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When the species is also a habitat: comparing the predictively modelled distributions

of Lophelia pertusa and the reef habitat it forms.
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Abstract

Internationally there is political momentum to establish networks of marine protected
areas for the conservation of threatened species and habitats. Practical
implementation of such networks requires an understanding of the distribution of
these species and habitats. Predictive modelling provides a method by which
continuous distribution maps can be produced from limited sample data. This method
is particularly useful in the deep sea where a number of biological communities have
been identified as vulnerable ‘habitats’, including Lophelia pertusa reefs. Recent
modelling efforts have focused on predicting the distribution of this species. However
the species is widely distributed where as reef habitat is not. This study uses Maxent

predictive modelling to investigate whether the distribution of the species acts as a
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suitable proxy for the reef habitat. Models of both species and habitat distribution
across Hatton Bank and George Bligh Bank are constructed using multibeam
bathymetry, interpreted substrate and geomorphology layers, and derived layers of
bathymetric position index (BPI), rugosity, slope and aspect. Species and reef presence
records were obtained from video observations. For both models performance is fair
to excellent assessed using AUC and additional threshold dependant metrics. 7.17% of
the study area is predicted as highly suitable for the species presence while only 0.56%
is suitable for reef presence, using the sensitivity-specificity sum maximization
approach to determine the appropriate threshold. Substrate is the most important
variable in the both models followed by geomorphology in the RD model and fine scale
BPI in the SD model. The difference in the distributions of reef and species suggest that
mapping efforts should focus on the habitat rather than the species at fine (100m)

scales.

Keywords: deep-sea; Lophelia pertusa; habitat mapping; biotopes; marine protected

area; maxent;

1. Introduction

The call for better spatial management of our marine environment is growing globally.
Specifically, there is momentum for the establishment of networks of marine

protected areas (MPAs) driven by global, European and (within the UK) national
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initiatives. One of the criteria by which MPAs are selected includes the protection of
habitats and species that have been identified as rare, sensitive, functionally

important, threatened and / or declining.

Within the NE Atlantic region the 1992 Convention for the Protection of the Marine
Environment of the north-east Atlantic (OSPAR Convention) gives the OSPAR
Commission a duty to develop means, consistent with international law, for
establishing protective, conservation, restorative or precautionary measures related to
specific species or habitats. A target date of 2010 has been set by OSPAR contracting
parties to achieve “an ecologically coherent network of well managed Marine
Protected Areas” that serve (at least in part) to protect those habitats and species
listed under Annex V of the Convention, on the OSPAR List of Threatened and/or

Declining Species and Habitats.

At a European level the EU Habitats and Species Directive (92/43/EEC) requires the
establishment of protected areas (Special Areas of Conservation — SACs) for habitats
and species listed under Annex | and V respectively of the Directive, in areas of sea
under the jurisdiction of member states (i.e. out to the 200 nm limit). In addition, the
2006 United Nations General Assembly Resolution 61/105 called “upon States to take
action immediately, individually and through regional fisheries management
organizations and arrangements, and consistent with the precautionary approach and

ecosystem approaches, to sustainably manage fish stocks and protect vulnerable
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marine ecosystems [VMEs], including seamounts, hydrothermal vents and cold water
corals, from destructive fishing practices”. This resolution has also ultimately resulted

in the establishment of MPAs for the protection of specific species and habitats.

In order to establish MPAs for the protection of listed habitats and species there is a
clear need to have a firm understanding of the distribution of those species and
habitats (i.e. maps). The difficulties and expense of collecting species and habitat
distribution data has led to the approach of using surrogates (Howell, 2010) and / or
predictive species modelling techniques to provide maps of the distribution of
vulnerable species (Bryan & Metaxas 2007; Holmes et al., 2007; Embling et al., 2010).
This approach is particularly useful for the deep-sea and high seas. Here, the vast area
involved, sparse and highly localised data available, and distance from land, compound
the problems encountered in shallow water settings. Within the deep-sea (high seas)
ecosystem there are few actual species that are listed as of conservation concern
under the legislation detailed above. Only commercially important fish species
including orange roughy (Hoplostethus atlanticus), Portuguese dogfish (Centroscymnus
coelolepis), and Leafscale gulper shark (Centrophorus squamosus), known to have
undergone significant declines (ICES, 2008; ICES, 2010) are included. However a
number of deep-sea habitats are listed. These habitats are predominantly biogenic in
origin or are in fact biological assemblages, and include Lophelia pertusa reefs, coral

gardens, sponge aggregations and sea-pen and burrowing megafauna communities, as
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well as other geogenic habitats such as carbonate mounds, seamounts, and oceanic

ridges with hydrothermal vents/fields.

