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Abstract 

An integrated geological, geophysical and remote sensing survey was undertaken as part of the 

construction of a high resolution 3D model of the shallow subsurface geology of part of the Trent 

Valley in Nottinghamshire, U.K. The 3D model was created using the GSI3D software package and 

geophysical techniques used included Ground Penetrating Radar (GPR), Electrical Resistivity 

Tomography (ERT) and Automated Resistivity Profiling (ARP). In addition, the remote sensing 

techniques of Light Detection and Ranging (LIDAR) and Airborne Thematic Mapping (ATM) were 

used. The objective of the study was to assess the contribution of these techniques to improve the 

geological mapping and interpretation of terrace deposits and other geological features. The study 

site had an area of ~2 km2 and consisted of a Triassic mudstone escarpment, overlain first by a sand 

and gravel river terrace that extended to the modern floodplain of the River Trent. ARP mapping 

proved to be the central tool in identifying and positioning geological features at a greater resolution 

than would be obtained through traditional geological mapping and borehole observation. These 

features included (i) a buried cliff delineating the south eastern limits of the incised Trent valley, (ii) 

siltstone beds within the Gunthorpe Member of the Mercia Mudstone Group and (iii) the variability 

of the sediments within the river terrace. A long ERT transect across the site successfully imaged 

the buried cliff and outcropping siltstone beds on the escarpment. Combined ERT and GPR 

transects revealed the depth of the sand and gravel deposits (Holme Pierrepont sands and gravels), 

whilst the GPR provided information about the depositional environment. Remote sensing using 

LIDAR proved essential in the original geological survey because it confirmed the absence of a 

second river terrace that had been previously thought to exist. This case study demonstrates the 

importance of combining geophysical techniques with traditional geological survey and borehole 

analysis, in order to create high-resolution 3D geological models, which are increasingly being used 

as a platform to understand and solve environmental problems. 
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1. Introduction  

As anthropogenic activity increases pressure on land and water resources, a greater understanding of 

the structure of the near surface environment or ‘critical zone’ is required (Brantley et al., 2007; 

Anderson et al., 2007). Developing a systems-based approach, rather than studying isolated 

components of the near surface environment, will aid the understanding of natural processes as well 

as anthropogenic impacts on the shallow earth surface. One advancing technology that can provide a 

platform for understanding such processes and impacts are digital geological models that include 

soils and superficial geology. These can be created using specialised software such as GSI3D 

(Kessler et al., 2009). The construction of a 3D model is based on a geoscientist’s ability to interpret 

the geological terrain, borehole data and geophysical information at their disposal in one single 

virtual environment. Once complete the 3D model can be considered a predictive tool which can be 

interrogated at any one point to assess the spatial geological structure within the modelled area. One 

of the many attributes of the GSI3D software is that the model can be interrogated so that borehole 

logs and cross-sections of the geology can be generated at any point, thus providing an interactive 

interface for the user community. It also provides a spatial framework in which geological units are 

considered to be domains. Property information can be assigned to the domains or they can be re-

classified. For example, domains can be reclassified as hydro-geological units (Macmillan et al., 

2000; Lelliott et al., 2006). Thus they can provide an important management tool, especially for 

non-geologists, enabling the depth and relationships of the different geological or soil domains to be 

seen in a spatial context. In future these models could potentially incorporate or be used as a basis 

for process-based numerical models. Therefore the geological and soil mapping of these models is 

required to be as accurate as possible. 

 

One particular environment where 3D models of the near surface environment can have a major 

impact is that of river terraces. These usually consist of a series of fluvial deposits of great 

heterogeneity that can be important for many reasons. For example, river terraces can be a major 
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source of aggregates for the construction industries. One of the benefits of the GSI3D software and 

models are that volumes of sand and gravel deposits can be calculated by converting mapped areas 

into volumes (Chambers et al., 2008). With increasing soil sealing and building on floodplains, the 

utility of 3D models can help determine and model the hydrology and storage of water in terraces 

and flood plains. Knowledge of the volume of alluvial deposits and channels with low storage 

volumes in the floodplain will enable improved calculations of the water storage capacity of the 

terrace deposits within wider flood water storage schemes. For example, Newell (2007) determined 

the volume of man made deposits (low storage capacity) within a 3D model of the River Thames at 

Oxford as part of a project examining flood defence systems. Accurate 3D geological representation 

and property information are used within ground water modelling packages such as ZOOM or 

MODFLOW (Merritt et al., 2007; Hughes et al., 2008). The accurate positioning and knowledge of 

different deposits and their transmissivities are essential in understanding groundwater flow and the 

potential for contaminant transfer and possible areas of attenuation.              

 

Typically, 3D models are constructed through traditional geological surveys and combined with 

geological borehole information. However, geophysical and remote sensing methodologies have 

increasingly been used to improve the understanding and interpretation of complex superficial 

alluvial or quaternary deposits. Subsurface imaging techniques such as Electrical Resistivity 

Tomography (ERT) and Ground Penetrating Radar (GPR), especially if used in combination, can be 

a particularly effective tool at interpreting depositional environments and features in flood plains 

(Hugenholtz et al., 2007; Lunt et al., 2004; Lunt and Bridge, 2004; Neal, 2004). In another example, 

Gourry et al. (2003) used three classical geophysical methods to map alluvial deposits in the middle 

reaches of the River Loire. These included electromagnetic profiling supplemented by electrical 

soundings, electrical resistivity and ground penetrating radar. The use of these techniques enabled 

the detection of clayey-peaty palaeochannels and the production of conductivity maps that provided 

a general plan view of the various alluvial deposits and palaeochannels, along with estimates of the 
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depth of incision of the Loire into the autochthonous calcareous rock. Greater knowledge of the 

fluvial system allowed an improved reconstruction of the historical river dynamics of the Loire 

River.  

