Joint UK Land Environment Simulator (JULES)

Version 3.0

User Manual

Authors: Douglas Clark, Phil Harris, Matt Pryor, Margaret Hendry

Last revised by Matt.Pryor on 25 February 2011.

This version describes JULES v3.0.

Acknowledgements

Thank you to all those JULES users who reported errors or omissions in the previous manual. Hopefully we haven't repeated too many in this version. And thanks in particular for all suggestions for improvements.

1.	Introduction and what's new	5
	1.1. What's new in version 3.0	5
	1.2. What's new in version 2.2	5
	1.3. What's new in version 2.1?	6
	1.3.1. Process descriptions	6
	1.3.2. Control-level code	6
	1.4. What's new in version 2.0?	7
2.	Overview of JULES	8
3.	Building and running JULES.	9
	3.1. The make utility	9
	3.2. The JULES netCDF library	10
	3.3. Running JULES	11
4.	Overview of the JULES code	12
5.	File formats and the JULES grid	15
	5.1. Overview of file formats	15
	5.2. Describing the format of an input file	16
	5.2.1. ASCII or binary input files	16
	5.2.2. netCDF input files	19
6.	The JULES control file	21
	6.1. Introduction	21
	6.2. INIT_OPTS: General model options	23
	6.3. INIT_TIME: Date and time information	31
	6.3.1. Note on time convention and solar zenith angle	33
	6.3.2. Examples of dates and times	33
	6.3.3. Notes on spin up	34
	6.4. Grid description	36
	6.4.1. INIT_GRID: Setting up the grid	36
	6.4.2. INIT_LAND: Land fraction	38
	6.4.3. INIT_LATLON: Latitude and longitude	39
	6.4.4. Examples of grid description	41
	6.5. INIT_FRAC: Fractional coverage of land surface types	46
	6.5.1. Example: Reading frac from the run control file.	47
	6.5.2. Example: Setting the same tile fractions on all land points	48
	6.6. INIT_SOIL: Soil layer depths and hydraulic and thermal characteristics	49
	6.6.1. The soil look-up table file	52
	6.7. INIT_TOP: parameters for TOPMODEL	53
	6.8. INIT_PDM: parameters for PDM	55
	6.9. INIT_HGT: elevation of tiles	56
	6.10. INIT_VEG_PFT: Time-invariant parameters for plant functional types	57
	6.11. INIT_VEG_VARY: Time-/space- varying parameters for plant functional types	61
	6.11.1. Examples of INIT VEG VARY	64
	6.12. INIT NONVEG: Parameters for non-vegetation surface types	66
	613 INIT URBAN: Urban model configuration geometry & material characteristics	68
	6.14 INIT SNOW: Snow parameters	
	615 INIT TRIF: Parameters for the TRIFFID model	, 5 76
	6.16 INIT ACRIC. Fractional coverage by agriculture	ייייי. דד
	6.17 INIT MICC: Miscellaneous surface, carbon and vegetation parameters	//
	6.18 INIT IMOGEN: Settings for the IMOGEN impacts model	7 19
	0.10. INTI_INIODEN. Settings for the INIODEN impacts model	01

6.18.1. Running IMOGEN and restrictions	83
6.19. INIT_DRIVE: Meteorological driving data	
6.19.1. Inputting extra driving variables	
6.19.2. Examples of specifying driving data	90
6.20. INIT_IC: Specification of the initial state	
6.20.1. Examples of specification of initial state	
6.21. INIT_OUT: Specification of output from the model	
6.21.1. INIT_OUT: General values related to output	
6.21.2. NEWPROF: details of each output profile	
6.21.3. Compression of the output grid	
6.21.4. An example of output grids and mapping	
6.21.5. Notes on output	
6.22. File name templating	116
6.22.1. Time templating	117
6.22.2. Variable-name templating	117
6.23. Notes on temporal interpolation	119
6.24. Example run control files	
7. Aspects of the code	
7.1. Low-level i/o code	
7.2. How to implement new diagnostics for output	
7.2.1. Output of existing variables	
7.2.2. Output of new variables	123
8. Known limitations of and bugs in the code	124
9. Variables available for output	125
10. List of Tables	

1. Introduction and what's new

The Joint UK Land Environment Simulator (JULES) is a computer model that simulates many soil and vegetation processes. This document describes how to run version 2.2 of JULES. It primarily describes the format of the input and output files, and does not include detailed descriptions of the science and representation of the processes in the model.

The first version of JULES was based on the Met Office Surface Exchange System (MOSES), the land surface model used in the Unified Model (UM) of the UK Met Office. After that initial split, the MOSES and JULES code bases evolved separately, but with JULES2.1 these differences were reconciled with the UM.

Further information can be found on the JULES website: <u>http://www.jchmr.org/jules</u>.

1.1. What's new in version 3.0

The major change in version 3.0 is the introduction of IMOGEN impacts tool. IMOGEN is a system where JULES is gridded on to surface land points, and is forced with an emulation of climate change using "pattern-scaling" calibrated against the Hadley Centre GCM. This climate change - impacts system has the advantage that (a) the pattern-scaling allows estimates of climate change for a broad range of emissions scenarios, (b) new process understanding can be tested for its global implications, (c) new process understanding can also be checked for stability before full inclusion in a GCM and (d) by adding climate change anomalies to datasets such as the CRU dataset, then GCM biases can be removed. It must be recognised that the system is "off-line", and so if major changes to the land surface occur, there might be local and regional feedbacks that can only be predicted using a fully coupled GCM. Hence IMOGEN doesn't replace GCMs, but it does give a very powerful first-look as to potential land surface changes in an anthropogenically forced varying climate.

This was accomplished with help from Mark Lomas at the University of Sheffield and Chris Huntingford at CEH.

There are also several small bug fixes:

- A fix effecting fluxes in sf_stom from Lina Mercado at CEH. This bug fix was announced on the mailing list
- Small fixes for potential evaporation and canopy snow depth from the UM
- A small issue with some memory not being deallocated at the end of a run

1.2. What's new in version 2.2

Along with fixes for known bugs, the changes made for version 2.2 mostly consist of several small additions to the science code. Changes to the control code have mostly been limited to bug-fixes.

- New options for treatment of urban tiles inclusion of the Met Office Reading Urban Surface Exchange Scheme (MORUSES) and a simple two tile urban scheme
- Effects of ozone damage on stomata from Stephen Sitch at the University of Leeds
- New treatment of direct/diffuse radiation in the canopy from Lina Mercado at CEH

• A new switch allows the competing vegetation portion of TRIFFID to be switched on and off independently of the rest of TRIFFID (i.e. it is now possible to use the RothC soil carbon without having changing vegetation fractions)

There have also been changes made to the way JULES is compiled, due to the re-integration with the Met Office Unified Model. The Unified Model uses pre-processor directives to compile different versions of routines depending on the selected science options. For compatability with this system, JULES will now require a compiler with a pre-processor. This should not be noticed by the majority of users – most modern compilers include a pre-processor and the Makefile deals with setting up the appropriate pre-compiler options.

1.3. What's new in version 2.1?

Version 2.1 of JULES includes extensive modifications to the descriptions of the processes and to the control-level code (such as input and output). These are covered briefly below. Several bug fixes and minor changes to make the code more robust have also been applied. All files are now technically FORTRAN90 (.f90) although many are simply reformatted FORTRAN77 files in which continuation lines are now indicated by the use of the '&' character.

1.3.1. Process descriptions

The main change is that a new multi-layer snow scheme is available (see nsmax in Section 6.2). This scheme was developed by Richard Essery at the University of Edinburgh and co-workers. At the time of writing there is little scientific documentation of this development, but this will be made available as soon as possible. In brief, the older, simple scheme represents the snowpack as a single layer with prescribed properties such as density, whereas the new scheme has a variable number of layers according to the depth of snow present, and each layer has prognostic temperature, density, grain size, and solid and liquid water content. The new scheme reverts to the previous, simpler scheme if nsmax=0 or when the snowpack becomes very thin.

A four-pool soil carbon model based on the RothC model now replaces the single pool model when dynamic vegetation (TRIFFID) is selected.

There have been several major changes that most users will not notice or need be concerned about. These include a change in the linearization procedure that is used in the calculation of surface energy fluxes (described in the technical documentation). A standard interface is now used to calculate fluxes over land, sea and sea ice. Each surface tile now has an elevation relative to the gridbox mean.

These changes mean that, even with the new snow scheme switched off (nsmax=0), results from v2.1 will generally not be identical to those from v2.0.

1.3.2. Control-level code

The major change at v2.1 to the control-level code is that netCDF output is now supported. Both diagnostic and restart files (dumps) can be in netCDF format. There have been several changes to the run control file (see Section 6), partly to reflect new science but also in an attempt to organise the file better. These changes mean that run control and restart files from JULES v2.0 are not compatible with v2.1 (although they could be reformatted without too much difficulty).

1.4. What's new in version 2.0?

The physical processes and their representation in version 2.0 have not changed from version 1. However, version 2.0 is much more flexible in terms of input and output, and allows JULES to be run on a grid of points. New features include:

- Ability to run on a grid.
- Choice of ASCII or binary formats for input and output files (also limited support of netCDF input).
- More flexible surface types number and types can vary.
- Optional time-varying, prescribed vegetation properties.
- More choice of meteorological input variables.
- Optional automatic spin up.
- Enhanced diagnostics large choice of variables, frequency of output, sampling frequency, etc.

2. Overview of JULES

This section provides a brief overview of JULES, largely so as to provide background information and introduce terms used in the rest of the manual. Further details on the science and process descriptions contained in JULES can be found at the JULES website <u>http://www.jchmr.org/jules</u>.

JULES views each gridbox as consisting of a number of surface types. The fractional area of each surface type is either prescribed by the user or modelled by the TRIFFID sub-model. Each surface type is represented by a tile, and a separate energy balance is calculated for each tile. The gridbox average energy balance is found by weighting the values from each tile. In its standard form, JULES recognises nine surface types: broadleaf trees, needleleaf trees, C3 (temperate) grass, C4 (tropical) grass, shrubs, urban, inland water, bare soil and ice. These 9 types are modelled as 9 tiles. A land gridbox is either any mixture of the first 8 surface types, or is land ice. Note that, from version 2.0, one is not limited to these 9 standard surface types (unless running TRIFFID).

Soil processes are modelled in several layers, but all tiles lie over and interact with the same soil column. Each gridbox requires meteorological driving variables (such as air temperature) and variables that describe the soil properties at that location. It is also possible to prescribe certain characteristics of the vegetation, such as Leaf Area Index, to vary between gridboxes.

JULES can be run for any number of gridboxes from one upwards. The number of gridboxes is limited by the availability of computing power and suitable input data. When run on a grid, JULES models the average state of the land surface within the area of the gridbox and most quantities are taken to be homogeneous within the gridbox (with options to include subgrid-scale variability of a few, such as rainfall). In that case, the input data are also area averages. JULES can also be run "at a point", with inputs that are taken to represent conditions at that point – this configuration might be used when field measurements of meteorological conditions are available.

3. Building and running JULES

Building a JULES executable requires two pieces of software:

- a Fortran 90 compiler with a pre-processor
- a version of the 'make' utility

It may also be desirable, but not essential, to have available the following software:

• the Fortran 90 netCDF¹ interface library

3.1. The make utility

The Makefile supplied with the JULES code should be compliant with most versions of make, but is only guaranteed to work with GNU Make² (also known as gmake), which is available on most Linux and UNIX systems and also for Windows. Once the Makefile is set up for the user's system, JULES is built simply by entering 'make' at the command prompt while in the directory containing the Makefile. This will compile all of the JULES source code, make a library libjules.a, and finally link the compiled source to create and executable file with a default name of jules.exe. To remove all the files created during the build process enter 'make clean' at the command prompt.

The make utility uses architecture- and compiler-specific variables that must be set by the user to the appropriate values for their system. These values may be set in the files Makefile.common.mk and Makefile.comp.*. (The user should not have to edit the file named Makefile.) There are two convenience options, COMPILER and BUILD, which should be passed to make from the command line to tell that program where the appropriate values should be taken from. The COMPILER option allows the user to define a list of compiler-specific variables (including compiler flags) without having to edit the Makefile. The BUILD option allows the user to build with sets of predefined flags for different situations, e.g. debugging. The Type and permitted values for each of these options are described in Table 1, and additional information is given in the comments at the head of Makefile.

The compiler-specific variables are specified in individual files named Makefile.comp.* for a handful of common compilers, e.g. Makefile.comp.sun. The list of tested compilers includes three (Intel, gfortran and G95) that can be downloaded for no cost via the URLs in Table 1 (certain conditions apply to these downloads). To use a compiler that is not listed, the user should replace the '@@' strings in the blank compiler file Makefile.comp.misc with values appropriate to their compiler and invoke make with the option COMPILER=misc.

Variable	Type and permitted values	Notes
COMPILER	Sun	Use options for Sun Studio compiler series (previously known as Workshop and Forte).

Table 1 Options that can be passed to **make** when building JULES.

¹ The netCDF interface library can be downloaded for no cost from <u>http://www.unidata.ucar.edu/software/netcdf/</u>

² The GNU Make utility can be downloaded for no cost from <u>http://www.gnu.org/software/make/</u>

	Intel	Use options for Intel Fortran compiler for Linux, Windows and			
		MacOS (http://www3.intel.com/cd/software/products/asmo-			
		na/eng/compilers/284132.htm). Version 9.0 was used for testing			
		of JULES2.0 and it was found that two lines in the source code			
		had to be changed - find these and the suggested replacements			
		by searching the code for "Intel".			
	g95	Use options for G95 compiler (http://www.g95.org).			
	Gfortran	Use options for the GNU fortran compiler			
		(http://gcc.gnu.org/wiki/GFortran).			
Nag Us		Use options for NAGWare compiler.			
Pgf		Use options for Portland Group compiler.			
	Misc	Use options for an unlisted compiler.			
	Run	Default option; for normal compilation of JULES.			
BUILD	Debug	Switch on compiler debug flags.			
	Fast	Switch on compiler optimisation flags for faster execution.			
CDEDIMMY	False	Use a precompiled netCDF library.			
	True	Use the dummy netCDF library provided with JULES.			

3.2. The JULES netCDF library

To build JULES, the user must also pass make some information about the netCDF interface library. If the user has access to a pre-compiled netCDF interface library, then they should pass make the options CDF_LIB_PATH and CDF_MOD_PATH. The values for these options are the directories in which the pre-compiled netCDF library (libnc.a) and Fortran 90 module files (those with .mod extension) are located respectively. This can be done also by editing the Makefile itself, but the recommended method is by specifying the variables as options when make is invoked, e.g., 'make CDF_LIB_PATH=\$HOME/mynetcdf/lib CDF_MOD_PATH=\$HOME/mynetcdf/mod'.

If the user does not have access to a pre-compiled netCDF library, then JULES may be compiled by specifying 'CDFDUMMY=true' when make is invoked rather than setting the CDF_LIB_PATH and CDF_MOD_PATH variables. This option compiles a set of dummy netCDF interface functions, which merely allows the rest of the JULES code to compile correctly and provides no functionality. When this option is used JULES will neither read nor write netCDF files. The user must then ensure that netCDF input/output options are not selected at any point in any JULES control file (described in Section 0) used with an executable produced using this option.

Example build linesTo build JULES using the normal Sun compiler options and link with a netCDF library:

```
make COMPILER=sun BUILD=run CDF_LIB_PATH=$HOME/mynetcdf/lib \
CDF_MOD_PATH=$HOME/mynetcdf/mod
```

To build JULES using the fast Intel compiler options and not link with a netCDF library:

```
make COMPILER=intel BUILD=fast CDFDUMMY=true
```

These command lines can become quite long and tedious to keep typing, so it's a good idea to set the list of frequently used ones as environment variables:

```
export JULESBUILD="COMPILER=sun BUILD=run \
CDF_LIB_PATH=$HOME/mynetcdf/lib \
CDF_MOD_PATH=$HOME/mynetcdf/mod"
```

make \$JULESBUILD

It is then possible to override options specified in that variable by adding revised ones at the end:

```
make $JULESBUILD BUILD=debug
```

3.3. Running JULES

A JULES executable is run by redirecting standard input to a file that contains all the information needed to describe a run, e.g., jules.exe < run1.jin

The format of this input file is described in Section 6, with some example runs described in Section 6.24.

The file extension ".jin" is meant to suggest "JULES input file", but there is no need to use this or any other extension.

4. Overview of the JULES code

The general structure of the JULES source code, including the order in which routines are called, is illustrated below. For the sake of clarity, the full details are not shown here. In particular, the initialisation and output steps (subroutines init and output) can call several routines. The focus below is on the calling order for land points (rather than sea or sea-ice).

```
jules--|
     |--init--|
     | |--init calls various initialisation routines
     (top of timestep loop)
     |--imogen_update_clim (if IMOGEN is on)
      |--drive_update
      |--veg_update
      |--control---|
                |--zenith
      |--tile_albedo--|
                              |--albpft
                 |--albsnow
                               |--canyonalb (MORUSES)--|
                                                    I--matinv
                               |--generate_anthropogenic_heat
                 |--sf_expl--|
                            |--tilepts
                            |--physiol--|
                                      |--albpft
                            |--root_frac
                            |--smc_ext
                            |--raero
                            |--sf_stom--|
                                      | |--qsat
| |--leaf_
                            |--leaf_limits
|--leaf
                            |--soil_evap
                            |--leaf_lit
                            |--cancap
                                      |--urbanemis (MORUSES)--|
                            |--matinv
                            |--microbe
                            |--heat_con
                 |--snowtherm
                 1
                            |--hcons snow
                 |--sf_exch--|
                 |--elevate--|
                 | |--dewpnt
                                      |--qsat
                                      |--qsat_mix
                |--urbanz0 (MORUSES)--|
      |--get_us
```

```
|--sf_orog
                     |--sf_resist
                     |--sf_rib
                     |--sf_orog
                     |--fcdch----|
                        |--phi_m_h
                     |--sf_resist
                     |--sf_flux
                     |--stdev1
                     |--sfl_int---|
                     | |--phi_m_h
                     |--sf_orog_gb
                     |--sf_aero--|
                                |--dustresb--|
                                          |--vgrav
|--sf_impl--|
         |--im_sf_pt
|--sf_evap
          |--sf_melt
          |--screen_tq--|
                     |--qsat
|--snow--|
| |--canopysnow
       |--layersnow
1
       |--snowtherm
       |--snowpack--|
       |--tridag
       |--snowgrain
       |--compactsnow
       |--relayersnow--|
                      |--layersnow
|--hydrol---|
         |--surf_hyd--|
                     |--frunoff
          |--sieve
          |--pdm
          |--calc_baseflow
          |--soil_hyd--|
                      |--hyd_con_ic--|
          |--hyd_con_ch/vg
                      |--darcy_ic--|
          |--darcy_ch/vg--|
                      1
          hyd_con_ch/vg
          |--gauss
          |--calc_zw
          |--soil_htc--|
                      |--heat_con
          |--gauss
          |--ice_htc
          |--soilmc
          |--soilt
          |--ch4_wetl
|--sice_htf
|--veg2--|
 |--tilepts
|--phenol
|--triffid--|
```

```
|--vegcarb--|
                                   | |--growth
|--lotka--|
| |-- compete
                                   |--soilcarb--|
                                   | |--dpm_rpm
| |--decay
                        | |--tilepts
| |--sparm--|
                           |--pft_sparm
                |--veg1--|
                        |--tilepts
                        |--phenol
                        |--sparm--|
                                 |--pft_sparm
     |--imogen_update_carb (if IMOGEN is on)
     |--output
     |--new_time--|
    | |--spin_check
    (bottom of timestep loop)
    |--jules_final
```

5. File formats and the JULES grid

5.1. Overview of file formats

JULES aims to support input and output in three formats: ASCII, netCDF and a generic binary format (simply called 'binary' below). The implementation of netCDF input is fairly limited, in that only certain dimension names are allowed (see Section 5.2.2). Input can also be read from many PP files (a format used by the UK Met Office). The binary and netCDF files are compatible with the GrADS³ package, amongst others. A run control file might indicate that data are to be read from several files, using one or more of these file formats. For example, soil data might be in an ASCII file, while meteorological driving data are in netCDF files.

A "self-describing file" (SDF) is one in a format that contains metadata describing the contents of the file. For JULES, only a netCDF file is presently considered to be a SDF. Minimal use is made of any metadata contained within a file, including SDFs and PP files. For example, a SDF might contain data that describes the grid or the times of data, but these are not used by JULES. Instead, this information is provided via the run control file and all input data must be provided on the same grid.

For all non-SDF files, the data model is based on that used by GrADS. Each variable is viewed as being 4-dimensional in (x, y, z, t) on a regular grid. Although we will talk of x and y in terms of West-East and South-North compass directions, in general the grid can be any rectilinear grid, with West-East being replaced by "left to right". x varies in the direction from West to East, y varies from South to North (this default can be changed), and z varies from bottom to top. All variables in any one file must have the same grid size in x and y (i.e. all variables are on a grid of nx*ny points), and have a value at all times (although that value could indicate a missing datum). The data are stored as a series of xy slices, with x varying fastest, then y, then z, and t varying slowest. For example, say we have a file with two variables (A and B) on a grid with nx=2, ny=2. A has nz=1, and B has nz=2. In the JULES/GrADS model, the data must be stored in the input file in the order:

```
A(x=1, y=1, z=1, t=1)
                       # 1st xy plane of A at t=1
A(x=2, y=1, z=1, t=1)
A(x=1, y=2, z=1, t=1)
A(x=2, y=2, z=1, t=1)
                       # 1st xy plane of B at t=1
B(x=1, y=1, z=1, t=1)
B(x=2, y=1, z=1, t=1)
B(x=1, y=2, z=1, t=1)
B(x=2, y=2, z=1, t=1)
                       # 2^{nd} xy plane of B at t=1
B(x=1, y=1, z=2, t=1)
B(x=2, y=1, z=2, t=1)
B(x=1, y=2, z=2, t=1)
B(x=2, y=2, z=2, t=1)
A(x=1, y=1, z=1, t=2)
                       # 1st xy plane of A at t=2
A(x=2, y=1, z=1, t=2)
... etc ...
```

³ The GrADS software can be downloaded for no cost from <u>http://grads.iges.org/grads/gadoc/index.html</u>

For clarity, this example has shown each datum on a separate line, but in fact any number of data within a single field (see below) can be on the same line.

A data "field" is considered to be a single x-y plane of data (i.e., nx*ny values). Header records can be present at the start of a file, at the start of each time within the file, and at the start of each field.

Note that this means that JULES reads and writes data in terms of 'maps' (all values of one field, then all values of another field), rather than using a 'point-by-point' data model (all fields for one point, then all fields for another point).

A related concept used in JULES, is that of the point number in input or output files. This is used to select individual points from a larger grid. The point number runs from 1 at the gridpoint in the SW corner of the grid, across rows (so the bottommost row contains gridpoints 1 to nx), and then from South to North up the grid. Examples and further discussion of JULES grids can be found in Section 6.4.

5.2. Describing the format of an input file

Variables that describe how data are arranged in files are used in several sections later in this document. These variables are summarised in Table 2. Often the information that JULES will read and use from the control file depends on the file format of any one data file. The information required for an ASCII, binary or PP file is generally fairly similar, while netCDF files are rather different.

Variable name	Туре	Notes	
readFile	Logical	Switch that indicates source of data.	
		TRUE: data are read from a named, external file	
		FALSE: data are read from the run control file	
fileFormat	Character	Flag indicating the file format. Case sensitive.	
		Only used if readFile=.TRUE.	
		'asc': ASCII	
		'bin': generic binary (including GrADS)	
		'nc': netCDF	
		'pp': PP format	

Table 2 Frequently used control file options

5.2.1. ASCII or binary input files

If fileFormat='asc', 'bin' or 'pp' or 'pp' some or all of the following information is read from a section that starts with the tag '>ASCBIN'. Exactly what information is needed varies between cases (for example, it is assumed that there is a single time "level" in a file of soil properties, so nheaderTime is not needed).

Table 3 Options used to specify the reading of ASCII, binary and PP format files.

Variable name	Туре	Notes

nheaderFile	Integer	The number of header records at the top of a file. For an ASCII file, a header record is a line in the file. For a binary file, a header record is an individual word or record (e.g. a single 'real' value). Not used for a PP file.
nheaderTime	Integer	The number of header records that precedes the data for each time level within a file. Not used for a PP file.
nheaderField	Integer	The number of header records that precedes each field (x- y plane) of data. Not used for a PP file.
fieldNumber	Integer	This is used to locate a given field (xy plane) within all the fields available at each time level. If there are nFieldFile fields of data at each time level, and fieldNumber=2 for a particular variable, the second field of data is used for this variable.

Blank lines between fields in an ASCII input file can cause the code to read the wrong data, and should be avoided. If blank lines are present between fields, they should be interpreted as header lines.

There are restrictions on what PP files JULES can read. Each field must have no trailing "extra data" (i.e. header (20) must be zero). It is also assumed that the data are ordered as in the JULES/GrADS model outlined above (so, for example, we do NOT have all times of field 1, then all times of field 2), so that the required data can be found without using the information contained in the field headers. The headers are used to check that the size of the field and the STASH code are as expected. The STASH code for each variable is currently hardwired in the code. At the time of writing the PP-reading code has no known bugs, but it has been used much less than other options, so any more obscure bugs might not have been triggered.

5.2.1.1. An example ASCII input file

Table 4 shows part of an example ASCII file that could be read by JULES, with nheaderFile=2, nheaderTime=1, nheaderField=1. The size of the input grid is assumed to be nxIn=3, nyIn=2. There are 2 variables, A which has a single level, and B which has 2 levels, giving a total of 3 fields per time. Annotation after any "!" (and shown in *italics*) would NOT be present in the actual file. The data are shown on 2 lines per field, but this is not important – nx*ny values will be read however they are presented.

This file contains example data. ! 1st file header					
There are 2 variables, the 2nd with 2 levels. ! 2nd file header					
Time level 1.	! header for time=1				
Variable A	! header for 1st field				
12.0 15.6 17.1	! data for A at t=1				
-1.0 23.9 53.2					
Variable B, level 1	! header for 2nd field				
22.0 25.6 12.1	! data for B at t=1, 1st level				
-1.0 22.9 23.2					
Variable B, level 2	! header for 3rd field				
32.0 11.6 12.1	! data for B at t=1, 2nd level				
-9.1 72.9 43.7					
Time level 2.	! header for time=2				
Variable A	! header for 1st field				
9.2 67.3 -7.6	! data for A at t=2				
11.5 23.9 -8.3					
Variable B, level 1 ! header for 2nd field					
rest of file not shown	rest of file not shown				

Table 4 Part of an example ASCII file that could be read by JULES.

5.2.2. netCDF input files

If fileFormat='nc', the required information is read from a section that starts with the tag '>NC'. The only information that is required is the name of the netCDF variable.

To be used with JULES, a netCDF file must meet certain requirements and be in the format of one of several "types" which are summarised in Table 6. The types are used to summarise the names and order of the dimensions of variables in the file (see Table 6). The type of netCDF files to be read in a particular run is specified by the variable ncType (see Section 6.2), except that the type of meteorological data is specified by ncTypeDrive (Section 6.18). The provision for netCDF input and the creation of these types have been added in a rather ad hoc manner as need has arisen. Provision for netCDF input will likely be improved in a future version of JULES. In general there is more flexibility for reading driving (meteorological) data from netCDf files. If other types of input are in netCDf files that do not conform to the requirements, they need to be rewritten with the required dimension names, or converted to another file format. Another alternative is that the user can modify the JULES code – it is fairly easy to add another netCDF "type" (most of the relevant code is in jules_netcdf.f90).

Type name	Notes		
gswp2	Refers to the Global Soil Wetness Project 2 (http://www.iges.org/gswp2 -		
	although data are no longer available from that site).		
pilps2e	Can only be used for meteorological data.		
	The PILPS2e experiment is described in Bowling, L.C. and co-authors, 2003,		
	Simulation of high latitude hydrological processes in the Torne-Kalix basin:		
	PILPS Phase 2(e), 1: Experiment design and summary intercomparisons, Global		
	and Planetary Change, 38 (1-2): 1-30.		
	The data are not widely available.		
princet	Can only be used for meteorological data.		
	These data from Princeton University are described in Sheffield, J., G.Goteti and		
	E.F.Wood, 2006, Development of a 50-yr high-resolution global dataset of		
	meteorological forcings forland surface modelling, J.Climate, 19: 3088-3111,		
	and can be downloaded from http://hydrology.princeton.edu/data.pgf.php.		
tseries	Can only be used for meteorological data.		
	A simple format for time series at a single point.		
watch	The Water and Global Change project (WATCH; www.eu-watch.org) is an EU		
FP6 project which is producing meteorological data for model input,			
other aims. These data are not yet widely available.			

Table 5 Recognised types of netCDF input file

Related section of run	Allowable values of	Required dimension names
control file	ncType	(case and order are important)
(see Section 6).	(ncTypeDrive for	
	INIT_DRIVE)	
INIT_LAND,	gswp2	Land
INIT_LATLON	watch	land
INIT_FRAC	gswp2	Land, Psuedo, Time ⁴
	watch	land, pseudo
INIT_SOIL	gswp2	Land Note that vertically-varying soil data cannot be read from a netCDF file and the code will stop at any attempt to do so.
	watch	land
INIT_HGT	gswp2	Land, Psuedo
	watch	land, pseudo
INIT_TOP	gswp2	Land
	watch	land
INIT_VEG_VARY	gswp2	Land, Psuedo, Time
	watch	land, pseudo, tstep
INIT_URBAN	gswp2	Land
	watch	land
INIT_AGRIC	gswp2	Land
	watch	land
INIT_DRIVE	gswp2, watch	land, tstep
	pilps2e	x, y, tstep
	princet	longitude, latitude, z, time
	series	time
INIT_IC	gswp2	Land, Psuedo, Soil Note that these dimensions are insufficient to cope with all possible variables. If an attempt is made to read another kind of variable, the code will report an error and stop.

Table 6 Dimensions	in	netCDF	input	files
--------------------	----	--------	-------	-------

⁴ Note the typographical error for files of type 'gswp2'– Psuedo rather than Pseudo! This crept in when those files were created and files of this type continue to have to use Psuedo. Consider using files of type 'watch' instead.

6. The JULES control file

6.1. Introduction

Each run of the JULES code is controlled by a text file that is called the "run control file". Broadly speaking, the run control file holds three types of information:

- the general details of the run, such as start and end dates
- the values for parameters of the model, such as albedo
- the specification of the required output

The JULES code is designed to be moderately flexible, in that there are switches that allow the user to select between different configurations, and it can accommodate input data in several different file formats. This flexibility means that the run control file may be relatively long and the user has to check that all values are set correctly. The documentation below aims to help the user in this task. Example input files can be found as described in Section 6.24.

The run control file has a particular format, in that the lines must be in a particular order and must contain various headers. The file is read by various routines arranged under the subroutine INIT, using FORTRAN list-directed input [i.e. the format is given as "*" in a READ statement of the form READ(unit, *)]. The JULES executable is run with standard input redirected to this control file, e.g. jules.exe < control_file.jin. The use of list-directed input means that there may be more than one arrangement of input values that can be read by the code – for example a single line with 10 values or 2 lines with 5 values each. Repeated numerical values can often be specified using the "*" notation (e.g. 100 values of 1.0 can be entered as 100*1.0), which can sometimes be useful in specifying a large but constant field.