Recently, efforts have been made to model the distribution of the cold water coral L.
pertusa from global to local scales, in order to identify areas of conservation
importance (Davies et al., 2008; Dolan et al., 2008; Guinan et al., 2009; Tittensor et al.,
2009). L. pertusa is a widely distributed species and occurs as isolated colonies on
boulders, cobbles, sand ripples, and even flat sea bed where some form of hard
substrate is available for attachment (Wilson, 1979; Mortensen and Buhl-Mortensen,
20044, b; Hovland et al., 2005). Its conservation importance stems from its reef
forming capacity. L. pertusa can form large reefs and giant carbonate mounds up to
300m high and several km in diameter (Roberts et al., 2006). Reef structures are highly
biodiverse, possibly rivalling tropical coral reefs (Roberts et al., 2006). They may also
have an important role as essential fish habitat but this is not yet clear (Husebg et al.,
2002; Auster, 2005; Costello et al., 2005). L. pertusa only forms reefs under specific
environmental conditions that are not yet fully understood but are controlled by the

interplay between local hydrography and sedimentary dynamics (Thiem et al., 2006).

Given that the species is widely spread while the reef habitat has specific
environmental requirements likely to result in a more confined distribution, to what
extent does the distribution of L. pertusa species act as a proxy for the reef habitat?

Mapping efforts that focus on the species rather than the habitat may produce maps



108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

of limited use to marine environmental managers if the distribution of the species is so
broad as to indicate reef habitat is widely spread. Using the species distribution as a
proxy for the habitat could provide a false impression of the extent of reef habitat and
effect assessments of rarity and threat from human activities. The aim of this study is
to use predictive modelling to investigate the difference in the distribution of the
species and habitat and assess the implications of any difference to marine
environmental management. Multibeam bathymetry, interpreted substrate and
geomorphology layers, and derived layers of bathymetric position index (BPI), rugosity,
slope and aspect are used as environmental input layers together with presence of L.
pertusa reef and species. Here we conform to the definition of L. pertusa reef following
Roberts et al (2006) as biogenic structures formed by L. pertusa frameworks that alter
sediment deposition, provide complex structural habitat and are subject to the
processes of growth and (bio)erosion. However, presence data are derived from
records of living L. pertusa reef only and not dead framework structures. The study

focuses on Hatton and George Bligh Banks in the N.E. Atlantic.

2. Methods

2.1 Site description

Hatton Bank and George Bligh Bank are part of the Rockall Plateau (Hitchen, 2004),
which is a large piece of continental crust that separated from the European continent
during the early Cretaceous (Hauterivian-Cenomanian) when the North Atlantic was in

the early stages of formation (Musgrove and Mitchener, 1996) (Fig. 1). Hatton Bank
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forms an elongate arc that stretches over 400 km and descends >2500 m below sea
level into the Iceland Basin to the west and 1100 m below sea level into the Hatton
Basin, (sometimes referred to as the Hatton-Rockall Basin), to the east. At its summit
Hatton Bank lies less than 500 m below sea level. South of 59°N Hatton Bank is
orientated approximately southwest-northeast, further north the orientation is more
east-west. George Bligh Bank is broadly conical in shape and situated at the north-
eastern end of the Rockall Plateau (and Hatton Basin). It rises to a summit at 450 m

below sea level, and has a diameter of roughly 75 km.

2.2 Data collection

Collection of biological (video) data and low resolution multibeam data from both
Hatton Bank and George Bligh Bank were undertaken over a one month period
(August-September) in 2005 using the commercial research vessel S/V Kommandor
Jack. Further collection of biological data and collection of higher resolution multibeam
data were undertaken over a two month period (August — October) in 2006 using the
commercial research vessel M/V Franklin. Video sampling stations were selected
during operations using multibeam bathymetry and backscatter data. Video tows were

selected to cover a range of geomorphology, substrate types and water depths (Fig. 1).

Video data were collected using the Seatronics drop frame camera system. The system

comprised an integrated DTS 6000 digital video telemetry system, which provided a
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real time video link to the surface, and a digital stills camera (5 mega pixel, Kongsberg
OE14-208). In the 2005 surveys, the video stream from the viewing screen of the
digital stills camera provided video data, in 2006 separate video (Kongsberg 14-366)
and stills cameras were used. Cameras were mounted at an oblique angle (video: 249;
stills: 222 from the horizontal) to the sea bed to aid in species and habitat
identification. Sensors monitored depth and altitude, and an Ultra Short Base Line
(USBL) beacon provided accurate (to approximately 1m) position data for the camera

frame.

