from the shallow and deep soil moisture sites have been used in Table 5.3.4,
where measured and estimated monthly totals of hydrological variables for the forested area
are tabulated. The rainfall totals shown as those recorded by the automatic weather station
(Fig. 2.1) reduced by 13% to compensate for lower rainfall rates in the valley bottom.

For 1990, it was found that actual evaporation losses were 486.6 mm, ot which 310.9 mm
(64 %) was transpiration, and 175.3 mm (36%) was evaporation from the forest canopy. The
latter shows that approximately 20% of the incoming rainfall was intercepted by the forest
canopy. These values agree well with others quoted in the literature eg. Roberts (1983), in
his review of a number of forests in the UK and western Europe, quoted an annual
transpiration loss of 320-344 mm, whilst Hall and Roberts, 1990 showed that between 10 and
36% of incoming rainfall was intercepted by broadleaved woodiand. These losses were
greater than those found for the grass and the arable tield. Estimated total tlow for 1990 was
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Monthly evaporation and runoff losses (mm) from the shallow and deep forest sites

Table 5.3.3
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395.0 mm composed of 30.6 mm of drainage from the soil profile and 364.4 mm (92%)
surface runoff. ' .
Table 5.3.4  Measured and estimated monthly 1otals (mm) of hydrological variables for the
Sforested areas at Slapton .
Month Measured Estimated
Rainfall Pot. Flow Act. Drainage Fast Total .
Evap Evap flow flow
1989 ¢
oCT 91.8 443 15.0 38.7 1.9 213 23.2
NOV ' 61.7 26.4 50.8 26.6 13.3 31.8 45.1 .
DEC 166.6 25.6 155.9 27.5 11.7 122.6 1343
1990 .
JAN 166.2 5.6 107.3 18.7 6.6 127 128.7
FEB 250.1 18.9 2745 26.4 17.1 206.7 2238
MARCH 13.5 37.6 57.8 28 4 6.9 0.4 73 .
APRIL 313 87.0 e ) 471 0.0 0.0 0.0
MAY 20.4 110.1 14.1 41,9 0.0 0.0 0.0
JUNE 68.3 85.8 11.5 63.6 0.0 0.0 0.0 .
JULY 33.1 133.6 10.0 58.9 0.0 00 0.0
AUG 46.1 109.5 8.0 53.9 0.0 0.0 0.0
SEPT 37.8 83.5 6.7 45.7 0.0 0.0 0.0
ocT 66.6 483 8.9 44.2 0.0 0.0 0.0 .
NOV 75.7 30.7 9.5 30.3 0.0 11.7 11.7
DEC 77.9 278 12.9 30.5 0.0 235 23.5
ANNUAL 887.1 778.4 542.4 486.6 30.6 364.4 395.0 .
TOTALS
1991 .
JAN 118.8 27.4 90.1 30.9 15.3 71.1 86.4
FEB 60.5 24.0 41.1 4.6 5.6 258 31.4 .
MARCH 118.3 45.4 129 8 326 15.6 71.5 93.1
APRIL 58.3 68.4 38.6 42.6 5.0 3.0 8.0
MAY 3.0 96.8 19.8 33.5 1.5 0.0 1.5
JUNE 130.5 $2.8 17.1 745 3.3 15.1 18.4 .
JULY 76.6 94.4 24.6 65.5 12.1 14.7 26.8
39




6. Water balance Calculations

Having estimated evapotranspiration losses from the three vegetation types and knowing their
areal extent, it is now possible to calculate the actual evapotranspiration losses from the
Slapton wood catchment, and to insert this into a water balance. For a given period, rainfall
to the catchment should be balanced by streamflow plus evapotranspiration losses, assuming
no change in the unsaturated zone soil moisture, and no deep percolation to groundwater. In
order to ensure that the first assumption is valid, the start and finish of the accounting period
are normally chosen so that there is no soil moisture deficit at either time. In this case, the
start and end of 1990 can be conveniently used. Also, for the Stapton wood catchment, it can
be reasonably assumed that deep percolation to groundwater is minimal through the
Dartmouth slates underlying the catchment,

Table 6.1 gives measured and estimated monthly totals of hydrological variables for the
Slapton wood catchment. The estimated actual evapotranspiration losses (ETa) are based on
the Landsat classification. Also shown are annual totals (January to January) for 1990. For
the latter, the difference between measured rainfall and flow gives an annual ‘water usc’ of
477.1 mm; this is in excellent agreement with the estimate of actual evapotranspiration of
456.9 mm. It would seem, therefore, on an annual basis at least, that the methods used to
estimate actual evapotranspiration are sensible.