"Tags" are used to indicate the start of each section, and allow the code to skip directly to this point ignoring any intermediate lines. Each tag is of the form,

>SECTION_NAME

and must be included exactly as in the example run control files, using capital letters and with no space before or after the initial >. These section tags are listed in Table 7.

Section name	Description	Described in manual section
INIT_OPTS	General model options.	<u>6.2</u>
INIT_TIME	Start and end times for simulation, timestep	<u>6.3</u>
	lengths, spin up.	
INIT_GRID	Set up the model grid.	<u>6.4</u>
INIT_LAND		
INIT_LATLON		
INIT_FRAC	Set gridbox tile fractional coverage options.	<u>6.5</u>
INIT_SOIL	Set model soil parameters.	<u>6.6</u>
INIT_TOP	Set values for a TOPMODEL-type	<u>6.7</u>
	parameterisation of runoff.	

INIT_PDM	Set parameters for a PDM-type parameterisation	<u>6.8</u>
	of surface runoff.	
INIT_HGT	Set the relative elevation of each tile.	<u>6.9</u>
INIT_VEG_PFT	Set uniform parameters for vegetation tiles.	<u>6.10</u>
INIT_VEG_VARY	Set parameters for vegetation tiles that vary in	<u>6.11</u>
	either space or time.	
INIT_NONVEG	Set parameters for non-vegetation tiles.	<u>6.12</u>
INIT_URBAN	Urban model configuration, geometry & material	<u>6.13</u>
	characteristics	
INIT_SNOW	Set snow related parameters.	<u>6.14</u>
INIT_TRIF	Set parameters for TRIFFID dynamic vegetation	<u>6.15</u>
	model.	
INIT_AGRIC	Set fraction of each gridbox that is agriculture for	<u>6.16</u>
	use with TRIFFID.	
INIT_MISC	Set miscellaneous carbon-cycle parameters.	<u>6.17</u>
INIT_IMOGEN	Set IMOGEN options	<u>6.18</u>
INIT_DRIVE	Set input driving data options.	<u>6.19</u>
INIT_IC	Set initial conditions of all prognostic variables.	<u>6.20</u>
INIT_OUT	Set options for model output.	<u>6.21</u>
	General output options	<u>6.21.1</u>
	NEWPROF: Set up an output profile.	<u>6.21.2</u>

The user can annotate the run control file, for example to add comments, but these must not interfere with the reading of the rest of the file. Depending upon the details of the run, there are various locations in which it is "safe" to include annotation, but the only really safe location is on the lines immediately preceding a "tag" (described above). Annotation can also often be placed on the same line as the data at the end of any data field (i.e. so that the code reads the values required and will not see the annotation).

Values of character variables, such as file names, should be enclosed within quotation marks (either single ' ' or double " "). Character variables have a maximum length specified in the code, which are sometimes given in this documentation, e.g. character*8 indicates a variable of length 8. Logical values can be entered in any of the formats understood by FORTRAN, e.g. T, true or .TRUE. may all be used to represent true. In the sections below, the sizes of certain arrays are indicated using brackets: e.g. myArray(1:20) requires values for the 20 elements numbered 1 to 20.

Although a spatial field can be read from the run control file, in practice this becomes unwieldy for large grids, and most spatial fields are likely to be stored in separate files, the names of which can be listed in the run control file.

In the following sections, the first column lists the variables that are to be read from a line, and subsequent columns give the type and a brief description of each variable. The variable names given are generally those used to declare the corresponding FORTRAN variables (except where the code uses temporary workspace and a more meaningful variable name is given in this documentation).

6.2. INIT_OPTS: General model options

This section starts with the tag >INIT_OPTS.

```
>INIT_OPTS
npft, nnvg
l_aggregate
pftName(1:npft)
nvgname(1:nnvg)
nxIn, nyIn
sm_levels
nsmax
can_model
can_rad_mod, ilayers
l_cosz, l_spec_albedo
l_phenol, l_triffid, l_veg_compete, l_trif_eq
l_top,l_pdm
l_anthrop_heat_src, l_moruses
1_o3_damage
l_imogen
l_epot_corr, l_snowdep_surf
i_scrn_t_diag
yrevIn
ncType
echo
print_step
```

Variable name	Type and permitted values	Notes
Npft	integer >=1	The number of plant functional types to be modelled.
Nnvg	integer >=1	The number of non-plant surface types to be modelled. The total number of surface types to be modelled is called ntype, and is given by ntype=npft+nnvg. In the standard setup, JULES models 5 vegetation types and 4 non- vegetation types (npft=5, nnvg=4). However, the model domain need not contain all 9 types – e.g. the domain could consist of a single point with 100% grass. The amount of each type in the domain is set in the section INIT_FRAC (Section 6.5).

Table 8 Description of variables in INIT_OPTS section.

l_aggregate	logical	Switch controlling number of tiles for each gridbox.
		This is used to set the number of surface energy balances
		that are solved for each gridbox (ntiles).
		FALSE: A separate energy balance is calculated for each
		surface type. This option sets ntiles=ntype.
		TRUE: Aggregate parameter values are used to solve a
		single energy balance per gridbox. This option sets
		ntiles=1
		Generally 1 aggregate - FALSE is preferred TRUE
		can be used to reduce the computational cost
nftNamo(1.nnft	character	Names of PETs. When III ES looks for parameter values
	array	for the PETs, it looks for these names
/	allay	Names of non-vagatation surface types. When HILES looks
	array	for parameter values for the surface types, it looks for these
/	Must	nomes
	include	names.
	integer	The number of columns of date in the input and (see forther
nxin	integer	The number of columns of data in the input grid (see further
	>=1	discussion of the grid in Section 6.4).
nyin	integer	The number of rows of data in the input grid.
	>=1	
		The total number of points in the input grid is thus
		nxIn*nyIn. If the input data consists of a single point,
		nxIn=nyIn=1. A vector of points is specified by setting
		nyIn=1. Although the notation may suggest a regular,
		rectangular grid, the model can be run at any number of
		arbitrary locations, the most likely way of doing so being to
		set nyIn=1, nxIn=number of points.
sm_levels	integer	Number of soil layers.
	>=1	A value of 4 is often used.
Nsmax	integer	Maximum possible number of snow layers.
	>=0	0: a composite soil/snow layer is used. This value gives the
		behaviour found in JULES2.0 and earlier.
		>0: the state of up to nsmax separate snow layers is
		modelled. Values of nsmax=3 or more are recommended.
		The minimum depth of each layer is set in Section 6.14.

can_model	integer	Choice of canopy model for vegetation:
	1, 2, 3 or 4	
		1: No canopy.
		2: Radiative canopy with no heat capacity.
		3: Radiative canopy with heat capacity. This option is
		deprecated, with 4 preferred.
		4: As 3 but with a representation of snow beneath the
		canopy. This option is preferred to 3.
		• ND see medel. I does not moon that them is no
		• NB can_model=1 does <i>not</i> mean that the surface is
		vegetation canopy. It means that the surface is
		represented as a single entity, rather than having distinct
		surface and canopy levels for the purposes of radiative
		processes.

can_rad_mod	integer	Switch for treatment of canopy radiation.
	1, 2 3, 4 or	1: A single canopy layer for which radiation absorption is
	5	calculated using Beer's law. Leaf-level photosynthesis is
		scaled to the canopy level using the "big leaf" approach.
		Leaf nitrogen, photosynthetic capacity, i.e the Vcmax
		parameter and leaf photosynthesis vary exponentially
		through the canopy with radiation.
		2: Multi-layer approach for radiation interception following
		the 2-stream approach of Sellers et al. (1992). This approach
		takes into account leaf angle distribution, zenith angle, and
		differentiates absorption of direct and diffuse radiation.
		Leaf-level photosynthesis is calculated using a vertically-
		varying light-limited rate, and constant Rubisco and export
		velocities, consistent with the assumption of constant lear N
		infougn the canopy. Canopy photosynthesis and conductance
		are calculated as the sufficient over all layers.
		and shaded leaves for the whole canopy (i.e. not at each
		layer) The definition of sunlit and shaded leaves is based on
		a threshold of absorbed radiation at each layer
		4 . This is a modification of option 2. Instead of constant leaf
		N through the canopy, it has an exponential decline of leaf N
		with canopy height. Additionaly includes inhibition of leaf
		respiration in the light.
		5. This is an improvement of option 4. This includes, i)
		sunfleck penetration though the canopy, ii) division of sunlit
		and shaded leaves within each canoy level and iii) a
		modified version of inhibition of leaf respiration in the light.
		When using can rad mod=4 or 5, it is recommended
		to use driving data that contains direct and diffuse radiation
		separately rather than a constant diffuse fraction.
		Descriptions 1, 2 and 3 can be found in Jogireddy et al.
		(2006), an application of option 4 can be found in Mercado
		et al. (2007) and all will be described in Clark et al (in prep).
		References:
		Jogireddy, V.R. et al., 2006, Hadley Centre technical note
		63. Available from:
		http://www.metoffice.gov.uk/publications/HCTN.
		Sellers, P. et al., 1992, Remote Sens. Environ., 42: 187-216.
		Mercado et al. 1997, Tellus B, 59, 553–565
ilayers	integer	Number of layers for canopy radiation model.
	≥1	Only used if can_rad_mod is 2 or 3.
		These layers are used for the calculations of radiation
		interception and photosynthesis.
		A value of 10 is recommended.

l_cosz	logical	Switch for calculation of solar zenith angle. For land points,
		this switch is only relevant if l_spec_albedo=TRUE
		(otherwise it is better set to FALSE to prevent unnecessary
		calculations).
		TRUE: calculate zenith angle.
		FALSE: assume constant zenith angle of zero, meaning sun
		is directly overhead.
l_spec_albedo	logical	Switch for albedo model.
		TRUE: use spectral albedo. This includes a prognostic snow
		albedo.
		FALSE: use a single (averaged) waveband albedo.
l_phenol	logical	Switch for vegetation phenology model.
		TRUE: use phenology model.
		FALSE: do not use phenology model.
l_triffid	logical	Switch for dynamic vegetation model (TRIFFID) except for
		competition.
		TRUE: use TRIFFID. In this case soil carbon is modelled
		using four pools (biomass, humus, decomposable plant
		material, resistant plant material).
		FALSE: do not use TRIFFID. A single sol carbon pool is
		also used.
1_veg_compete	logical	Switch for competing vegetation. This is only used if
		1_triffid=TRUE.
		TRUE: TRIFFID will let the different PFTs compete against
		each other and modify the vegetation fractions
	1 • 1	FALSE: Vegetation fractions do not change
1_trii_eq	logical	Switch for equilibrium vegetation model (i.e., an equilibrium
		solution of TRIFFID). This is only used if
		I_TTIIId=IRUE.
		IRUE: use equilibrium IRIFFID.
7 .	1 1 1	FALSE: do not use equilibrium TRIFFID.
1_top	logical	Switch for a TOPMODEL-type model of runoff production.
		IRUE: use a TOPMODEL-type scheme. This is based on
		Geoney and Cox (2003); see also Clark and Geoney (2008).
		FALSE: no TOPMODEL scheme.
		Deferences
		Godnov N and DM Cox 2003 The sensitivity of clobal
		dimate model simulations to the representation of soil
		moisture hotorogeneity I Hydrometocrology 4 1265 1275
		Clark and Gedney 2008 Rapresenting the effects of subarid
		variability of soil moisture on supoff concration in a land
		surface model Journal of Coophysical Descent
		Atmospheres, 113, D10111, doi:10.1029/2007JD008940

l_pdm	logical	 Switch for a PDM-type model of runoff production. PDM is the Probability Distributed Model (Moore, 1985), implemented in JULES following Clark and Gedney (2008). TRUE: use a PDM scheme. FALSE: no PDM scheme. References: Moore, R. J. (1985), <i>The probability-distributed principle and runoff production at point and basin scales</i>, Hydrol. Sci. J., 30, 273–297. Clark and Gedney, 2008, <i>Representing the effects of subgrid variability of soil moisture on runoff generation in a land surface model</i>, Journal of Geophysical Research – Atmospheres, 113, D10111, doi:10.1029/2007JD008940.
l_anthrop_heat _src	logical	Switch for inclusion of anthropogenic contribution to the surface heat flux from urban tiles. The relevant code is found in subroutine generate_anthropogenic_heat. TRUE: add anthropogenic effect FALSE: no effect
l_moruses	logical	Switch for turning on MORUSES. Configuration of and urban parameters required for MORUSES are set in INIT_URBAN (Section 6.13) TRUE: use MORUSES parametrisations . Requires nvgName types 'urban_roof' and 'urban_canyon' ⁵ FALSE: do not use MORUSES parametrisations . Use urban tile parameters, set in INIT_NONVEG (Section 6.12), instead. References: Porson, A., et al. (2010), <i>Implementation of a new urban</i> <i>energy budget scheme in the MetUM. Part I: Description</i> <i>and idealized simulations</i> , Quarterly Journal of the Royal Meteorological Society, 136: 1514–1529. doi: 10.1002/qj.668 Porson, A., et al. (2010), <i>Implementation of a new urban</i> <i>energy budget scheme into MetUM. Part II: Validation</i> <i>against observations and model Intercomparison</i> , Quarterly Journal of the Royal Meteorological Society, 136: 1530– 1542. doi: 10.1002/qj.572

⁵ Both the two tile schemes, URBAN-2T & MORUSES, will also run with the 'urban' surface type as the code converts this to the 'urban_canyon' type itself as long as the 'urban_roof' tile is present. However, they will fail to run if both 'urban' and 'urban_canyon' are present. When entering the urban fraction data the total urban fraction should be entered in the 'urban_canyon' or 'urban' tile, whichever is named.

l_o3_damage	logical	Switch for ozone damage.
		TRUE: Ozone damage is on. Ozone concentration in ppb
		must be supplied as a driving variable
		FALSE: No effect
l_imogen	logical	Switch for IMOGEN
	C	TRUE: IMOGEN is used to generate driving data
		FALSE: No effect
l epot corr	logical	TRUE: use correction to the calculation of potential
	8	evaporation
		FALSE: No effect
l snowdep surf	logical	TRUE: use equivalent canopy snow depth for surface
	logical	calculations on tiles with a snow canopy
		FALSE: no effect
i scrn t diag	Integer	Switch controlling method for diagnosing screen
aray	0 or 1	temperature
	0 01 1	0: use surface similarity theory. This is the default and
		acceptable for most users
		1: use surface similarity theory but allow decoupling in very
		stable conditions based on the quasi-equilibrium radiative
		solution
		solution
vrouTn	logical	Switch indicating if the order of the rows in the input data is
YICVIII	logical	not the IIII FS standard
		TRUE: Input data are arranged in North to South order (i.e.
		first data are from northernmost row)
		FAI SE Input data are arranged in South to North order (the
		IIII FS standard)
		Note that this does not affect how IULES numbers points on
		its internal grids – within IIII FS the numbering always runs
		from South to North
		This switch applies to all input files
ncTune	character	Indicates the type (format) of any netCDE input files (see
пстурс	character	Section 5.2.2) This does not refer to files for meteorological
		data which are covered in Section 6.18
		data which are covered in Section 0.10.
echo	logical	Switch controlling output of messages to standard output
00110	logical	(e.g. screen)
		TRUE: print messages to screen This will print the values of
		narameters and also print messages when files are opened or
		closed. This is useful while checking that a run is correctly
		set up but can result in a large volume of data if the model
		orid is large
		FALSE: suppress printing of most messages to screen
nrint sten	integer	The number of timestens in between the printing of timesten
princ_scop	>-1	information
	>=1	Every print, at on timestane, the model prints the current
		timesten number and date to standard output
		While this can be a useful way to follow the progress of a
		model integration frequent messages can concrete a large
		mount of unnacessary output during long integrations
		amount of unnecessary output during folig integrations.

6.3. INIT_TIME: Date and time information

This section sets the start and end time of the run and can also be used to specify a spin-up procedure. It starts with the tag >INIT_TIME.

It is recommended that all times entered in JULES use Greenwich Mean Time (GMT or UTC), not local time. The use of GMT is essential if certain options are set (1_cosz=TRUE).

```
>INIT_TIME
timestep
dateMainRun(1), timeRun(1)
dateMainRun(2), timeRun(2)
l_360
phenol_period, triffid_period
dateSpin(1:2), nspin
spinFail
>VARS
spinVarName(1), spinTolPercent(1), spinTol(1)
--- Repeat for each variable. ---
>ENDVARS
```

Variable name	Type and	Notes
	permitted	
	values	
timestep	integer	Timestep length (seconds).
	>=1	A typical timestep is 30 to 60 minutes.
		If the timestep is too long, the model becomes
		numerically unstable.
<pre>dateMainRun(1:2)</pre>	integer	These specify the start and end times for the
timeRun(1:2)	array,	integration. Each run of JULES consists of an optional
	character*	spin-up period and the "main run" that follows the spin
	8 array	up. See below for more about the specification of the
		spin up. For simplicity, the same times of day are used
		for both the spin-up and main periods.
		The main run starts at timeRun(1) on
		dateMainRun(1) and ends at timeRun(2) on
		dateMainRun(2).
		Dates should be given in format yyyymmdd. All dates
		must be >0. Times should be given in format
		hh:mm:ss. It is recommended that all times entered
		in JULES use Greenwich Mean Time (GMT or
		UTC), not local time. The use of GMT is essential if
		certain options are set (1_cosz=TRUE) - but see

Table 9 Description of variables in the INIT_TIME section

		6.3.1 for a possible, if not recommended, use of local
1 360	logical	Switch indicating use of 260 day years
1_300	rogrear	TPLIE: and year consists of 360 days.
		sometimes used for idealised experiments
		EALSE: each year consists of 365 or 366 days
phonol poriod	integan	Paried for colle to phonology model (days).
phenol_period	>=1	relevant if 1_pheno1=TRUE.
triffid_period	integer	Period for calls to TRIFFID model (days). Only
	>=1	relevant if one of L TRIFFID or L TRIF EQ is
		TRUE.
<pre>dateSpin(1:2)</pre>	integer	The dates for the spin-up period, in the format
	array	yyyymmdd.
		Elements 1 and 2 are the start and end dates
		respectively.
		The spin-up phase of the integration must be over
		times that either,
		• immediately precede the main run. In this case the
		spin-up phase is from timeRun(1) on
		<pre>dateSpin(1) to timeRun(1) on dateSpin(2)</pre>
		[where dateSpin(2) equals dateMainRun(1)]
		OR
		• are the same as those for the main run. In this case
		the spin-up phase is from timeRun(1) on
		dateMainRun(1) to timeRun(2) on
		dateMainRun(2)
		Examples are given below
nspin	integer	The maximum number of times the spin-up period is to
	>=0	be repeated:
	- 0	0. no spin up
		>0: at least 1 and at most napin repetitions of spin up
		are used
		After each repetition the model tests whether the
		selected variables have changed by more than a
		specified amount over the last repetition (see below)
		If the change is less than this amount the model is
		considered to have spin up, and the model moves on
		to the main run.
spinFail	logical	Switch controlling behaviour at the end of spin up
	logicui	period if the model has not passed the spin-up test
		Only used if nspin>0.
		TRUE: End the run if model has not spun up
		FALSE: Continue the run
If nonin 10 details of the	variables used	to assess the snin up are looked for between the tage
>VARS and >ENDVARS. U	p to two varial	bles can be listed.
spinVarName	character	The name of a variable to be used to determine if the
	Acceptable	model has spun up. Spin up can be assessed in terms of
	values are:	soil temperature and soil moisture.
	'smcl'	'smcl': moisture content of each soil layer (kg m ⁻²)

	't_soil'	't_soil': temperature of each soil layer (K)
spinTolPercent	logical	Switch indicating whether the tolerance for this
		variable is expressed as a percentage.
		TRUE: tolerance is a percentage
		FALSE: tolerance is an absolute value
spinTol	real	Tolerance for spin up of this variable.
		For each spin-up variable, this is the maximum change
		over a repetition of spin up that is allowed if the model
		is to be considered as spun-up. If the absolute value of
		the change (the percentage change if
		spinTolPercent = TRUE) is less than or equal to
		spinTol, the variable is considered to have spun up.
		For example, spinTol=0.1 means that the variable
		in question must change by less than 0.1 over a cycle
		of spin up if it is to be considered spun up. See notes
		below on using a negative tolerance to prescribe the
		number of cycles that are attempted.
		Spin up is assessed using the difference between
		instantaneous values at the end of consecutive cycles
		of spin up. For example, if the spin up period is from
		15 Jan 2005 to 15 Jan 2006, every time the model gets
		to 15 Jan 2006 the spin-up variables are compared with
		their value at the end of the previous cycle.

6.3.1. Note on time convention and solar zenith angle

If a run requires that the solar zenith angle be calculated $(1_cosz=TRUE)$, then times must be in Greenwich Mean Time (UTC), so that the code can calculate the zenith angle at each location and time.

If $l_cosz=FALSE$, the user might prefer to use Local Time, particularly if this is used for input or validation data, as the timestamp on model output will then match that on the other data. However the use of local time is not recommended as if the user later switches to $l_cosz=TRUE$ without adjusting the time values, the model results will be in error.

6.3.2. Examples of dates and times

1. A run without spin up

19970101,	'00:00:00'	!	start date and time
19990101,	'01:00:00'	!	end date and time
19970101,	19970102, 0	!	dateSpin, nspin

This specifies a run from midnight on 1^{st} January 1997 until 01:00 GMT on 1^{st} January 1999. nspin=0 means there is no spin up.

2. A run with spin up over a period that immediately precedes the main run

```
19970101, '00:00:00' ! start date and time for main run
19990101, '01:00:00' ! end date and time for main run
19960101, 19970101, 5 ! dateSpin, nspin
```

This specifies a spin-up period from midnight on 1st January 1996 to midnight on 1st January 1997 (the time of day is taken from the first line). This spin-up will be repeated up to 5 times, before the main run from midnight on 1st January 1997 until 01:00 GMT on 1st January 1999.

3. A run with spin up over a period that overlaps the main run

```
19970101, '00:00:00' ! start date and time for main run
19990101, '01:00:00' ! end date and time for main run
19970101, 19980101, 5 ! dateSpin, nspin
```

This specifies a spin-up period from midnight on 1st January 1997 to midnight on 1st January 1998 (the time of day is taken from the first line). This spin-up will be repeated up to 5 times, before the main run from midnight on 1st January 1997 until 01:00 GMT on 1st January 1999.

4. Example of specifying requirements for spin up

Т			!	terminate run if spin-up fails (T,F)
smcl	F	1.0	!	<pre>spinVarName,spinTolPercent,spinTol</pre>
t_soil	Т	0.1	!	

The first value, spinFail=TRUE, means that if the spin-up has not "converged" after nspin cycles, the run will end. Convergence is measured using moisture content and temperature of each soil layer. At every point and in every layer, soil moisture must change by less than 1 kg m⁻², while soil temperature must change by less than 0.1%.

6.3.3. Notes on spin up

Note that at present the analysis of whether the model has spun up or not is limited to aspects of the "physical" state of the system, and does not explicitly consider carbon stores, making it less useful for runs with interactive vegetation (TRIFFID; the equilibrium mode of TRIFFID is designed to spin up TRIFFID) or prognostic soil carbon.

During the spin-up phase of a run, the JULES code provides the correct driving data (for example, meteorological data) as the model time "cycles" round over the spin up period. Consider the case of a spin up over 1 Jan 2005 to 31 Dec 2005. At or near the end of 31 Dec 2005 during the spin up, the driving data will start to adjust to the values for 1 Jan 2005. The calculated driving data may vary slightly between the start or end of the first cycle and similar times in later cycles, because of the need to match the data at the end of each cycle to that at the start of the next cycle. Generally this does not cause a problem.

Depending upon the details of the input data and any temporal interpolation, the driving data may vary rapidly at the end of a cycle of spin up, causing an extreme response from the model. In most cases the model will adjust, possibly with large heat fluxes over a few hours, but the user should be aware that unusual behaviour near the end/start of a spin up cycle may be the result of this adjustment. Consider the case of a spin up over 1 Jan 2005 to 31 Dec 2005. At or near the end of 31 Dec 2005 during the spin up, the driving data will start to adjust to the values for 1 Jan 2005, which could be very different from conditions on 31 Dec 2005. The length of time over which the driving data adjust depends on the frequency of the data, and the choice of temporal interpolation. For example, with 3-hourly data that is interpolated onto a one hour timestep, the adjustment will take place over 3 hours. However, hourly data and an hourly timestep will force an instantaneous adjustment at the start of 1 Jan 2005.

Although nspin specifies the *maximum* number of spin up cycles, some of which might not be used if the model is considered to have spun up earlier, it is possible to specify the exact number of cycles that will be performed. This can be done by demanding an impossible level of convergence by setting spinTol<0 (remember that spinTol is compared with the *absolute* change over a cycle) and setting spinFail=FALSE so that the integration continues when spin up is judged to have failed after nspin cycles.

Although it is expected that a spin up phase will be followed by the main run in the same integration, it is possible to do the spin up and main run in separate integrations. This can be done by demanding an impossible level of convergence by setting spinTol<0, setting spinFail=TRUE so that the integration stops when spin up is judged to have failed, and setting dumpFreq (see Section 6.21.1) to any value that writes a final dump. The final state of the model, after nspin cycles of spin up, will be written to the final dump, and a subsequent simulation started from this dump.

A limitation of the current code is that it cannot cope with a spin up cycle that is short in comparison to the period of any input data. For example, a spin up cycle of 1 day cannot use 10-day vegetation data. The code will likely run but the evolution of the vegetation data will probably not be what the user intended! However, it is unlikely that a user would want to try such a run.

Occasionally, the model fails to diagnose a spun up state when in fact the integration has reached a quasi-steady state that is not detected by the procedure of assessing spin up through comparison of instantaneous values at the end of consecutive cycles of spin up. An example of this is "period-2" behaviour, where the model state repeats itself over a period of 2 cycles. Such behaviour should be apparent in the model output during spin up, and the user can opt to repeat the integration over a given number of spin up cycles, and not to wait for a spun-up state to be diagnosed.

6.4. Grid description

The process of setting up the model grid involves three parts of the run control file: INIT_GRID, INIT_LAND and INIT_LATLON.

INIT_GRID is used to select how the model grid will be specified, e.g. all points within a given range of latitude and longitude.

INIT_LAND is used to set a land/sea mask.

INIT_LATLON specifies the latitude and longitude of each point.

These three sections are then followed by the DATA_POINTS, DATA_LAND and DATA_LATLON sections which provide input data (if that is to come from the run control file).

Each run of JULES involves two grids: the input grid, and the model grid. The input grid is the grid on which all input data are held. The model grid is the set of points on which the model is run. The model grid is a subset of the input grid.

The JULES grid is a rectangle of size nx*ny points, including the special case of ny=1 when the grid is a vector of points. The points to be modelled may be selected from a larger input grid, by specifying one or more of (1) a list of point numbers (2) a range of latitude and longitude (3) that only land points (really points at which a mask is >0) are to be selected. The grid may contain both land and sea points, but at present JULES is only deals correctly with land points, so results for sea points will be meaningless and are therefore better omitted as described later. A vector of points can be used to select locations that are not adjacent in the real world - for example, one might only want to run the model at locations within a catchment for which observations are available. In this case although the model could be run on a grid that included the whole catchment, it is more efficient to run only at the selected points.

6.4.1. INIT_GRID: Setting up the grid

```
>INIT_GRID
```

```
pointsList, coord, coordLL
landOnly
subArea, subAreaLatLon
xcoord(1:2),ycoord(1:2)
npoints
readFilePoints
fileNamePoints
```

Variable name	Type and permitted values	Notes
pointsList	logical	Switch indicating whether the model grid is to be specified as a list of points.

Table 10 Description of variables in the INIT_GRID section
		TRUE: Points to be modelled are selected from the
		input grid via a list provided by the user. In this case,
		the points to be modelled are selected via a list of point
		numbers (or coordinate pairs, see below).
		FALSE: All points in the input grid are modelled –
		subject to elimination by subArea or landOnly
		(see below). The value of $projects (q v)$ is set by the
		model and equals the number of points that are
		modelled
coord	logical	Switch indicating if a list of points is given as co-
	logical	ordinate pairs. Only used if point at ist -TPUE
		ordinate pairs. Only used in porticistist=1KOE.
		TRUE: The list of points will be given as an ordinate
		TRUE. The list of points will be given as co-ordinate
		pairs.
		FALSE: The list of points will be given in terms of
17.7	1 • 1	single per point, describing the location in the grid.
COOTALL	logical	Switch indicating if co-ordinate pairs are (x,y) or
		(longitude, latitude). Only used if coord=TRUE.
		TRUE: Co-ordinates are (longitude,latitude).
		FALSE: Co-ordinates are (x,y) in the input grid.
landOnly	logical	Switch indicating if only land points are to be modelled.
		If pointsList=TRUE, landOnly must be FALSE.
		TRUE: Only land points are modelled. Sea points are
		excluded from the model grid. More correctly, only
		points with flandg (see later) >0 are modelled,
		so this option can be used with a suitable input field to
		select a subset of land points (e.g. those in a particular
		catchment).
		FALSE: All points are modelled (land and sea).
subArea	logical	Switch indicating if a subset of the input grid is to be
		selected. Only used if pointsList=FALSE.
		TRUE: a subsection of the input grid will be used (see
		xcoord and ycoord below)
		FALSE: the full input grid is considered.
subAreaLatLon	logical	If subArea=TRUE, this indicates how to interpret the
		coordinates x coord and y coord
		TRUE: co-ordinates are longitude and latitude
		FALSE: co-ordinates are x and x indices (column and
		row numbers)
x coord (1 · 2)	real array	x-coordinates of the sub-area to be considered
		Depending on subling at the sub-area to be considered.
		(in range -180 to 360°) or column numbers
		(in range - 100 to 500) of column numbers.
		$\frac{1}{10000000000000000000000000000000000$

		column numbers, the code uses the nearest integer to the
		input value.
ycoord(1:2)	real array	As xcoord, expect in latitudinal (y) direction.
npoints	integer	The number of points that are to be modelled.
		Only used if pointsList=TRUE.
readFilePoints	logical	Switch controlling source of list of point numbers. Only
		used if pointsList=TRUE.
		TRUE: read from an external ASCII file
		FALSE: read from the run control file. Points are
		specified at the sub-section marked >DATA_POINTS
		(see Section 6.4.3).
fileNamePoints	character	Name of file containing list of points. Only used if
		pointsList=TRUE.

6.4.2. INIT_LAND: Land fraction

This section describes how the land fraction field is set. Originally land fraction described the fraction of each gridbox that is land, but (offline) JULES can use the "land fraction" field as a mask that allows a subset of points to be modelled - e.g. "land fraction" can be set to 1 at all locations within a catchment, and to zero (or less) at all other points (such as land points outside the catchment). For this latter use, landOnly should be TRUE.