The system was deployed from the starboard side of the vessel. Video tows were
between 250 and 1200 m long. For the majority of tows, vessel speed was
approximately 0.5 knots (min 0.3 and max 0.7 knots), with most tows lasting between
0.5 and 1.5 h. The drop frame was towed in the water column between one and three
metres (dependant on substrate type, topography and currents) above the sea bed. At
the beginning of each tow, starting from when the sea floor became visible, a 2-3
minute period was allowed before sampling, to enable the camera to stabilise before

commencing the transect.

Videos were reviewed and the occurrence of L. pertusa colonies and L. pertusa reef
habitat noted and linked to the navigational data from the USBL on the camera system,
such that the location of each colony / habitat occurrence was recorded. Presence

data for both species and habitat were then plotted in ArcGIS 9.3.
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2.3 Multibeam

Multibeam data were acquired in 2005 on S/V Kommander Jack using an EM120 (12
kHz; 191 beams) multibeam echosounder system which achieved good quality
bathymetric data with marginal quality backscatter data. During the 2005 survey
complete data coverage was achieved through 2500m line spacing on Hatton Bank and
1500m line spacing on the other survey areas. In 2006 multibeam data were acquired
on M/V Franklin using an EM1002 (95 kHz; 111 beams) multibeam echosounder
system which achieved excellent quality bathymetric and moderate quality backscatter
data. During the 2006 survey complete data coverage was achieved through 650m line
spacing on Hatton Bank and 500m line spacing on the other survey areas. It should be
noted that weather and sea conditions adversely impacted on the backscatter data
quality during both the 2005 and 2006 surveys. Positioning was accomplished using
real-time Differential GPS (DGPS)systems. The C-Nav system was used in 2005 and the
ARON 2000 system in 2006. All data acquisition systems took their time stamp from
the primary DGPS which had a theoretical accuracy of better than 0.5m. Sound velocity
measurements were performed at regular intervals to account for hydrology effects
during both surveys. Multibeam data were processed onboard ship and ashore by
OSAE Ltd in 2005 and Marin Matteknik AB in 2006. Data were gridded at resolutions
appropriate to the quality of the data (2005: 200m grids; 2006: 25m grids). Minimum
waters depths encountered over Hatton Bank were -483m, Lyonesse Seamount -507m

and George Bligh Bank -435m. The maximum water depth of -1679m was encountered
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on the eastern flank of George Bligh Bank as it descends into the Rockall Trough. As
Maxent requires all environmental data to have the same geographic bounds and cell
size the 2006 multibeam dataset was regridded in ArcGIS 9.3 to a 200m grid and
merged with the 2005 multibeam dataset to produce a single bathymetry data layer,

which was used to produce subsequent derived layers (see section 2.4).

2.4 Derived layers

Additional environmental layers included in the model were layers derived from the
multibeam bathymetry and were generated in ArcGIS using the spatial analyst and
benthic terrain modeller extensions. Derived layers included slope, rugosity (indicates
the ratio of surface area to planar area), aspect (identifies the direction of the steepest

slope) and bathymetric position index at broad and fine scale.

Bathymetric Position Index (BPIl) is a measure of where a referenced location is relative
to the locations surrounding it. Derived from an input bathymetric data set, a
neighbourhood analysis function produces an output raster in which the output cell
value at each location is a function of the input cell value and the values of the cells in
a specified "neighborhood" surrounding that location. As bathymetric position is an
inherently scale-dependent phenomenon (Weiss, 2001) both fine scale and broad scale
BPI data sets are usually created, whereby the fine scale BPI layer is generated using a

smaller analysis neighbourhood than the broad scale BPI layer. In the present study
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the default settings used in the Benthic Terrain Modeller extension to ArcGIS were
applied to calculate coarse scale and fine scale BPI layers. These are, for broad scale
BPI: inner radius = 1, outer radius = 5, and fine scale: inner radius = 1, outer radius = 3.
Positive cell values within a BPI data set denote features and regions that are higher
than the surrounding area. Conversely negative cell values within a BPI data set denote
features and regions that are lower than the surrounding area. BPI values near zero
are either flat areas (where the slope is near zero) or areas of constant slope (where

the slope of the point is significantly greater than zero) (Weiss, 2001).

2.5 Sea-bed Substrate and Geomorphological Interpretations

All data were used to produce ArcGIS layers of sea-bed substrate and
geomorphological features. For each digital stills image acquired a sea-bed sediment
classification was assigned. These point classifications were used to ground-truth the
multibeam echosounder and backscatter data allowing a complete sea-bed substrate
interpretation to be created utilising all available data layers including derived layers. It
should be noted that the backscatter quality was not suitable for accurate habitat
differentiation as poor weather conditions and sea-state introduced noise which
masked the more subtle geological variations of the sea floor. Following the sea-bed
substrate classification, a geomorphological interpretation was created using standard
geological terms and definitions. Geomorphology from the study area is described by

10 classes, with substrate described by 9 classes (Table 1).
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The following 8 environmental data layers were prepared in ArcGIS 9.3 for use in
Maxent: continuous variables - bathymetry, slope, aspect, fine scale BPI, broad scale

BPI, rugosity, categorical variables - substrate and geomorphology.