On a shorter time scale, the situation is not so clear. Fig. 6.1 shows daily rainfall and
measured and estimated total flow tor the period 10th December 1989 to the 4th January
1990. During this period, 205 mm of rainfall occurred. Of this, 178.9 mm (87%) was
estimated to be net rainfall ie. gross rainfali-actual evapotranspiration , whilst 155.6 mm
(76% of gross rainfall) was lost as actual runotf. This suggests that, even for a small *flashy’
catchment such as Slapton wood, some additional store is present to modulate the rainfall.
This is confirmed in Fig. 6.1 by the difference between the net rainfall and actual streamflow
hydrographs. Also, the fact that the stream never dried out during the 22 months of study
points 10 the presence of an additional soil moisture store. Obviously, some means of routing
the net rainfall is required before the stream hydrograph can be modelled.

The model used in this report has not really addressed the problem of apportioning ‘excess’
water. It has been assumed that surface or ‘quick’ runoff occurs when the soil is above field
capacity, and drainage reduces exponentially with soil moisture deficit. In reality, rapid runoff
can occur either when the surface layer has reached saturation, not the same as field capacity,
or when the rainfall intensity exceeds the infiltration rate. Both processes can occur long
before the entire profile has reach field capacity. On the other hand, drainage will also occur,
at a higher rate, up to soil saturation and beyond, and it is incorrect to assign all rainfall to
rapid runoff when the soil is at tield capacity.

All of these considerations must be taken into account when routing net rainfall though,
provided that soil moisture and groundwater stores are similar at the beginning and end of
the accounting period, then long term inputs and outputs should balance, as demonstrated
above.
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Table 6.1 Measured and estimated mounthiy totals (mm) of Hydrological variables for the
Stapron wood catchment
Month Measured Estimated
Ruin ETp Ilow ETa Drainage Surface Total
Runeff flow

1989
OCT 105.5 443 15.0 37.2 53 37.3 42.6
NOV 70.9 26.4 50.8 2.4 14.2 40.0 543
DEC 191.5 25.6 155.9 223 13.7 150.9 164.7
1590
JAN 191.0 5.6 107.3 6.6 16.7 157.9 174.7
FEB 2875 18.9 274.5 18.2 16.3 249.1 265.4
MARCH 15.5 37.6 57.8 294 9.0 1.0 10.0
APRIL 36.0 87.0 21.2 623 0.9 0.0 0.9
MAY 235 110.1 14,1 652 0.0 0.0 0.0
JUNE 785 858 11.5 59.6 0.0 0.0 0.0
JULY 38.0 133.6 10.0 62.6 0.0 0.0 0.0
AUG 53.0 109.5 8.0 374 0.0 0.0 0.0
SEPT 43.5 835 0.7 370 0.0 0.0 0.0
oCcT 6.5 483 89 353 0.1 0.0 0.1
NOV "87.0 30.7 9.5 231 6.9 21.0 279
DEC 89.5 27.8 12.9 20.2 10.3 52.4 62.8
ANNUAL 1019.5 778.4 542.4 456.9 60.2 481 4 541.8
TOTALS
1991
JAN 136.5 27.4 90.1 19.4 16.0 104.1 120.2
FEB 69.5 24.0 q].1 12.1 10.8 44 .4 55.2
MARCH 136.0 45.4 129.8 35.2 14.4 99.6 114.1
APRIL 67.0 68.4 38.6 49.8 52 0.7 58
MAY 3.5 96.8 19.8 71.8 1.6 0.0 1.6
JUNE 150.0 §2.8 17.1 64.8 19 4.2 6.1
JULY 88.0 94.4 24.6 822 9.8 18.0 278

I —
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7. Discussion

This report describes the techniques involved in analysing remotely sensed imagery and the
usefulness of the resulting data, when combined with data from conventional field
experiments, in solving hydrological problems. In this particular case, the images were
acquired from a low flying aircraft, as it was felt that these high resolution images were
required to adequately describe the heterogeneous nature of the small area under
consideration. However, similar technigues could be applied to satellite images of larger,
more homogeneous, areas. '

Aerial photographs have been used extensively in the past for many hydrological applications.
This was also true for Slapton, where the black and white photographs taken with the Wild

RC8 camera were analysed under a stereo viewer 1o pinpoint the position of the flow gauging -

station at the outfall of the catchment (difficult on the ground because of the trees), and also
to help delineate the catchment boundary. Some of the interfluve areas were so flat that the
boundary could only be identified by ground survey. The use of a digital stereo plotter may
have reduced the amount of field work required.