>INIT_LAND

readFileLand fileFormatLand fileNameLand

>ASCBIN nheaderFileLand,nheaderFieldLand fieldLand

>NC varNameLand

	Type and	Notes
Variable name	permitted values	
readFileLand	logical	Switch controlling source of land fraction data.
		TRUE: read from an external file
		FALSE: read from the run control file, at the section
		marked >DATA_LAND (see Section 6.4.3).
fileFormatLand	character	Format of file containing land fraction data.
	See Section 5.2.	

Table 11 Description of variables in the INIT_LAND section

fileNameLand	character	Name of file containing land fraction data.	
The following are read only if readFileLand=TRUE. Only values for the appropriate file format			
are read.			
>ASCBIN: If fileF	ormatLand='asc	z','bin' or 'pp':	
nheaderFile	integer	The number of headers at the start of the land fraction	
	>=0	file. See Section 5.2.	
nheaderField	integer	The number of headers before each field in the land	
	>=0	fraction file. See Section 5.2.	
fieldLand	Integer	The field number in the file that holds data for the first	
	>=1	level of this variable. See discussion of fields in Section	
		5.1.	
>NC: If fileFormatLand='nc':			
varNameLand	character array	The name of the variable containing the land fraction.	

6.4.3. INIT_LATLON: Latitude and longitude

>INIT_LATLON
regLatLon regLat1, regLon1 regDlat, regDlon readFileLatLon fileFormatLatLon fileNameLatLon
>ASCBIN nheaderFile, nheaderField fieldLat, fieldLon
>NC varNameLat,varNameLon
<pre>>DATA_POINTS pointList(1:npoints) >DATA_LAND flandg(1:nxIn,1:nyIn) >DATA_LATLON latitude(1:nxIn,1:nyIn) longitude(1:nxIn,1:nyIn)</pre>

Table 12 Description of variables in the INIT	LATLON section.
---	-----------------

Variable name Type and permitted v	ues Notes	
------------------------------------	-----------	--

regLatLon	logical	Switch indicating if the input grid is 'regular' (and will	
		be described by origin and increment) or if latitude and	
		longitude fields are to be read.	
		TRUE: the grid is 'regular' and can be specified by	
		its origin and gridbox size. There is then no need to	
		read lat/lon values for each gridpoint.	
		FALSE: read latitude and longitude values for each	
		gridpoint.	
regLat1	real	The latitude (decimal degrees North) of the	
		southernmost row of gridpoints in the input grid (NOT	
		necessarily the model grid). The gridpoint is in the	
		centre of the gridbox.	
regLon1	real	The longitude (decimal degrees East) of the westernmost	
	-180 to 360	column of gridpoints in the input grid (NOT necessarily	
		the model grid).	
regDlat	real	The size of a gridbox in the NS direction (decimal	
	>0.0	degrees of latitude).	
		Note: regLat1 and regLon1 are only used if	
		regLatLon=TRUE. regDlat and regDlon may be	
		used even if regLatLon=FALSE, if there is a need to	
		establish the area of each gridbox (which is needed by	
		some parameterisations and to label output).	
regDlon	real	The size of a gridbox in the EW direction (decimal	
	>0.0	degrees of longitude).	
readFileLatLon	logical	Switch controlling source of latitude and longitude data.	
		Only used if pointsList=FALSE and	
		regLatLon=FALSE.	
		TRUE: read from an external file	
		FALSE: read from the run control file, at the section	
		marked >DATA_LATLON.	
fileFormatLatL	character	Format of file containing latitude and longitude data.	
on			
fileNameLatLon	character	Name of file containing latitude and longitude data.	
The following are re	ad only if readFi	leLatLon=TRUE. Only values for the appropriate file	
format are read.			
>ASCBIN: If fileF	ormatLatLon='a	asc', 'bin' or 'pp':	
nheaderFile	integer	The number of headers at the start of the lat/lon file.	
	>=0	See Section 5.2.	
nheaderField	integer	The number of headers before each field in the lat/lon	
	>=0	file. See Section 5.2.	
fieldLat	integer	The field number in the file that holds latitude data.	
	>=1	See discussion of fields in Section 5.1.	
fieldLon	integer	The field number in the file that holds longitude data.	
	>=1		
>NC: If fileFormatLatLon='nc':			
varNameLat	character	The name of the variable containing the latitude data.	
varNameLon	character	The name of the variable containing the longitude data.	
The following section	ns are used only if	the switches above indicate that the fields are to be read	

from the run control file.			
<pre>pointList(1:np</pre>	integer array	A list of the points that are to be modelled. These are	
oints)	>=1	point numbers in the input grid.	
		NB If the input data run from North to South (i.e. not the JULES S to N order), the point numbers should still be calculated following the JULES S to N convention. Thus point number 1 is in the SW corner of the grid, which will not be the first point in the input data if yrevIn=T (unless nyIn=1).	
<pre>flandg(1:nxIn,</pre>	real array	The fraction of each gridbox that is land.	
1:nyIn)		If landOnly=TRUE, only locations with flandg>0 are	
		modelled.	
Latitude(1:nxI	real array	The latitude of each gridpoint.	
n,1:nyIn)			
Longitude(1:nx	real array	The longitude of each gridpoint. All values should be in	
In,1:nyIn)	-180 to 360	the range of either -180 to 180° or 0 to 360°.	

The special case of an equal angle grid (all gridboxes have same extent in terms of latitude and longitude) in which the rows run WE and the columns SN (hereafter referred to as an equal angle grid), can be set up via a simple option. All other grids, including a vector of points, require the latitude and longitude of all points to be input.

If regLatLon=TRUE, the input data must be presented in the default JULES order (starting bottom left at (regLat1, regLon1) and proceeding row-wise). If regLatLon=FALSE, the input data need not be in order of lat/lon coordinates – each point in the grid will use the lat/lon read in for that point.

6.4.4. Examples of grid description

The latitude and longitude of the grid must be specified for all runs. For many model runs, the location of the grid is important, since it controls important factors such as the angle of the sun. Other, more idealised, runs might not need this information, but in this case the location may still be required so that the model output can be correctly mapped. If the location is not needed for either purpose, the user should enter an arbitrary location (e.g., $0^{\circ}N$, $0^{\circ}E$).

Grid example 1: A single point run.

This covers the simplest case: the input contains a single point. We assume that $n \times In=1$ and $n \vee In = 1$ (see Section 6.2). All values are obtained from the run control file – no other file is involved. Only the lines in **bold** are relevant, and irrelevant sections have been omitted.

>INIT_GRID		
T,F,F F	! !	pointsList,coord,coordLL landOnly
F,F 1,2,3,4	! !	<pre>subArea, subAreaLatLon xcoord(1:2),ycoord(1:2)</pre>

1	1	npoints
		readFilePoints
'points.txt'	•	fileNamePoints
Poinceren	•	
>INIT LAND		
F	!	readFileLand
'bin'	!	fileFormatLand
'grid.gra'	!	fileNameLand
>INIT_LATLON		
Т	!	regLatLon
40.0, 50.0	!	regLat1, regLon1
1.0,1.0	!	regDlat, regDlon
F	!	readFileLatLon
'bin'	!	fileFormatLatLon
'latlon.gra'	!	fileNameLatLon
>DATA_POINTS		
1	!	pointList
>DATA_LAND		
1.0	!	flandg
>DATA_LATLON		
0.0	!	latitude
5.0	!	longitude

pointsList=T indicates that the grid will be described by a list of points.

npoints=1 shows that this run is for a single point.

readFilePoints=F indicates that the point numbers are read from the >DATA_POINTS section, where point number 1 is indicated (the only possibility for an input grid of one point). readFileLand=F indicates that the land fraction field is read from the >DATA_LAND section,

where the value 1.0 shows that the single gridbox is 100% land.

regLatLon=T indicates that the grid is 'regular' and will be described by its origin (regLat1, regLon1) and gridbox size (regDlat, regDlon). There is then no need for any further information about coordinates – in particular the data at >DATA_LATLON are not read.

Grid example 2: Selecting points in a given range of latitude and longitude.

The grids used in this example are shown in Figure 1. The input grid has $n \times In=5$, nyIn=4, and we wish to model the area 55-57°N 355-357°E (5°W-3°W). To do this, we use the following entries in the run control file. Only the lines in **bold** are relevant, and irrelevant sections have been omitted.

>INIT_GRID		
F,F,F	!	pointsList, coord, coordLL
F	!	landOnly
Т,Т	!	subArea, subAreaLatLon

```
355.0,357.0,55.0,57.0
                            xcoord(1:2), ycoord(1:2)
                         !
1
                         !
                            npoints
                            readFilePoints
F
                         !
'points.dat'
                            fileNamePoints
                         1
>INIT_LAND
т
                    !
                       readFileLand
`bin'
                    !
                       fileFormatLand
`grid.gra'
                    !
                       fileNameLand
>ASCBIN
                    !
                       nheaderFileLand, nheaderFieldLand
0,0
                    !
1
                       fieldLand
>INIT_LATLON
Т
                    regLatLon
55.5, 353.5
                    !
                       regLat1, regLon1
1.0, 1.0
                    !
                       regDlat, regDlon
F
                    !
                       readFileLatLon
'bin'
                    !
                       fileFormatLatLon
'grid.gra'
                    !
                       fileNameLatLon
```

pointsList=F indicates that the model grid will be determined by the land fraction field (and also latitude and longitude in this case).

landOnly=F indicates that both sea and land points will be selected.

subArea=T indicates a sub-section of the input grid is requested. subAreaLatLon=T indicates that the sub-section will be specified by a range of latitude and longitude, shown by xcoord and ycoord to be 355°E to 357°E,55.0°N to 57.0°N (note we could enter the longitude range as -5 to -3).

npoints is irrelevant because the number of points will be determined as the number of points the model finds within the given lat/lon range.

readFileLand=T indicates that the land fraction field is read from the binary file called 'grid.gra', which has no headers and contains land fraction as the first field.

regLatLon=T indicates that the input grid is a 'regular' grid, with origin (the gridpoint in the southwest corner) shown by regLat1, regLon1 to be 55.5°N 355.5°E, and gridbox size 1°×1°.

With this information, JULES determines that there are 4 gridpoints within the given lat/lon range, and that the model grid will be a square of side 2 gridboxes. The land fraction field shows that these are all land points, meaning that the land vector also has 4 points. Note that these points could also have been selected by providing a list of the point numbers, indicated by pointsList=TRUE, npoints=4, and then entering the point numbers (3, 4, 8, 9) after >DATA_POINTS.

Figure 1. Example of grid selection based on longitude and latitude.

Grid Example 3: Selecting only land points in a given range of latitude and longitude.

This example is similar to Example 2, but this time we only wish to model land points within a given area. The grids used in this example are shown in Figure 2 and we wish to model land points in 55-57°N 354-356°E (6°W-4°W).

To do this, we use the following entries in the run control file. Only the lines in **bold** are relevant, and irrelevant sections have been omitted.

>INIT_GRID

```
F, F, F
                        !
                           pointsList, coord, coordLL
т
                        !
                           landOnly
Т,Т
                           subArea, subAreaLatLon
                        !
-6.0, -4.0, 55.0, 57.0
                        !
                           xcoord(1:2), ycoord(1:2)
1
                        !
                           npoints
F
                        !
                           readFilePoints
'points.dat'
                        !
                           fileNamePoints
>INIT_LAND
т
                     !
                        readFileLand
`bin'
                     !
                        fileFormatLand
`grid.gra'
                     !
                        fileNameLand
```

pointsList=F indicates that the model grid will be determined by the land fraction field (and also latitude and longitude in this case).

landOnly=T indicates that only land points will be selected.

subArea=T indicates a sub-section of the input grid is requested. subAreaLatLon=T indicates that the sub-section will be specified by a range of latitude and longitude, shown by xcoord and ycoord to be 6°W to 4°E, 55°N to 57°N.

npoints is irrelevant because the number of points will be determined as the number of land points the model finds within the given lat/lon range.

readFileLand=T indicates that the land fraction field is read from the binary file called 'grid.gra', which has no headers and contains land fraction as the first field.

With this information, JULES determines that there are 4 gridpoints within the given lat/lon range, but only 3 are land. As the 3 land points do not form a rectangle, the model grid is a vector of 3 points. As we are only modelling land points, the land grid is identical to the model grid.

Figure 2 Example of grid selection based on longitude and latitude, taking land points only.

6.5. INIT_FRAC: Fractional coverage of land surface types

In this section, we specify the fraction of the land area in each gridbox that is covered by each of the surface types. Under certain circumstances (described below), this information may be acquired later, via another section.

>INIT_FRAC
readFracIC readFile fileFormat filename
>ASCBIN nheaderFile, nheaderField fieldNum
>NC varName
>DATA frac(1:nxIn,1:nyIn)

Variable name	Type and	Notes
	permitted values	
readFracIC	logical	Switch indicating location of fractional cover data.
		TRUE: fractional cover is provided as part of the
		initial condition in section INIT_IC (see Section 6.20)
		and is not provided here.
		FALSE: fractional cover will be read from this
		section.
		For runs with dynamic vegetation
		(l_veg_compete=TRUE), the fraction cover is a
		prognostic variable and it must be read with the initial
		condition (readFracIC=TRUE).
readFile	logical	Switch controlling location of fractional cover data.
		Only used if readFracIC=FALSE.
		TRUE: read from an external file
		FALSE: read from the run control file.
fileFormat	character	Format of data. Only used if readFile=TRUE.
	See notes in	
	Section 5.2.	
filename	character	Name of file containing data. Only used if

Table 13 Description of variables in the INIT_FRAC section.

		readFile=TRUE.		
The following are read only if readFile=TRUE . Only values for the appropriate file format are				
read.				
>ASCBIN: The follow	ving are used if fil	eFormat='asc', 'bin' or 'pp'.		
nheaderFile	integer	The number of headers at the start of the file.		
	>=0	See Section 5.2.		
nheaderField	integer	The number of headers before each field.		
	>=0	See Section 5.2.		
fieldNum	integer	The number of the first field to be used from the input		
	>=1	file (this represents the first surface type). See		
		discussion of fields in Section 5.1.		
>NC: The following are used if fileFormat='nc'.				
varName	character	The name of the variable containing data.		
>DATA: The following are used if readFile=FALSE.				
<pre>frac(1:nxIn,1:</pre>	real array	The fractional coverage of each surface type. The		
nyIn,1:ntype)	>=0.0	fractions should sum to 1 (this is checked by the code).		
		These values are only read if readFile=F, and must		
		be located after the tag >DATA.		
		NB: If using either URBAN-2T or MORUSES then the		
		total urban fraction should be entered in the		
		'urban_canyon' tile ^{5,6} .		

Note that all land points must be either soil points (indicated by values > 0 of the saturated soil moisture content), or land ice points (indicated by the fractional coverage of the ice surface type [if used] being one). The fractional cover of the ice surface type in each gridbox must be either zero or one – there cannot be partial coverage of ice within a gridbox.

6.5.1. Example: Reading frac from the run control file.

We assume nxIn=nyIn=npoints=1, and ntype=9. Only the lines relevant to this case are shown.

```
>INIT_FRAC
F ! readFracIC
F ! readFile
>DATA
0.55, 0.15, 0.20, 0.00, 0.05, 0.00, 0.05, 0.00 ! frac(1,1,1:ntype)
```

readFracIC=F indicates that frac is read here, rather than as part of the initial condition. readFile=F indicates that data will be read from the run control file, not from another file. The 9 values of frac are positioned after the >DATA tag.

 $^{^{6}}$ The total urban fraction only should be entered because the canyon and roof fractions are calculated using the canyon fraction (W/R). The canyon fraction is set in INIT_URBAN (Section 6.13) and can either be prescribed by the user or calculated by an empirical formula described in Table 25 under l_urban_empirical.

6.5.2. Example: Setting the same tile fractions on all land points

If we have more than one point on the input grid and 9 defined surface types (npoints>1, ntype=9), then it is possible to set the same fractions over all gridboxes without having to make separate input files that would contain the same information repeated npoints times. In this case with, say, npoints=1000, the relevant lines in the run control file are,

```
>INIT_FRAC
                  readFracIC
F
              !
F
              !
                  readFile
>DATA
1000*0.55
1000*0.15
1000*0.20
1000*0.00
1000*0.05
1000*0.00
1000*0.00
1000*0.05
1000*0.00
              !
                 frac
```

It is significant that the data for each JULES surface type are written on a separate line, in contrast to the single grid point case where all values are written on one line and separated by commas. This is because these frac data are read one type at a time in blocks of all grid points (unless the input grid is a single point to be read from the run control file).

6.6. INIT_SOIL: Soil layer depths and hydraulic and thermal characteristics

In this section we specify the depth of each soil layer and also the hydraulic and thermal characteristics of the soil.

```
>INIT_SOIL
l_vg_soil
l_soil_sat_down
1_q10
soilhc_method
useSoilType
constZ, zrev
readFile
fileFormat
fileName
LUTfileName
>ASCBIN
nheaderFile, nheaderField
>VARS
name(1) fieldNumber(1)
---- Repeated for each variable. ---
>ENDVARS
>NC
>VARS
name(1), SDFname(1)
---- Repeated for each variable. ---
>VARS
>DATA_DZSOIL
dzsoil(1:sm levels)
albSoilConst
>DATA
data values
```

Variable name	Type and permitted values	Notes
l_vg_soil	logical	Switch for van Genuchten soil hydraulic model.

Table 14 Description of variables in the INIT_SOIL section.

		TRUE: use van Genuchten model.
		FALSE: use Brooks and Corev model. ⁷
		References: Brooks, R.H. and A.T. Corey, 1964, <i>Hydraulic properties of porous media</i> . Colorado State University Hydrology Papers
		3. van Genuchten, M.T., 1980, A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44:892-898.
l_soil_sat_d own	logical	Switch for dealing with supersaturated soil layers. If a soil layer becomes supersaturated, the water in excess of saturation will be put into the layer below or above according to this switch.
		TRUE: any excess is put into the layer below. Any excess
		from the bottom layer becomes subsurface runoff.
		FALSE: any excess is put into the layer above. Any
		excess from the top layer becomes surface runoff. This
		option was used in JULES2.0.
1_q10	logical	Switch for use of Q10 approach when calculating soil
		respiration.
		TRUE: use Q10 approach. This is always used if TRIFFID
		is switched off (1_triffid=FALSE) and was used in
		JULES2.0.
		FALSE: use the approach of the RothC model.
soilhc metho	Integer	Switch for soil thermal conductivity model.
d	Allowable	1: use approach of Cox et al (1999), as in JULES2.0.
	values: 1 or 2.	2: use approach of Johansen (1975).
useSoilType	logical	Switch controlling how soil characteristics are input
	iogicui	TRUE: a map of soil types (classes) will be provided along
		with a look-up table (LUT) giving the soil characteristics for
		each soil type Each gridbox contains a single soil type but
		the soil properties of that type can vary with denth
		EALSE: maps of soil properties are provided
const7	logical	Switch indicating if soil characteristics are to be uniform
	iogical	with denth at each gridbox. Not used if use SoilType-TRUE
		TRUE : soil characteristics do not vary with denth
		FALSE: soil characteristics vary with denth
7700	logical	Switch indicating if input data are stored in reverse order of
	iogicai	levels compared with IIII ES's expectation
		TDUE, vonticel and is neveral with data stand in
		TROP, vertical order is reversed, with data stored in

⁷ In the JULES2.0 User Manual this was described as the "Clapp and Hornberger" model and the JULES code still refers to "Clapp and Hornberger" rather than "Brooks and Corey". In fact there are important differences between these two hydraulic models (Toby Marthews, pers comm.). There has been confusion in the literature and in past documentation of MOSES/JULES, resulting in these differences often being ignored, but JULES uses the Brooks and Corey model. Hopefully this confusion will be removed from future releases.

Reference: Clapp, R.B. and G.M.Hornberger, 1978, *Empirical Equations for Some Soil Hydraulic Properties*. Water Resources Research 14:601-604.

		"bottom to top" order (i.e. bottom layer first).		
		FALSE: standard vertical order, with data stored in "top		
		to bottom" order (i.e. uppermost layer first).		
		Must be FALSE if useSoilType=TRUE.		
readFile	logical	Switch controlling location of soil data.		
	-	TRUE: read from an external file		
		FALSE: read from the run control file.		
fileFormat	character	Format of data file. Only used if readFile=TRUE.		
fileName	character	Name of file containing data. Only used if		
		readFile=TRUE.		
LUTfileName	character	Name of file containing the look-up table (LUT) of soil		
		characteristics for each soil type. Only used if		
		useSoilType=TRUE. This is an ASCII file, the format of		
		which is described in Section 0.		
>ASCBIN: The f	ollowing are use	d if fileFormat='asc', 'bin' or 'pp', or if		
readFile=FALS	SE.			
nheaderFile	integer	The number of headers at the start of the file (not used if		
	>=0	readFile=FALSE). See Section 5.2.		
nheaderField	integer	The number of headers before each field (not used if		
	>=0	readFile=FALSE). See Section 5.2.		
Each variable is described by a line with two values (name and fieldNumber), separated by				
spaces (NB no con	nmas). The list of	variables is preceded by the tag >VARS, and followed by the		
tag >ENDVARS.	tag > ENDVARS.			
Name	character	The name of a soil variable. These names must be chosen		
		from the list in Table 15 List of soil parameters. below. If		
		useSoilType=TRUE, only the soil type should be provided,		
		otherwise all 9 other variables must be provided.		
fieldNumber	integer	The field number of the first level of data in the input file		
	0	that is to be used for a variable. See discussion of fields in		
		Section 5.1.		
		(Note that if readFile=FALSE, this is interpreted slightly		
		differently – it is the variable number, not field number.)		
>NC: The followin	g are used if file	eFormat='nc'.		
name	character	See under >ASCBIN above.		
SDFname	character	The name of a variable containing data. as it appears in the		
		SDF.		
>DATA_DZSOIL	I			
dzSoil(1:sm_	real array	The soil layer depths (m), starting with the uppermost layer.		
levels)		Note that the soil layer depths (and hence the total soil		
		depth) are constant across the domain.		
		In its standard setup, JULES uses layer depths of 0.1, 0.25,		
		0.65 and 2.0m, giving a total depth of 3.0m.		
albSoilConst	Real	A value of soil albedo that is to be used at all locations.		
		Only used if useSoilType=TRUE.		
>DATA:	I			
If readFile=FA	LSE data for the	soil variables should be listed here in the order given in Table		
I ICUULITE-LA	Lon, data for the	son variables should be listed here in the order given in Table		

15 List of soil parameters. .

Table 15 List of soil parameters.

Name	Description
albsoil	Soil albedo. A single (averaged) waveband is used.
b	Exponent in soil hydraulic characteristics.
hcap	Dry heat capacity $(J m^{-3} K^{-1})$
hcon	Dry thermal conductivity (W $m^{-1} K^{-1}$)
satcon	Hydraulic conductivity at saturation (kg $m^{-2} s^{-1}$)
sathh	If l_vg_soil=TRUE (using van Genuchten model), sathh= $1/\alpha$ (m ⁻¹), where α is a
	parameter of the van Genuchten model.
	If l_vg_soil=FALSE (using Brooks and Corey model), sathh is the absolute
	value of the soil matric suction at saturation (m).
	The suction at saturation is generally less than zero, but JULES uses the absolute
	value.
sm_crit	Volumetric soil moisture content at the critical point (m ³ water per m ³ soil). The
	critical point is that at which soil moisture stress starts to restrict transpiration
sm_sat	Volumetric soil moisture content at saturation (m ³ water per m ³ soil). Note that this
	field is used to distinguish between soil points and land ice points. $sm_sat>0$
	indicates a soil point.
sm_wilt	Volumetric soil moisture content at the wilting point (m ³ water per m ³ soil). The
	wilting point is that at which soil moisture stress completely prevents transpiration
soilType	The soil type (class). Although this is an integer variable, it is treated as a real
	variable for convenience during input and output.

Names must be entered exactly as specified here (including case).

If useSoilType=FALSE, all variables other than soilType are required. If useSoilType=TRUE, only soilType is required.

6.6.1. The soil look-up table file

The soil look-up table should be formatted as shown below, with the meaning of the variables described in Table 16.

```
### Header lines (e.g. containing a description of data sources)
### that are not to be read by JULES should begin with # or !.
nz
dzSoilLUT(1:nz)
nsoil
soilNum
soilChar(isoil,1:8,iz=1)
...
soilChar(isoil,1:8,iz=nz)
---- Repeated for each soil type ----
```

Table 16 List of variables in soil look-up table.

Variable name	Type and permitted values	Notes
nz	integer	Only used to check that LUT is
	Must equal sm levels.	consistent with current soil
	1 —	configuration.
dzSoil(1:nz)	integer array	Only used to check that LUT is
	Must equal dzSoil.	consistent with current soil
		configuration.
nsoil	integer	The number of soil types in the
		file. Not all of these need to be
		present in the map of soil
		types. The
soilNum	integer	The soil number (a class or
		ID). These need not be
		consecutive. This number is
		used to map each value of
		soilType found in the map
		of soil types to a set of
		characteristics.
soilChar(1:nsoil,1:8,1:sm	real array	The soil characteristics for
_levels)		each soil type and each layer.
		NB Values are required for
		each layer, that is, a soil type
		implies a profile of values.
		The 8 characteristics must be
		given in the following order
		(see Table 15 List of soil
		parameters. for explanation of
		names):
		sathh, b, hcap, hcon, satcon,
		sm_crit,sm_sat,sm_wilt.

6.7. INIT_TOP: parameters for TOPMODEL

This section reads parameter values for the TOPMODEL-type parameterisation of runoff. It is only read if $l_top=TRUE$. The description below is very brief. For further details references under l_top in Section 6.2.

>INIT_TOP
zw_max
ti_max
ti_wetl
readFile
fileFormat
fileName

>ASCBIN
nheaderFile,nheaderField
>VARS
name(1) fieldNumber(1)
---- Repeated for each variable. -->ENDVARS
>NC
>VARS
name(1),SDFname(1)
---- Repeated for each variable. -->VARS
>DATA
data values

zw_max	real	The maximum allowed depth to the water table (m). This is the depth to the bottom of an additional layer below the sm_levels soil layers and hence should be set to a value greater than SUM(dzSoil). Values of 10 to 15m have been used.			
ti_max	real	The maximum possible value of the topographic index. A value of 10 has been used successfully.			
ti_wetl	real	A calibration parameter used in the calculation of the wetland fraction. It is used to increment the "critical" value of the topographic index that is used to calculate the saturated fraction of the gridbox. It excludes locations with large values of the topographic index from the wetland fraction. See Gedney and Cox (2003). A value of 2 has been used.			
readFile	logical	Switch controlling location of soil data. TRUE: read from an external file FALSE: read from the run control file.			
fileFormat	character	Format of data file. Only used if readFile=TRUE.			
fileName	character	Name of file containing data. Only used if readFile=TRUE.			
>ASCBIN: The followin readFile=FALSE.	ig are used	if fileFormat='asc', 'bin' or 'pp', or if			
nheaderFile	integer >=0	The number of headers at the start of the file (not used if readFile=FALSE). See Section 5.2.			
nheaderField	integer >=0	The number of headers before each field (not used if readFile=FALSE). See Section 5.2.			
Each variable is described	l by a line w	rith two values (name and fieldNumber), separated by ariables is preceded by the tag >VARS, and followed by the			
tag >ENDVARS.		anables is preceded by the tag >vANS, and followed by the			
name	character	The name of a variable. These names must be chosen from			

Table 17 Description of variables in the INIT_TOP section

		the list in Table 18 below.			
flag	Integer	Flag indicating how this variable should be set.			
	-1 or >0	-1: the following value of constVal will be used to set the			
		value at all locations			
		>0: The field number of the first level of data in the input			
		file that is to be used for a variable. See discussion of			
		fields in Section 5.1. (Note that if readFile=FALSE,			
		this is interpreted slightly differently – it is the variable			
		number, not field number.)			
constVal	real	A value that is used to set a spatially constant field.			
		Only used if flag=-1.			
>NC: The following are used if fileFormat='nc'.					
name	character	See under >ASCBIN above.			
SDFname	character	The name of a variable containing data, as it appears in the			
		SDF.			
flag	integer	Flag indicating how this variable should be set.			
		-1: the following value of constVal will be used to set the			
		value at all locations			
		All other values are ignored and data from the SDF are			
		used.			
constVal	real	See under >ASCBIN above.			
>DATA:					
If readFile=FALSE, data for the TOPMODEL variables should be listed here in the order given					
in Table 18.					

Table 18 List of TOPMODEL parameters

Name*	Description
fexp	Decay factor describing how the saturated hydraulic conductivity decreases with
	depth below the standard soil column (m^{-1}) .
ti_mean	Mean value of the topographic index in each gridbox.
ti_sig	Standard deviation of the topographic index in each gridbox.

* Names must be entered exactly as specified here (including case).

6.8. INIT_PDM: parameters for PDM

This section reads parameter values for the PDM-type parameterisation of surface runoff. It is only read if $1_pdm=TRUE$. Note that these parameters are held constant across the model domain. For further details of PDM, see references under 1_pdm in Section 6.2.

>INIT_PDM		
dz_pdm b pdm		
- <u>-</u> 1 -		

dz_pdm	real The depth of soil considered by PDM (m).	
		A value of ~1m can be used.
b_pdm	real	Shape factor for the pdf.

6.9. INIT_HGT: elevation of tiles

This section sets the elevation of each surface tile, **relative to the gridbox mean elevation**. Note that the gridbox mean elevation is not required anywhere in JULES but is implicit in the near-surface meteorological data that are provided (e.g. higher locations will tend to be colder). The elevation of each tile is used to alter the values of the air temperature and humidity over that tile. All tile elevations must be greater than zero, i.e. tile can only be higher than the gridbox average, because the assumptions used to alter the air temperature and humidity only hold for moving to higher elevations. For many applications, the tile elevation can be set to zero.

>INIT_HG
zeroHeight
readFile
fileFormat
fileName
>ASCBIN
nheaderFile,nheaderField
fieldNum
>NC
SDFname
>DATA
data values

zeroHeight	logical	Switch used to simplify the initialisation of tile elevation.
		TRUE : set all tile elevations to zero. This is a very common configuration and is made easier by this switch. FALSE : set all tile heights using data to follow.
readFile	logical	Switch controlling location of elevation data.
		TRUE: read from an external file
		FALSE: read from the run control file.
fileFormat	character	Format of data file. Only used if readFile=TRUE.
fileName	character	Name of file containing data. Only used if
		readFile =TRUE .
>ASCBIN: The following are used if fileFormat='asc', 'bin' or 'pp', or if		
readFile=FALSE.		

Table 20 Description of variables in the INIT_HGT section

nheaderFile	integer	teger The number of headers at the start of the file (not used if	
	>=0	readFile=FALSE). See Section 5.2.	
nheaderField	integer	The number of headers before each field (not used if	
	>=0	readFile=FALSE). See Section 5.2.	
fieldNum	integer	The number of the first field to be used from the input file	
	>=1	(this represents the first surface tile). See discussion of	
		fields in Section 5.1.	
>NC: The following are used if fileFormat='nc'.			
SDFname	character	The name of a variable containing data, as it appears in the	
		SDF.	
>DATA:			
If we addid a transform data for the tile elevations variables should be listed have. Values for each			

If readFile=FALSE, data for the tile elevations variables should be listed here. Values for each tile should be listed on a separate line.