2.6 Maximum Entropy Modelling

Maximum entropy modelling was introduced as a general approach to presence only
modelling of species distributions by Phillips et al. (2004; 2006). It has subsequently
been shown to perform very well against other presence only models (Elith et al.,
2006) with specific comparisons made between Maxent and environmental niche
factor analysis (ENFA) applied to predictions of the global distribution of stony corals
(Tittensor et al., 2009). Maxent estimates a target probability distribution by finding
the probability distribution of maximum entropy subject to a set of constraints that
represent our incomplete information about the target distribution (Phillips et al.,
2006). Put simply and in the context of the present study Maxent allows the user to
predict the distribution of a species/ habitat in terms of probability of occurrence, by
finding the distribution that agrees with everything known about the distribution of
the species / habitat (given the environmental data that has been provided to the

model), without making any assumptions about what is not known.

Single models were constructed for L. pertusa species distribution (SD) and L. pertusa

reef distribution (RD) using Maxent version 3.3.2, available for free download on

12
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http://www.cs.princeton.edu/ ~schapire/maxent/. Maxent was run with default

settings: convergence threshold 10™ and maximum number of iterations of 500,
regularisation set to 1, that have been shown to achieve good performance (Phillips
and Dudik, 2008) even with small size datasets. However, for the RD model following
visual inspection of the response curves and subsequent trials with increased
regularisation, the regularisation parameter was set to 2 to reduce over fitting of the
model. Maxent results are given in a logistic system where values near 0 mean low

probability of presence and values near 1 mean high probability of presence.

2.7 Model evaluation

The models generated were evaluated in two ways.

Firstly, threshold independent ROC (receiver operating characteristic) curves were
used to measure how successful the prediction was using the area under the curve
(AUC) (Fielding & Bell, 1997). As a result of the sampling method used (video
transects), the presence data for both SD and more obviously for RD were spatially
autocorrelated within transects. To attempt to account for this in the model evaluation
process cross validation of the both models was performed manually rather than using
the Maxent replicates setting. For the SD model 1479 presence records (reduced to
102 cells with presence records) were obtained from 43 transects. These data were
partitioned such that approximately 25% of the transects (10 or 11) constituting ~25-
30% of the presence records were omitted from model building and used as a test

dataset. This process was repeated 10 times and average AUC and standard deviation

13
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of AUC across all 10 models was calculated. For the RD model the nature of the reef
presence data was such that although there were 9 cells with reef presence, in truth
this amounted to observation of 6 complete reefs (as one reef occupied more than one
cell). Therefore cross validation of the RD model was performed by splitting the
presence data into groups corresponding to the 6 reefs observed and using these data
to manually run the Maxent model 6 times, leaving out one ‘complete reef’ presence
each time. Average AUC and standard deviation of AUC across all 6 models was
calculated. However the small total number of presence samples available to the
model suggests that cross validation may be inappropriate given that test data sets

may consist of a single presence point.

Secondly, the model assessment indices: percent correctly classified (PCC), specificity
and sensitivity (Fielding & Bell, 1997), were calculated using the Presence-Absence
Model Evaluation library (Freeman, 2007) in R (R Development Core Team, 2010).
These indices require that a threshold be used to convert the continuous Maxent
probability of occurrence prediction to a binary prediction delimiting presence or
absence. Determining the appropriate threshold for Maxent models is an interesting
and ongoing area of research (Liu et al., 2005). In this study three possible thresholds
were assessed for their use in producing a reliable binary output map (Table 2). The
three selected for testing were from the group of metrics identified as ‘good’ by Liu et
al. (2005).The effectiveness of each threshold was evaluated in R (R Development Core

Team, 2010) using the Presence-Absence Model Evaluation library (Freeman, 2007)
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and model assessment indices listed previously. For SD and RD models the model build
datasets were used together with absence data obtained from video analysis to assess
the appropriateness of the thresholds. In addition thresholds were also assessed for
each of the training and test model datasets and average performance of each
threshold calculated. The most appropriate threshold was defined as that which
resulted in constantly delivering the highest sensitivity score, since the precautionary
principle suggests that false positives are less of a concern than false absences. For this
study the sensitivity-specificity sum maximization approach where the sum of

sensitivity and specificity is maximized Cantor et al. (1999), was selected (Table 2).