 
In the current study, a series of geophysical surveys were carried out to demonstrate their potential 

to improve the accuracy of the geological mapping within a 3D model of the near surface 

environment around a typical river terrace landscape adjoining the River Trent in Nottinghamshire, 

U.K. This landscape consisted of a Triassic mudstone escarpment that is overlain in the Trent 

Valley by a series of mainly sand and gravel terrace deposits. The geophysical surveys undertaken 

included GPR, ERT, ARP, LIDAR and ATM remote sensing data. It was hoped that the geophysical 

techniques used would (i) improve the identification of geological features and the spatial 

distribution of alluvial deposits mapped and (ii) aid interpretation of the Quaternary fluvial system 

of this part of the Trent valley. It was also considered important to assess the use of each survey 

technique for use in future surveys. A series of examples are provided demonstrating the importance 

of geophysical survey and remote sensing techniques in developing high resolution 3D geological 

models.    

 

2. Materials and Methods 

2.1 Study Area 

The study area was situated around the village of Shelford, lying ~ 4 km east of the city limits of 

Nottingham, in the Trent valley. The area was chosen as a suitable site for developing 3D 

framework methodology as it is typical of a large section of the Trent valley and provides 

considerable variation in bedrock and superficial geology. Figure 1 shows the extent of the study 

area of which the 3D model formed a major part. The site extends south-eastwards from the River 

Trent, crossing alluvium and river terrace deposits on the low ground at 18-20 m Above Ordnance 

Datum (AOD), rising up an escarpment in the Mercia Mudstone Group formed by the Cotgrave 

Sandstone Member. The highest ground in the south-east of the site is capped by glacial till at more 
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than 50 m AOD. The predominant current land use on the site is arable farming with small localised 

areas of deciduous woodland. The site also includes evidence of cultural heritage dating back to 

roman times and part of the site is designated as an Ancient monument (FASTRAC., 2008). 

 

2.2 Geological Survey 

Data required to conceptualize the initial 3D geological model were obtained from a combination of 

geological survey data, the BGS borehole archive, newly drilled boreholes and the digging of trial 

pits. A geological survey was commissioned in 1988 at 1:10 000 scale, along with engineering 

geology and hydrogeological studies, by the Department of the Environment (DofE) (Charsley et 

al., 1990). Archived information from the DofE survey was used in this study along with a new 

geological survey of the site undertaken at 1:10 000 scale. This new survey allowed the most 

appropriate sites for the digging of trial pits and drilling of new boreholes to be selected. This 

enabled observations in the bedrock geology to be made based on topographic features that define 

the Cotgrave Sandstone and its dip slope, and the hard beds of green siltstone and sandstone within 

the Gunthorpe and Edwalton members. The river terraces were defined by broad flat areas adjacent 

to the current flood plain of the River Trent. Areas of alluvium on the river terraces were defined by 

slight topographic hollows and locally clayey and wetter soils. Minor augering was undertaken, 

mainly to prove the till at the top of the escarpment and also the nature of the head, colluvium, Trent 

alluvium and alluvial deposits crossing the terrace outcrops.  

 

2.2 Borehole Information 
 
Borehole data relating to the thickness of superficial deposits and geological units were the basis 

upon which the 3D geological models were created. Seven archived boreholes were used from the 

National Geoscience Data Centre (NGDC) at the British Geological Survey, augmented by fourteen 

new boreholes, drilled using a Dando Terrier 2002 drilling rig, which were positioned to fill in areas 

of missing data. In addition, some boreholes were taken to ground truth the geophysical surveys.  
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2.3 3D model generation 
 
The 3D geological model construction software used is ‘Geological Surveying and Investigation in 

3D (GSI3D)’. This software uses the same principles, albeit in digital formats that geologists use to 

make geological maps and cross-sections (Kessler and Mathers, 2004; Smith et al., 2008). In 

summary, the software combines a Digital Terrain Model (DTM), geological surface linework and 

downhole borehole data in order to create regularly spaced intersecting cross-sections by correlating 

borehole data and the outcrop-subcrops of units. Generation of these cross-sections produces a 

geological fence diagram which allows for production of a solid 3D model through a mathematical 

interpolation of the section nodes using a bespoke Delaunay triangulation based on a quad-edge 

algorithm (Green and Sibson, 1978). The model is built from a series of stacked Triangulated 

Irregular Networks (TINs), corresponding to the top and basal surface of each geological unit in the 

model. The basic data formats used in a GSI3D model include a DTM loaded as standard ASCII 

grid file, geo-registered raster images such as topographic base maps and aerial photographs, digital 

borehole data (locational and lithostratigraphic), geological survey data loaded as GIS shape files 

and geo-registered planar images (vertical and horizontal). The backbone of the software is the 

Generalised Vertical Section (GVS), which contains the details of all geological units in their 

stratigraphical order which defines the “stack” that is calculated to make the 3D geological model. 

A detailed description of the software methodology is given by Kessler et al. (2009). Details 

concerning the methodology and workflow of incorporating geophysical data from Shelford in 

GSI3D can be found in Scheib et al. (2007) and Williams and Scheib (2008).  Figure 2 provides an 

example of the workflow used to create the model.  

 
2.4 Geophysical Techniques 

Three different near-surface geophysical techniques were used at the Shelford site to aid the 

mapping of the distribution and morphology of shallow sub-surface features in 3D; namely ARP 

ERT and GPR. These methods are complementary for two main reasons. Firstly, they are sensitive 

to contrasts in different electrical parameters (ARP and ERT map resistivity, while GPR responds to 
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permittivity contrasts). Secondly, ERT and GPR can provide information on physical property 

distributions with depth in the form of vertical 2D cross-sections, while ARP can provide detail on 

the lateral distribution of resistivity in the form of horizontal maps. All techniques are quantitative 

in a sense that they provide a numerical value for a physical property at a location in 3D space. 

Their combined use in a 3D environment allows for horizontal property maps to be interpreted 

alongside cross-sectional profiles. The positioning of all profiles was carried out in the field using 

differential GPS for static measurements and real-time kinematic GPS for dynamic surveys. Figure 

3 reports the positions of all the geophysical surveys undertaken.  

 

2.4.1 Automated Resistivity Profiling (ARP) 

The ARP technique (Dabas, 2009) uses a patented multi-electrode device in order to make direct 

current (DC) measurements of sub-surface electrical resistivity along profiles with the aim of 

producing horizontal property maps (Dabas and Favard, 2006; Dabas and Favard, 2007). Electrical 

mapping using DC resistivity methods (e.g. Panissod et al, 1998; Kuras et al., 2007) has advantages 

over inductive methodologies due to smaller uncertainties in sensor calibration and greater control 

over the depth of investigation (Dabas and Tabbagh, 2003). In this context, resistivity measures the 

ability of the soil to conduct an electrical current, units being in Ohm-meters (Ωm).  