6.10. INIT_VEG_PFT: Time-invariant parameters for plant functional types

This section reads the values of parameters for each of the plant functional types (PFTs). These parameters are a function of PFT only. Parameters that also vary with time and/or location are dealt with in control file section INIT_VEG_VARY (see guide Section 6.11). Parameters that are only required if the dynamic vegetation (TRIFFID) or phenology sections are requested are read separately in control file section INIT_TRIF (see guide Section 6.15).

For many applications, the best approach may be to read the PFT parameters from the standard parameter files provided with the JULES code (readFile=TRUE, filename='PARAM/standard_pft_param.dat'), since this removes the risk that values can be changed by an accidental edit to the run control file. The description of INIT_VEG_PFT options is given in Table 21 and the list of required variables is given in Section 6.10.

```
>INIT_VEG_PFT
readFile
fileName
npftInFile
>DATA
var1(1),var1(2),...,var1(npft)
var2(1),var2(2),...,var2(npft)
... ... data values ... ...
```

Variable name	Type and permitted values	Notes
readFile	logical	Switch controlling location of data. TRUE: read from an external file

Table 21 Description of variables in the INIT_VEG_PFT section.

		FALSE: read from the run control file.
filename	character	The name of the external file containing the data. Only
		used if readFile=TRUE.
npftInFile	integer	The number of PFTs for which parameters are given in
	≥npft	the input file.
>DATA:		

If readFile=FALSE, the data should be listed here (on the line after >DATA) in the order given in Section 6.2. Each variable should start on a new line, and npftInFile values should be given.

Each parameter has a separate value for each PFT, npftInFile values are read for each parameter. All values are of type REAL, unless stated otherwise. Parameters for the TRIFFID or phenology modules are described in Section 6.15.

HCTN24 and 30 refer to Hadley Centre technical notes 24 and 30, available from http://www.metoffice.gov.uk/publications/HCTN

Variable name Description Character. Name of each PFT. This list must include the PFTs used in this run typeName see pftName in section INIT_OPTS (Section 6.2). These names are for the user's convenience, and do not have any special significance within JULES. c3 Integer. Flag indicating whether PFT is C3 type. 0: not C3 (i.e. C4) 1 : C3 The height of each PFT (m), also known as the canopy height. The value read canht_ft here is only used if TRIFFID is not active (1_trif=FALSE). If TRIFFID is active, canht_ft is a prognostic variable and its initial value is read as described in Section 6.20 below. The leaf area index (LAI) of each PFT. The value read here is only used if LAI TRIFFID is not active (l_trif=FALSE). If TRIFFID is active, LAI is a prognostic variable and its initial value is read as described in Section 6.20 below. Minimum canopy capacity (kg m^{-2}). This is the minimum amount of water that catch0 can be held on the canopy. See HCTN30 p7. Rate of change of canopy capacity with LAI (kg m⁻²). Canopy capacity is dcatch_dlai calculated as catch0 + dcatch_dlai*lai. See HCTN30 p7. Rate of change of vegetation roughness length for momentum with height. dz0v_dh Roughness length is calculated as dz0v_dh*canht_ft. See HCTN30 p5. Ratio of the roughness length for heat to the roughness length for momentum. ZOh zOm This is generally assumed to be 0.1. See HCTN30 p6. Note that this is the ratio of the roughness length for heat to that for momentum. It does not alter the roughness length for momentum, which is calculated using canht ft and dz0v dh (see above). infil_f Infiltration enhancement factor. The maximum infiltration rate defined by the soil parameters for the whole gridbox may be modified for each PFT to account for tile-dependent factors, such as macro-pores related to vegetation roots. See HCTN30 p14 for full details. rootd_ft Root depth (m).

Table 22 List of PFT parameters.

	An exponential distribution with depth is assumed, with e-folding depth
	rootd_ft. Note that this means that generally some of the roots exist at depths
	greater than rootd_ft. See HCTN30 Eq.32.
snowCanPFT	Flag indicating whether snow can be held under the canopy of each PFT. Only
	used if can $model=4$ (see Section 6.2). The model of snow under the canopy
	is currently only suitable for coniferous trees.
	Acceptable values are:
	0: snow cannot be held under the canopy.
	1: snow can be held under the canopy.
albsnc max	Snow-covered albedo for large leaf area index. Only used if
	1 spec albedo=FALSE. See HCTN30 Eq.2
albsnc min	Snow-covered albedo for zero leaf area index.
_	Only used if 1 spec albedo=FALSE. See HCTN30 Eq.2.
albsnf_max	Snow-free albedo for large LAI.
	Only used if 1 spec albedo=FALSE. See HCTN30 Eq.1.
kext	Light extinction coefficient - used with Beer's Law for light absorption through
	tile canopies. See HCTN30 Eq.3.
kpar	PAR Extinction coefficient ($m^2 leaf/m^2$ ground)
orient	Flag indicating leaf angle distribution.
	0 : spherical
	1 : horizontal
alpha	Quantum efficiency (mol CO ₂ per mol PAR photons).
alnir	Leaf reflection coefficient for NIR.
	HCTN30 Table 3
alpar	Leaf reflection coefficient for VIS.
	HCTN30 Table 3
omega	Leaf scattering coefficient for PAR.
omnir	Leaf scattering coefficient for NIR.
a_wl	Allometric coefficient relating the target woody biomass to the leaf area index
	(kg carbon m ⁻²).
a_ws	Woody biomass as a multiple of live stem biomass.
b_wl	Allometric exponent relating the target woody biomass to the leaf area index.
	This is 5/3 in HCTN24 Eq.8.
eta_sl	Live stemwood coefficient (kg C/m/LAI)
g_leaf_0	Minimum turnover rate for leaves (/360days).
dgl_dm	Rate of change of leaf turnover rate with moisture availability.
dgl_dt	Rate of change of leaf turnover rate with temperature (K ⁻¹).
	This is 9 in HCTN24 Eq. 10.
glmin	Minimum leaf conductance for H_2O (m s ⁻¹).
dqcrit	Critical humidity deficit (kg H_2O / kg air).
	See Eqn. 1 / of Cox et al. (1999).
Ia	Scale factor for dark respiration. See HCTN 24 Eq. 56.
I U	C1/CA for $DQ = 0$. See HCTN 24 Eq. 32.
ismc_oi	Moisture availability below which leaves are dropped.
nett	Scale factor relating V_{cmax} with leaf nitrogen concentration. See HCTN 24 Eq.
1.0	
niu	1 op lear nitrogen concentration (kg N/kg C).
nr_n⊥	Ratio of root nitrogen concentration to leaf nitrogen concentration

ns_nl	Ratio of stem nitrogen concentration to leaf nitrogen concentration.
r_grow	Growth respiration fraction
sigl	Specific density of leaf carbon (kg C/m2 leaf).
tleaf_of	Temperature below which leaves are dropped (K).
Tlow	Lower temperature for photosynthesis (deg C).
Tupp	Upper temperature for photosynthesis (deg C).
emis_pft	Surface emissivity
fl_o3_ct	Critical flux of O3 to vegetation (nmol/m2/s)
dfp_dcuo	Fractional reduction of photosynthesis with the cumulative uptake of O3 by
	leaves (/mmol/m2)

6.11. INIT_VEG_VARY: Time-/space- varying parameters for plant functional types

This section describes prescribed characteristics of the vegetation that vary with time and/or location, in addition to varying with PFT.

```
>INIT_VEG_VARY
nvegVar
vegDataPer, vegUpdatePer
nvegFileTime, vegFilePer
vegClim
readList
fileName
vegFileDate(1), vegFileTime(1)
vegEndTime
fileFormat
>ASCBIN
nfieldFile
nheaderFile, nheaderField
noNewLineVeq
varName(1),flag(1),fieldNumber(1),interp(1),nameFile(1)
--- Repeated for each of nvegVar variables.---
>NC
varName(1),flag(1),interp(1),SDFname(1),nameFile(1)
--- Repeated for each of nvegVar variables.---
```

Variable name	Type and	Notes
	permitted	
	values	
nvegVar	integer	The number of prescribed characteristics that vary
	0≤nvegVar≤	with time and/or location. The three characteristics
	3	that may vary are vegetation height, leaf area index
		and root depth. If nvegVar=0, nothing more is
		read from this section.
vegDataPer	integer	The period (s) of time-varying data. If there are no
		time-varying fields, enter 0.
		Special cases: -1 indicates monthly data.
vegUpdatePer	integer	The period (s) between updates of time-varying
	_	fields. This must be less than or equal to the data
		period (vegDataPer). For example,
		vegDataPer=86400, vegUpdatePer=3600,
		indicates that the data are daily values and these

Table 23 Description of variables in the INIT_VEG_VARY section.

		should be updated (by interpolation) on an hourly
		basis. Special cases:
		0: update every timestep
		-1: update once a month
nvegFileTime	integer ≥1	The number of data files available for each variable, each file holding data for different times. If all variables are held together, this is the number of data files. If variables are held in separate files, this is the number of files for any one variable.
vegFilePer	integer	The period (s) of the files containing the data. This must be at least as large as the period of the data (vegDataPer), and must be a multiple of the model timestep. Special cases: -1: monthly files -2: annual files
vegClim	logical	Switch indicating if time-varying vegetation data are to be treated as climatological, in the sense that the same data are to be used regardless of the year. TRUE: data are climatological. The year given for each file is ignored. FALSE: data are not climatological
readList	logical	Switch controlling how the names of the files containing the vegetation data, and the times covered by each, are read. TRUE: a list of names and times is read from another file. This is required if nvegFileTime>1. FALSE: a single name and file are read from the run control file. This option is only allowed if nvegFileTime=1 (see above).
filename		If nvegFileTime=1 this is the name of the single data file (or the template). If nvegFileTime>1, this is the name of a file that lists the names and times of the data files. The first line of this file will be skipped (and so can be used for comments). All other lines are to be of the form filename, startDate, "startTime", where fileName may contain variable-name- templating (see Section 6.22). startDate is in the format yyyymmdd, and time is in the format hh:mm:ss.
vegFileDate	integer	Date of first data in vegetation file, in format yyyymmdd. Only used if readList=FALSE (otherwise read from an external file).
vegFileTime	character	Time of first data in vegetation file, in format hh:mm:ss. Only used if readList=FALSE (otherwise read from an external file). It is recommended that all times entered in JULES use Greenwich Mean Time (GMT or UTC), not

		local time. The time zone used here must match that
		under INIT_TIME (see Section 6.3).
vegEndTime	logical	Flag used with vegetation file templating. TRUE
		means that time in filename refers to the final data in
		the file, FALSE means the time in the filename
		refers to the first data in the file.
fileFormat	character	Format of vegetation data files.
	See Section	
	5.2.	

The following are read only if readFile=TRUE. Only values for the appropriate file format are read.

>ASCBIN: If fileForma	t='asc', 'bi	n' or 'pp':
nfieldFile	integer	Number of fields in each file.
nHeaderFile	integer	The number of headers at the start of each file - see
	>=0	Section 5.2.
nHeaderTime	integer	The number of headers at the start of each time - see
	>=0	Section 5.2.
nHeaderField	integer	The number of headers at the start of each field - see
	>=0	Section 5.2.
noNewLineVeg	logical	Switch describing format of ASCII file.
		TRUE means that variables are arranged across one
		or more lines, and each variable does not necessarily
		start a new line. This option should be used if all the
		data for each time are one line of the input file
		(although it can also be used if the data continue
		onto subsequent lines). TRUE is only allowed if the
		fields are not functions of position (i.e.
		<pre>vegFlag='t', see above).</pre>
		FALSE means that each variable starts on a new
		line.
varName	character	The name of the variable. This is used to identify the
	'canht',	variable in the code, and is set in the code. These
	'lai',	must be entered exactly as listed, and are case-
	'rootd'	sensitive. Acceptable values:
		'lai' for leaf area index
		'canht' for canopy height
		'rootd' for root depth
flag	character	Flag indicating how the characteristic varies.
	't', 'tx',	Acceptable values:
	'x'	t: function of PFT and time only
		tx: function of PFT, time and location
		x: function of PFT and location only
		At present, all nvegVar variables must have the
		same value for this flag.
		rootd can only use flag 't' (i.e. root depth cannot
		vary with location in the current code).
fieldNumber	integer	The field number of the first level of data in the
		input file that is to be used for a variable.
interpFlag	character	Flag indicating how variable is to be interpolated in

	See Table 45.	time.
nameFile	character	The substitution string used in the names of files that
		contain this variable. Only used if variable name
		templating is used (see Section 6.22).
>NC: If fileFormat='n		
varName	character	See above under >ASCBIN.
flag	character	See above under >ASCBIN.
interpFlag	character	See above under >ASCBIN.
SDFname	character	The name of the variable as it appears in a SDF.
nameFile	character	See above under >ASCBIN.

6.11.1. Examples of INIT_VEG_VARY

Example 1: Time-varying Leaf Area Index.

Leaf Area Index is to vary with time (but not with position on the grid). Climatological monthly data are to be used, with values updated at the start of each day. Note that the values are always assumed to be a function of PFT. The ASCII input file is illustrated in Figure 3 and contains one month of data (for all PFTs) on a single line.

Month	n pl	p2	р3	p4	р5
1	0.5	4.0	1.0	2.0	1.0
2	0.7	4.0	1.1	2.0	1.5
3	0.9	4.2	1.5	2.0	2.0
4	2.0	4.5	2.0	2.0	2.5
	rest	of fi	lle no	ot sho	own

The relevant entries in the run control file are shown below. Only the lines in **bold** are relevant, and irrelevant sections have been omitted.

```
>INIT VEG VARY
1
                ! nvegVar
-1,86400
                ! vegDataPer, vegUpdatePer
1,1
                   nvegFileTime, vegFilePer
                !
т
                !
                   veqClim
F
                   readList
                !
`lai_monthly.dat'
                     !
                        fileName
20120115, '00:00:00'
                     !
                        vegFileDate(1), vegFileTime(1)
`asc'
                     !
                        fileFormat
>ASCBIN
                !
                   nfieldFile
6
1,0
                !
                   nheaderFile, nheaderField
```

Т	!	noNewLineVeg		
`lai′,	`t′, 2,	`i', 'notused'	! name, flag, field, interp, nameFile	

nvegVar=1 indicates that we only want to vary one vegetation characteristic. vegFileDate=20120115, but since vegClim=T, the year is discarded (effectively leaving 0115=15 January), meaning that each time of data is valid on the 15th of the month. nfieldFile=6 because we have data for each of 5 PFTs, plus there is a 'timestamp' variable that will not be used (see Figure 3). The final line shows that we want to vary LAI as a function of time (and PFT) only. The LAI data start with field #2. The 'I' and vegUpdatePer=86400 indicate that the monthly data will be interpolated between the monthly values and updated once every 86400s (once a day).

6.12. INIT_NONVEG: Parameters for non-vegetation surface types

>INIT_NONVEG

fileName nnvgInFile

>DATA

```
dataVar1(1),dataVar1(2),...,dataVar1(nnvgInFile)
dataVar2(1),dataVar2(2),...,dataVar2(nnvgInFile)
... ... data values ... ...
```

Variable name Type and Notes permitted values Switch controlling location of data. readFile logical TRUE: read from an external file FALSE: read from the run control file. filename character The name of the file to be read. Only used if readFile=TRUE. Note: For many applications, the best approach may be to read the parameters from the files provided with the JULES code (via readFile=TRUE), since this removes the risk that values can be changed by an accidental edit to the run control file. The number of non-vegetation surface types for which nnvgInFile integer parameters are available in the input file. ≥nnvg >DATA The following is the list of dataVar parameters that must be defined for each non-PFT tile type. technical HCTN30 refers Hadley Centre 30, available from to note http://www.metoffice.gov.uk/publications/HCTN Name of each surface type. This list must include the nontypeName charact er vegetation surface types used in this run as defined in INIT_OPTS variable nvgName (see Section 6.2). Special cases: 'soil' – this surface type must always be present. 'water' - this is used to indicate open water, such as lakes. 'ice' – this is used to indicate land ice, such as glaciers. 'urban roof' - this is used to indicate the urban roof tile. It enables the two-tile urban schemes and should be used in conjunction with 'urban_canyon' (though see footnote 5 on page 28)

Table 24 Description of variables in the INIT_NONVEG section.

'urban_canyon' - this is used to indicate the urban

		canyon tile. Must be used in conjunction with
		'urban_roof' and cannot be used with 'urban'
		Each special type must be represented by not more than one
		type (e.g. we cannot have two 'soil' types).
albsnc_nvg	real	Snow-covered albedo.
		Only used if l_spec_albedo=FALSE.
		See HCTN30 Table 1
albsnf_nvg	real	Snow-free albedo.
		See HCTN30 Table 1
		Only used if l_spec_albedo=FALSE.
catch_nvg	real	Capacity for water (kg m^{-2}).
		See HCTN30 p7
gs_nvg	real	Surface conductance (m s^{-1}).
		See HCTN30 p7
		Soil conductance is modified by soil moisture according to
		HCTN30 Eq 35.
infil_nvg	real	Infiltration enhancement factor.
		The maximum infiltration rate defined by the soil
		parameters for the whole gridbox may be modified for each
		tile to account for tile-dependent factors. See HCTN30 p14
z0_nvg	real	Roughness length for momentum (m).
		See HCTN30 Table 4
zOh_zOm	real	Ratio of the roughness length for heat to the roughness
		length for momentum. This is generally assumed to be 0.1.
		See HCTN30 p6. Note that this is the <i>ratio</i> of the roughness
		length for heat to that for momentum. It does <i>not</i> alter the
		roughness length for momentum, which is given by
		z0_nvg above.
ch_nvg	real	Heat capacity of this surface type (J K ⁻¹ m ⁻²). Used only if
		can_model is 3 or 4 (See INIT_OPTS, Section 6.2).
vf_nvg	real	Fractional coverage of non-vegetation "canopy". Typically
	0≤vf_nv	set to 0.0, but value of 1.0 used if tile should have a heat
	g≤1	capacity in conjunction with can_model options 3 or 4
		(See INIT_OPTS, Section 6.2)
emis_nvg	real	Surface emissivity.

6.13. INIT_URBAN: Urban model configuration, geometry & material characteristics

This section reads in model configuration choices, geometry & material characteristics data for the urban schemes URBAN-2T and MORUSES. Both these schemes must have an 'urban_roof' tile and an 'urban_canyon' tile (though see footnote 5 on page 28). This section is only read if either of the two-tile urban schemes are enabled by including the 'urban_roof' tile. The 'urban_roof' and 'urban_canyon' tile type parameters specified in INIT_NONVEG (Section 6.12) will be used for values that MORUSES does not parameterise, and for any MORUSES parametrisations that are turned off, according to Table 26. Further information on MORUSES, including references, can be found in the technical documentation and under 1_moruses in INIT_OPTS (Section 6.2)

```
>INIT_URBAN
```

```
l urban empirical, l moruses macdonald
l_moruses_albedo,l_moruses_emissivity,l_moruses_rough
l_moruses_storage,l_moruses_storage_thin
anthrop_heat_scale
readFile
fileFormat
fileName
>ASCBIN
nheaderFile, nheaderField
>VARS
varName(1)
             varFlag(1)
                          constVal(1)
varName(2)
             varFlag(2)
                          constVal(2)
--- Repeat for each variable. ---
>ENDVARS
>NC
>VARS
varName(1)
             varFlaq(1)
                          constVal(1)
                                        SDFname(1)
             varFlaq(2)
                          constVal(2)
                                        SDFname(2)
varName(2)
--- Repeat for each variable. ---
>ENDVARS
# Data fields to be read from this file should appear below here.
>DATA
```

Variable name	Type and	Notes
	permitted	
	values	
l_urban_empiric	logical	Switch to use empirical relationships for urban geometry,
al	C	based on total urban fraction. Dimensions calculated are
		W/R, H/W & H (see Table 27)
		URBAN-2T uses W/R only.
		Used in calculation of the canyon and roof fractions and
		also to distribute anthropogenic heat between roof and
		<pre>canyon if l_anthrop_heat_src = TRUE</pre>
		TRUE: Use empirical relationships for urban geometry.
		FALSE: Appropriate data needs to be supplied instead
		NB: These are only valid for high resolutions (~1 km)
		P afarances:
		Rohnenstengel SI Evans S Clark P Belcher SE (2010)
		Simulations of the London urban heat island Quarterly
		Journal of the Royal Meteorological Society (submitted)
The following are the	narameterisat	ion switches for the configuration of MORUSES Where
appropriate Table 26 gi	ves the $4ur$	han roof' and 'urban canyon' narameters that are
required to be set in INI	T NONVEG (Section 6.12)
l moruses macdo	logical	MORUSES switch for using MacDonald et al. (1998) to
nald	logical	calculate effective roughness length of urban areas and
mara		displacement height from urban geometry (H H/W and
		W/R see Table 27)
		W/R, see Table 27).
		TRUE: Use MacDonald et al. (1998) formulations
		FALSE: Appropriate data needs to be supplied instead
		NB: If l_urban_empirical = TRUE then
		1 moruses macdonald = TRUE, which the code
		enforces this.
		References:
		Macdonald RW, Griffiths RF, Hall D. 1998. An improved
		method for the estimation of surface roughness of obstacle
		arrays. Atmos. Env. 32: 1857–1864
l_moruses_albed	logical	MORUSES switch for effective canyon albedo
0		parameterisation. The roof albedo is given by
		INIT_NONVEG (Section 6.12).
		TRUE: Use MORUSES parameterisation Requires that
		$1 \cos z = TRUE$ which the code automatically enables
		$\Delta I SE$ See Table 26
		I ALSE SECTABLE 20

Table 25 Description of variables that are required in the INIT_URBAN section.

l_moruses_emiss	logical	MORUSES switch for effective canyon emissivity
ivity		parameterisation. The roof emissivity is given by
		INIT_NONVEG (Section 6.12).
		TRUE: Use MORUSES parameterisation
		FALSE See Table 26
l_moruses_rough	logical	MORUSES switch for effective roughness length for heat
		parameterisation.
		TRUE: Use MORUSES parameterisation
	1 • 1	FALSE See Table 26
1_moruses_stora	logical	MORUSES switch for thermal inertia and coupling with
ge		underlying son parameterisation
		TRUE Use MORUSES peremeterisation
		FALSE See Table 26
l moruses stora	logical	MORUSES switch to use a thin roof to simulate the effects
r_moruses_scora	logical	of insulation
ge_enri		Only used if 1 moruses storage = TRUE
		ony used in 1_mor uses_scorage = 1101
		TRUE: Use thin, insulated roof
		FALSE: Use damping depth based on diffusivity of roofing
		materials
Other URBAN-2T and M	IORUSES op	tions
	1	
anthrop_heat_sc	real	Distribution scaling factor, which allows the anthropogenic
anthrop_heat_sc ale	real	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon
anthrop_heat_sc ale	real	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that:
anthrop_heat_sc ale	real	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that:
anthrop_heat_sc ale	real	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon
anthrop_heat_sc ale	real	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon H_canyon × (W/R) + H_roof × (1.0 - W/R) = anthrop_heat
anthrop_heat_sc ale	real	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon H_canyon × (W/R) + H_roof × (1.0 - W/R) = anthrop_heat
anthrop_heat_sc ale	real	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon H_canyon × (W/R) + H_roof × (1.0 - W/R) = anthrop_heat Has a value 0.0 - 1.0 where the extremes correspond to:
anthrop_heat_sc ale	real	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon H_canyon × (W/R) + H_roof × (1.0 - W/R) = anthrop_heat Has a value 0.0 - 1.0 where the extremes correspond to: 0.0 = all released within the canyon
anthrop_heat_sc ale	real	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon H_canyon × (W/R) + H_roof × (1.0 - W/R) = anthrop_heat Has a value 0.0 - 1.0 where the extremes correspond to: 0.0 = all released within the canyon 1.0 = evenly spread between canyon and roof
anthrop_heat_sc ale	real	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: $H_{roof} = anthrop_heat_scale \times H_canyon$ $H_canyon \times (W/R) + H_{roof} \times (1.0 - W/R) = anthrop_heat$ Has a value 0.0 - 1.0 where the extremes correspond to: 0.0 = all released within the canyon 1.0 = evenly spread between canyon and roof
anthrop_heat_sc ale	real	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon H_canyon × (W/R) + H_roof × (1.0 - W/R) = anthrop_heat Has a value 0.0 - 1.0 where the extremes correspond to: 0.0 = all released within the canyon 1.0 = evenly spread between canyon and roof Only used if 1_anthrop_heat_src = TRUE
anthrop_heat_sc ale The following are give	real	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon H_canyon × (W/R) + H_roof × (1.0 - W/R) = anthrop_heat Has a value 0.0 - 1.0 where the extremes correspond to: 0.0 = all released within the canyon 1.0 = evenly spread between canyon and roof Only used if 1_anthrop_heat_src = TRUE about the source of data for urban geometry and building
anthrop_heat_sc ale The following are give material properties	real information	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon H_canyon × (W/R) + H_roof × (1.0 - W/R) = anthrop_heat Has a value 0.0 - 1.0 where the extremes correspond to: 0.0 = all released within the canyon 1.0 = evenly spread between canyon and roof Only used if l_anthrop_heat_src = TRUE about the source of data for urban geometry and building
anthrop_heat_sc ale The following are give material properties readFile	real information logical	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon H_canyon × (W/R) + H_roof × (1.0 - W/R) = anthrop_heat Has a value 0.0 - 1.0 where the extremes correspond to: 0.0 = all released within the canyon 1.0 = evenly spread between canyon and roof Only used if 1_anthrop_heat_src = TRUE about the source of data for urban geometry and building Switch that indicates source of data. TRUE: data are read from a named_external file
anthrop_heat_sc ale The following are give material properties readFile	real information logical	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon H_canyon × (W/R) + H_roof × (1.0 - W/R) = anthrop_heat Has a value 0.0 - 1.0 where the extremes correspond to: 0.0 = all released within the canyon 1.0 = evenly spread between canyon and roof Only used if l_anthrop_heat_src = TRUE about the source of data for urban geometry and building Switch that indicates source of data. TRUE: data are read from a named, external file FALSE: data are read from the run control file after the
anthrop_heat_sc ale The following are give material properties readFile	real information logical	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon H_canyon × (W/R) + H_roof × (1.0 - W/R) = anthrop_heat Has a value 0.0 - 1.0 where the extremes correspond to: 0.0 = all released within the canyon 1.0 = evenly spread between canyon and roof Only used if 1_anthrop_heat_src = TRUE about the source of data for urban geometry and building Switch that indicates source of data. TRUE: data are read from a named, external file FALSE: data are read from the run control file after the section marked >DATA
<pre>anthrop_heat_sc ale The following are give material properties readFile fileFormat</pre>	real information logical	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon H_canyon × (W/R) + H_roof × (1.0 - W/R) = anthrop_heat Has a value 0.0 - 1.0 where the extremes correspond to: 0.0 = all released within the canyon 1.0 = evenly spread between canyon and roof Only used if l_anthrop_heat_src = TRUE about the source of data for urban geometry and building Switch that indicates source of data. TRUE: data are read from a named, external file FALSE: data are read from the run control file after the section marked >DATA Flag indicating the file format. Case sensitive
<pre>anthrop_heat_sc ale The following are give material properties readFile fileFormat</pre>	real information logical character	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon H_canyon × (W/R) + H_roof × (1.0 – W/R) = anthrop_heat Has a value 0.0 - 1.0 where the extremes correspond to: 0.0 = all released within the canyon 1.0 = evenly spread between canyon and roof Only used if 1_anthrop_heat_src = TRUE about the source of data for urban geometry and building Switch that indicates source of data. TRUE: data are read from a named, external file FALSE: data are read from the run control file after the section marked >DATA Flag indicating the file format. Case sensitive. Only used if readFile= TRUE
<pre>anthrop_heat_sc ale The following are give material properties readFile fileFormat</pre>	real information logical character	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon H_canyon × (W/R) + H_roof × (1.0 - W/R) = anthrop_heat Has a value 0.0 - 1.0 where the extremes correspond to: 0.0 = all released within the canyon 1.0 = evenly spread between canyon and roof Only used if l_anthrop_heat_src = TRUE about the source of data for urban geometry and building Switch that indicates source of data. TRUE: data are read from a named, external file FALSE: data are read from the run control file after the section marked >DATA Flag indicating the file format. Case sensitive. Only used if readFile=.TRUE.
<pre>anthrop_heat_sc ale The following are give material properties readFile fileFormat</pre>	real information logical character	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon H_canyon × (W/R) + H_roof × (1.0 - W/R) = anthrop_heat Has a value 0.0 - 1.0 where the extremes correspond to: 0.0 = all released within the canyon 1.0 = evenly spread between canyon and roof Only used if l_anthrop_heat_src = TRUE about the source of data for urban geometry and building Switch that indicates source of data. TRUE: data are read from a named, external file FALSE: data are read from the run control file after the section marked >DATA Flag indicating the file format. Case sensitive. Only used if readFile=.TRUE. 'asc': ASCII ('bip': generic binary (including GrADS)
<pre>anthrop_heat_sc ale The following are give material properties readFile fileFormat</pre>	real information logical character	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon H_canyon × (W/R) + H_roof × (1.0 - W/R) = anthrop_heat Has a value 0.0 - 1.0 where the extremes correspond to: 0.0 = all released within the canyon 1.0 = evenly spread between canyon and roof Only used if l_anthrop_heat_src = TRUE about the source of data for urban geometry and building Switch that indicates source of data. TRUE: data are read from a named, external file FALSE: data are read from the run control file after the section marked >DATA Flag indicating the file format. Case sensitive. Only used if readFile=.TRUE. 'asc': ASCII 'bin': generic binary (including GrADS)
<pre>anthrop_heat_sc ale The following are give material properties readFile fileFormat</pre>	real information logical character	Distribution scaling factor, which allows the anthropogenic heat flux to be spread between the urban_canyon and urban_roof tiles such that: H_roof = anthrop_heat_scale × H_canyon H_canyon × (W/R) + H_roof × (1.0 - W/R) = anthrop_heat Has a value 0.0 - 1.0 where the extremes correspond to: 0.0 = all released within the canyon 1.0 = evenly spread between canyon and roof Only used if l_anthrop_heat_src = TRUE about the source of data for urban geometry and building Switch that indicates source of data. TRUE: data are read from a named, external file FALSE: data are read from the run control file after the section marked >DATA Flag indicating the file format. Case sensitive. Only used if readFile=.TRUE. 'asc': ASCII 'bin': generic binary (including GrADS) 'nc': netCDF

fileName		Name of file containing urban geometry & building material characteristics Only used if readFile= TRUE	
>ASCBIN: The follow	ing are used	if fileFormat='asc', 'bin', or 'pp', or if	
readFile = FALSE.	ing are used	in filter of mate about sind, of pp, of it	
nheaderFile	integer	The number of headers at the start of the file. See Section 5.2	
nheaderField	integer	The number of headers at the start of a field. See Section 5.2	
varName	character	The name of the variable (see Table 27 Description of urban geometry & building material variables).	
varFlag	integer ≥-1	Flag indicating how the variable is initialised. Acceptable values: >0: The field number in the file that holds data for this variable. See discussion of fields in Section 5.1. -1: The field will be set to the value constVal (see below) at all points. This option can be used to specify an idealised initial condition.	
constVal	real	The value to be used at all points. Only used if flag=-1.	
>NC: The following are used if fileFormat='nc'.			
varName	character	See under >ASCBIN above.	
varFlag	integer ≥-1	 Flag indicating how the variable is initialised. Acceptable values: >0: Default (effectively is ignored). -1: See under >ASCBIN above. 	
constVal	real	See under >ASCBIN above.	
SDFname	character	The name of the variable as it appears in the SDF.	
>DATA IfreadFile = FALS	E. data should	d now appear in the run control file, in the order indicated by	

If readFile = FALSE, data should now appear in the run control file, in the order indicated by the value of varFlag for each variable (see >ASCBIN above) with each starting on a separate line.