2.8 Assessment of variable importance within the models

Jacknife tests were undertaken to assess variable importance during model
development by comparing the model gain (a measure of goodness of fit closely
related to deviance) associated with models constructed with each variable omitted in
turn, models constructed using individual variables only, and the full final model.
Relative changes in gain between the full model and models constructed without one
variable and with only one variable allow an assessment of relative importance of each

variable to the final model build.

2.9 Quantification of species and habitat distribution
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Binary maps for both SD and RD predicted distribution, produced using the sensitivity-
specificity sum maximization approach threshold obtained for the full models (SD=0.2,
RD=0.25), were used to quantify the difference in area suitable for L. pertusa species

and L. pertusa reef habitat in ArcGIS 9.3.

3. Results

3.1 Model evaluation

For all partitions of the occurrence data, for both the Lophelia pertusa species
distribution (SD) and Lophelia pertusa reef distribution (RD) models, the AUC values
achieved by the training-test data were better than random (Table 3) (AUC>0.5). Full
model AUC and mean training and test AUC for both SD and RD models could be rated
a fair (0.7-0.8), good (0.8-0.9) or excellent (0.9-1). However, the consistently higher
AUC value for the RD training-test models and the higher AUCs for the full model
(Table 3) indicates that the whole RD model can better discriminate between suitable

and unsuitable distribution areas for L. pertusa reef than for L. pertusa species.

Threshold dependent model assessment indices for the sensitivity-specificity sum
maximization approach threshold also indicated that, when measured using PCC and
sensitivity, the SD models performance was generally fair, while the RD models

performance was generally excellent. Specificity scores for the SD models ranged
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between awful (<0.6), poor (0.6-0.7) and good (0.8-0.9) reflecting the decision to select

a threshold to maximise sensitivity scores.

3.2 Importance of environmental variables within each model

Jackknife tests of variable importance revealed the models generated for both SD and
RD relied heavily on the substrate variable both in terms of having the most useful
information by itself and having the most information that was not present in the
other variables (Fig. 2). Analysis of response curves created through construction of
Maxent models using single variables illustrated the dependence of predicted
suitability on substrate, with the bedrock, gravel and sandy gravel categories as most

important in the SD model and bedrock as most important in the RD model (Fig. 3).

Within the RD model geomorphology was the second most important variable in terms
of having the most useful information by itself, but was of limited importance to the
SD model (Fig. 2). The geomorphological categories flank, pinnacle/mound, ridge, and
escarpment were of most use. However, for both SD and RD models omission of the
geomorphological variable resulted in the second largest drop in gain after depth and
substrate respectively suggesting that the geomorphological layer contained

information that was not present in the other variables (Fig. 2).
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For both SD and RD models fine scale BPl and broad scale BPI were the next most
important variables in terms of providing the highest gain when used in isolation to
construct models (Fig. 2). As the information in one BPI layer was essentially also
contained in the other BPI layer, albeit at different resolution, in order to fully assess
the importance of BPI to the SD and RD models, both models were rerun including only
one BPI variable. However, in both the original models and the rerun models there was
a negligible change in gain when BPI was omitted in jacknife analyses. This suggests
that BPI does not contain any information that was not present in other variables.
Analysis of response curves illustrated subtle differences between models in the
dependence of predicted suitability on both fine scale and broad scale BPI. Within the
SD model both high negative values and high positive values were of greatest
importance (Fig. 3). However within the RD model only high positive values were of

greatest importance.

Within the SD model rugosity and slope were the next most important variables (Fig.
2). However, omission of the slope or rugosity variable in jacknife tests resulted in a
negligible drop in training gain. This suggests neither variable contained information
that was not present in other variables. Analysis of response curves suggested the
highest probability of occurrence of SD was achieved at rugosity of >1.01 and slopes of

>20° (Fig. 3).
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Jackknife tests of variable importance suggested that for both models bathymetry was
of limited importance alone, however omission of the bathymetry variable from the
models resulted in the third largest drop in training gain, suggesting the bathymetry
variable contained information not present in other variables (Fig. 2). Heuristic
estimates of relative contributions of the environmental variables to the Maxent
model suggests that for SD and RD models bathymetry contributed 14.7% and 0.7%
respectively. Analysis of response curves suggest the depths that resulted in the
highest probability of SD presence were 500-900m, however for RD the probability of
presence was predicted to increase with depth (Fig. 3), most likely a reflection of the

limited depth range sampled.

Aspect was of least importance in both SD and RD models (Fig. 2) although

interestingly probability of species occurrence was lowest at a bearing of 300°.

3.3 Potential distribution of Lophelia pertusa species and reef
Binary maps (1-presence, 0-absence) of both species and habitat distribution show L.
pertusa species is distributed over a broader area (7.17% of the map area) than L.

pertusa reef habitat (0.56% of the map area) (Fig. 4).