The images from the Daedalus scanner were analysed to provide a land use classification and
the distribution of near surface soil moisture in the grassland areas of the catchment. The

latter was disappointing, the resulting classification being more of a distinction between the -

temporary and permanent grassland areas, than the distribution of soil moisture. One of the
reasons tor this was the very dry conditions and lack of spatial variability in soil moisture
experienced during the overflights. Hopefully, more positive results will be obtained during
the 1994 airborne campaign over the Wye catchment at Plynlimon.

Problems were also encountered with the land classifications, these being mainly due to large
variations in spectral response from the areas of forest affected by windthrow. Satisfactory
classifications were eventually obtained, particularly for the April ATM image, though the
effort involved was much greater than would normally have been expected. In this particular
case, such a detailed classification as given by the aircraft imagery was not required, and the
Landsat classification used. The reason for this was the lack of soil moisture data from under
the different agricultural crops. As a result, it had to be assumed that changes in soil moisture
observed under winter barley and temporary grass were applicable to all of the arable areas.
This assumption is clearly not valid as there will be differences in the cropping cycles,
rooting depths and transpiration demands of different agricultural crops. The same is true for
the grassland areas, where it has been assumed that soil moisture conditions under one flat,
temporary grass tield could be applied to all of the grassland areas of the catchment, including
the steep valley sides, covered by permanent grassland. The soil moisture distribution in the
forested sites were seen (o vary a great deal, though an attempt was made to minimize this
by considering ‘shallow’ and ‘deep’ soil moisture profiles. Windthrow areas within the forest
will also be problematic. In the Landsat classification, these have mostly been classed as
grassiand. In terms of the soil moisture distribution, this is probably more realistic than
regarding them as forestry, as there will be no canopy interception to reduce rainfall inputs
to these areas.

This attempt to estimate areal evapotranspiration is a simple example of how formulations
obtained at single points can be extrapolated to larger areas using a spatial data set, in this
case a land classification. For such a small,-accessible area, 2 more accurate classification
(with reservations about the forested area) could, and has been, obtained more cheaply by a
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ground survey. However, comparisons between the land classifications from the remotely
sensed images and the field surveys shows that the analysis of these images can produce
classifications with an acceptable degree of accuracy which may be useful for larger, remote
areas where maps are not available and ground surveys difficult.

The same applies to the formulations applied. Provided that the required process studies have
been done, estimates of a number of hydrologically relevant parameters, such as evaporation,
chemical and sediment losses, can be made over large areas. Also such as an approach need
not be limited to one particular spatial data set or need be confined to bulked areas. Advances
in the manipulating of spatial data sets, such as land cover, soil type, and topography, using
Geographic Information Systems, will provide a number of discrete conditions within the
areas of interest, and enable a fully distributed approach to be adopted to hydrological
modelling.
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Appendix I Reflectance spectra measured over
various land covers in the range 350 to
2500 nanometer using the IRIS
spectroradiometer. July 11th 1990.

Fig. 1 Temporary Grass

Fig. 2 Temporary Grass

Fig. 3 Winter Barley

Fig. 4 Winter Barley

Fig. 5 Spring Barley

Fig. 6 Spring Barley

Fig. 7 Bare Earth

Fig. 8 Bare Earth

Fig. 9 Permanent Grass

Fig. 10 Permanent Grass

Fig. 11 Bare Earth - recently irrigated
Fig. 12 Bare Earth - recently irrigated
Fig. 13 Cauliflowers

Fig. 14 Nettles ,
Fig. 15 Swedes

Fig. 16 Cut Grass
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Fig. 3 Winter Barley
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Fig. 5 Spring Barley
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Fig. 7 Bare Earth
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Fig. 9 Permanent Grass
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Fig.11 Bare Earth
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Fig. 13 Cauliflowers
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Fig. 15 Swedes .
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Appendix II Comparison of reflectance spectra
obtained using the IRIS
spectroradiometer for fields under
identical vegetation types.

Fig. 1 Temporary Grass
Fig. 2 Winter Barley
Fig. 3 Spring Barley

_ Fig. 4 Bare Earth
Fig. 5 Permanent Grass
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Appendix III

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

10

ATM |

ATM 2

ATM 3

ATM 4

ATM 5

ATM 6

ATM 7

ATM 8

ATM 9

ATM 10

Regression of ATM vs IRIS
radiances (w x 107 em? sr! nm™)
for the ATM band widths
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