Table 26 Parameters that may be used from INIT_NONVEG (Section 6.12) for the `urban_roof' and `urban_canyon' tile types depending on MORUSES switch configuration. Any non-vegetation parameters not referenced in this table are always used from INIT_NONVEG.

MORUSES switch	Tile type	TRUE	FALSE	
l moruses albedo	urban_canyon	MORUSES	albsnf_nvg,	
$(1 \cos z)$	urban roof	albsnf_nvg,		
(1_0032)	albsnc_nvg		arbsnc_nvg	
1 moruses emissivity	urban_canyon	n MORUSES		
I_MOLUSES_EMISSIVICY	urban_roof	emis_nvg	emis_nvg	
l morusos rough	urban_canyon	MODUSES	z0_nvg,	
i_moruses_rougn	urban_roof	MORUSES	zOh_zOm	
1 mortugos storago	urban_canyon	MODUSES	ah nya yif nya	
1_moruses_storage	urban_roof	WORUSES	CII_IIV9, VI_IIV9	

Table 27 Description of urban geometry & building material variables

Variable name	Description ⁸	Notes on when data is not used. If not used / updated with calculated values then the variable could be set to
		constVal instead.
wrr	Repeating width ratio	If l_urban_empirical = TRUE then this is updated
	(or canyon fraction,	with calculated values.
	W/R)	
The followi	ng refer to MORUSES onl	y
hwr	Height-to-width ratio	See for wrr above
	(H/W)	
hgt	Building height (H)	See for wrr above
ztm	Effective roughness	If l_moruses_macdonald = TRUE (or
	length of urban areas	l_urban_empirical = TRUE) then this is updated
		with calculated values.
disp	Displacement height	See for ztm above
albwl	Wall albedo	Data only used if l_moruses_albedo = TRUE
albrd	Road albedo	See for albwl above
emisw	Wall emissivity	Data only used if l_moruses_emissivity = TRUE
emisr	Road emissivity	See for emisw above

⁸ For more information on the urban geometry used please see the JULES technical documentation
6.14. INIT_SNOW: Snow parameters

>INIT_SNOW

dzSnow rho_snow_const snow_hcap, snow_hcon snowLiqCap r0,rmax snow_ggr(1:3) amax(1:2) dtland,kland maskd snowLoadLAI, snowInterceptFact, snowUnloadFact

Table 28 Description of variables in the INIT_SNOW section

HCTN30 refers to Hadley Centre technical note 30, available from http://www.metoffice.gov.uk/publications/HCTN.

Variable name	Туре а	and	Notes
	permitted valu	ues	
dzSnow(1:nsm	array		Prescribed thickness of each snow layer (m).
ax)			Only used if $nsmax > 0$.
			The interpretation of dzSnow is slightly complicated and
			an example of the evolution of the snow layers is given in
			Table 29.
			dzSnow gives the thickness of each layer when it is not the
			bottom layer.
			For the top layer (#1), the minimum thickness is
			dzSnow(1) and the maximum thickness is
			2*dzSnow(1). For all other layers (iz), the minimum
			thickness is dzSnow(iz-1), i.e. the given thickness of
			the previous layer, and the maximum thickness is
			2*dzSnow(iz), i.e. twice the layer dzSnow value,
			except for the last possible layer (nsMax) which has no upper limit.
			As a snowpack deepens, the bottom layer (closest to the
			soil: label this as layer b) thickens until it reaches its
			maximum allowed thickness, at which point it will split into
			a layer of depth dzSnow(b) and a new bottom layer b+1
			is added to hold the remaining snow. If a layer becomes
			thinner than its value in dzSnow it is removed and the
			snow partitioned between the remaining layers. Whenever a
			layer splits or is removed, the properties of the layer (e.g.
			temperature) are allocated to the remaining layers.
			Note that dzSnow (nsMax), the final thickness, is not used
			but a value must be input.

rho_snow_con	real	Constant density of lying snow (kg m ⁻³).
st		This is used if nsmax=0, or if the snowpack is very thin. It
		is also used as the density of fresh snow.
snow_hcap	real	Thermal capacity of lying snow $(J K^{-1} m^{-3})$
		Typical value=0. ·3e6
snow_hcon	real	Thermal conductivity of lying snow (W m ⁻¹ K ⁻¹)
		See HCTN30 Eq.42
		Typical value= 0.265
snowLiqCap	real	Liquid water holding capacity of lying snow, as a fraction
		of snow mass.
		Only used if nsmax>0.
rO	real	Grain size for fresh snow (µm).
		See HCTN30 Eq.15.
		A typical value is 50.0.
		Only used if 1_spec_albedo=TRUE.
rmax	real	Maximum snow grain size (µm).
		See HCTN30 p4.
		A typical value 2000.0
		Only used if 1_spec_albedo=TRUE.
snow_ggr(1:3	real array	Snow grain area growth rates (μ m ² s ⁻¹) Only used if
)	5	l spec albedo=TRUE.
		See HCTN30 Eq.16
		The 3 values are for melting snow, cold fresh snow and cold
		aged snow respectively.
		Typical values are $0.6, 0.06, 0.23e6$
amax(1:2)	real array	Maximum albedo for fresh snow Only used if
	2	l spec albedo=TRUE.
		Values 1 and 2 are for VIS and NIR wavebands
		respectively.
		Typical values=0.98, 07
dtland	real	Degrees Celsius below zero at which snow albedo equals
		cold deep snow albedo. This is 2.0 in HCTN30 Eq4.
		Only used if l_spec_albedo=FALSE.
kland	real	Used in snow-ageing effect on albedo.
		This is 0.3 in HCTN30 Eq4 (note the last term of that
		equation should be divided by dtland, i.e. kland as
		specified here includes a factor dtland in the
		denominator).
		Only used if 1 spec albedo=FALSE.
		Must not be zero.
maskd	real	Used in exponent of equation weighting snow-covered and
		snow-free albedo. This is 0.2 in HCTN30 Eq.5.
snowLoadLAI	real	Ratio of maximum canopy snow load to leaf area index (kg
		m^{-2}). This is 4.4 in JULES1. Only used if can model=4
snowIntercen	real	Constant in relationship between mass of intercented snow
tFact	1001	and snowfall rate. This is 0.7 in IUI FS1. Only used if
		can model=4
SnowInloadFa	real	Constant in relationship between canony snow unloading
ct		and canony snow melt rate This is 0.4 in IULES1 Only
	i i i i i i i i i i i i i i i i i i i	and canopy show more rate, rule is 0°T in JULLOI, Only

	used if can_model=4

Table 29 gives an example of how the number and thickness of snow layers varies with total snow depth for the case of nsmax=3 and dzSnow=(0.1, 0.15, 0.2). Note that if the values given by the user for dzSnow are a decreasing series with dzSnow(i) <=2*dzSnow(i-1), the algorithm will result in layers i and i+1 beign added at the same time. Don't panic - this should not be a problem for the simulation.

Snow depth	Number	Layer thickness,	
(m)	of	uppermost layer	Comments
	layers	first (m)	
<0.1	0		While the depth of snow is less than dzSnow(1), the
			layer model is not active and snow and soil are
			combined in a composite layer.
0.1 to <0.2	1	Total snow depth.	The single layer grows until it is twice as thick as
			dzSnow(1).
0.2 to <0.4	2	0.1, remainder	Above 0.2m, the single layer splits into a top layer of
			0.1m and the remaining snow in the bottom layer.
≥0.40	3	0.1,0.15,remainder	At 0.4m depth, layer 2 [which has grown to 0.3m
			thick, i.e. 2*dzSnow(2)], splits into a layer of 0.15m
			and a new bottom layer holding the the remaining
			0.15m. As all layers are now in use, any subsequent
			deepening of the pack is dealt with by increasing the
			thickness in this bottom layer.

 Table 29 An example of the evolution of snow layer thickness.

6.15. INIT_TRIF: Parameters for the TRIFFID model

This section is used to read PFT parameters that are only needed by the dynamic vegetation model (TRIFFID). Values are not read if TRIFFID is not selected. TRIFFID also uses many other PFT-specific variables that are also used in other parts of JULES, and are read in Section 6.10 above.

```
>INIT_TRIF
readFile
fileName
nnvgInFile
>DATA
dataVar1(1),dataVar1(2),...,dataVar1(nPft)
dataVar2(1),dataVar2(2),...,dataVar2(nPft)
... ... data values ... ...
```

Variable name	Type and	Notes
	permitted	
	values	
readFile	logical	Switch controlling location of data.
		TRUE: read from an external file
		FALSE: read from the run control file.
filename	characte	The name of the file to be read. Only used if
	r	readFile=TRUE.
npftInFile	integer	The number of PFTs for which parameters are available in
	≥npft	the input file.
>DATA		
If readFile=FALSE	, the dataVar	parameters should be listed in the order given below.
pftName	character	Name of each PFT. These must match those given in
		Section 6.2.
crop	integer	Flag indicating whether the PFT is a crop.
	0 or 1	Only crop PFTs are allowed to grow in the agricultural
		area.
		0 : not a crop
		1 : a crop
g_area	real	Disturbance rate (/360days).
g_grow	real	Rate of leaf growth (/360days).
g_root	real	Turnover rate for root biomass (/360days).
g_wood	real	Turnover rate for woody biomass (/360days)
lai_max	real	Maximum LAI
lai_min	real	Minimum LAI

Table 30 Description of variables in the INIT_TRIF section.

Note that where a quantity is said to have units of "/360days", this means that it is an amount per 360 days.

6.16. INIT_AGRIC: Fractional coverage by agriculture

If the TRIFFID vegetation model is used, the fractional area of agricultural land in each gridbox is read in this section. Otherwise, this section is not used.

```
>INIT_AGRIC
readFile
fileFormat
fileName
>ASCBIN
nheaderFile, nheaderField
fieldNum
>NC
varName
# Data fields to be read from this file should appear below here.
>DATA
frac_agr(1:nxIn,1:nyIn)
```

V	T1	Neter		
variable name	Type and	Notes		
	permitted			
	values			
readFile	logical	Switch controlling location of soil layer data.		
		TRUE: read from an external file		
		FALSE: read from the run control file.		
fileFormat	character	Format of data file. Only used if readFile=TRUE.		
filename	character	Name of file containing data. Only used if		
		readFile=TRUE.		
The following are read only if readFile=TRUE. Only values for the appropriate file format are				
read.	, ,			
>ASCBIN: The following a	re used if file	eFormat='asc', 'bin' or 'pp'.		
nheaderFile	integer >=0	The number of headers at the start of the file,		
	• .			
nneaderField	>=0	The number of headers before each field.		
fieldNum	integer	The field number of the first field to be used from the		
	>=1	input file.		
>NC: The following are use	d if fileForm	mat='nc'.		
SDFName	character	The name of the variable containing data, as it appears in the SDF.		

Table 31 Description of variables in the INIT_AGRIC section

>DATA: The following are used if readFile=FALSE.			
<pre>frac_agr(1:nxIn,1</pre>	real array	The fraction that is agriculture.	
:nyIn)			

6.17. INIT_MISC: Miscellaneous surface, carbon and vegetation parameters

>INIT_MISC hleaf,hwood beta1,beta2 fwe_c3, fwe_c4 q10_leaf kaps kaps_roth(1:4) q10_soil cs_min co2_mmr frac_min, frac_seed pow

HCTN24 and 30 refer to Hadley Centre technical notes 24 and 30, available from http://www.metoffice.gov.uk/publications/HCTN

Variable name	Type and	Notes
	permitted values	
hleaf	real	Specific heat capacity of leaves (J K^{-1} per kg carbon).
		HCTN30 p6
		Typical value=5.7E4
hwood	real	Specific heat capacity of wood (J K ⁻¹ per kg carbon).
		HCTN30 p6
		Typical value=1.1e4
beta1	real	Coupling coefficient for co-limitation in photosynthesis
		model.
		Cox et al. (1999), Eq.61
		Typical value=0.83
beta2	real	Coupling coefficient for co-limitation in photosynthesis
		model.
		Cox et al. (1999), Eq.62
		Typical value=0.93
fwe_c3	real	Constant in expression for limitation of photosynthesis by
		transport of products, for C3 plants. This is 0.5 in Eq.60 of
		Cox et al. (1999).
fwe_c4	real	Constant in expression for limitation of photosynthesis by
		transport of products, for C4 plants. This is 2.0×10^4 in
		Eq.60 of Cox et al. (1999).
q10_leaf	real	Q10 factor for plant respiration.
		Cox et al. (1999) Eq.66
		Typical value=2.0
kaps	real	Specific soil respiration rate at 25 degC and optimum soil

Table 32 Description of variables in the INIT_MISC section

		moisture (s ⁻¹).
		Only used if not using TRIFFID (l_trif=FALSE).
		HCTN24 Eq.16.
		Typical value=5e-9
Kaps_roth(1	real	Specific soil respiration rate for the RothC submodel for
:4)		each soil carbon pool.
		Only used if using the TRIFFID vegetation model
		(l_trif=TRUE), in which case soil carbon is modelled
		using four pools (biomass, humus, decomposable plant
		material, resistant plant material).
q10_soil	real	Q10 factor for soil respiration.
		Only used if 1_q10=TRUE.
		HCTN24 Eq.17
		Typical value=2.0
cs_min	real	Minimum allowed soil carbon (kg m ⁻²)
		Typical value=1.0e-6
co2_mmr	real	Concentration of atmospheric CO2, expressed as a mass
		mixing ratio.
frac_min	real	Minimum fraction that a PFT is allowed to cover if
		TRIFFID is used.
		Typical value=1.0e-6
frac_seed	real	Seed fraction for TRIFFID.
		Typical value=0.01
pow	real	Power in sigmodial function used to get competition
		coefficients.
		This is 20.0 in HCTN24 Eq.3.

6.18. INIT_IMOGEN: Settings for the IMOGEN impacts model

```
>INIT_IMOGEN
```

```
imogenOrderFile
imogenNamelistFile
```

Table 33 Description of variables in the INIT_IMOGEN section

Variable name	Type and	Notes
	permitted	
	values	
imogenOrderFile	character	Path to file containing the mapping of IMOGEN global
		grid points onto IMOGEN land points (different from
		the JULES land points).
imogenNamelistFile	character	Path to file containing the IMOGEN namelists
		(described below)

IMOGEN uses Fortran namelists to set it's variables. These namelists are read from imogenNamelistFile. Below is an example of the IMOGEN namelist file - every possible value in each namelist is shown below along with it's default value. However the user need not specify every variable – those not specified will take their default value.

```
&ANLG VALS
 Q2CO2=3.74
F_OCEAN=0.711
KAPPA_0=383.8
LAMBDA_L=0.52
LAMBDA 0=1.75
MU = 1.87
T_OCEAN_INIT=289.28
NYR_NON_CO2 = 21
DIR_PATT = ''
DIR_CLIM = ''
DIR_ANOM = ''
FILE NON CO2=.FALSE.
&END
&RUN
CO2_INIT_PPMV=286.03
FILE_SCEN_EMITS = 'emits_HADCM3.dat'
FILE_NON_CO2_VALS=''
FILE_SCEN_CO2_PPMV = 'co2_vals.dat'
ANLG = .TRUE.
ANOM = .TRUE.
C_EMISSIONS = .TRUE.
 INCLUDE\_CO2 = .TRUE.
 INCLUDE_NON_CO2 = .TRUE.
```

```
LAND_FEED = .FALSE.
OCEAN_FEED = .FALSE.
NYR_EMISS = 241
&END
```

Table 34 Description of variables in the IMOGEN namelists

Variable name	Type and	Notes
	permitted	
	values	
Q2CO2	real	Radiative forcing due to doubling CO2 (W/m2)
F_OCEAN	real	Fractional coverage of the ocean
KAPPA_O	real	Ocean eddy diffusivity (W/m/K)
LAMBDA_L	real	Inverse of climate sensitivity over land (W/m2/K)
LAMBDA_O	real	Inverse of climate sensitivity over ocean (W/m2/K)
MU	real	Ratio of land to ocean temperature anomalies
T_OCEAN_INIT	real	Initial ocean temperature (K)
NYR_NON_CO2	integer	Number of years for which NON_CO2 forcing is prescribed
DIR_PATT	character	Directory containing the patterns. Files in this directory are expected to be in a specific format – see the IMOGEN example
DIR_CLIM	character	Directory containing initialising climatology. Files in this directory are expected to be in a specific format – see the IMOGEN example
DIR_ANOM	character	Directory containing prescribed anomalies. Files in this directory are expected to be in a specific format – see the IMOGEN example
FILE_NON_CO2	logical	If true, then non-CO2 radiative forcings are contained within a file
CO2_INIT_PPMV	real	Initial CO2 concentration (ppmv)
FILE_SCEN_EMITS	character	If used, file containing CO2 emissions. This file is expected to be in a specific format – see the IMOGEN example
FILE_NON_CO2_VALS	character	If used, file containing non-CO2 values. This file is expected to be in a specific format – see the IMOGEN example
FILE_SCEN_CO2_PPMV	character	If used, file containing CO2 values. This file is expected to be in a specific format – see the IMOGEN example
ANLG	logical	If true, then use the GCM analogue model
ANOM	logical	If true, then incorporate anomalies
C_EMISSIONS	logical	If true, means CO2 concentration is calculated
INCLUDE_CO2	logical	If true, include adjustments to CO2 values
INCLUDE_NON_CO2	logical	If true, include adjustments to non-CO2 values
LAND_FEED	logical	If true, include land feedbacks on atmospheric CO2
OCEAN_FEED	logical	If true, include ocean feedbacks on atmospheric CO2
NYR_EMISS	integer	Number of years of emission data in file

6.18.1. Running IMOGEN and restrictions

A full IMOGEN experiment consists of three JULES runs, called spin_eq, spin_dyn and tran. Each run is started from the final dump of the previous run. The first two runs behave like an extended spinup for the full transient run, and as such runs with IMOGEN must have no spinup (i.e. nspin=0 in INIT_OPTS). Since IMOGEN calculates the forcing for an entire year at once, an IMOGEN run must have a start time of 00:00 on the 1st of January for some year.

IMOGEN is currently restricted to run only on the HadCM3LC grid, i.e. there are 96x56 grid cells where each cell has size 3.75 degrees longitude by 2.5 degrees latitude with no Antartica. This means that:

- nxIn = 96 and nyIn = 56 in INIT_OPTS
- regLatLon = T, regLat1 = -55.0, regLon1 = -180.0, regDlat = 2.5 and regDlon = 3.75 in INIT_LATLON

The IMOGEN_EXAMPLE directory is provided as an example of setting up IMOGEN.

6.19. INIT_DRIVE: Meteorological driving data

```
>INIT_DRIVE
driveDataPer
ndriveFileTime, driveFilePer
readList
fileName
driveFileDate(1),driveFileTime(1)
driveFormat
ioPrecipType,l_point_data
tForSnow
tForConv, conFrac
io_rad_type, ioWindSpeed
useDiffRad, diffFracConst
z1_uv, z1_tq
ndriveExtra
>ASCBIN
byteSwapDrive
nfieldDriveFile
ndriveHeaderFile, ndriveHeaderTime, ndriveHeaderField
noNewLineDrive
>VARS
name(1) fieldNumber(1) interp(1) nameFile(1)
name(2) fieldNumber(2) interp(2) nameFile(2)
--- Repeat for each variable. ---
>ENDVARS
>NC
ncTypeDrive
>VARS
name(1) SDFname(1) nameFile(1) interp(1)
name(2) SDFname(2) nameFile(2) interp(2)
--- Repeat for each variable. ---
>ENDVARS
```

Table 35 Description of variables in the INIT_DRIVE section

Variable name	Type and	Notes
	permitted values	
driveDataPer	integer	The time step (seconds) of the driving data. This must
	1 – 86400 (see	be a multiple of the model timestep and must be at most
	notes)	86400s (one day). 86400 must be a multiple of
		driveDataPer, so that data are read at the same
		times each day.
ndriveFileTime	integer	The number of data files available for each variable,
	>=1	each file holding data for different times. If all variables

		are held together, this is the number of data files. If
		variables are held in separate files, this is the number of
		files for any one variable. If time templating is used (see
		Section 6.22), ndriveFileTime should be 1.
driveFilePer	integer	The period (seconds) of the files containing the driving
		data.
		This is only used if time templating is used (see Section
		6.22).
		This must be at least as large as the period of the data
		(driveDataPer), and must be a multiple of the
		model timestep.
		Special cases:
		-1: monthly files
		-2: annual files
readList	logical	Switch controlling how the names of the files containing
		the driving data, and the times covered by each, are
		read.
		TRUE: names are read from another file
		FALSE: names are read from the run control file. This
		option is only allowed if ndriveFileTime=1.
filename(1)	character	If ndriveFileTime=1 this is the name of the single
		data file (or the template name).
		If ndriveFileTime>1. this is the name of a file that
		lists the names and times of the data files. The first line
		of this file will be skipped (and so can be used for
		comments). All other lines are to be of the form:
		filename, startDate, "startTime"
		where
		fileName may contain variable-name-templating (see
		Section 6.22)
		startDate is in format vyvymmdd
		time is in format bb .mm .ss
Starting time and date	for first driving dat	a file Only used if road ist -FALSE (otherwise these
values are read from a	n external file)	a me. Only used in readilist - FALSE (build wise these
driveFileDate	integer	Date of first data in the driving data file in format
arriverriebace	integer	www.wmmdd
driveFileTime	character	Time of day of first data in the driving data file in
	cilaracter	format bb.mm.cc. It is recommended that all times
		ontored in UILES use Creenwich Mean Time (CMT
		or UTC) not local time. The time zone used here must
		match that under INIT_TIME (see Section 6.3)
driveFormat	character	Format of data files
	See Section 5.2.	Format of data mes.
ioPrecipType	integer	Flag indicating which precipitation variables are input,
	1 to 4.	and how they are treated. (Note that all precipitation in
		JULES is considered to be either rainfall or snowfall.)
		1: A single precipitation field is input. This represents
		the total precipitation (rainfall and snowfall). The total
		is partitioned between snowfall and rainfall using

		tForSnow (see below), and rainfall is then further partitioned into large-scale and convective components
		using $\pm For Snow$ Convective snowfall is assumed to
		he zero
		2: Two precipitation fields are input namely rainfall and
		snowfall. The rainfall is partitioned between large-scale
		and convective using + EorCopy (see below)
		Convective snowfall is assumed to be zero.
		2: Three precipitation fields are input, namely large
		scale rainfall large scale snowfall and convective
		reinfall This cannot be used with
		l noint doto TDUE Convective enoutell is
		assumed to be zero, and thorshow and thorconv
		are not used.
		4: Four precipitation fields are input, namely large-scale
		rainfail, large-scale snowfail, convective rainfail and
		convective snowrall. This cannot be used with
		1_point_data=IRUE. tForSnow and tForConv
		are not used. Note that this is the only option that
		considers convective snowfall.
		the concept of convective and large-scale (or
		dynamical) components of precipitation comes from
		autospheric models, in which the precipitation from
		siliali-scale (convective) and large-scale motions is often
		output from such a model the driving data might
		include these components
l point data	logical	Flag indicating if driving data are point or area average
	logical	values. This affects the treatment of precipitation input
		and how snow affects the albedo
		TRUE: driving data are point data Precipitation is not
		distributed in space (see FALSE below) and is all
		assumed to be "large-scale" in origin The albedo
		formulation is suitable for a point
		FALSE: driving data are area averages. The
		precipitation inputs are assumed to be exponentially
		distributed in space, as in UMDP25, and can include
		convective and large-scale components. The albedo
		formulation is suitable for a gridbox.
tForSnow	real	If ioPrecipType is 1 or 2. tForSnow is the near-
	>0	surface air temperature (K) at or below which the
		precipitation is assumed to be snowfall. At higher
		temperatures, all the precipitation is assumed to be
		liquid.
tForConv	real	If ioPrecipType is 1 or 2, tForConv is the near-
tForConv	real >0	If ioPrecipType is 1 or 2, tForConv is the near- surface air temperature (K) at or above which the
tForConv	real >0	If ioPrecipType is 1 or 2, tForConv is the near- surface air temperature (K) at or above which the precipitation is assumed to be convective in origin. At
tForConv	real >0	If ioPrecipType is 1 or 2, tForConv is the near- surface air temperature (K) at or above which the precipitation is assumed to be convective in origin. At lower temperatures, all the precipitation is assumed to

		tForConv is not used if 1_point_data is TRUE,
		since then there is no convective precipitation.
		tForSnow must be less than tForConv, implying
		that all solid precipitation is large-scale in origin (unless
		ioPrecipType=4. in which case tForSnow and
		tForConv are irrelevant).
conFrac	real	Convective precipitation covers the fraction conFrac
	>0	of the gridbox.
io_rad_type	integer	Flag indicating what radiation fluxes are input.
	1, 2 or 3	1: Downward fluxes of short- and longwave radiation
		are input. Normally this is the preferred option.
		2: Downward shortwave and net (all wavelengths)
		downward radiation are input. The modelled albedo and
		surface temperature are used to calculate the downward
		longwave flux.
		3: Net downward fluxes of short- and longwave
		radiation are input. The modelled albedo and surface
		temperature are used to calculate the downward fluxes
		of shortwave and longwave radiation.
iowindSpeed	logical	Switch indicating how wind data are input.
		TRUE: the wind speed is input
		FALSE: the two components of the horizontal wind
		(e.g. the southerly and westerly components) are input.
useDiffRad	logical	Switch for input of diffuse radiation.
		TRUE: diffuse radiation is a time-varying input. Only
		allowed if io_rad_type=1 or 2.
		FALSE: diffuse radiation is set to a constant fraction
		(diffFracConst) of the total downward shortwave
		radiation.
diffFracConst	real	A constant value used to calculate diffuse radiation from
		the total downward shortwave radiation.
		Only used if useDiffRad=FALSE.
z1_uv	real	The height (m) at which the wind data are valid. This
	>0.0	height is relative to the zero-plane <i>not</i> the ground.
z1_tq	real	The height (m) at which the temperature and humidity
	>0.0	data are valid. This height is relative to the zero-plane
		<i>not</i> the ground.
ndriveExtra	integer	The number of "extra" (additional) driving variables
	0 <ndriveextra<=< td=""><td>that are to be input. These are additional to the variables</td></ndriveextra<=<>	that are to be input. These are additional to the variables
	ndriveExtraMax	that must be input. This facility has been added to
		provide the user with a relatively easy way to ingest new
		variables (that might be needed for a new development)
		with the minimal amount of coding. The maximum
		possible number of additional variables is determined by
		the parameter ndriveExtraMax, which is currently
		set to 10. Further details of each "extra" variable are
		provided below.
		Set to zero to turn off this facility (i.e. to provide no
		extra variables).

	See notes in Section 6.19.1.			
>ASCBIN: If dri	veFormat='asc'	', 'bin' or 'pp':		
byteSwapDrive	logical	Switch controlling byteswapping of binary data.		
		Only used if driveFormat='bin'.		
		TRUE: the order of the bytes will be reversed after		
		reading. This option allows data files written on a "little-		
		endian" machine to be used on a "big-endian" machine,		
		or vice versa. Some compilers have options that allow		
		this behaviour.		
		FALSE: no change will be made		
nfieldFile	integer	Number of fields in each file.		
nHeaderFile	integer	The number of headers at the start of each file - see		
	>=0	Section 5.2.		
nHeaderTime	integer	The number of headers at the start of each time - see		
	>=0	Section 5.2.		
nHeaderField	integer	The number of headers at the start of field - see Section		
	>=0	5.2.		
noNewLineDrive	logical	Switch describing format of an ASCII data file.		
	0	TRUE: variables are arranged across one or more lines.		
		and each variable does not necessarily start a new line.		
		This option should be used if all the driving data for		
		each time are one line of the input file (although it can		
		also be used if the data are continued onto subsequent		
		lines).		
		FALSE: each variable starts on a new line.		
		Only used if there is only one point in the input grid		
		(and hence only one point in the model grid) and driving		
		data are in ASCII files.		
name	character	The name of the variable. This is used to identify the		
		variable in the code, and is set in the code. Acceptable		
		values are shown in Table 36. These must be entered		
		exactly as listed in the table, and are case-sensitive.		
fieldNumber	integer	The field number in the file that holds data for this		
	>=1	variable. See discussion of fields in Section 5.		
interpFlag	character	Flag indicating how variable is to be interpolated in time		
	See Table 45.			
varNameFile	character	The substitution string used in the names of files that		
		contain this variable. Only used if variable name		
		templating is used in file names.		
>NC: If driveForm	at='nc':			
ncTypeDrive	character	Flag indicating the format (dimension names) of		
merypebrive	character	netCDE files. See Section 5.2.2		
name	character	See above under >ASCRIN		
SDENamo	character	The name of the variable as used in a SDE Sec.		
		discussion of SDE in Section 5.2.2		
warNameFilo	character	$\begin{array}{c} \text{Grassian of SDT in Section 3.2.2.} \\ \text{See above under } \mathbb{A} \mathbb{C} \mathbb{C} \mathbb{D} \mathbb{T} \mathbb{N} \end{array}$		
	abaraatar	See above under ASCBIN.		
interpriag	cnaracter	See above under >ASCBIN.		
	See Table 45.			

The meteorological variables required by a run of JULES are determined by the choice of flags such as ioPrecipType. The variables that are listed must then match this expectation.