4, Discussion

4.1 Species vs habitat distribution
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On Hatton Bank and George Bligh Bank, the models identify a broader area of high
suitability for the species than for reef (7.17% vs 0.56% of the total area respectively
using the sensitivity-specificity sum maximization threshold). Visual analysis of the
spatial distribution of areas predicted as highly suitable for species and reef suggests

that reef distribution is a highly restricted subset of species distribution.

Within the SD model the species was associated with bedrock, gravel and sandy gravel
substrate categories, with no one geomorphological class of particular importance.
These findings support what is currently known of the ecology of this species. L.
pertusa has a cosmopolitan distribution (Zibrowius, 1980) and occurs as individual
colonies under a relatively broad range of conditions, from depths of 40-3400m,
temperatures of between 4-13°C, salinities of 32-38%o. and across different oceans
including the NE Atlantic, Barents Sea, the Mediterranean, and the Gulf of Mexico
(Freiwald et al, 2004). L. pertusa is found on hard and mixed bottoms (Dons 1944;
Frederiksen et al., 1992) and in areas of fine sand where some form of hard substrate
is present for initial attachment. Wilson (1979) suggested that suitable substrata for
colony growth may be small e.g. mollusc shells, cobbles and boulders. It is not

surprising then, to find that the species is likely to be found over a relatively wide area

In comparison to the species, L. pertusa reef habitat is not widely distributed. The RD
model indicates that reef habitat is only likely to be present over small areas on both

Hatton Bank and George Bligh Bank. Within the wider NE Atlantic a limited number of
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large reef structures (mound regions) have been identified (see Wheeler et al, 2007 for
a review). L. pertusa only forms reefs under a specific set of environmental conditions.
The largest reefs occur in depths between 500-1200m (Frederiksen et al., 1992;
Wheeler et al., 2007) and may be associated with topographic features such as ridges
(Sula Ridge), escarpments (Pelagia Mounds) and channels (Hovland Mounds) (Wheeler
et al., 2007). Within the RD model reef habitat was clearly associated with bedrock

substrate, and ridge, escarpment, flank and pinnacle/mound features.

While fundamental questions remain concerning the physical factors that are
important in the development of reefs, recent research has highlighted the significance
of hydrodynamic conditions in reef formation. Reef habitat forms in areas of enhanced
turbidity, within a narrow density envelope, with high current velocities that prevent
local sedimentation but provide enhanced encounter-rates with food particles (Thiem
et al., 2006; Mienis et al., 2007; Dullo et al., 2008). These conditions must be stable
over long periods of time to allow reef development (Thiem et al., 2006). Inclusion of
hydrographic data in the model would undoubtedly improve the model fit and
predictive power, however fine scale oceanographic data are not widely available.
Geomorphology acts as a surrogate for fine scale current speed. The relationship
between reef habitat and geomorphological features such as ridges and escarpments
identified by the model most likely reflects both the substrate and hydrodynamic

requirements of reef habitat development.
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4.2 Importance of environmental parameters to predictive modelling of L. pertusa

species and habitat distribution.

Within both the SD and RD models, substrate, geomorphology and BPI were the most
important variables in terms of their importance to predicting species and habitat
distribution, followed by rugosity and slope for SD and depth and slope for RD. These
findings support those of Guinan et al. (2009a) who also found that at a slightly finer
but comparable spatial scale (30m multibeam grids) the most important variables in
predicting L. pertusa species distribution using GARP modelling, were rugosity and
slope. At finer resolution (0.5m mutlibeam grids) Dolan et al. (2008) found BPI,
structural complexity (fractal dimension) and orientation were important variables in
using ENFA modelling. At coarser resolution (550m grids) Guinan et al. (2009a) found
in addition to rugosity and slope, that aspect was weakly important. Neither Dolan et
al. (2008) nor Guinan et al. (2009) had produced interpreted layers for substrate and
geomorphology from multibeam bathymetry and backscatter and thus did not include
these variables in their models. Following these studies Guinan et al. (2009b)

concluded that coral abundance increases with increasing BPI, rugosity and slope.

Within the SD and RD models high positive BPI values were associated with high
probability of occurrence suggesting both species and habitat are associated with
raised features. High probability of species presence was also associated with high
negative BPI values, suggesting the species may be associated with depressions as well

as raised features. Probability of occurrence also increased with increasing rugosity
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and slope to an asymptote (~1.16 and 30° respectively) suggesting values above this

may not increase the probability of presence.