 

The ARP device employed at Shelford measures the apparent resistivity (ρa) for three different 

geometrical configurations of electrodes, whereby increasing electrode separation achieves greater 

depth of investigation. The ARP electrodes are wheel-mounted and thus are automatically inserted 

into the ground and rolled along the surface, acting as current and potential dipoles. Apparent 

resistivity maps can provide a proxy for the spatial variation of intrinsic soil properties such as 

texture, clay content, moisture, stoniness and depth to substratum (Samouelian et al., 2005). The 

towed ARP array is laid out in equatorial dipole-dipole geometry and comprises one transmitter 

dipole and three receiver dipoles with increasing separation. The former injects a stabilised current 
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into the ground, the latter measure the potential that is generated as a result. The separations 

between the receiver dipoles and the transmitter dipole are 0.5 m, 1 m and 2 m, respectively. The 

individual receiver dipole sizes (i.e. tread width of the wheels) roughly correspond to these 

separations (i.e. the wheel base of each transmitter–receiver dipole combination). Numerical 

simulations have shown that the depth of investigation of each pair of dipoles is then of the same 

order as the respective receiver–transmitter distance (Dabas, 2009). The typical amplitude of the 

current is 10 mA. Measurements can be made at typical intervals of 20 cm irrespective of towing 

speed (up to 30 km/h on suitable terrain). The use of real-time kinematic GPS navigation within the 

system enables the acquisition of spatially accurate data in real-time. This survey principle 

facilitates highly mobile and self-contained acquisition of data over areas of ~ 40 ha/d. Typical site 

coverage follows a grid of parallel survey lines in a bi-directional pattern, guided by on-board 

navigation. In the present study at Shelford, line spacings of 1–20 m were used, with 5 m being the 

preferred distance as this was found to be a reasonable compromise between required spatial 

resolution and survey efficiency. Data processing involved application of a 1D median filter along 

transect, followed by a bicubic spline interpolation on a 2.5 m regular mesh. 

 

2.4.2 Electrical Resistivity Tomography (ERT) 

ERT is a geophysical technique that produces tomographic images of the sub-surface, enabling 

detailed structural evaluation, and the quantification of hydraulic and geotechnical parameters that 

are related to electrical properties (Dahlin, 1996). Features with contrasting resistivities to those of 

surrounding materials may be located and characterised in terms of electrical resistivity, geometry 

and depth of burial. 2D ERT data were acquired on a long transect (SE-NW) perpendicular to the 

valley strike across the Shelford site, extending from the top of the escarpment to the modern flood 

plain and southern bank of the River Trent. A total distance of approximately 1992 m was covered 

(Figure 3), with data being collected along five individual component profiles. A further 935 m of 

2D ERT profile data from a concurrent project (FASTRAC, 2008) was available for analysis. The 
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surveys were designed to cross the full range of superficial and underlying geology present at the 

site. An AGI SuperSting R8 IP resistivity meter was used together with a 64-way switch box 

attached to stainless steel electrodes via multicore cables. An electrode separation of 3 m was 

employed on five profiles in order to achieve a compromise between detailed spatial resolution and 

areal coverage, while a spacing of 1 m was used on one short profile in order to increase the 

resolution of data obtained over the alluvial channel. A robust measurement command sequence 

was used comprising variations of the Wenner-Schlumberger array. Res2Dinv (Loke, 2007) 

software was used to process the data and to produce 2D electrical resistivity inverse model sections 

of the sub-surface. Surface topography was accounted for during inverse modelling of the data, with 

the maximum depth extent of the resistivity models being ~11 m below ground level. In contrast to 

ARP data, which represent apparent resistivities and as such are functions of sensor geometry used 

to acquire the data, the vertical sections obtained with ERT represent models of bulk sub-surface 

resistivity. This is an intrinsic physical property that is independent of sensor geometry. For the 

purposes of interpretation, both types of data can be compared in an approximate fashion, however 

truly quantitative correlation between ERT and ARP would require inverse modelling of the ARP 

data and accurate localisation of the resulting inverted resistivities in 3D space (both laterally and 

with depth). 

 

2.4.3 Ground Penetrating Radar (GPR) 

GPR is used to investigate the sub-surface by penetration and reflection of high-frequency 

electromagnetic waves in the ground. Reflections are generated by changes of the complex wave 

number of the soil or rock medium. At frequencies normally used for GPR (> 25 MHz), these 

changes are dominated by relative permittivity contrasts between two media, and determine the 

amplitude of any reflections generated (Davis and Annan, 1989). GPR is an effective method for 

interpreting sub-surface alluvial deposits, however the signal is attenuated by electrically 

conductive substrates, and thus will not effectively penetrate deposits with high clay contents. The 
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GPR surveys conducted at Shelford used a Pulse Ekko IVTM (low frequency) system (Sensors & 

Software Inc.). Measurements were made using centre frequency 100 MHz antennae at 1 m 

separation, orientated broadside to the survey direction and moved in steps of 0.25 m. The 

transmitter voltage was 1000 V, with a sampling interval of 800 ps and signal stacking of 32 times. 

The GPR data were processed and plotted using the standard procedures detailed in Annan (1993) 

and Jol, et al., (2003) using pulse EKKO IVTM (version 4) software. Because of the similarities 

between GPR and seismic reflection many seismic reflection processing techniques can be used 

without modification on radar data (Young et al, 1995; Pipan et al, 1999). Initial data processing 

involved applying a time domain filter to each trace (dewow) to remove very low frequency 

components, which maybe either inductive or possibly instrumentation dynamic range limitations.  

An automatic time zero shift correction was applied to each radar section to compensate for time 

zero drift and the data filtered with spatial and time averaging filters.  Sections were plotted using 

an automatic gain control (AGC), which attempts to equalise all signals by applying a gain which is 

inversely proportional to the signal strength.  Hence all parts of the signal, including noise, are 

amplified and relative amplitude information is not preserved. Migration attempts to correctly 

position subsurface reflection events by removing diffractions, distortions, dip displacements and 

out-of-line reflections.   However, in this case it was not applied as tests showed little overall 

improvement to reflection continuity.  