Name	Description	Comments
diff_rad	Diffuse radiation (W m ⁻²)	Used if useDiffRad=TRUE.
lw_down	Downward longwave radiation (W m ⁻²).	Used with rad_type=1.
lw_net	Net downward longwave radiation (W m ⁻²).	Used with rad_type=3.
sw_down	Downward shortwave radiation (W m ⁻²).	Used with rad_type=1 or 2.
sw_net	Net downward shortwave radiation (W m ⁻²).	Used with rad_type=3.
rad_net	Net (all wavelength) downward radiation (W m ^{-2}).	Used with rad_type=2.
precip	Precipitation rate (kg $m^{-2} s^{-1}$).	Used with ioPrecipType=1.
precipCR	Convective rainfall rate (kg m ⁻² s ⁻¹).	Used with ioPrecipType=3 and 4.
precipCS	Convective snowfall rate (kg $m^{-2} s^{-1}$).	Used with ioPrecipType=4.
precipLR	Large-scale rainfall rate (kg $m^{-2} s^{-1}$).	Used with ioPrecipType=3 and 4.
precipLS	Large-scale snowfall rate (kg m ^{-2} s ^{-1}).	Used with ioPrecipType=3 and 4.
precipTR	Rainfall rate (kg m ⁻² s ⁻¹)	Used with ioPrecipType=2.
precipTS	Snowfall rate (kg m ⁻² s-1).	Used with ioPrecipType=2 and 3.
pstar	Air pressure (Pa)	
q	Specific humidity (kg kg ⁻¹)	
t	Air temperature (K)	
u	Zonal component of the wind $(m s^{-1})$.	Used with ioWindSpeed=FALSE.
V	Meridional component of the wind (m s ⁻¹).	Used with ioWindSpeed=FALSE.
wind	(Total) wind speed (m s ⁻¹).	Used with ioWindSpeed=TRUE.
ozone	Surface ozone concentration (ppb)	Used with 1_03_damage=TRUE
extraXX	Additional driving variable (see ndriveExtra). XX should be replaced by 01, 02,,min[ndriveExtra, ndriveExtraMax].	Used if ndriveExtra > 0 .

Table 3	36 Names	of meteoro	ological	driving	variables.
---------	----------	------------	----------	---------	------------

6.19.1. Inputting extra driving variables

The facility to read in additional driving variables by setting ndriveExtra>0 is intended as a simple mechanism to allow access to additional data, particularly during model development. For example, a time-varying field of ozone concentration could be input after just a few lines of editing of the code. The additional variables must have the same frequency as the other variables and will be interpolated following the interp flags specified. The data can then be loaded into a new FORTRAN variable that the user has to create – this is best done in subroutine drive_update (look for comments containing "iposExtra"). The new variable itself could be provided via a module (e.g. module forcing).

6.19.2. Examples of specifying driving data

Example 1: single point driving data

In this example, we consider a case with one point in the input file, and all driving data for each time held on a single line of an ASCII input file. The input file is illustrated in Figure 4. The relevant entries in the run control file are shown below. Only the lines in **bold** are relevant, and irrelevant sections have been omitted.

```
>INIT DRIVE
3600
                !
                   driveDataPer
1,-9
                      !
                         ndriveFileTime, driveFilePer
F
                      !
                         readList
'data1.dat'
                      !
                         fileName
19970101, '00:00:00'
                         driveFileDate(1),driveFileTime(1)
                      !
`asc'
                      !
                         driveFormat
2,Т
                      !
                         ioPrecipType,l_point_data
275.0
                      !
                         tForSnow
375.0,0.2
                      !
                         tForConv, conFrac
1,T
                      !
                         io_rad_type, ioWindSpeed
F,0.1
                      1
                         useDiffRad, diffFracConst
10.0,10.0
                      !
                         z1_uv, z1_tq
                      !
0
                         ndriveExtra
>ASCBIN
F
           !
             byteSwapDrive
10
           !
              nfieldDriveFile
           !
              ndriveHeaderFile, ndriveHeaderTime, ndriveHeaderField
1,0,0
т
           1
              noNewLineDrive
>VARS
            9
               nf
pstar
                   psfc
                              name, field, flag, name
                           !
               nf
t
            6
                   t
           10
               nf
                    q
q
            8
               nf
wind
                    u
lw_down
            3
               nf
                   lw
            2
sw_down
               nf
                    sw
precipTR
            4
               nf
                    liqp
            5
precipTS
               nf
                    solp
>ENDVARS
```

ndriveFileTime=1 indicates that all data are in one file.

readList=FALSE indicates that the name of the file is read from the run control file (not from a separate file).

useDiffRad=FALSE indicates that diffuse radiation is not input, rather it is calculated as 0.1 (the value of diffFracConst) of the total shortwave radiation.

ndriveHeaderFile=1 indicates that there is a single header line at the top of the file.

noNewLineDrive=TRUE shows that each variable is not on a new line (in fact all variables are on one line).

The entries following >VAR indicate where each variable lies in the input file. Note that we can skip the unrequired 'time' and 'obs1' fields in Figure 4.

Time	solar	long	rain	snow	temp	obs1	wind	press	humid
1	3.3	187.8	0.0	0.0	259.10	83.0	3.610	102400.5	1.351E-03
2	89.5	185.8	0.0	0.0	259.45	24.1	3.140	102401.9	1.357E-03
3	142.3	186.4	0.0	0.0	259.85	56.9	2.890	102401.0	1.369E-03
	data fo	or late	r times						

Figure 4. Lines of an example file of meteorological driving data in ASCII format.

Example 2: Driving data from binary files, one variable per file.

The relevant entries in the run control file are shown below. Only the lines in **bold** are relevant and irrelevant sections have been omitted.

>INIT_DRIV	/Ε			
3600		,	drive	DataDor
162 -9		÷		ndriveFileTime driveFilePer
то <i>г, - у</i>			:	roadlist
·file list	- + -	r+ /	:	filoNamo
10020701 /	L2	<u>.</u> 00.0	· ·	driveFileDate(1) driveFileTime(1)
19020/01,	03	00:0		driveritebace(1), driveritetime(1)
DIU			:	ariverormat
2,F			!	<pre>ioPrecipType,l_point_data</pre>
275.0			!	tForSnow
298.2,0.3			!	tForConv,conFrac
1,F			!	<pre>io_rad_type,ioWindSpeed</pre>
T, 0.1			!	useDiffRad, diffFracConst
10.0,10.0			!	z1_uv, z1_tq
2			!	ndriveExtra
>ASCBIN				
F	!	byte	SwapDr	ive
1	!	nfie	ldDriv	eFile
0,0,0	!	ndri	veHead	erFile,ndriveHeaderTime,ndriveHeaderField
Т	!	noNe	wLineD	rive
>VARS				
pstar	1	nf	psfc	<pre>! name,field,flag,name</pre>
t	1	nf	temp	
q	1	nf	humid	

u	1	nf	uwind
v	1	nf	vwind
lw_down	1	nf	long
sw_down	1	nf	solar
precipTR	1	nf	liqp
precipTS	1	nf	solp
diff_rad	1	nf	diffRad
extra01	1	nf	ozone
extra02	1	nf	co2
>ENDVARS			

ndriveFileTime=162 indicates the number of files (for each variable).

readList=TRUE indicates that the names and times of each file are read from the file 'file_list.txt'. The first few lines of this file are shown in Figure 5.

```
# List of meteorological data files. Columns are:
# file name, start date (yyyymmdd), start time (hh:mm:ss).
'met_data/%vv_data/%vv198207.dat', 19820701, '03:00:00'
'met_data/%vv_data/%vv198208.dat', 19820801, '03:00:00'
'met_data/%vv_data/%vv198209.dat', 19820901, '03:00:00'
------ rest of file not shown -----
```

Figure 5. Example list of driving data files using file name templating.

The presence of '%vv' in each file name shows that we are using variable name templating (see Section 6.22). The dates show that we in fact have monthly files (but note that we cannot use time templating for these files because the start time of 03H does not conform to the requirements described in Table 43). Furthermore, files for each variable are stored in separate directories. For example, skipping ahead to after >VARS, we see that the humidity variable is held in files such as 'met_data/humid_data/humid198207.dat', while the surface pressure is held in the likes of 'met_data/psfc_data/psfc198207.dat'.

The ioPrecipType value of 2 shows that we read in two components of precipitation: total solid and total liquid. The liquid is considered to be convective precipitation when the temperature is above tForConv, which here has a value of 298.2 K.

useDiffRad=TRUE indicates that diffuse radiation will be provided.

byteSwapDrive=FALSE indicates that the data will not be byteswaped after input.

nfieldDriveFile=1 shows that each data file contains a single field, which is consistent with the field number shown for each variable (all 1).

ndriveExtra=2 indciates that two additional, non-standard variables will be read in. These are listed as extra01 and extra02 in the list of variables. The filenames shown suggest that they are for ozone and CO_2 , but they could represent any quantity that the user wants to input.

6.20. INIT_IC: Specification of the initial state

The values of all prognostic variables must be set at the start of a run. This initial state, or initial condition, can be read from a "dump" from an earlier run of the model, or may be read from any other file. Another option is to prescribe a simple or idealised initial state, and this may be done via the run control file. It is also possible to set some fields using values from a file (e.g. a dump) but to set others using idealised values from the run control file (that is, effectively to override the values in the external file).

>INIT_IC

```
readFile
fileFormat (quoted)
dumpFile,allDump
fileName (quoted)
zrevSoil, zrevSnow
totalWetness
totalSnow
>ASCBIN
nheaderFile, nheaderField
>VARS
             varFlag(1)
varName(1)
                           constVal(1)
varName(2)
             varFlag(2)
                           constVal(2)
--- Repeat for each variable. ---
>ENDVARS
>NC
>VARS
varName(1)
             varFlag(1)
                          constVal(1)
                                         SDFname(1)
varName(2)
             varFlag(2)
                                         SDFname(2)
                           constVal(2)
--- Repeat for each variable. ---
>ENDVARS
# Data fields to be read from this file should appear below here.
>DATA
```

Variable name	Type and	Notes
	permitted	
	values	
readFile	logical	Switch controlling location of initial state data.
		TRUE: read from an external file (including a model dump)
		FALSE: read from the run control file.
fileFormat	character	Format of data. Only used if readFile=TRUE.
	See Section	Note that any dump file that is to be read (see dumpFile)
	5.2.	can only be of type 'asc' or 'nc'.

Table 37 Description of variables for INIT_IC section.

dumpFile	logical	Switch indicating if file to be read is a model dump.
	_	Only used if readFile=TRUE.
		TRUE: the file is a model dump (restart) file that was
		written by this version of JULES. A dump file has known
		structure that can be navigated by IULES using header
		information
		FAI SE: the file is not a dump file
ລ]]ມາຫວ	logical	Switch to allow easy use of all data in a dump file
arroump	logical	Only used if dumpEilo_TPLIE that is if the file to be
		only used if dumprine=inde, that is, if the fife to be
		TRUE all variables required to initialize the run will be
		TRUE, all valiables required to initialise the full will be
		read from the given dump file. If a required field is not in
		the dump (e.g. if the dynamic vegetation model was not
		active in the earlier run but is now required), initialisation
		will fail and the run will stop. This option ignores all later
		input in the >ASCBIN and >NC sections. This is the easiest
		way to start from a dump file, as the user does not need to
		say what variables are to be found where – the model will
		look for all data in the dump file.
		FALSE: the information in the >ASCBIN and >NC sections
		is used to identify whether a field is to be read or set to a
		constant value, as usual.
filename	character	Name of file containing data. Only used if
		readFile=TRUE.
zrevSoil	logical	Switch indicating if soil data are stored in reverse order of
		levels.
		Not used if data are to be read from a dump file.
		TRUE: vertical order is reversed, with data stored in
		"bottom to top" order (i.e. bottom layer first)
		FALSE: standard vertical order, with data stored in "top to
		bottom" order (i.e. uppermost layer first)
zrevSnow	logical	Switch indicating if snow data are stored in reverse order of
		levels.
		Only used if nsmax>0. Not used if data are to be read from
		a dump file.
		TRUE: vertical order is reversed, with data stored in
		"bottom to top" order (i.e. bottom layer first)
		FALSE: standard vertical order, with data stored in "top to
		bottom" order (i.e. uppermost layer first)
totalWetness	logical	Switch controlling type of soil moisture data.
		Not used if soil wetness is to be read from a dump file.
		TRUE: soil wetness is prescribed as the total wetness (the
		sum of frozen and liquid components).
		FALSE: soil wetness is prescribed using two components
		(the frozen and liquid fractions separately).
totalSnow	logical	Switch controlling simplified initialisation of snow
		variables.
		Not used if snow data are to be read from a dump file.
		TRUE: only the total mass of snow on each tile (see

		snow_tile in Table 38) is required to be input, and all related variables will be calculated from this or simple assumptions made. All the snow is assumed to be on the ground (not in the canopy). This option can be used regardless of the value of nsmax. If nsmax>0, this option is recommended as it means the user can avoid the complications of setting several snow variables in a consistent manner. FALSE: all snow variables required for the current configuration must be input separately. The variables are listed in Table 38.
or 'pp', or if r	readFile=FA	ALSE.
nheaderFile	integer	The number of headers at the start of the file. See Section 5.2
nheaderField	integer	The number of headers at the start of a field. See Section 5.2
varName	character	The name of the variable. See Table 38.
varFlag	integer ≥-1	Flag indicating how the variable is initialised. Acceptable values: >0: The field number in the file that holds data for this variable. See discussion of fields in Section 5.1. If a dump file is being read, any integer ≥0 is accepted and then effectively ignored – this indicates that the field is to be taken from the dump and the exact field number is not required. -1: The field will be set to the value constVal (see below) at all points. This option can be used to specify an idealised initial condition.
constVal	real	The value to be used at all points. Only used if flag=-1.
>NC: The following are	e used if file	Format='nc'.
varName	character See Section 5.2.2	The name of the variable.
varFlag	integer ≥-1	 Flag indicating how the variable is initialised. Acceptable values: >0: Default (effectively is ignored). -1: The field will be set to the value constVal (see below) at all points. This option can be used to specify an idealised initial condition.
constVal	real	See under >ASCBIN above.
SDFvarName	character	The name of the netCDF variable that is to be used.
>DATA		

If further initial data are to be read from the run control file (readFile=FALSE), these should now appear in the file, in the order indicated by the value of flag for each variable (see above). For example, if tstar is given a value of flag=1, and cs has flag=2, data for tstar and cs should then be listed, with each variable starting on a separate line. Some of these variables may not be required for a particular run, depending on the model configuration. The size of each variable is defined in terms of the following variables:

- land_pts the number of gridboxes that contain any land.
- sm_levels the number of soil layers.
- ntiles the number of tiles at each gridbox.
- ntype the number of surface types.
- npft the number of plant functional types.
- nsmax the maximum possible number of snow layers.
- n_olevs the number of levels in IMOGEN ocean calculation
- nfarray the size of IMOGEN array fa_ocean
- seed the size of seed_rain in IMOGEN
- scalars

See Section 6.2 for further information about some of these variables.

Table 38 JULES variables that require to be specified to define the initial model state.

Note that this is a list of variables that have to be specifically listed in the input section. If all variables are to come from a model dump (allDump=TRUE), none of these variables needs to be listed. All variables names should be entered exactly as shown, including case.

Name	Shape	Description.	Notes
General variable	S		
canopy	(land_pts, ntiles)	Amountofinterceptedwaterthat is held on eachtile (kg m $^{-2}$).	Always required.
tstar_tile	(land_pts, ntiles)	Temperature of each tile (K). This is the surface or skin temperature.	Always required.
gs	(land_pts)	Stomatal conductance for water vapour (m s ⁻¹).	Always required. This is used to start the iterative calculation of gs for the first timestep only.
Soil layer variab	les		
t_soil	<pre>(land_pts, sm_levels)</pre>	Temperature of each soil layer (K).	Always required.
sthuf	(land_pts, sm_levels)	Soil wetness for each soil layer. This is the mass of soil water (liquid and frozen), expressed as a fraction of the water content at saturation.	Only required if totalWetness =TRUE. Either sthuf or its components sthu and sthf are always required.
sthf	(land_pts, sm_levels)	Frozen soil wetness for each soil layer. This is the mass of	Only required if totalWetness =FALSE. Either sthuf or its components

		frozen water, expressed as a fraction of the water content at saturation. Note that the partitioning of water between liquid and solid fractions may be altered during initialisation. The procedure conserves the total water content, and uses the soil temperature (t_soil) to partition between the phases.	sthu and sthf are always required.
sthu	(land_pts, sm_levels)	Unfrozen soil wetness for each soil layer. This is the mass of unfrozen water, expressed as a fraction of the water content at saturation. See notes for sthf above.	Only required if totalWetness =FALSE. Either sthuf or its components sthu and sthf are always required.
Snow variables	(land pts	Amount of snow on	Always required
5	ntiles)	each tile (kg m ⁻²).	If totalSnow = TRUE, snow_tile holds the total snow mass on each tile. If can_model=4, this will be used to set the snow on the ground under the canopy. See Table 39 for further discussion.
snow_grnd	(land_pts, ntiles)	Amount of snow on the ground, beneath the canopy (kg m ⁻²), on each tile.	Only required if can_model=4. Not required if totalSnow=TRUE. A value should be given for all tiles, but it is only updated for tiles that refer to PFTs that have snowCanPFT=1 (see Section 6.10).
rho_snow	(land_pts, ntiles)	Bulk density of lying snow (kg m ⁻³).	Only required if totalSnow=FALSE.
rgrain	(land_pts, ntiles)	Snow surface grain size (μm) on each tile.	Only required if l spec albedo = TRUE.

nsnow	(land_pts, ntiles)	The number of snow layers on each tile.	Only required if nsmax>0 and totalSnow=FALSE. Although this is an integer quantity, it is treated as a real number for convenience during input and output.
snowDepth	(land_pts, ntiles)	Depth of snow (kg m).	Only required if nsmax>0 and totalSnow=FALSE.
snowDs	(land_pts, ntiles,nsmax)	Depth of snow in each layer (kg m).	Only required if nsmax>0 and totalSnow=FALSE.
snowIce	(land_pts, ntiles,nsmax)	Mass of frozen water in each snow layer (kg m^{-2}).	Only required if nsmax>0 and totalSnow=FALSE.
snowLiq	(land_pts, ntiles,nsmax)	Mass of liquid water in each snow layer (kg m^{-2}).	Only required if nsmax>0 and totalSnow=FALSE.
tSnow	(land_pts, ntiles,nsmax)	Temperature of each snow layer (K).	Only required if nsmax>0 and totalSnow=FALSE.
rgrainL	(land_pts, ntiles,nsmax)	Snow grain size (µm) on each tile in each snow layer.	Onlyrequiredifl_spec_albedo=TRUE andnsmax>0andtotalSnow=FALSE.
TOPMODEL var	riables		
ZW	(land_pts)	Depth from the surface to the water table (m).	Only required if l_top=TRUE.
sthZw	(land_pts)	Soil wetness in the deep ("water table") layer beneath the standard soil column This is the mass of soil water (liquid and frozen), expressed as a fraction of the water content at saturation.	Only required if 1_top=TRUE.
Soil and vegetation	on carbon variables		
CS	(land_pts,di m2) See notes for dim2.	Soil carbon (kg m ⁻²)	Always required. dim2=1 if TRIFFID is not being used (1_triffid=FALSE), in which case the total soil carbon is input. dim2=4 if TRIFFID is being used, to hold the 4 pools of the RothC model

					(biomas	ss,humus,decomposable
					plant n	naterial and resistant pant
					materia	1).
					Note th	at cs is a prognostic (time-
					evolvin	g) variable only if
					TRIFFI	D is selected.
frac	(land	d_pts,	The	e fraction of land	Always	required, but can be read
	ntype	e)	are	a of each gridbox	at INI	I_FRAC. This variable has
			tha	t is covered by	to be s	et either in this section of
			eac	h surface type.	the run	n control file, or in the
					section	tagged INIT_FRAC (see
					Section	6.5). If
					l_veg	_compete=TRUE (see
					Section	6.2), frac must be set
					here, as	part of the initial condition
					(e.g. fi	rom a model dump). If
					l_veg	_compete=FALSE (i.e.
					the frac	ction of each type is static),
					the frac	ction may be set here, as
					part of	the initial condition, or in
						FRAC. The switch
					section is important in this case	
lai	(land	d nte	Le	of area index of	Only in	is important in this case.
IUI	(rand	_pes,	eac	h PFT	is swit	ched on in INIT OPTS
	1 ,		cue		(see Se	ction 6.2). If phenology is
					off, L	AI is not a prognostic
					variable	e and it is initialised in
					either	INIT_VEG_PFT or
					INIT_	VEG_VARY.
canht	(land	d_pts,	Неі	ght (m) of each	Only in	itialised here if TRIFFID is
	npft))	PF	Г.	switche	d on in INIT_OPTS (see
					Section	6.2). If TRIFFID is off,
					canht is	s not a prognostic variable
					and it	is initialised in either
					INIT_	VEG_PFT or
	1				INIT_	VEG_VARY.
INIOGEN Variab	oles			A two o or horio	CO2	Deguined only if
coz_ppmv		scalar		Atmospheric	U)	IMOGEN is apphlad
co2 change	nnmīz	ecalar		Gradient of atmo	v)	Required only if
		Scarar		CO2 conce	ntration	IMOGEN is enabled
				(ppmy/vr)		
dtemp_o (n olevs)	Ocean tem	perature	Required only if	
				anomalies (K)		IMOGEN is enabled
fa_ocean		(nfarray)	CO2 fluxes fro	m the	Required only if
				atmosphere to the	e ocean	IMOGEN is enabled
				(ie positive u	pwards)	
				(ppm/m2/yr)		

seed_rain	(seed)	Seeding	number	for	Required	only	if
		subdaily r	ainfall.		IMOGEN is	enabled	
CV	(land_pts)	Gridbox	mean veget	ation	Required	only	if
		carbon (kg	$g C m^{-2}$)		IMOGEN is	enabled	

Note that it might appear that nsmax>0 requires an excessive number of variables, some of which are redundant. However, many of the details as to why all these variables must be input relate to subtleties and the needs of implementation in the Unified Model (weather forecast and climate model). It is true that the values of several of these variables must be consistent (e.g. snow depth and snow depths in layer), and totalSnow=TRUE is useful in allowing a simple initialisation.

Name	Description	Required if	Required if	Notes
i vuille	Description	nsmax=	totalS	
		0?	now	
			=TRUE?	
snow_ti	Mass of snow	Y	Y	If can_model ≠4, this is the total snow
le				on the tile (since there is a single store
				which doesn't distinguish between snow
				on canopy and under canopy).
				If can_model=4 (and then only at tiles
				where snowCanPFT=1), snow_tile is
				interpreted as the snow on the canopy,
				except as overridden by
				totalSnow=TRUE.
				If totalSnow=TRUE, snow_tile is
				used to hold the total snow on the tile (and
				is subsequently put onto the ground at
				tiles that distinguish between ground and
				canopy stores).
snow_gr	Mass of snow on	Y	N	Only required if can model=4.
nd	ground under			If totalSnow=T this is set to snow tile
	canopy			at tiles where can model=4 is active, to
				zero at all other tiles.
rho_sno	Bulk density of	Y	N	If totalSnow=T, this is set to
W	lying snow			rho_snow_const.
rgrain	Surface grain	Y	Y	Only required if
	size			l_spec_Albedo=TRUE.
nsnow	Number of layers	Ν	N	If totalSnow=T this is calculated from
				the snow depth.
snowdep	Depth of snow	Ν	N	If totalSnow=T, this is calculated from
th	-			mass and density of snow.
snowDs	Depth in each	Ν	N	If totalSnow=T this is calculated
	layer			internally.
snowIce	Ice content in	Ν	Ν	If totalSnow=T all snow is assumed to
	each layer			be ice.
snowLig	Liquid content in	N	N	If totalSnow=T this is set to zero.
_	each layer			

Table 39 Further details of snow variables

tSnow	Temperature in	N	N	If totalSnow=T this is set equal to the
	each layer			temperature of the top soil layer.
rgrainL	Grain size in	Ν	Ν	Only required if
	each layer			l_spec_Albedo=TRUE.
				If totalSnow=T this is set to rgrain.

6.20.1. Examples of specification of initial state

Example 1: A single point, state from the run control file

In this example, we consider a run at a single point and read all data from the run control file. The relevant entries in the run control file are shown below. Only the lines in **bold** are relevant and irrelevant sections have been omitted. Assumptions include that nsmax=0, l_triffid=FALSE.

```
>INIT_IC
F
                                   !
                                        readFile
'asc'
                                   !
                                        fileFormat (quoted)
F,F
                                   !
                                        dumpFile,allDump
'a0001_dump.19970105'
                                   !
                                        fileName (quoted)
F,F
                                   !
                                        zrevSoil, zrevSnow
Т
                                   !
                                        totalWetness
Т
                                   L
                                        totalSnow
>ASCBIN
0,0
                               nheaderFile, nheaderField
                            !
>VARS
sthuf
              1
                    0.9
                              varName, varFlag, constVal
                           !
              2
                    0.0
canopy
              3
                    0.0
                           ! Note that none of these "constVal"
snow_tile
tstar_tile
              4
                    0.0
                           ! values are used in this case (because
             5
                    0.0
                           ! varFlag≠-1). Instead, values
t_soil
cs
                    0.0
                           ! are listed after >DATA.
              6
              7
                    0.0
gs
>ENDVARS
# Data fields to be read from this file should appear below here.
>DATA
 0.749, 0.743, 0.754, 0.759
                                   sthuf
                                ļ
9*0.0
                                !
                                   canopy
9*0.0
                                !
                                   snow tile
9*276.78
                                !
                                   tstar_tile
276.78,277.46,278.99,282.48
                                !
                                   t_soil
12.100
                                !
                                   cs
0.0
                                !
                                   gs
```

readFile=FALSE indicates that all data will be read from the run control file; no other file is involved and several of the following lines are not used. In this case, we use the >ASCBIN section to describe the data.

The seven variables that are required to initialise this particular run are then listed. The second entry in each line gives the position in the input data for each field. Since all the data are to be read from the run control file, which is easily edited, it is easiest to list these variables in the order in which the data will be presented (i.e. field numbers should be 1, 2, 3,...). In this example, all the field numbers are >0, indicating that the data will be read from the >DATA section (and that the constVal entries will be ignored).

Note that data for soil variables are presented in the order "top to bottom", i.e. surface layer first.

Example 2: Initial state specified as a mixture of spatial fields and constant values

In this example, we consider a run at a single point and read all data from the run control file. The relevant entries in the run control file are shown below. Only the lines in **bold** are relevant and irrelevant sections have been omitted.

>INIT_IC					
T 'bin' F ,F 'a001_initi F,F T T	al_s	tate.gra'		<pre>! readFile ! fileFormat (quoted) ! dumpFile,allDump ! fileName (quoted) ! zrevSoil,zrevSnow ! totalWetness ! totalSnow</pre>	
<pre>>ASCBIN 0,0 >VARS sthuf canopy snow_tile tstar_tile t_soil cs gs >ENDVARS</pre>	7 -1 -1 -1 -1 -1 -1	0.9 0.0 275.0 278.0 10.0 0.0	! !	nheaderFile, nheaderField varName, varFlag, constVal	

readFile=TRUE indicates that the binary file "a001_initial_state.gra" will be used to
set the initial state (for some variables).

The seven variables that are required to initialise this particular run are then listed. The second entry in each line gives the position in the input data for each field. For most variables, the value -1 indicates that the field is to be initialised as spatially constant using the value given under constVal. For example, the temperature in each soil layer (t_soil) will be set to 278K at all locations in the model grid. For soil wetness (sthuf), the field number is given as 7 – meaning that soil wetness will be set using the data starting at field 7 in the named input file. Since zrev=TRUE, these data are stored in the file in "non-standard" order (i.e. bottom to top), so that field 7 is the deepest layer (and, assuming 4 soil layers, field 10 will be used for the uppermost layer).

Example 3: Initial state specified from an existing dump file.

In this example, we use an existing dump file (from a previous run) to set the initial values of all variables. Consider a run at a single point and read all data from the run control file. The relevant entries in the run control file are shown below. Only the lines in **bold** are relevant and irrelevant sections have been omitted.

>INIT_IC
T ! readFile
'nc' ! fileFormat (quoted)
T,T ! dumpFile,allDump
'a001_dump.nc' ! fileName (quoted)

readFile=TRUE indicates that the netCDF file "a001_dump.nc" will be used. dumpFile=T indicates that this is a dump file from an earlier run, and allDump=T indicates that all variables are to be set using values from the dump file and therefore all subsequent entries in the INIT_IC section of the run control file are ignored.

6.21. INIT_OUT: Specification of output from the model

JULES separates output into one or more output 'profiles' or streams. Within each profile, all variables selected for output are written to the same file, with the same frequency, although the time-processing can differ between variables (e.g. instantaneous values and time-averages can appear in the same profile). Each profile can be considered as a separate data stream. By using more than one profile the user can, for example,

- Output one set of variables to one file, and other variables to another file
- Write instantaneous values to one file, and time-averaged values to another.
- Write low-frequency output from the entire model grid to one file, and high-frequency output from a subset of points to another file.
- Write low-frequency output throughout the run to one file, and high-frequency output from a smaller part of the run (e.g. a "Special Observation period") to another file.

This flexibility comes at the expense of having to set several values in the run control file. However, default values allow the user to select certain configurations relatively easily.

The first values in this section of the run control file concern general details of the output, such as the file format, that apply to all output profiles. This is followed by a separate section for each output profile, describing the variables, the grid and time sampling for that profile.

6.21.1. INIT_OUT: General values related to output

This section starts with the tag >INIT_OUT.

>INIT OUT run_id outDir dumpFreq dumpFormat dumpStatus nout outFormat gradsNc outStatus vrevOut zrevOutSoil, zrevOutSnow numMonth useTemplate undefOut zsmc,zst outEndian

Variable name	Type and permitted	Notes
	values	A name on identifier for the men This is used to name
runiD	character*10	A name or identifier for the run. This is used to name output files and any model dumps.
outDir	character*150	The directory used for output files. This can be an
OUCDII		absolute or relative path Enter "" to write output to
		the directory from which IUI FS is run
dumpErcor	intogon	Eleg indicating how often the model state is to be
dumprred		'dumped' (written to a file)
	0104	A scentable values are:
		Acceptable values are.
		0: no dumps are written
		1: only the final state of the model (at the end of the
		integration) is dumped
		2: dump initial and final model states
		3: as 2 but also write a dump at the end of the spin-up
		phase
		4: as 3 but also write a dump at the end of each
		calendar year.
		A model dump captures the state of the model at a
		given point in the integration. If a final dump is saved,
		the integration can later be extended by starting another
		run from this final dump. For long integrations, or large
		domains it is recommended that dumps are saved for
		every year so that in the event of any trouble such as a
		model crash the integration can be completed without
		having to start again from the initial state NB Δ run
		that is carried out in several steps each starting from
		the model dump for the previous step, will generally
		not evolve identically to a single run that proceeds
		without the intermediate dumps. This is due in part to
		without the intermediate dumps. This is due, in part, to
		a loss of precision when the model state is written to
dumpFormat	character	the dump file. Format for dump files ASCII or netCDE
aumpi ormat	'asc' or 'nc'	romation dump mes. Aben of hetebr.
dumpStatus	character	The file status used when writing a model dump.
	'new' or 'replace'	Acceptable values are:
	·	'new' – if a file with the same name already exists, the
		run will terminate.
		'replace' – if a file with the same name already
		exists, it will be overwritten.
nOut	integer	The number of output profiles. Each profile generates a
	-	separate stream of data, as explained above.
outFormat	character	The format for output files. Acceptable values are:
		'asc': ASCII files
		'bin': flat binary files
		'nc': netCDE files
aradaNa	logical	Switch controlling details of notCDE output files
yr ausinc	logical	Switch controlling details of hercor output mes.

 Table 40 Description of variables in the INIT_OUT section.