4.3 Implications for marine environmental management

The difference in area identified by the models as suitable for the species compared to
the habitat has important implications for environmental management and the design
of marine protected area networks (MPAs). As reef distribution is a restricted subset of
species distribution, calculations of habitat extent based on the species distribution
(e.g. within a given countries EEZ or an area covered by a particular convention such as
OSPAR in the NE Atlantic), will be gross overestimates, and will thus mask the relative
rarity of the habitat. In addition, in the complex task of identifying suitable boundaries
for MPAs for the purpose of conserving reef habitat, boundaries drawn on the basis of
species distribution may fail to include the target habitat. It is therefore desirable,
where possible, to focus on the distribution of the habitat over the species at least at
fine scales. However, it would be unwise to consider only reef habitat distribution in
conservation planning, since connectivity between reef areas is likely to be maintained
by the wider species distribution. Isolated colonies on cobbles may well provide a
mechanism for gene-flow between larger reefs. This is particularly important as gene
flow occurring among subpopulations is moderate at best with high levels of
inbreeding and self-recruitment (Le Goff-Vitry et al., 2004). Research is needed into

issues of connectivity with respect to MPA planning.
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The use of predictive species modelling in the deep-sea is a relatively new field.
Recently models constructed at global and regional scales used broad-scale
oceanographic data at cell sizes of 130km, 1 degree and 0.25° to predict the
distribution of L. pertusa species (Davies et al., 2008; Tittensor et al., 2009.). These
models identified the levels of nitrate silicate and phosphate, aragonite saturation,
dissolved oxygen, and percent oxygen saturation as important in predicting the
distribution of L. pertusa. The spatial resolution of the environmental data used in
these models (in many cases data derived from model predictions) are inadequate to
capture the fine-scale current regimes likely to determine the specific sites at which
reefs are present (Guinan et al., 2007). Therefore, while on global and regional scales a
focus on modelling (and mapping) the distribution of the species is useful and
appropriate for assisting in targeting and coordinating conservation efforts (Davies et
al., 2008; Tittensor et al., 2009), the discrepancy between the areas of predicted
presence of the species and the habitat in this study suggest that predictive modelling
of habitat distribution at fine scales is more useful in terms of identifying areas of reef

occurrence.

The importance of substrate, geomorphology, BPI, rugosity and slope to habitat
distribution reflect the hydrodynamic conditions required for reef formation. This is
important in terms of future mapping efforts. For L. pertusa reef, variables derived
from multibeam bathymetry and interpreted backscatter data collectively act as

suitable surrogates for those environmental factors, which are critical in determining
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reef distribution, but for which we generally lack fine-scale data. This suggests that it
may be possible in future to undertake multibeam survey of appropriate resolution for
large areas of the deep-sea and from that produce reasonable maps of reef
distribution with limited ground truthing required. It also suggests that the final model
produced here could be used to predict the distribution of reef habitat in other areas.
However, the restricted depth and temperature range of the study area limits the final

model to use in areas of similar environmental conditions.

What constitutes an appropriate resolution (multibeam grid size) for a given accuracy
of predictive map requires further investigation if managers are to make informed
decisions to balance predictive accuracy with survey cost. In addition the inclusion of
interpreted substrate and geomorphology layers and their resulting importance in
both SD and RD models suggests that these variables are particularly useful in
providing good predictions. However, these interpretations take considerable time and
skill to produce. In practical terms there may be a trade off between the time (and
expense) taken to interpret such datasets and the gain in the accuracy of predicted
distributions. Further research is needed into assessing such tradeoffs in the

application of these methods.

4.4 Use of Maxent in predictive modelling of biological community distribution

(biotope mapping).
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The use of predictive modelling in marine community mapping is in its infancy (Kelly et
al., 2001; Meleder et al., 2010). However, this technique has considerable benefits to
offer to conservation efforts in the deep-sea where areas are vast, biological data are
sparse and new survey is expensive. In shallow water areas remote sensing tools such
as airborne and satellite imagery and aerial photography may be used to map the
distribution of some habitats (Holmes et al., 2007). However, these tools rapidly reach
their limits for sub-tidal surveys because of the absorption of visible radiation by
water. At greater depths mapping is achieved using acoustic devices such as
multibeam and sidescan sonar which are then ground truthed using video or other
physical sampling methods (Brown et al., 2002; Huvenne et al., 2005; Brown and
Blondel, 2009; Buhl-Mortensen et al., 2009). Although methods of mapping benthic
assemblages vary, in general expert judgement is used to predict where assemblages
will occur based on where they have been observed. This effectively amounts to
predictive modelling using the mind. There is therefore a potential role for predictive
modelling in biological assemblage (or biotope as defined by Dahl (1908)) mapping
(Eastwood et al., 2006; Wilson et al., 2007). This study has demonstrated the potential
use of the freely downloadable software Maxent to model the distribution of L.
pertusa reef in benthic mapping efforts. This approach could be broadened and
applied to other listed biogenic habitats / biological communities such as coral
gardens, sponge aggregation etc, as well as any other defined benthic assemblages

(biotope).
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George Bligh Bank.