 

A LIDAR DTM was used to correct for topography and the results plotted in section form as two-

way travel time against sample position. Time-to-depth conversions are shown on the profiles by 

determining the electromagnetic wave propagation velocity at the sites. This velocity was 

determined by a Common Mid-Point (CMP) analysis (Annan and Davies, 1976) at three sites across 

a gravel bar (Figure 3).  The average velocity was found to be 0.1 m/ns, resulting in an observable 

signal penetration of approximately 5 m. As the vertical resolution is equal to ¼ of a radar 

wavelength (Davis and Annan, 1989; Jol, 1998) the 100 MHz antenna has a resolvable layer 
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thickness of approximately 25 cm. Approximately 1591 m of GPR data was acquired along the 

main geophysical profile lines (Figure 3) in order to provide comparative results and correlation 

with the ERT data. A further 1408 m of GPR profiles were acquired elsewhere across the study site 

(Figure 3). Some of the in-fill traverses were acquired using a Sensors & Software Noggin 250 

MHz system in continuous mode where ground clearance permitted (usually on short pasture grass), 

in order to improve line coverage and calibrate with the ARP results. GPR has been used to 

reconstruct past depositional environments in a variety of environmental settings.  In correctly 

processed radar profiles, and at the resolution of a survey, primary reflections usually parallel 

primary depositional structure. In GPR profiling, electromagnetic waves are reflected at lithofacies 

boundaries due to changing water content and therefore, radar reflection patterns can often 

reproduce the geometry of sedimentary structures. The technique has been successful in mapping 

the sedimentology and stratigraphy of relict high energy glaciofluvial deposits (Fisher et al., 1995; 

Jol et al., 1998; Van Overmeeren, 1998; McCuaig & Ricketts, 2004). Huggenburger (1993) showed 

in his study on the Pleistocene braided river deposits of the Rhine that GPR offers the potential to 

resolve sedimentary structures and lithofacies in gravel deposits.  

 

2.5 Remote sensing techniques 

2.5.1 LIDAR 

LIDAR information was obtained from a Optech Airborne Laser Terrain Mapper 2033 Lidar. It was 

collected from an aircraft mounted laser operating in the near infra-red (NIR) (1047nm) where 

backscattered intensity is in effect a record of the reflectance of earth surface materials at this 

wavelength. A differential GPS provided detailed 3D information on the location of the laser unit, 

while an inertial measurement unit (IMU) provided information on the pitch, roll and yaw of the 

aircraft. The raw data consists of simultaneously recorded laser location and altitude allows 

reconstruction of the land elevation levels. The data are taken as a 3D point cloud and projected 

onto a local map datum, sorted and filtered to create a regular grid of elevation values.  Greater 
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information regarding the Lidar system can be found in FASTRAC (2008) and more general 

discussions in Wehr and Lohr (1999) and Baltsavias (1999).   

 

2.5.2 Airborne Thematic Mapping (ATM) 

Airborne multispectral remote sensing was used to assess its suitability at providing information 

regarding both bedrock and superficial geological features. The study employed data from the 

NERC archive obtained using a Daedalus Airborne Thematic Mapper 1268 (ATM), taken on 25 

June 1996. The survey was originally intended for archaeological investigations along the River 

Trent. Multispectral imagery works through the examination of discrete spectral bands both within 

the visible spectrum and beyond into the shortwave and thermal infrared. This allows increased 

discrimination of earth surface material based on their distinctive spectral reflectance. False-colour 

images can be produced by combining single spectral bands to each of the red, green and blue 

colour channels of a computer graphics system. Various false-colour combinations can delineate 

geological features, lithologies, soil types and palaeochannel architecture.  

 

The Daedalus 1268 ATM records spectral reflectance and infrared radiation in 11 discrete bands of 

visible blue to thermal infrared wavelength bands (0.42-13μm). Reflectance is recorded on an 8-bit 

digital scale (image pixel values from 0-255) at a typical resolution of 2m. Data for the study area 

was downloaded from the NERC archive in HDF format, processed and geocorrected prior to 

conversion to appropriate formats for analysis. Data was initially converted to Erdas Imagine image 

format and subsequently into ArcGIS 9.1 grid format for integration into the project GIS. Originally 

data from the NERC archive were radiometrically corrected but no other post processing was 

performed. Since no quantitative analysis was to be undertaken it was considered unnecessary to 

carry out atmospheric correction. Geocorrection was undertaken by pre-processing ATM data using 

Azimuth Systems Azgcorr 4.8 to combine flight ephemera and radiance data to produce images with 

real world co-ordinates (OSGB36 co-ordinate system). Where necessary further correction was 
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undertaken in ArcGIS 9.2 using Ordnance Survey 1: 50000 base map as a source for GCP. False-

colour composite (FCC) images were created by displaying combinations of geocorrected image 

bands within ArcGIS. FCC images using the middle and thermal infrared bands of ATM are 

especially effective at displaying variations in soil character, such as soil moisture. Images 

presented from the use of ATM photography use the FCC combination of bands 11-10-5 in red-

green-blue.  

 

2.6 Data storage and handling 

All datasets used in this study are stored in BGS corporate data stores and are extracted from those 

stores for spatial analysis and modelling in GSI3D (Williams and Scheib, 2008). Digital Terrain 

Models are made available as ASCII grids and codified boreholes and augerholes are downloaded 

from the BGS’ corporate Single Onshore Borehole Index (SOBI) and Borehole Geology (BoGe) 

databases as tabulator separated ASCII files. Geological map data came from DigMapGB, which 

are held by BGS in proprietary ESRI format. Geophysical results were produced as georeferenced 

raster images, including horizontal property maps and vertical cross-sectional slices. During the 

creation of the geological framework model all these datasets were validated, cross-checked and the 

corporate database was updated iteratively. The resulting geological model was then stored as 

attributed TINs which define the geological units in their full extent as 3D polyhedra.  