		Only used if outFormat='nc'.
		TRUE: netCDF output will be constructed so as to be readable by GrADS. In particular, snow layer variables will be split so that each tile is represented with a separate variable (otherwise there are too many dimensions for GrADS to cope with).
		FALSE: netCDF output might not be readable by GrADS (but in many cases is).
outStatus	character 'new' or 'replace'	The status used when opening files. This is the value given to the FORTRAN "status" argument of an OPEN statement [e.g. open(1, status='new')], or the equivalent for netCDF files.
		'new': file must not already exist. If the code tries to create a file with the same name as an existing file, the run will terminate. 'replace': If the file exists, delete it and replace with
yrevOut	logical	TRUE: reverse the order of the rows in the output, so that these are written in "North to South" order. FALSE: use the default "South to North" order, with the southernmost row of data being the first in the file.
zrevOutSoil	logical	Switch indicating if soil layer data are to be output in reverse order of levels compared with JULES's default. TRUE: reverse the order of the vertical levels in the output, so that these are written in "bottom to top" order (i.e. bottom layer first). FALSE: use the default "top to bottom" order (i.e. top layer first).
zrevOutSnow	logical	Switch indicating if snow layer data are to be output in reverse order of levels compared with JULES's default. TRUE: reverse the order of the vertical levels in the output, so that these are written in "bottom to top" order (i.e. bottom layer, closest to soil, first). FALSE: use the default "top to bottom" order (i.e. top layer first).
numMonth	logical	Switch controlling the date format used in file names. TRUE: months are represented by the numbers 1 to 12. FALSE: months are represented by 3-character strings (jan, feb, mar,)
useTemplate	logical	This relates to GrADS files (generated by outFormat='bin' or 'nc'). Switch to activate the writing of template '.ctl' files. A template ctl file allows GrADS to access several data files via one ctl file. TRUE: all suitable ctl files will use the template

		option. FALSE: generate a separate ctl file for each data file.
		Note: A template ctl file will not be able to describe the data if there are any missing times at the start of a file – this is a limitation of the current JULES code, rather than GrADS. For example, if daily data are to be written to monthly files, with a template ctl, but the run starts midway through the month, JULES will only write output data for the latter part of the month. GrADS will look for data for all days in the month, but not be able to find them, so the user will not be able to
1.62.	1	plot the first month.
undefOut	real	The value written to output files to represent "missing"
7.020	raal	or underlined data.
2.5110	Ical	requested the average is calculated from the surface to
		this depth (m).
zst	real	If a depth-averaged soil temperature diagnostic is requested, the average is calculated from the surface to this depth (m).
outEndian	character	Only used for GrADS output files
	'little_endian'	(outFormat='bin'), this describes the byte
	or 'big_endian'	ordering of the computers on which JULES is run. It is
		only included in the 'options' line of GrADS ctl files,
		i.e., in metadata describing the file. It does NOT alter
		the byte order of the output.
		Acceptable values are:
		$little_endian' - for little endian computers (e.g.$
		(big and i an' for hig and ian computers (a a Sung)
		big_endian – for big endian computers (e.g. Suns)

6.21.2. NEWPROF: details of each output profile

This section starts with the tag ${\sc {\tt NEWPROF}}$.

Each of the nout output profiles requires a section that describes that profile, such as the times when output is to be generated, which points are to be output, which variables are to be output, and more. The size of a regular latitude/longitude gridbox (input as regDlat, regDlon in control file – see Section 6.4.3) is also used as the size of a gridbox in the output.

```
>NEWPROF
```

```
outName
outPer,outFilePer
outSamPer
outDate(1),outTime(1)
```

outDate(2),outTime(2)

```
pointsFlag(1:2)
outAreaLL
outRangeX(1:2),outRangeY(1:2)
outCompress,outLLorder
```

readFile fileName

pointsOut
mapOut(1:pointsOut,1)
mapOut(1:pointsOut,2)

>GRID outGridNx,outGridNy

```
>VARS
flag name useName
--repeat for each output variable --
>ENDVARS
```

Table 41 Descr	iption of varia	bles for each o	utput profile.
----------------	-----------------	-----------------	----------------

	1	
Variable name	Type and	Notes
	permitte	
	d values	
outName	character	The name of this output profile. This is used in file names and
	(len=10)	should be specified, even if there is only one profile. The names
		might reflect the variables in the file (e.g. 'soil'), the data
		frequency (e.g. 'daily'), or if several profiles are used they
		could be given arbitrary names such as 'p1', 'p2',, etc.
outPer ⁹	integer	The period for output (seconds). This must be a multiple of the
		timestep length (except for the special cases <0 given below). It
		must not exceed 30 days (2592000 seconds), except for the special
		cases.
		Special cases:
		0: generate output every timestep.
		-1: monthly period
		-2: annual period (calendar years)
outFilePer ⁹	integer	The period for output files (seconds), i.e. the time interval within
		which all output goes to the same file. This must not exceed 30 days
		(2592000 seconds), except for the special cases given below. The
		file period must be consistent with the output period (e.g. we can't
		have daily files for monthly output).
		Output may be generated for only part of a run (see
		outDateStart below), and outFilePer controls how the data

⁹ Many variables that are input in terms of seconds (such as outPer and outFilePer) are converted within the code to a number of model timesteps.
		are stored during that part of the run when the output is "active".
		Special cases:
		1. monthly files (all output for a month goes to the same file)
		-1: monthly lifes (all output for a month goes to the same file)
		-2: annual files (calendar years)
		- /: all output goes to one file, but each cycle of spin up creates a
		separate file
		-8: all output goes to one file, but all output during spin up goes to
		Q: all output (for all times) from this profile goes to one file
out SamPor ⁹	intogor	The sampling paried (seconds) for time averages and
Outsallirer	Integer	accumulations This must be a factor of the output period
		(out Por)
		(outrer).
		The recommended setting is out SomPor-0
		However in some cases sampling every timesten adds a
		considerable computational burden and accentable output can be
		achieved by sampling less frequently. For example, with a large
		domain many output diagnostics and a timester of 30 minutes a
		monthly average would be calculated from several hundred values if
		every timestep was used. For variables that evolve relatively slowly
		an acceptable monthly average might be obtained by sampling only
		every 12 hours.
		Remember that if fields are not sampled every timestep, the output
		averages will only be approximations.
outDateStart	integer	Date in format yyyymmdd. Output from this profile is first
		generated at the date and time indicated by outDateStart and
		outTimeStart. These must be within the "main run", except for
		the special cases noted below. Note that output is only generated at
		the end of a timestep, except for the special cases noted below.
		Special cases for outDateStart:
		0: output all times through the run, including any spin-up ¹⁰
		-1: output at all times after spin-up is complete
		-2: output only at the start of the first timestep of the run (used to
		output the initial state only).
		Note that, at present, the only time at which output can be generated
		at the start of a timestep is at the start of the run, when
		outDateStart=-2 will output the initial state. Thus the only
		way in which the initial state can be output is to have an output
		profile with outDateStart=-2. All output at later times then has
		to be generated via another output profile. (This is a slight
		oversimplification – see footnote 10!)
		Note (a complication that you can ignore, but to really understand

¹⁰ Under some circumstances, outDateStart=0 will also output the initial state of the model. These circumstances are that the period of the output equals the timestep (i.e. information for every timestep) and that all output goes to a single file (outFilePer=-9). The timestamp information included with the output allows the user to determine whether this initial state has been output.

		your output you might need to follow this!): For time-averaged
		output, outDateStart and outTimeStart specify the first
		time at which data will be included in the accumulation that is used
		to calculate the average (call this time t1). If t1 happens to be a time
		when any earlier average would be complete (i.e. had the output
		been started earlier, an average would have been calculated at t1),
		the average cannot be calculated at this start time and a "missing
		value" is output.
		Example: Hourly averages starting at midnight 1 st Jan 1996, and
		using a model timestep of $1800s$ (out Per = 3600 .
		outPutDateStart - 19960101 outTimeStart -
		0.00000 At midnight 1 st Ian 1996 this output stream is
		"activated" The code then realises that the average over the
		previous hour should be calculated immediately (because an hourly
		average is always calculated "on the hour") but because sufficient
		times have not been accumulated the first value of this average
		(representing the average over the hour ending at midnight) is set to
		"missing" The first "good" value will be the average ending 01H
		On the other hand instantaneous values can be output at 0H in this
		on the other hand, instantaneous values can be output at orr in this
outTimeStart	character	Time of day (in format hh:mm:ss) at which output begins. Not used
oucrimebeare	*8	if out DateStart is one of the special cases
outDateEnd	integer	Date on which output ends. Not used if outDatoStart is one of
oucbucchild	integer	the special cases
outTimeEnd	character	Time of day at which output ends. Not used if outDateStart is
oucrimelina	*8	one of the special cases
pointsFlag(1)	integer	Flag indicating how the points to be output are selected
poincor 1009(1)	0.1.2	0 = all points in the model grid will be output
	·, ·, _	1 = points in a rectangular subsection will be output
		2 = the points to be output will be listed individually
pointsFlag(2)	integer	Flag indicating how the locations in the output grid of output points
	0 to 5	will be calculated.
		0: the output grid will be the model grid
		1: the output grid will be the rectangular subsection specified via
		pointsFlag(1) = 1. This option can only be used in conjunction
		with points $F[aq(1)=1]$
		2: the location of each output point will be listed individually This
		option can only be used in conjunction with pointsFlag(1)=2
		3: the output grid will be the smallest rectangle that contains all the
		output points. This option requires that the model grid is rectilinear
		(or is a subset of such a grid).
		4: the output grid will be the same as the input grid.
		5: the output grid is a vector. This option can only be used in
		conjunction with pointsFlag(1)=2. In this case, the points to
		be output were specified by reading a list and they are simply
		written in the same order to an output vector. This option can be
		useful if a disparate set of points from an irregular grid has been
		selected for output, and saves having to specify a trivial mapping via
		pointsFlag(2)=2.
	1	

1

		I
		Depending upon the shapes of the input and model grids, it may be possible to produce the same output grid via different combinations of the values of pointsFlag. Similarly, certain combinations will be less useful for particular grids.
outAreaLL	logical	Switch indicating how to interpret the coordinates outRangeX and
		out Pango V Only used if point of lag (1) -1
		TRUE: co-ordinates are longitude and latitude. FALSE: co-ordinates are x and y indices (column and row numbers).
outRangeX(1:2	real array	x-coordinates of the sub-area to be output. Depending on
)		outAreaLatLon, these are longitudes (in range -180 to 360°) or column numbers. Only used if pointsElag(1)-1. Column
		numbers are those in the INPUT grid.
		If values are column numbers, the code uses the nearest integer to
		the input value.
outRangeY(1:2	real arrav	As out BangeX, expect in latitudinal (v) direction
)		
outCompress	logical	Switch indicating if output data are to be "compressed" so that only model points are output.
		TRUE: Only output model points. Also output the mapping between the model points and the output grid (e.g. how to scatter the output points across a larger grid). The mapping is output in a form suitable for use with GrADS' pdef. FALSE: If the output grid is larger than the number of points to be output, the grid is filled with "missing data" or padding values.
		See Section 6.21.3 for further discussion of output compression. If the output grid is the same size as the number of points to be output (so no compression is possible), outCompress=TRUE may still cause output to differ in format from outCompress=FALSE (the points may be written in a different order), so outCompress should always be set to FALSE unless needed otherwise.
		Note that if outCompress=TRUE, then yrevOut is ignored for
		the profile (it becomes irrelevant).
outLLorder	logical	Switch indicating the coordinate system to be used to determine the locations of the output points in the output grid. Only used if $pointsFlag(2)=1$ or 3.
		TRUE: use the latitude and longitude of each point to determine its location in the output grid. FALSE: use the row and column number in the INPUT grid to determine where each point goes in output grid.
		This option is particularly useful if the input grid is rectilinear but is not regular in latitude and longitude (e.g. it could be a rotated grid).

		The output can then be placed on the same rectilinear grid.			
readFile	logical	Switch controlling location of output mapping.			
		Only used if pointsFlag(1) =2 (i.e. a mapping is to be input).			
		TRUE: read from an external file			
		FALSE: read from the run control file.			
filename	character	The name of the file that contains output mapping. Only used if			
		readFile=TRUE.			
pointsOut	integer	The number of points to be output. This is only used if			
	1 to size	<pre>pointsFlag(1)=2.</pre>			
	of grid				
<pre>mapOut(1:poin</pre>	integer	A list of the points that are to be output. The list gives the locations			
tsOut,1)	array	(point numbers) in the INPUT grid (which need not be the same as			
		the model grid).			
		Only used if pointsFlag(1)=2.			
<pre>mapOut(1:poin</pre>	integer	A list giving the destination (location in output grid) for each output			
tsOut,2	array	point. The list gives the point number in the output grid.			
		Only used if pointsFlag(2)=2			
outGridNx	integer	Number of columns in the output grid. This is the full,			
		uncompressed output grid. If compression is applied, the actual			
		output may be smaller, but can be scattered across a grid with this			
		number of columns.			
		Only used if pointsFlag(2) =2, in which case the user specifies			
		all aspects of the output grid and mappings. Otherwise the size of			
	·	the output grid is calculated by the model.			
outgriany	integer	As outGridNx, but number of rows.			
>VARS		a he autout is succided between the taxes NUADC			
A LISU OL Val.	Lables L	o be output is provided between the tags >VARS			
flag	character*	1 Elag indicating type of processing Acceptable values are			
IIay	$S M \text{ or } \Lambda$	I Hag indicating type of processing. Acceptable values are,			
	5, W 01 A	C. Instantaneous or snanshot value			
		S. Instantaneous of snapshot value.			
		M. Time mean value.			
		A: Accumulation over time.			
		For time overaged variables, the period over which each time			
		average is calculated is given by out Dor. For time			
		average is calculated is given by outpet. For time-			
		of an undeted accumulation (i.e. how often the value if			
		reported) For both time averages and accumulations the			
		sampling frequency is set via out Sombox			
		sampning nequency is set via outballiper.			
		NB A time-accumulation is initialised at the start of a run			
		(actually at the start of each section of a run so that it is			
		reinitialised after any spin up is completed – see Section			
		6.3.3) and thereafter accumulates until the end of the run			

		(actually to the end of each section of a run). This may mean
		that accuracy is lost, particularly towards the end of long
		runs, if small increments are added to an already large sum.
name	character	The name of an output variable (one word). This is the
		internal name as used in the model code. A list of available
		variables is provided in Section 9. This list was correct at the
		time of writing, but the most reliable way to determine
		exactly which variables are available for a particular version
		of JULES is to look at the variables listed in the subroutine
		<pre>init_out_varlist, and which can be echoed to screen</pre>
		at the start of a JULES run by setting echo=TRUE in
		INIT_OPTS (see Section 6.2). A variable may appear more
		than once in an output profile, as long as each time it appears
		with a different time flag - e.g. instantaneous and time-
		average values.
useName	character	The name to be used in the output (one word). This variable
		need not be specified. If useName is not provided, the code
		will substitute name instead. This facility allows the user to
		choose to call output variables by names other than those
		used in the code, for example to use names that are more
		memorable, or shorter names to avoid typing! Although the
		name should be a single word, characters such as underscore
		("_") may be used.

6.21.3. Compression of the output grid

As noted above, outCompress=TRUE can be used to compress the output data so that any "missing" points are not written and file size is reduced. Although this facility was designed to work with the pdef option of GrADS, it might be useful with other packages too, with the proviso that the user may have to tell another package how to use the available information.

This facility will be described by considering an example in which we have global input data on a 1° grid, and JULES is run at land points only. We would like to visualise the output plotted on the full globe. The input grid is of size $360 \times 180 = 64800$ points, of which only about 25% are land points at which the model is run. If we set outCompress=TRUE, the output files will contain data only for the land points, and a mapping is defined so that the land points can be plotted in their correct positions on the Earth. This leads to considerable saving on disc space. The data in the output file is written as a vector (of ~15000 points in this case), in the order that they are held in the model grid. The mapping is written to a binary file that contains 3 fields on the full, expanded grid (360x180 points in this example, starting from the southwest corner, proceeding across each row, then onto next row – i.e. the default JULES order). The first field is integer, and gives the location in the output vector (of ~15000 points) that should be plotted at this location in the globe. If there are no data for a point (i.e. a sea point in this case), the missing data value is inserted. The second field is real, and is 1.0 at points with data, elsewhere 0.0. The third field is not used by JULES (it deals with wind rotation) and will consist of the missing data value.

GrADS' pdef option can be used to display just such a thinned grid, i.e. the "full" grid is populated with values from the "thinned" grid, with missing data values inserted at all other points. Note that

outCompress as implemented in JULES is a subset of the full pdef available in GrADS, namely where pdef is used with a supplementary file, and each point in the "thinned" output grid maps onto a single point in the "full" grid – effectively there is no interpolation. Thus the latitudes and longitudes of the model gridpoints (specified in INIT_GRID above) must be consistent with those specified here for the "full" grid.

If a package other than GrADS is being used to display the thinned data, the user will have to either work out how to use the GrADS mapping between the vector and the full grid, or create new mapping data.

6.21.4. An example of output grids and mapping

This example uses the grids shown in Figure 6. The model grid has nx=5, ny=4 as shown, and is regular in latitude and longitude. For simplicity, we will assume that the input grid was identical to the model grid. The user wishes to output the 3 shaded points to an output grid with nxOut=2, nyOut=2, maintaining their relative positions (as given by latitude and longitude).

Figure 6. An example of the grids used in output mapping.

The easiest way to achieve this is to use the following lines in the run control file (irrelevant lines have been omitted):

2,3	!	<pre>pointsFlag(1:2)</pre>
F , Т	!	outCompress,outLLorder
F	!	readFile
3	!	pointsOut

4,5,10	!	<pre>mapOut(1:pointsOut,1)</pre>	
--------	---	----------------------------------	--

pointsFlag(1) = 1 means that the chosen points will be listed individually.

pointsFlag(2)=3 means the output grid is to be the smallest rectangle that includes all output points.

outCompress=F means the output grid will be padded as necessary. In this case, it means that output point #3 in Figure 6 will be filled with the missing data value.

outLLorder=T means the location of each point in the output grid is calculated using the latitude and longitude of the point.

pointsOut=3 indicates that 3 points are to be output.

mapOut (1:pointsOut, 1) indicates that the points to be output are numbers 4, 5 and 10 in the input grid (which is identical to the model grid in this case).

The model uses the latitude and longitude of each point to establish that the chosen points should occupy locations 1, 2 and 4 in the output grid, and that location 3 should be filled with the missing data flag (undefout).

The same effect could be achieved by using pointsFlag(1)=2, pointsFlag(2)=2, mapOut(:,2)=1, 2, 4, outGridNxy=2, 2, i.e. the user can completely specify the mapping and grid shape. Calculating mapOut(:,2) is trivial in this example, but would involve the user in more and unnecessary work if many more points were to be output.

6.21.5. Notes on output

- 1. A warning is raised if any output is not generated because the output interval is not completed. This can occur when a run starts or ends partway through an output period, or if a spin up cycle ends partway through an output period. For example, if monthly average diagnostics are requested, but the run ends on the 10th day of a month, the final monthly average is incomplete. In such cases, a value is still written to the output file, but the details of this value vary between cases. In short, a monthly or annual average is calculated if a "large fraction" of the month or year has been simulated, but averages over shorter periods are not calculated and a "missing data" value is output. For details, see the code.
- 2. GrADS output: A control file (.ctl file), that describes GrADS output, includes a specification of the number of times of output that are contained in the associated data files (the TDEF line). When a data file is first opened, a control file is written, with an estimate of the expected number of times that will be written. Sometimes this initial estimate will prove wrong (for example, if the model is spinning up the number of spin up cycles may not be known in advance), and the .ctl file is later rewritten when the data file is complete. Under most circumstances, this procedure is carried out without any problem. However, if the user opens the .ctl file in GrADS while the integration is still underway, it may not correctly specify the number of times. In that case, the .ctl file will be correct if reopened at a later time. However, if the user has moved the .ctl file while the integration is underway, it cannot be rewritten and a warning is raised if an attempt is made to rewrite it.
- 3. Driving data, such as meteorological or vegetation data, may not be correctly represented in output at the start of the first timestep of the run (i.e. time=0), depending upon the frequency of data and any temporal interpolation. The problem arises because the initial output is generated before the procedures that update the driving data are called. Under some circumstances, the driving data will already have been updated during the

initialisation, and so the output will be correct. In other cases, the initial output will have "nonsense" values such as zero for the driving data.

4. The code that generates output contains many options and has to deal with a variety of possibilities in terms of output frequency, run dates, spin up and the likes. Until the code has been thoroughly tested by the user community, early versions of JULES are quite likely to contain bugs, particularly in the output code. If a user finds an error with the output, the bug should be reported, but in the meanwhile JULES will hopefully run correctly if "simpler output" is requested. Two simplifying options, that may not always be practicable for the user, are to request snapshot diagnostics (rather than time averages; in cases of extreme difficulty these snapshots should be every timestep), and to send all output to a single file.

6.22. File name templating

If the names of input files follow particular patterns, JULES can use a substitution template rather than requiring a potentially long list of file names¹¹. Templating comes in two forms, time templating and variable name templating, which can be used separately or together.

Valid substitution strings are listed in Table 42. These are 3-character strings, starting with "%". Note that any file name that contains "%" is assumed to use templating.

Substitution string	Description
Time templating	
%tc	1-character representation of decade (Met Office files)
%y4	4-digit year
%y2	2-digit year
%ус	1-character representation of year (Met Office files)
%m2	2-digit month
%m1	1- or 2-digit month
%mC	3-character month abbreviation
%mm	1-character representation of month (Met Office files)
%d2	2-digit day of month
%d1	1- or 2-digit day of month
%dm	1-character representation of day of month (Met Office files)
%h2	2-digit hour of day
%h1	1- or 2-digit hour of day
%hc	1-character representation of hour of day (Met Office files)
%n2	2 digit minute (leading zero if needed)
Variable name templating	
%vv	A character variable

 Table 42 Valid substitution strings for substitution templates.

¹¹ JULES templating is similar to that used by GrADS, with a few important differences. JULES only allows a subset of the GrADS substitution strings (not including the %ch string used with chsub), but is more flexible in how it deals with time-templating.

6.22.1. Time templating

Information about the time of each file is contained in the file name. Valid substitution strings are listed in Table 42 and examples of the use of time templating are given in Table 44.

The substitution template must be compatible with the period (frequency) of the data files. If a substitution template includes a substitution string that refers to a period of a day or longer, each file must contain data for no more than one period. For example, if m^2 appears in the template, each file must contain data from at most one calendar month. For periods less than one day (i.e. hours and minutes), data for more than one period can be held in the same file, but the file period must be a factor of one day¹².

The start time of each file must also follow (slightly complicated) rules that are laid out in Table 43. The rules ensure that the first data in a file represent the first time that the time-templating expects to find in that file. Essentially they require that each file holds all possible data for the time period – there cannot be any missing times. Some of these rules are demonstrated in the example section below. If these rules are not followed, the code will detect an error and stop. In Table 43, dataPerUnits and filePerUnits are the time units that are used to describe the period of the data and the files respectively, chosen from 1 year, 1 month, days, hours and minutes. If a file or data period can be described by more than one time unit, the longer unit is used. For example, a period of 60 minutes is described as 1 hour.

For example, consider daily data held in one file per month. This gives dataPerUnits='day' and filePerUnits='1 month'. Table 43 shows that the first data in each file must represent the 1^{st} of the month, as might be expected. A file that started with data for the 2^{nd} of the month cannot be used with time templating, even if a particular run does not require the data at that time.

				dataPerUnits		
		1 year	1 month	days	hours	minutes
filePerUnits	1 year	none	Jan	01Jan	00H 01Jan	00H 01Jan
	1 month	-	none	1 st of	00H 1 st of	00H 1 st of
				month	month	month
	days	-	-	none	00H	00H
	hours	-	-	-	none	00H
	minutes	-	_	_	-	none

Table 43 Requirements for the time of first data in time templated files.

6.22.2. Variable-name templating

Variable-name templating is so called because it is expected to be used when related variables are stored in separate files, with file names that are identical apart from a section that indicates what variable is in each file. For example, variable #1 could be in "file1.dat", while variable #2 is in "file2.dat". Examples of the use of this type of templating are given in the next section. If

¹² Users of GrADS should note that, for these shorter substitution string periods (hours and minutes), JULES can use files that cannot be described by a GrADS template control file. GrADS (at v1.9v4) insists that each file contains data that covers at most one period, whereas JULES allows data for more than one period. For example, if the substitution template includes %h2, GrADS insists that each file contains data for at most one hour, whereas JULES allows each file to have 1, 2, 3, 4..etc hours of data.

using variable name templating with non-SDF formats, the layout of each file must be similar – the number of headers and the number of fields in any time level must be the same in all files.

Substitution template	Description of files	Valid template?	Example file names	Comments
/data/met_data_%y4%mc.dat	Monthly files	Yes	/data/met_data_1990jan.dat /data/met_data_1990feb_dat	
./%y4/met_data_%y4%mc.dat	Monthly files	Yes	./1990/met_data_1990jan.dat	A substitution string can appear more than once. Here data for each year are stored in a separate directory.
%vv_%y4	Yearly files, with each variable in a separate file	Yes	Rain_1990.dat Wind_1990.dat	Variable name and time templating used together. The strings that are to be substituted for %vv will be provided by the user via the run control file.
Data_%d2.dat	Hourly data, each file containing data for 10 days	No		Each file can contain at most 1 day of data. For substitution strings that refer to years, months or days, more than one year/month/day of data can be stored in each file.
Data_%h2.dat	Hourly data, each file containing data for 6 hours.	Yes	Data_00.dat Data_06.dat Data_12.dat Data_18.dat	For substitution strings that refer to hours or minutes, more than one hour or minute of data can be stored in each file.
Data_%mc.dat	Hourly data in monthly files. The time of the first data is 00H 01Jun1990.	Yes	Data_jan.dat Data_feb.dat	
Data_%mc.dat	Hourly data in monthly files. The time of the first data is 01H 01Jun1990.	No	Data_jan.dat Data_feb.dat	Similar to the previous case, but with first data one hour later. In this case, the first data in each file must represent 00H on the 1 st of a month. These data cannot be described by a time template and instead the name and time of each data file must be listed (see appropriate section).
Data_%y4.dat	Monthly data in yearly files. The time of the first data is given as 00H	Yes	Data_1990.dat Data_1991.dat	In this case, the time of the first data must be in January. Here it is shown to be a value at approximately mid-month.

Table 44 Examples of the use of file name templating.

15Jan1990.		

6.23. Notes on temporal interpolation

Time-varying input data to JULES require the user to specify how the data should be interpolated onto the model timestep. The permitted interpolation flags are shown in Table 45. These flags are case-sensitive.

Flag value	Notes
b	Backward time average, ending at given time. Will be interpolated with time.
С	Centred time average, centred on given time. Will be interpolated with time.
f	Forward time average, starting at given time. Will be interpolated with time.
i	Instantaneous value at the given time. Will be linearly interpolated with time.
nb	Backward time average, ending at given time. Value will be held constant with time.
nc	Centred time average, centred on given time. Value will be held constant with time.
nf	Forward time average, starting at given time. Value will be held constant with time.

Table 45 Time interpolation flags.

Depending upon the time interpolation flags, driving data may need to be supplied for one or two times that fall before or after the times for the integration. The interpolation scheme implemented in JULES for flags 'b', 'c' and 'f' is a simplified version of the Sheng and Zwiers $(1998)^{13}$ method that conserves the period means of the driving data file. In order to ensure conservation of the average, these flags can be used only if the data period is an even multiple of the model timestep (i.e., if driveDataPer=2*n*timestep; n=1, 2, 3, ...). In these cases the curve-fitting process tends to produce occasional values near turning points that fall outside the range of the input values. Note that for centred data (flags 'c' and 'nc') the time of the data should be given as that at the start of the averaging period, rather than the centre. e.g. the 3-hour average over 06H to 09H, centred at 07:30H, should be treated as having timestamp 06H.

¹³ Sheng and Zwiers (1998) "An improved scheme for time-dependent boundary conditions in atmospheric general circulation models", *Climate Dynamics*, **14**, 609–613.

Figure 7. Schematic of JULES interpolation of driving variable from a 3 hour timestep to a 45 minute timestep. Simulation start time is 0000Z (on an arbitrary day) and end time is 1200Z. Blue circles indicate driving data required to complete a JULES simulation from t=0 to t=16. See text for discussion of requirements for driving variables that are forward or backward means.

6.24. Example run control files

Two example run control files come bundled with the JULES source code, in the top-level directory.

point_loobos_example.jin

for a single point simulation forced with weather station data. This run requires a single input file (meteorological data) that is also included as part of the JULES distribution, in the "LOOBOS" directory. The results of running this code are also provided in the same directory, so the user can check that their installation of JULES produces results that are acceptably close to those of this standard run.

point_loobos_triffid_example.jin

for a single point simulation forced with weather station data. This is similar to point_loobos_example.jin above, but with the TRIFFID dynamic vegetation model switched on. No results are provided.

point_VL92_1T_example.jin, point_VL92_2T_example.jin, point_VL92_M_example.jin

for a single point run simulation, including the urban land surface types, forced with weather station data. These serve as an example of the original one tile urban scheme, the simple two-tile urban scheme (URBAN-2T) and MORUSES.

grid_gswp2_example.jin

for a gridded domain simulation forced with GSWP2 weather data. This run requires a large amount of input data that is not distributed with JULES, and merely serves as an example of a run control file for a gridded domain.

7. Aspects of the code

7.1. Low-level i/o code

In the course of adding to JULES, a user may well want to read new variables into the model. Most of the input/output of spatial fields is handled by subroutines provided by the module READWRITE_MOD. Particularly important procedures that deal with input are summarised in Table 46. To use this code to read in a new variable, the appropriate procedure should be identified based on the type of variable that is to be read in. For example, to read a field that is only defined on land points, a call to readVar2dComp is appropriate. All these procedures require arguments that define the mapping between the input grid and the model grid.

Note that the choice of procedure is governed solely by the type of variable and is not affected by the shape of the input grid. The correct use of these procedures and the arguments required can be learned by studying the exiting code.

Name	Summary
readVar2d	Reads a variable that is defined at all possible points (both land and sea).
	The result is a variable on the model grid (this is considered to be a 2-
	dimensional variable on (x,y), even if the model grid is effectively a vector
	with ny=1).
	For example, air temperature is defined at all possible points, both land
	and sea.
readVar2dComp	Reads a variable that is only defined on a subset of points (for example
	land points).
	The result is a vector.
	For example, a land variable can be read from a 2-D (x,y) map (that may
	contain both land and sea points), and the result is a vector on land points.
	(The "Comp" in the name is meant to suggest "compression" to a vector!)
readVar3dComp	As readVar2dComp, but the variable is also a function of the vertical
	level (e.g. a soil variable on several levels). This 3d version works by
	looping over the vertical levels, calling the 2d version for each level.

Table 46 Key procedures for reading data.

7.2. How to implement new diagnostics for output

The steps needed to add a new diagnostic vary according to what variables are needed in order to calculate the diagnostic. These are covered in the next sections.