Code Substrate

Table 1: Sea-bed substrate and geomorphology classes identified on Hatton Bank and

Geomorphology

1 Gravelly Sand
2 Gravel
3 Bedrock
4 Gravelly Muddy Sand
5 Sand
6 Mud
7 Sandy Gravel
8 Muddy Sand
9 null
10 Sandy Mud
11 null

Scour

Relatively Flat Lying Sea Bed
Pinnacle / Mound
Escarpment

Iceberg Ploughmarks
Furrow

Ridge Crest

Flank

Channel

Ridge

Depression
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Table 2: Threshold dependent model performance metrics for SD and RD models for three different thresholding approaches.

SD models Full model build data Average training Average test

Threshold PCC , sensitivity specificity PCC , sensitivity specificity PCC , sensitivity specificity
Sensitivity-specificity equality 0.72 0.72 0.72 0.71(0.08) 0.71(0.08) 0.71(0.08) 0.73(0.12) 0.73(0.12) 0.73(0.12)
Sensitivity-specificity sum maximization 0.67 0.92 0.58 0.70(0.05) 0.81(0.17) 0.687(0.07) 0.8070.10) 0.72'(0.16) 0.82(0.10)
ROC plot-based approach 0.74 0.72 0.75 0.727(0.03) 0.76(0.13) 0.717(0.03) 0.787(0.10) 0.74(0.14) 0.8070.10)
RD models

Sensitivity-specificity equality 0.90 0.94 0.90 0.79'(0.05) 0.79(0.05) 0.79(0.05) 0.93(0.08) 0.96'(0.10) 0.93(0.08)
Sensitivity-specificity sum maximization 0.90 0.94 0.90 0.77(0.14) 0.9270.11) 0.76'(0.14) 0.9270.11) 1.0070)  0.90(0.13)
ROC plot-based approach 0.90 0.94 0.90 0.84(0.11) 0.827(0.07) 0.84(0.11) 0.9370.08) 0.96(0.10) 0.93(0.08)

39



772  Table 3: Area Under the Curve (AUC) scores for SD and RD models for full models and

773  all partitions of the occurrence data into training-test datasets.

SD Model Training AUC  Test AUC RD Model Training  Test AUC
AUC
Full model 0.964 0.808 Full model 0.998 0.940
Cross validation models
1 0.839 0.695 1 0.924 0.792
2 0.567 0.774 2 0.909 0.870
3 0.856 0.744 3 0.946 0.912
4 0.634 0.884 4 0.854 1.000
5 0.797 0.721 5 0.876 1.000
6 0.815 0.957 6 0.876 1.000
7 0.822 0.854
8 0.821 0.802
9 0.828 0.627
10 0.830 0.973
Mean 0.781 0.803 0.897 0.929
774 Standard Deviation 0.098 0.113 0.035 0.087

775
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Figure Captions

Figure 1: The study area with sample details shown. Depth contours taken from the
GEBCO digital atlas and are in 100m isobaths down to 1000m, thereafter in 500m

isobaths.

Figure 2: Jacknife of regularised training gain for a) Lophelia pertusa species and b)
Lophelia pertusa reef. “Without variable” — each variable is excluded in turn and a
model created with the remaining variables; “With only variable” — model constructed

using only one variable; “With all variables” — full model build.

Figure 3: Response curves generated from a model built using only the corresponding
variable for a) Lophelia pertusa species and b) Lophelia pertusa reef. Y axis =
probability of presence, X axis label given above each plot, or for substrate codes 1-10

and geomorphology codes 1-11, see Table 1.

Figure 4: Modelled distribution of Lophelia pertusa species and Lophelia pertusa reef a)
on a subsection of Hatton Bank (inset) and b) on a small area identified in a. Maps c-e
show the individual environmental layers from the same area as b, and illustrate the
relationship between predicted presence areas and the 2 most important

environmental variables in each model.
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SD Model Training AUC  Test AUC RD Model Training  Test AUC

AUC
Full model 0.964 0.808 Full model 0.998 0.940
Cross validation models
1 0.839 0.695 1 0.924 0.792
2 0.567 0.774 2 0.909 0.870
3 0.856 0.744 3 0.946 0.912
4 0.634 0.884 4 0.854 1.000
5 0.797 0.721 5 0.876 1.000
6 0.815 0.957 6 0.876 1.000
7 0.822 0.854
8 0.821 0.802
9 0.828 0.627
10 0.830 0.973
Mean 0.781 0.803 0.897 0.929

Standard Deviation 0.098 0.113 0.035 0.087
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