 
3. Results  
 
3.1 Geological survey and creation of initial 3D model 
 
The geology of the area is covered by three main publications, Rathbone (1989), Charsley et al., 

(1990) and Howard et al. (In Press). Therefore it is not the intention here to describe the geology in 

detail. However, some background information and the main features identified from the new 

geological survey are reported as it forms the basis of the 3D mapping (Figure 1). The bedrock 

geology of the site is entirely within the Triassic Mercia Mudstone Group. Most of the site is on the 

Gunthorpe Member of the Sidmouth Mudstone Formation although much is obscured by recent 
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Quaternary deposits including tills in the SW corner of the model and the terrace deposits (gravel, 

sands, silts, and clays) of the River Trent. The Edwalton Member caps the escarpment, outcropping 

in the extreme south-east of the site and is partially obscured by till in the SW corner of the model 

area. The Cotgrave Sandstone Member forms a significant crest feature and dip slope near the top of 

the escarpment. It is up to 4 m thick and consists of greenish grey, fine-grained sandstone with 

subordinate mudstone. Alterations have been made to the originally mapped unit, included widening 

of this outcrop. 

 

At least 50 m of the Gunthorpe member and 10m of the Edwalton Member are present beneath the 

site with the upper 25 m of the Gunthorpe Member cropping out in the north-east – south-west 

trending escarpment that crosses the south-eastern part of the site. Both consist of predominantly 

red-brown, structureless mudstones. Subordinate lithologies include thin beds of greenish grey, fine-

grained, dolomitic sandstone and siltstone beds at intervals, with some beds of laminated mudstone. 

Three beds of siltstone/sandstone have been mapped across the site on the lower part of the 

escarpment.  

 

Quaternary deposits included a Middle Pleistocene glacial till that caps the high ground in the south-

east of the site. It comprises reddish brown, silty to sandy clay with many pebbles and may be 

correlated with the Thrussington Till of the Midlands (Rice, 1968). Prior to the terrace deposits, a 

series of head and colluvium deposits are found covering the Holme Pierrepoint sands and gravels 

(HPSG). A broad strip of head deposits cross the site, running north-east – south-west at the foot of 

and parallel to the escarpment. Two boreholes drilled on this deposit reported that the thickness of 

the head deposits were 1.0-1.25 m. The southern margin of the head is clearly defined by a concave 

break of slope at the foot of the escarpment; the northern boundary however, is very poorly defined 

and diffuse, the deposit grading almost imperceptibly into the adjacent HPSG. Head generally forms 

by solifluction processes although its occurrence at the base of the escarpment will mean some input 
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from hill wash and soil creep (colluvium). The colluvium deposits were found to be lithologically 

identical to head, reflecting the Mercia Mudstone and till source rocks. The HPSG form the main 

terrace of the River Trent at Shelford. It was originally thought that a second terrace existed 

(Hemington Terrace) from recent work by Carney et al. (2001). However, the LIDAR survey 

(Figure 4) shows that there is only one recognizable terrace of the River Trent, consisting of the 

HPSG. The terrace consists of brown, fine- to medium-grained non-micaceous sand that is clayey in 

the upper part and becomes generally more clayey and locally a silt closer to the River Trent. 

Boreholes demonstrated that the thickness of the deposit was up to 5.4 m thick and rests with a 

sharp angular base on the Mercia Mudstone. The upper part of the terrace is variably sandy clay or 

sand, to depths of 1.8-2.35 m. The lower part of the terrace is poorly sorted gravel, locally with very 

sandy layers.  

 
Recent alluvial sand deposits crop out at the extreme northern end of the site as a narrow strip less 

than 100 m wide (Figure 1). This deposit is a brown, micaceous sand that becomes clayey at around 

0.8 m in the banks of the Trent. Older alluvial deposits (Holocene) are found within the HPSG 

(Figure 1) in the nature of alluvial clay, silt and sand. An outcrop of alluvium forms a narrow c. 100 

m wide strip crossing the HPSG and trending north-east – south-west. This deposit forms a slight 

topographic low on the river terrace and the deposit is up to 1 m thick. A second area of alluvial 

clay, silt and sand  occurs in a narrow tributary valley trending south-west – north-east and running 

immediately south-east of Shelford village (Figure 1). It is clearly defined by a slight topographic 

low on the surface of the river terrace. It consists of grey silty to sandy clay and sandy clayey silt 

and is up to 1 m thick. North eastwards, the alluvium dies out as the stream cuts down into the 

HPSG. The third area of alluvial clay, silt and sand occurs along the north-eastern margin of the site 

area. It is marked by a very slight depression and is red brown sandy clay ~ 0.7 m deep. These tracts 

of alluvium crossing the river terraces are thought to mark former channels of the River Trent. 
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A first version of the model was constructed in GSI3D utilising a NEXTmap DTM (5m cell size), 

re-mapped geological linework and the mapped polygons at a scale of 1:10,000 and borehole log 

data from 35 locations across the study area. The locations of the boreholes used are shown on 

Figure 2D where the geological sections intersect.  

 

3.2 The enhanced 3D model 

The initial model served as a preliminary geological framework of the subsurface of the study area. 

The model was further refined and improved by incorporating results of the shallow geophysical 

investigations. The following sub-sections provide examples of areas where the model and 

understanding of the subsurface was improved by the incorporation and/or collection of geophysical 

and remote sensing data.   

 
3.2.1 Example 1: The Buried Cliff 
 
Traditional geological survey and borehole logs established that a transition existed between the 

Mercia Mudstone escarpment and the sand and gravel terrace deposits. However, as a result of the 

wide spacing between boreholes, the gravels were originally interpreted as gradually thinning out 

towards the slope of the Gunthorpe Member as no further information was available. The ARP 

survey data acquired across the southern extent of the site identified a sharp linear resistivity 

contrast along the base of slope (Figure 5), where the more conductive soils-sediments of the 

Gunthorpe Formation mudstones on the slope are replaced by the more resistive soils-sediments of 

the river terrace. This feature was located near the base of the slope and was identified by the ARP 

survey to extend over a significant distance across the surveyed area (Figure 5). Whilst the ARP 

data enabled this feature to be mapped laterally along the slope in an E-W direction, the use of ERT 

enabled the vertical extent of the feature to be defined with greater certainty (Figure 5 and 6). The 

main ERT traverse (Figure 6) across the slope identifies a buried cliff in the Gunthorpe Member, ~3 

m deep, in-filled with deposits (HPSG) of a higher resistivity (60ρ260 Ωm). Borehole logs 

demonstrated an almost pure sand deposit close to the cliff with a maximum resistivity >100 Ωm. 
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This is then surrounded by material with a slightly lower resistivity (~100 Ωm), eventually grading 

into a more conductive material (40-60 Ωm) which appears to be more typical of the resistivity of 

the HPSG, thus being a mixture of sand and gravel.   