7.2.1. Output of existing variables

The data are already held in an existing FORTRAN variable, in a module. This is the easiest case, since the data are easily accessed. The name that is used to select the diagnostic should be added to subroutine init_out_varlist, following the existing examples. Care should be taken to specify the correct type of diagnostic (e.g., land points only, soil layers). If the desired diagnostic

does not fit any of the existing types, the user may have to closely study the code to work out how to add a new type, and/or contact the JULES developers. Finally, code to load the values into the output space has to be added to subroutine loadout (in module OUTPUT_MOD). This code may have to calculate the diagnostic using other variables.

7.2.2. Output of new variables

Diagnostics that require variables that the user had added, or that must be calculated in a section of the model code other than the output routines, are more complex to add to JULES. In such a case, it may be easiest to declare a new variable in a FORTRAN module, and to use this variable to hold the values of the diagnostic. Space for the new variable will likely have to be allocated, and the tidiest way to do this would be in the subroutine allocate_arrays (which is called at various points during initialisation). The variable can then be accessed by the output procedures and the steps outlined in case 1 above should be followed.

A more sophisticated scheme which only allocated space for a diagnostic if it was required, and loaded the value from any subroutine (avoiding the need to hold the variable in a module, or pass it through the code) has been implemented in some versions of JULES but is not available in the release versions because it is not compatible for use in the Unified Model. If you are keen to get this code, contact the JULES developers.

8. Known limitations of and bugs in the code

1.Limit to longest possible run

The longest possible run that can be attempted with JULES is approximately 100 years. Any longer run should be split into smaller sections, with each later section starting from the final dump of the previous section. This restriction on run length arises because some of the time variables can become too large for the declared type of variable meaning that calculations return incorrect results and the program will probably crash. The size of each variable is in part affected by the compiler used, but a maximum run length of ~100 years appears to be a common case for 32-bit machines. Note that JULES uses the compiler's default KIND for each type of variable. Changes to the KIND of any variable would have to be propagated through the code.

2. Lack of more generic i/o code

If a user wants to introduce new time-varying data that cannot be made to fit into the existing code for vegetation or meteorological data (for example, the new data would need to have the same frequency as the other data type), they may have a substantial job on their hands! For many purposes, a simple 'hack' may suffice (e.g. write code to read a particular data set for a particular run), but this will lack generality and options such as automatic spin up will be hard to accommodate. At present there is no good solution – we don't have any flexible coupling code that can be told to fetch suitable values of an arbitrary field, although JULES may move towards this in future.

3. Spin up over short periods

The current code cannot cope with a spin up cycle that is short in comparison to the period of any input data. For example, a spin up cycle of 1 day cannot use 10-day vegetation data. The code will likely run but the evolution of the vegetation data will probably not be what the user intended! However, it is unlikely that a user would want to try such a run.

9. Variables available for output

Variables that are available for output from JULES are listed in the tables of this section, separated according to their type. Types of variables are:

SINGLE: a single value at all gridpoints (land and sea) (Table 47). LAND: a single value at land gridpoints (Table 48). PFT: a value for each of npft PFTs at each land gridpoint (Table 49). TILE: a value for each of ntiles tiles at each land gridpoint (Table 50). TYPE: a value for each of ntype surface types at each land gridpoint (Table 51). SOIL: a value for each of sm_levels soil layers at each land gridpoint (Table 52). SNOW: a value for each of nsmax snow layers at each tile at each land gridpoint (Table 53). SC: a value for each of N soil carbon pools at each land gridpoint (Table 54). N=1 if l_triffid=FALSE, else N=4.

These tables were correct at the time of writing, but the most reliable way to determine exactly which variables are available for a particular version of JULES is to look at the variables listed in the subroutine init_out_varlist, and which can be echoed to screen at the start of a JULES run by setting echo=TRUE (see Section 6.2).

A few variables are not available in the standard release (for reasons of compatibility with the Unified Model - see Section 7.2.2), but can be accessed with the addition of extra code which can be requested from the JULES office. These "offline" variables are shown in italics in the tables below.

Name	Description
conRain	Gridbox convective rainfall (kg $m^{-2} s^{-1}$)
conSnow	Gridbox convective snowfall(kg $m^{-2} s^{-1}$)
COSZ	Cosine of the zenith angle (-)
diffFrac	Gridbox fraction of radiation that is diffuse (-)
ecan	Gridbox mean evaporation from canopy/surface store (kg m ⁻² s ⁻¹)
ei	Gridbox sublimation from lying snow or sea-ice $(\text{kg m}^2 \text{ s}^{-1})$
esoil	Gridbox surface evapotranspiration from soil moisture store (kg m ⁻² s ⁻¹)
fqw	Gridbox moisture flux from surface (kg m ⁻² s ⁻¹)
ftl	Gridbox surface sensible heat flux (W m ⁻²)
landAlbedo1	Gridbox albedo for waveband 1 (direct beam visible)
landAlbedo2	Gridbox albedo for waveband 2 (diffuse visible)
landAlbedo3	Gridbox albedo for waveband 3 (direct beam NIR)
landAlbedo4	Gridbox albedo for waveband 4 (diffuse NIR)
latentHeat	Gridbox surface latent heat flux (W m ⁻²)
latitude	Gridbox latitude (°)
longitude	Gridbox longitude (°)
lsRain	Gridbox large-scale rainfall (kg $m^{-2} s^{-1}$)
lsSnow	Gridbox large-scale snowfall (kg m ⁻² s ⁻¹)
LWdown	Gridbox surface downward LW radiation (W m ⁻²)
precip	Gridbox precipitation rate (kg m ⁻² s ⁻¹)
pstar	Gridbox surface pressure (Pa)
q1p5m	Gridbox specific humidity at 1.5m height (kg kg ⁻¹)
qwl	Gridbox specific humidity (total water content) (kg kg ⁻¹)
rainfall	Gridbox rainfall rate (kg m ⁻² s ⁻¹)
snomltSurfHtf	Gridbox heat flux used for surface melting of snow (W m ⁻²)
snowfall	Gridbox snowfall rate (kg $m^{-2} s^{-1}$)
snowMass	Gridbox snowmass (kg m ⁻²)
surfHtFlux	Gridbox net downward heat flux at surface over land and sea-ice fraction
	of gridbox (W m ⁻²)
SWdown	Gridbox surface downward SW radiation (W m ⁻²)
t1p5m	Gridbox temperature at 1.5m height (K)
taux1	Gridbox westerly component of surface wind stress (N m ⁻²)
tauy1	Gridbox southerly component of surface wind stress (N m ⁻²)
tl1	Gridbox ice/liquid water temperature (K)
tstar	Gridbox surface temperature (K)
ul	Gridbox westerly wind component (m s ⁻¹)
ulOm	Gridbox westerly wind component at 10 m height (m s ⁻¹)
v1	Gridbox southerly wind component (m s ⁻¹)
vlOm	Gridbox southerly wind component at 10m height (m s ⁻¹)
wind	Gridbox wind speed (m s ⁻¹)

Table 47 A list of output variables that have a single value at each gridpoint.

	T T T T T T T T T T T T T T T T T T T
Name	Description
albedoLand	Gridbox albedo (as used to calculate net shortwave radiation) (-)
canopy	Gridbox canopy water content (kg m ⁻²)
CS	Gridbox total soil carbon (kg C m ⁻²)
CV	Gridbox mean vegetation carbon (kg C m ⁻²)
depthFrozen	Gridbox depth of frozen ground at surface (m)
depthUnfrozen	Gridbox depth of unfrozen ground at surface (m)
drain	Gridbox drainage at bottom of soil column (kg m ⁻² s ⁻¹)
elake	Gridbox mean evaporation from lakes (kg m ⁻² s ⁻¹)
emis	Gridbox emissivity
fch4_wetl	Gridbox scaled methane flux from wetland fraction $(10^{-9} \text{ kg C m}^{-2} \text{s}^{-1})$
fsat	Gridbox surface saturated fraction (-)
fsmc	Gridbox soil moisture availability factor (beta) (-)
fwetl	Gridbox wetland fraction (-)
gpp	Gridbox gross primary productivity (kg C m ⁻² s ⁻¹)
gs	Gridbox surface conductance to evaporation (m s ⁻¹)
hfSnowMelt	Gridbox snowmelt heat flux (W m ⁻²)
landIndex	Index (gridbox number) of land points
liceIndex	Index (gridbox number) of land ice points
litCMn	Gridbox mean carbon litter (kg C m ⁻² (360days) ⁻¹)
LWnet	Gridbox surface net LW radiation (W m ⁻²)
LWup	Gridbox surface upward LW radiation $(W m^{-2})$
npp	Gridbox net primary productivity (kg C m ⁻² s ⁻¹)
qbase	Gridbox baseflow (lateral subsurface runoff) (kg m ⁻² s ⁻¹)
qbase_zw	Gridbox baseflow (lateral subsurface runoff) from deep layer (kg m ^{2} s ^{-1}
radnet	Surface net radiation (W m ⁻)
respP	Gridbox plant respiration (kg C m s) Gridbox plant respiration (kg C m s)
resp5	Gridbox total soil respiration (kg C m s) Gridbox total soil respiration (kg C m s)
respondut	Gridbox mean soli respiration for driving TRIFFID (kg C m $(260 \text{ days})^{-1}$)
rupoff	(300 days)) Gridbox runoff rate (kg m ⁻² s ⁻¹)
sat excess roff	Gridbox saturation excess runoff rate $(kg m^{-2} s^{-1})$
smcAvailTop	Gridbox saturation excess runon rate (kg m 's)
Smorrarrap	$(k_{\alpha} m^{-2})$
smcAvailTot	Gridbox available moisture in soil column (kg m $^{-2}$)
smcTot	Gridbox total soil moisture in column (kg m^{-2})
snomltSubHtf	Grdbox sub-canopy snowmelt heat flux (W m ⁻²)
snowCan	Gridbox snow on canopy (kg m^{-2})
snowDepth	Gridbox depth of snow (m)
snowFrac	Gridbox snow-covered fraction of land points (-)
snowFracAlb	Gridbox average weight given to snow for albedo (-)
snowGrCan	Gridbox average snow beneath canopy (snow grnd) (kg m ⁻²)
snowIceTot	Gridbox frozen water in snowpack (kg m ⁻²)
	Only available if nsmax>0.
snowLiqTot	Gridbox liquid water in snowpack (kg m ⁻²)

Table 48 A list of output variables that	t have a single value at each land gridpoint.
--	---

	Only available if nsmax>0.
snowMelt	Gridbox rate of snowmelt (kg $m^{-2} s^{-1}$)
soilIndex	Index (gridbox number) of soil points
sthZw	Sol wetness in the deep (water table) layer (-)
subSurfRoff	Gridbox sub-surface runoff (kg $m^{-2} s^{-1}$)
surfRoff	Gridbox surface runoff (kg $m^{-2} s^{-1}$)
surfRoffInf	Gridbox infiltration excess surface runoff (kg m ⁻² s ⁻¹)
swetLiqTot	Gridbox unfrozen soil moisture as fraction of saturation (-)
swetTot	Gridbox soil moisture as fraction of saturation (-)
SWnet	Gribox net shortwave radiation at the surface (W m ⁻²)
tfall	Gridbox throughfall (kg $m^{-2} s^{-1}$)
trad	Gridbox effective radiative temperature (K)
wFluxSfc	Gridbox downwards moisture flux at soil surface (kg $m^{-2} s^{-1}$)
ZW	Gridbox depth to water table (m)

Name	Description
cVegP	PFT total carbon content of the vegetation (kg C m^{-2})
canhtP	PFT canopy height (m)
ciP	PFT internal CO2 pressure (Pa)
fluxO3Stom	PFT flux of O3 to stomata (mol m-2 s-1)
fsmcP	PFT soil moisture availability factor (-)
gLeafP	PFT leaf turnover rate ([360days] ⁻¹)
gLeafDayP	PFT mean leaf turnover rate for input to PHENOL ([360days] ⁻¹)
gLeafDrOutP	PFT mean leaf turnover rate for driving TRIFFID ([360days] ⁻¹)
gLeafPhenP	PFT mean leaf turnover rate over phenology period([360days] ⁻¹)
gstomP	PFT bulk (canopy) stomatal conductance for water vapour (m s ⁻¹)
gppP	PFT gross primary productivity (kg C m ⁻² s ⁻¹)
laiP	PFT leaf area index (-)
laiPhenP	PFT leaf area index after phenology (-)
litCP	PFT carbon litter (kg C m^{-2} (360days) ⁻¹)
nppDrOutP	PFT mean NPP for driving TRIFFID (kg C m ⁻² (360days) ⁻¹)
nppP	PFT net primary productivity (kg C $m^{-2} s^{-1}$)
o3ExpFac	PFT ozone exposure factor
rdcP	Canopy dark respiration, without soil water dependence (mol $CO_2 \text{ m}^2 \text{ s}^{-1}$)
respPP	PFT plant respiration (kg C m ⁻² s ⁻¹)
respWDrOutP	PFT mean wood respiration for driving TRIFFID (kg C m ⁻² (360days) ⁻¹)
respWP	PFT wood respiration (kg C $m^{-2} s^{-1}$)

Table 49 A list of output variables that have a single value for each PFT at each land gridpoint.

Name	Desciption
alb1T	Tile land albedo, waveband 1 (direct beam visible)
alb2T	Tile land albedo, waveband 2 (diffuse visible)
alb3T	Tile land albedo, waveband 3 (direct beam NIR)
alb4T	Tile land albedo, waveband 4 (diffuse NIR)
anthropHtFluxT	Anthropogenic heat flux for each tile (W m ⁻²)
canopyT	Tile surface/canopy water for snow-free land tiles (kg m ⁻²)
catchT	Tile surface/canopy water capacity of snow-free land tiles (kg m ⁻²)
ecanT	Tile evaporation from canopy/surface store for snow-free land tiles (kg m ^{2} s ^{-1})
eiT	Tile sublimation from lying snow for land tiles (kg $m^{-2} s^{-1}$)
emisT	Tile emissivity
esoilT	Tile surface evapotranspiration from soil moisture store for snow-free land tile (kg $m^{-2} s^{-1}$)
fqwT	Tile surface moisture flux for land tiles (kg $m^{-2} s^{-1}$)
ftlT	Tile surface sensible heat flux for land tiles (W m ⁻²)
gcT	Tile surface conductance to evaporation for land tiles(m s ⁻¹)
leT	Tile surface latent heat flux for land tiles (W m ⁻²)
nsnow	Tile number of snow layers (-)
q1p5mT	Tile specific humidity at 1.5m over land tiles (kg kg ⁻¹)
radnetT	Tile surface net radiation (W m ⁻²)
rgrainT	Tile snow surface grain size (µm)
snowCanMeltT	Tile melt of snow on canopy (kg $m^{-2} s^{-1}$)
snowCanT	Tile snow on canopy (kg m^{-2})
snowDepthT	Tile snow depth (m)
snowGrCanMeltT	Tile melt of snow under canopy (kg $m^{-2} s^{-1}$)
snowGroundRhoT	Tile bulk density of snow on ground (kg m ⁻³)
snowGrCanT	Tile snow on ground below canopy (kg m ⁻²)
snowGroundT	Tile snow on ground (snow_tile or snow_grnd) (kg m ⁻²)
snowIceT	Tile total frozen mass in snow on ground (kg m^{-2})
	Only available if nsmax>0.
snowLiqT	Tile total liquid mass in snow on ground (kg m ⁻²)
	Only available if nsmax>0.
snowMassT	Tile lying snow (total) (kg m ⁻²)
snowMeltT	Tile snow melt rate (melt_tile) (kg $m^{-2} s^{-1}$)
surfHtFluxT	Downward heat flux for each tile (W m ⁻²)
surfHtStoreT	$C^{*}(dT/dt)$ for each tile (W m ⁻²)
t1p5mT	Tile temperature at 1.5m over land tiles (K)
tstarT	Tile surface temperature (K)
zOT	Tile surface roughness (m)

Table 50 A list of output variables that have a single value for each tile at each land gridpoint.

Table 51 A list of output variables that have a single value for each tile type at each land gridpoint.

Name	Description
frac	Fractional cover of each surface type.
tileIndex	Index (gridbox number) of land points with each surface type

Page 131 of 133

Name	Description
bSoil	Brooks-Corey exponent for each soil layer (-)
ext	Extraction of water from each soil layer (kg $m^{-2} s^{-1}$)
hCapSoil	Soil heat capacity (J K^{-1} m ⁻³) for each soil layer
hConSoil	Soil thermal conductivity (W $m^{-1} K^{-1}$) for each soil layer
satCon	Saturated hydraulic conductivity (kg $m^{-2} s^{-1}$) for each soil layer
sathh	Saturated soil water pressure (m) for each soil layer
smcl	Moisture content of each soil layer (kg m ⁻²)
soilWet	Total moisture content of each soil layer, as fraction of saturation (-)
sthf	Frozen moisture content of each soil layer as a fraction of saturation (-)
sthu	Unfrozen moisture content of each soil layer as a fraction of saturation (-)
tSoil	Sub-surface temperature of each layer (K)
vsmcCrit	Volumetric moisture content at critical point for each soil layer (-)
vsmcSat	Volumetric moisture content at saturation for each soil layer (-)
vsmcWilt	Volumetric moisture content at wilting point for each soil layer (-)
wFlux	Downwards moisture flux at bottom of each soil layer (kg $m^{-2} s^{-1}$)

Table 52 A list of output variables that have a single value for each soil level at each land gridpoint.

Table 53 A list of output variables that have a single value for each snow layer at tile each land gridpoint.

Name	Description
rGrainL	Grain size in snow layers for each tile (µm)
snowDs	Depth of each snow layer for each tile (m)
snowIce	Mass of ice in each snow layer for each tile (kg m^{-2})
snowLiq	Mass of liquid water in each snow layer for each tile (kg m ⁻²)
tsnow	Temperature of each snow layer (K)

Table 54 A list of output variables that have a single value for each soil carbon pool at each land gridpoint.

Name	Description
csPool	Carbon in each soil pool (kgC m ⁻²)
respSPool	Respiration rate from each soil carbon pool (kgC m ⁻² s ⁻¹)

10. List of Tables

Table 1 Options that can be passed to make when building JULES	9
Table 2 Frequently used control file options	16
Table 3 Options used to specify the reading of ASCII, binary and PP format files	16
Table 4 Part of an example ASCII file that could be read by JULES.	18
Table 5 Recognised types of netCDF input file	19
Table 6 Dimensions in netCDF input files	20
Table 7 Sections in a JULES control file.	21
Table 8 Description of variables in INIT_OPTS section	23
Table 9 Description of variables in the INIT_TIME section	31
Table 10 Description of variables in the INIT_GRID section	36
Table 11 Description of variables in the INIT_LAND section	
Table 12 Description of variables in the INIT_LATLON section.	
Table 13 Description of variables in the INIT_FRAC section.	46
Table 14 Description of variables in the INIT_SOIL section.	49
Table 15 List of soil parameters.	52
Table 16 List of variables in soil look-up table.	52
Table 17 Description of variables in the INIT_TOP section	54
Table 18 List of TOPMODEL parameters	55
Table 19 Description of variables in the INIT_PDM section.	55
Table 20 Description of variables in the INIT_HGT section	56
Table 21 Description of variables in the INIT_VEG_PFT section	57
Table 22 List of PFT parameters.	58
Table 23 Description of variables in the INIT_VEG_VARY section.	61
Table 24 Description of variables in the INIT_NONVEG section	66
Table 25 Description of variables that are required in the INIT_URBAN section	69
Table 26 Parameters that may be used from INIT_NONVEG (Section 6.12) for the 'urban_roof' and	
'urban_canyon' tile types depending on MORUSES switch configuration. Any non-vegetation parar	neters
not referenced in this table are always used from INIT_NONVEG.	
not referenced in this table are always used from INIT_NONVEG	72 72
not referenced in this table are always used from INIT_NONVEG	
not referenced in this table are always used from INIT_NONVEG	
not referenced in this table are always used from INIT_NONVEG Table 27 Description of urban geometry & building material variables Table 28 Description of variables in the INIT_SNOW section Table 29 An example of the evolution of snow layer thickness Table 30 Description of variables in the INIT_TRIF section	
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables Table 28 Description of variables in the INIT_SNOW section Table 29 An example of the evolution of snow layer thickness Table 30 Description of variables in the INIT_TRIF section Table 31 Description of variables in the INIT_AGRIC section	
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables Table 28 Description of variables in the INIT_SNOW section. Table 29 An example of the evolution of snow layer thickness. Table 30 Description of variables in the INIT_TRIF section. Table 31 Description of variables in the INIT_AGRIC section. Table 32 Description of variables in the INIT_MISC section.	
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables Table 28 Description of variables in the INIT_SNOW section. Table 29 An example of the evolution of snow layer thickness. Table 30 Description of variables in the INIT_TRIF section. Table 31 Description of variables in the INIT_AGRIC section. Table 32 Description of variables in the INIT_MISC section. Table 33 Description of variables in the INIT_IMOGEN section.	
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables Table 28 Description of variables in the INIT_SNOW section. Table 29 An example of the evolution of snow layer thickness. Table 30 Description of variables in the INIT_TRIF section. Table 31 Description of variables in the INIT_AGRIC section. Table 32 Description of variables in the INIT_MISC section. Table 33 Description of variables in the INIT_IMOGEN section. Table 34 Description of variables in the IMOGEN namelists.	
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables Table 28 Description of variables in the INIT_SNOW section. Table 29 An example of the evolution of snow layer thickness. Table 30 Description of variables in the INIT_TRIF section. Table 31 Description of variables in the INIT_AGRIC section. Table 32 Description of variables in the INIT_MISC section. Table 33 Description of variables in the INIT_IMOGEN section. Table 34 Description of variables in the INIT_DRIVE section. Table 35 Description of variables in the INIT_DRIVE section.	
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables Table 28 Description of variables in the INIT_SNOW section. Table 29 An example of the evolution of snow layer thickness. Table 30 Description of variables in the INIT_TRIF section. Table 31 Description of variables in the INIT_AGRIC section. Table 32 Description of variables in the INIT_MISC section. Table 33 Description of variables in the INIT_IMOGEN section. Table 34 Description of variables in the INIT_DRIVE section. Table 35 Description of variables in the INIT_DRIVE section. Table 36 Names of meteorological driving variables.	
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables Table 28 Description of variables in the INIT_SNOW section Table 29 An example of the evolution of snow layer thickness. Table 30 Description of variables in the INIT_TRIF section. Table 31 Description of variables in the INIT_AGRIC section. Table 32 Description of variables in the INIT_MISC section. Table 33 Description of variables in the INIT_IMOGEN section. Table 34 Description of variables in the INIT_IMOGEN section. Table 35 Description of variables in the INIT_DRIVE section. Table 36 Names of meteorological driving variables. Table 37 Description of variables for INIT_IC section.	
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables Table 28 Description of variables in the INIT_SNOW section. Table 29 An example of the evolution of snow layer thickness. Table 30 Description of variables in the INIT_TRIF section. Table 31 Description of variables in the INIT_AGRIC section. Table 32 Description of variables in the INIT_MISC section. Table 33 Description of variables in the INIT_IMOGEN section. Table 34 Description of variables in the INIT_IMOGEN section. Table 35 Description of variables in the INIT_DRIVE section. Table 36 Names of meteorological driving variables. Table 37 Description of variables for INIT_IC section. Table 38 JULES variables that require to be specified to define the initial model state.	
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables Table 28 Description of variables in the INIT_SNOW section. Table 29 An example of the evolution of snow layer thickness. Table 30 Description of variables in the INIT_TRIF section. Table 31 Description of variables in the INIT_AGRIC section. Table 32 Description of variables in the INIT_MISC section. Table 33 Description of variables in the INIT_MISC section. Table 34 Description of variables in the INIT_IMOGEN section. Table 35 Description of variables in the INIT_DRIVE section . Table 36 Names of meteorological driving variables. Table 37 Description of variables for INIT_IC section. Table 38 JULES variables that require to be specified to define the initial model state. Table 39 Further details of snow variables.	
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables Table 28 Description of variables in the INIT_SNOW section	
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables Table 28 Description of variables in the INIT_SNOW section. Table 29 An example of the evolution of snow layer thickness. Table 30 Description of variables in the INIT_TRIF section. Table 31 Description of variables in the INIT_AGRIC section. Table 32 Description of variables in the INIT_MISC section. Table 33 Description of variables in the INIT_IMOGEN section. Table 34 Description of variables in the INIT_IMOGEN section. Table 35 Description of variables in the INIT_DRIVE section. Table 36 Names of meteorological driving variables. Table 37 Description of variables for INIT_IC section. Table 38 JULES variables that require to be specified to define the initial model state. Table 39 Further details of snow variables. Table 40 Description of variables in the INIT_OUT section. Table 41 Description of variables for each output profile.	
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables Table 28 Description of variables in the INIT_SNOW section. Table 29 An example of the evolution of snow layer thickness. Table 30 Description of variables in the INIT_TRIF section. Table 31 Description of variables in the INIT_AGRIC section. Table 32 Description of variables in the INIT_MISC section. Table 33 Description of variables in the INIT_IMISC section. Table 34 Description of variables in the INIT_IMOGEN section. Table 35 Description of variables in the INIT_DRIVE section. Table 36 Names of meteorological driving variables. Table 37 Description of variables for INIT_IC section. Table 38 JULES variables that require to be specified to define the initial model state. Table 39 Further details of snow variables. Table 40 Description of variables in the INIT_OUT section. Table 41 Description of variables for substitution templates.	
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables Table 28 Description of variables in the INIT_SNOW section. Table 29 An example of the evolution of snow layer thickness. Table 30 Description of variables in the INIT_TRIF section. Table 31 Description of variables in the INIT_AGRIC section. Table 32 Description of variables in the INIT_MISC section. Table 33 Description of variables in the INIT_IMOGEN section. Table 34 Description of variables in the INIT_DRIVE section. Table 35 Description of variables in the INIT_DRIVE section. Table 36 Names of meteorological driving variables. Table 37 Description of variables for INIT_IC section. Table 38 JULES variables that require to be specified to define the initial model state. Table 39 Further details of snow variables. Table 40 Description of variables in the INIT_OUT section. Table 41 Description of variables for each output profile. Table 43 Requirements for the time of first data in time templated files.	72 72 72 73 75 76 77 79 81 82 84 89 93 93 96 100 105 108 116 117
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables	
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables	
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables Table 28 Description of variables in the INIT_SNOW section. Table 29 An example of the evolution of snow layer thickness. Table 30 Description of variables in the INIT_TRIF section. Table 31 Description of variables in the INIT_AGRIC section. Table 32 Description of variables in the INIT_MISC section. Table 33 Description of variables in the INIT_IMOGEN section. Table 34 Description of variables in the INIT_IMOGEN section. Table 35 Description of variables in the INIT_DRIVE section. Table 36 Names of meteorological driving variables. Table 37 Description of variables for INIT_IC section. Table 38 JULES variables that require to be specified to define the initial model state. Table 39 Further details of snow variables. Table 41 Description of variables in the INIT_OUT section. Table 41 Requirements for the time of first data in time templated files. Table 43 Requirements for the time of first data in time templated files. Table 44 Examples of the use of file name templating. Table 45 Time interpolation flags. Table 46 Key procedures for reading data.	
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables	72 72 72 73 75 76 77 79 81 82 84 89 93 96 100 105 108 116 117 118 119 122 126
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables	72 72 72 73 75 76 77 79 81 82 84 89 93 93 96 100 105 108 116 117 118 119 122 126 127
not referenced in this table are always used from INIT_NONVEG	72 72 72 73 75 76 77 79 81 82 84 89 93 96 100 105 108 116 117 118 119 122 126 127 129
not referenced in this table are always used from INIT_NONVEG	72 72 72 73 75 76 77 79 81 82 84 89 93 96 100 105 108 116 117 118 119 122 126 127 129 130
not referenced in this table are always used from INIT_NONVEG	72 72 72 73 75 76 77 79 81 82 84 89 93 96 100 105 108 116 117 118 119 122 126 127 129 130 130
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables. Table 28 Description of variables in the INIT_SNOW section. Table 30 Description of variables in the INIT_TRF section. Table 31 Description of variables in the INIT_TRF section. Table 32 Description of variables in the INIT_MISC section. Table 33 Description of variables in the INIT_MISC section. Table 34 Description of variables in the INIT_INOGEN section. Table 35 Description of variables in the INIT_INOGEN section. Table 36 Description of variables in the INIT_DRIVE section. Table 37 Description of variables in the INIT_DRIVE section. Table 36 Names of meteorological driving variables. Table 37 Description of variables for INIT_IC section. Table 38 JULES variables that require to be specified to define the initial model state. Table 39 Further details of snow variables. Table 39 Further details of snow variables. Table 40 Description of variables for each output profile. Table 41 Description of variables for substitution templates. Table 42 Valid substitution strings for substitution templates. Table 43 Requirements for the time of first data in time templated files. Table 44 Examples of the use of file name templating. Table 45 Time interpolation flags. Table 47 A list of output variables that have a single value at each gridpoint. Table 49 A list of output variables that have a single value for each tile at each land gridpoint. Table 49 A list of output variables that have a single value for each tile at each land gridpoint. Table 40 A list of output variables that have a single value for each tile at each land gridpoint. Table 40 A list of output variables that have a single value for each tile at each land gridpoint. Table 50 A list of output variables that have a single value for each tile at each land gridpoint. Table 51 A list of output variables that have a single value for each tile type at each land gridpoint. Table 52 A list of output var	
not referenced in this table are always used from INIT_NONVEG. Table 27 Description of urban geometry & building material variables. Table 28 Description of variables in the INIT_SNOW section. Table 30 Description of variables in the INIT_TRIF section. Table 31 Description of variables in the INIT_AGRIC section. Table 32 Description of variables in the INIT_MISC section. Table 33 Description of variables in the INIT_MISC section. Table 34 Description of variables in the INIT_INOGEN section. Table 35 Description of variables in the INIT_INOGEN section. Table 36 Description of variables in the INIT_INOGEN section. Table 37 Description of variables in the INIT_INOGEN section. Table 36 Description of variables in the INIT_INOGEN section. Table 36 Names of meteorological driving variables. Table 37 Description of variables for INIT_IC section. Table 38 JULES variables that require to be specified to define the initial model state. Table 39 Further details of snow variables. Table 39 Further details of snow variables. Table 40 Description of variables for each output profile. Table 41 Description of variables for substitution templates. Table 42 Valid substitution strings for substitution templates. Table 43 Requirements for the time of first data in time templated files. Table 44 Examples of the use of file name templating. Table 45 Time interpolation flags. Table 46 Key procedures for reading data. Table 47 A list of output variables that have a single value at each gridpoint. Table 49 A list of output variables that have a single value for each FT at each land gridpoint. Table 50 A list of output variables that have a single value for each tile type at each land gridpoint. Table 51 A list of output variables that have a single value for each tile type at each land gridpoint. Table 52 A list of output variables that have a single value for each sile level at each land gridpoint. Table 53 A list of output variables that have a single value for each sile level at each land gridpoint. Tab	72 72 72 73 75 76 77 79 81 82 84 89 93 93 96 100 105 108 116 117 118 119 122 126 127 129 130 132 132

Page 134 of 133