 

In the initial model, the HPSG were mapped assuming a gradual thinning and without the sharp 

boundary defined by the ARP and ERT surveys. The enhanced model takes into account the 

geophysical data acquired at the site, allowing for modification of the geological cross-sections in 

the fence-diagram. Figure 5 illustrates how the geophysical data have been used to aid the 3D 

mapping of the feature through the construction of geo-referenced parallel and intersecting cross 

sections. The ATM image (Fig 7) also reveals the buried cliff-line.   

 

3.2.2 Example 2: Siltstone Bed mapping 
 
Siltstone beds are an important geological feature in both the Gunthorpe and Edwalton members of 

the Mercia Mudstone Group. Their accurate mapping is important for construction purposes and 

their presence close to the surface can potentially affect the soils moisture regime. Within 

conventional geological surveys their presence is mapped as topographic features where they 

outcrop. In the present study, the ARP, ERT and ATM surveys were all found to produce more 

detailed information relating to their presence. In the 2D ERT models (Figure 6), the siltstone beds 

appear as marked features with higher resistivities compared to the Gunthorpe Member in which 

they reside. The elevated resistivities may be a function of the harder texture, lower porosity and 

hence lower pore water content of the siltstone. The ARP survey also identified the siltstone beds as 

thin bands of resistive material following the topography of the escarpment (Figure 8) and allows 

for improved mapping. Remote sensing ATM images reveal the study site and surrounding area in a 

wider context as part of the Trent valley landscape. Figure 7 has been geo-referenced and the 

annotations show the extent of the buried cliff along the valley and where it eventually ends close to 

the village of East Bridgford. The end of the cliff appears to coincide with the presence of the much 
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harder siltstone beds that are found within the Gunthorpe Member. Thus it can be surmised that the 

buried cliff feature represents the maximum south easterly incision of the River Trent within the 

study area with the siltstone beds acting as the controlling factor in determining the extent of the 

floodplain.       

 
3.2.3 Example 3: Variability of the HPSG deposits 
 
Another area where the application of geophysical survey techniques benefitted the mapping and 

interpretation of geological units within the 3D model was in assessing the spatial variability of the 

HPSG units that are usually mapped as one geological unit. The HPSG deposits typically consist of 

poorly-sorted, clast-supported gravel, 6 to 9 m thick, with a medium- to coarse-grained sand matrix, 

interstratified with lenses of medium- to coarse-grained sand and pebbly sand. Pebbles are generally 

less than 50 mm across, but there are larger ones that range up to 0.1 m.  

 

The apparent resistivity maps acquired using the ARP technique display a high degree of lateral 

variation in the resistivity values of the near-surface across the site (Figure 9). The dominant 

controls over resistivities on the flood plain are thought to be grain size and clay/silt content, so that 

the ARP maps can be used to infer the nature of the shallow deposits. The heterogeneity within the 

river terrace deposits displayed by these maps has been attributed to the distribution of gravel-rich 

(i.e. resistive) sand and gravel deposits (red), with sand-rich (i.e. relatively more conductive) sand 

and gravel deposits being represented on the maps by yellow through green. Relatively high 

resistivity values (red) were found to correspond to slightly raised areas of coarse sandy gravel. 

Raised gravel bars within the river terrace deposits were originally identified from surface 

topography and are an expected feature in braided river systems. In addition, the use of ATM 

photography and images using the FCC combination of bands 11-10-5 in red-green-blue was 

especially good at revealing lithological variations of clays (dark)  in topographic depressions and 

coarse sand and gravels (light) on gentle topographic ridges in the River Trent alluvial flood-plain.  
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Figure 10 in particular highlights the shape and likely textural variations in the sand and gravel bars 

in the meander to the west of the study site.   

 

One feature in particular that was identified within the HPSG by the ARP survey is marked on 

Figure 9 as the Moors Plantation. This was identified as a very coarse cobbly gravel as indicated by 

the relatively high resistivity values from the ARP survey. This probably represents an elongated 

palaeo-island that ran parallel to the incised buried channel and palaeo-cliff line, marking the 

southern boundary of the Devensian Trent valley. Roberts et al. (1997) describe GPR profiles across 

a modern gravel bar of the River Rhone, in which accreted islands up to 1 km long are separated by 

abandoned channels filled with sand or silty sand during high river discharges. However, the 

identified palaeo-island in this study is much smaller and is only 600 by 200 m.  

 

GPR surveys were also undertaken in the HPSG (Figure 11). The GPR 100 MHz antenna data 

shows little sedimentological detail in the top ~1.5 m due to a combination of a clayey sub-soil 

causing signal attenuation and the masking effect of the first strong (high amplitude) reflector 

caused by the water table. However, good reflective detail is generally observed in the saturated 

zone. Again, because of signal attenuation a relatively weak radar reflection at the base of the 

radargrams (~ 5-6 m) marks the contact with the weathered mudstone bedrock (Gunn et al., 2005). 

It is possible to corroborate the thickness of the sand and gravel deposit observed in the ERT 

sections (e.g. the flat- lying bedrock reflector seen in Figure 14), but impossible where reflections 

are absent due to a relatively thick overlying clay or uniform sand. The results from the higher 

frequency 250 MHz Noggin were generally poor due to a lack of reflectivity and penetration (~ 1m) 

as the sediments above the water table were often clayey and relatively conductive. Additional 

information that could have been included from the GPR data such as the position of the water table, 

as well as plotting individual geological beds and layers using individually picked horizons were not 
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included. This was because only a limited number of GPR transects were undertaken. However, if 

such information was required by the model the use of GPR and ERT data could be incorporated.     

 

3.3 General Discussion 

The results have demonstrated how the integrated geophysical and remote sensing surveys have 

increased the resolution of the geological mapping and development of the 3D geological model. 

However, the integrated surveys have also produced considerable information to enhance our 

knowledge of the complexity and history of the sedimentary environments of the terrace deposits at 

Shelford. The current course of the River Trent was thought to have been initiated during the Late 

Anglian deglaciation, where a structural weakness was exploited between the Pennine and Eastern 

ice sheets (Howard et al. In press). Thus, a series of terrace deposits exists across the Trent Valley, 

dating from the Anglian onwards (Howard et al. In press). Knowledge of the depositional 

environments of the Trent valley has largely been obtained from numerous borehole surveys of the 

sand and gravel resources and inspection of geological exposures at their extraction sites. 

Previously, only one GPR survey of the Trent Valley has been published on the fluvial deposit 

architecture in terraces of the Upper Trent (Davies and Sambrook Smith, 2006).     

 

The HPSG is the youngest of the Quaternary terraces that are found within the Trent Valley and has 

been dated at ~24000 yrs BP or Marine Isotope Stage (MIS) 2 (Howard et al., In press). Much of 

the material that forms this terrace originated from the reworking of earlier terraces and from the 

Sherwood Sandstone outcrop to the north. The latter was moved by periglacial mass wasting 

processes through the Pleistocene. The material reworked from the older terraces was largely 

sourced from glacial deposits. Like the deposits studied by Davies and Sambrook Smith (2006), 

they were probably formed by aggradation in a glacial meltwater-charged, braided river system. 

Continuous permafrost with highly seasonal water discharges combined with the absence of 

vegetation and permafrost induced landscape instability would produce a high sediment supply. 
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This resulted in aggradation across a very unstable floodplain (Mol et al., 2000) and is similar to the 

depositional environment suggested by Davies and Sambrook Smith (2006) in the Upper Trent. 

Further evidence of this depositional regime includes truncated ice wedge casts found 10 km down 

stream at Hoveringham corresponding to the Late Devensian Stadial (Howard, 1992) and deposits 

recently uncovered at Holme Pierrepont, 10 km upstream, that feature tabular to very broadly 

lenticular bodies of sand and gravel that are laterally continuous over scales of several to tens of 

metres. In these deposits foreset beds are typically gently inclined, in keeping with deposition as 

low-profile bars that formed within a braided river system subject to seasonally high discharges. 

Abandoned watercourses were filled with organic-rich and peaty material. One such lens has been 

uncovered during recent excavations at Holme Pierrepont.  

 

The identification of several important terrace features through our integrated geophysical survey 

has added to the interpretation of the sedimentary history of the Trent Valley. In our study ‘the 

buried cliff’ line identified through both the ARP survey and the ATM photos represents the 

southern most edge of the braided river system in section of the Trent Valley. There is a strong 

possibility that the identified siltsone beds provide an erosion resistant river bank that constrained 

the southward erosion of the Gunthorpe Member to the east of the site at East Bridgford. At this 

point the HPSG terraces on the southern side of the river have disappeared (Figure 7). Adjacent to 

the buried cliff, a sand filled channel was located through the ERT profile (Figure 6) and was 

confirmed by a number of boreholes. This predominantly sand filled channel, overlain by head 

deposits is unusual as the HPSG is typically gravel-rich with clasts. The sand filled channel was 

~2.5 m deep and infilled with a sequence of predominantly fine to medium grained sand showing 

two upward fining cycles defined by gravely bases. The sand channel is assumed to have been cut 

and abandoned during formation of the terrace and later infilled. The dominant sand lithology might 

suggest a late stage fill when the flow regime was slower and the bed load much finer, the repeated 

fining upward cycles, from gravel to sand suggesting a more meandering fluvial environment.   



 
23

The lateral complexity of the depositional environments of the HPSG deposits was demonstrated by 

the ARP surveys. Several areas of high resistivity associated with increases in gravel content were 

identified across the surveyed area (Figure 9). Combined GPR and ERT transects were taken to 

assess and investigate depth and depositional features of the HPSG (Figure 3). In near-surface 

investigations GPR can provide a high degree of vertical and horizontal resolution, ideally 

complementing the ERT technique (Slater and Reeve, 2002), as they are each controlled by 

contrasts in different electrical parameters (permittivity and, resistivity respectively). Thus, GPR 

data did add detailed sedimentary information to the ERT sections and hence, has improved the 

overall interpretation of the Trent Quaternary Fluvial system.  

 

In Figures 12, 13 and 14 the detailed GPR radargrams are shown side by side with corresponding 

ERT sections. The joint interpretations give an indication of the size and position of Pleistocene and 

Holocene palaeochannels. Figures 12 and 13 comprise a continuous south-north down slope section 

of ~920m in length (Lines 2 and 3, Figure 3). The ERT models indicate a 5-6 m thick quaternary 

sand and gravel deposit overlying a relatively planar bedrock surface of Mercia Mudstone (indicated 

by blue colour of ~ < 35 Ωm on ERT sections). The southern boundary (Figure 12) of the sand and 

gravel deposit is marked by a sinuous buried channel along the edge of the buried cliff (Figure 6), 

which was proved by a series of boreholes. The dipping reflectors observed on the GPR radargram 

at 96 m can be interpreted as the northern edge of this channel (indicating an approximate width of 

150m to ‘the buried cliff’). This feature is only subtly indicated on the ERT section. The lack of 

GPR reflections within this part of the channel proves the infilling sand deposits are relative 

uniform and homogenous. A change in radar facies is noted from ~225 m to the end of the section 

(Figure 12) where fine scale diffractions denote a presumed relatively thin deposit of pebbles 

(possibly imbricated) overlying a silty sand at a depth of ~2 m. The alluvial channel reported in 

Figure 13 is considered to be a Holocene deposit. The deposition of alluvium requires much slower 

water than is required to produce the Pleistocene palaeochannels and the channel probably 
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represents a side stream of the River Trent. The resistivity of the alluvial deposit is ~70 Ωm and is 

found between 210 – 305 m on Figure 13. The corresponding GPR section indicates continuous 

near-horizontal reflectors, typical of a low energy slack water silty clay deposit.  The apparent 

erosional depression observed in the underlying Mercia Mudstone, indicates that this may have been 

a much wider channel (165 – 315 m) in the past. The gravel bars mapped either side of this feature 

are characterized by their relatively high resistivities (> 150 ohm m). Dipping reflectors on the 

flanks of these bars suggest growth by lateral accretion. Figure 13 also shows scour filled channels 

at centres of ~350 and 490 m. 

 

Figure 14 shows an adjacent section 500m to the west (Line 4, Figure 3). Interpretation of the 

radargram indicates palaeochannels (~70 - 100 m wide) either side of the 120 m wide gravel bar 

with reduced resistivities noted in the corresponding ERT section. Thus the GPR and ERT have 

identified the position and width of a series of Quaternary and Holocene palaeochannels and 

deposits across the study site that enhances the geological mapping.   

 

4. Conclusions 

This study has used a combination of geological survey, borehole logs, geophysical survey and 

remote sensing to produce a high resolution 3D geological model and interpretation of fluvial 

processes at Shelford. The combination of the different geophysical surveys has enabled several 

geological and geomorphological features to be identified that would have remained undetected or 

poorly mapped using standard geological survey and borehole analysis to create the 3D model. The 

study has shown that in order to gain an improved understanding of the shallow subsurface and for 

3D mapping of complicated systems such as floodplains and terraces it is vital to use and integrate 

all available geological, geophysical and remote sensing tools and methodologies. In particular, it 

was found that the ARP survey was essential in identifying unobserved features, because the 

technique could survey several hectares a day. What has hampered an integrated whole system 
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approach to studies of this kind in the past was that the data from different surveys were presented 

in different data formats and associated software tools. It was therefore not possible to synthesise all 

available information in one common virtual environment, which enabled all scientists involved to 

view the data in an integrated manner. However, GSI3D is an intuitive tool for geological 

modelling particularly well suited for near surface geoscientific investigations. It allows a wide 

range of geoscientists who are not necessarily IT experts to work together and visualise and analyse 

their respective data and measurements in a 3D context. Technically Gocad and other oil industry 

standard software could be used for this task, but they are inherently complex to use and not widely 

available to BGS scientists. GSI3D basically fulfils the function of a GIS in integrating and 

visualising data, not in 2D but in 3D. Recently, the GSI3D methodology and software has become 

available to earth scientists worldwide through the GSI3D research consortium 

(www.GSI3d.org.uk).. 
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List of Captions titles:  
 
Figure 1: Shelford study area and geology. Scale is km of the British National Grid based 

upon OS topography  Crown Copyright. All rights reserved. BGS 1000017897/2009.  

 

Figure 2: Simplified workflow for the construction of a 3D model using GSI3D. The 

methodology utilizes A) geological outcrop data (linework and polygons), B) classified 

borehole data and C) a digital terrain model (DTM). The user draws intersecting cross-

sections between boreholes correlating the lateral and vertical extent of the geological units, 

resulting in D) a fence diagram. Triangulation of latter with the boundaries of all geological 

units computes a 3D model (E) made up of individual geological volumes. 

 

Figure 3: Map showing locations of geophysical surveys including Automated Resistivity 

Profiling (ARP), Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography 

(ERT). The location of the Common Mid Point (CMP) velocity analysis for the GPR survey is 

also shown. The numbers correspond to ERT and GPR survey lines shown in Figures 6, 11, 

12, 13 and 14. Scale is km of the British National Grid based upon OS topography  Crown 

Copyright. All rights reserved. BGS 1000017897/2009.  

 

Figure 4: LIDAR image of the Shelford study site. The image shows the extent of the step 

down from the Holme Pierrepont terrace (2) to the modern alluvial floodplain (1). LIDAR 

data copyright Geomatics Group 2009 and scale is km of the British National Grid based upon 

OS topography  Crown Copyright. All rights reserved. BGS 1000017897/2009.  
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Figure 5: Image from GSI3D 3D window showing vertical drop of 3 m shown by ERT pseudo-

sections and ARP Channel 1 property map (scale 13-300 Ωm) along with digitised geological 

cross-sections. Figure 5a and 5b show the same area. Figure 5a shows how the geology would 

appear if 3D geological model was based solely on geological survey. Figure 5b shows how the 

3D geological model is constructed utilising the results of geophysical surveys.   Hence the 

cross-sections in the model were modified in order to display an abrupt vertical drop of 3 m 

rather than a gradual thinning out of the HPSG towards the slope. The shaded grey area on 

the inset map shows the area the figure covers. 

 

Figure 6: 2D ERT model along the slope of the Shelford escarpment. Its location is shown on 

Figure 3 as line (1).  

 

Figure 7: ATM images of bands 11-10-5 in red-green-blue for (a) the Shelford-Gunthorpe-

East Bridgford area. The buried cliff-line (arrowed) and the overlying Gunthorpe Formation, 

is well imaged. The shaded grey area on the inset map shows the area the photo covers. 

 

Figure 8: ARP Maps (Channel 1; 0-0.5 m depth) plotted across a range of 13-300 Ωm and  

superimposed over the revised geological survey line work. The geophysical image shows 

distinct linear variations in near-surface deposits that have been interpreted as siltstone beds 

of the Gunthorpe Member. The ARP survey demonstrates that the mapping position can be 

improved as compared to the routine geological survey positioning. The shaded grey area on 

the inset map shows the area the figure covers. 

 

Figure 9: Screenshot of GSI3D 2D window (left) showing horizontal ARP resistivity maps 

presenting a highly variable distribution of sands and gravels within the HPSG deposits.  

Areas with green mesh lines represent correlated envelopes / TINs outlining these gravel-rich 

areas. Black lines are cross sections and thicker, red lines indicate location of key geophysical 

sections. The 3D model (right) shows the volumes of these gravel-rich HPSG deposits as 

modelled. The shaded grey area on the inset map shows the area the figure covers. 

 

Fig 10: ATM images of bands 11-10-5 in red-green-blue for the west of the study site showing 

meander scroll deposits NW of Shelford consisting of clay (dark) in depressions, and coarse 

sand and gravels (light) forming ridges. The shaded grey area on the inset map shows the area 

the photo covers. 
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Figure 11: GPR section across a gravel bar (Southern half of Line 3 in Figure 3).   

 

Figure 12: Images of a) GPR and b) ERT section along main transect (Line 2 in Figure 3).  

 

Figure 13: Images of a) GPR and b) ERT sections along main transect (Line 3 in Figure 3).  

 

Figure 14: Images of a) GPR and b) ERT sections along Line (4) of Figure 3.   
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