INSTITUTE of HYDROLOGY

WEST BAY GROUNDWATER MODEL STUDY, DOHA

Final Report



The Institute of Bydrology is a component establishment of the UK Natural Environment Research Council, grant-alded from Govemment by the Department of Education and Science. For over 20 years the Institute has been at the forefront of research exploration of hydrological systems within complete catchment areas and into the physical processes by which rain or snow is transformed into flow in rivers. Applied studies, undertaken both in the UK and overseas, ensures that research activities are closely related to practical needs and that newly developed methods and instruments are tested for a wide range of environmental conditions.

The Institute, based at Wallingford, employs 140 staff, some 100 of whom are graduates. Staff structure is multodisciplinary involving physicists. geographers, geologists, computer scientists, mathematicians, chemists, environmental scientists, soil scientists and botanists. Research departments include catchment research, remote sensing, instrumentation, data processing, mathematical modelling. hydrogeology, hydrochemstry, soil hydrology, evaporation flux studies, vegetation-atmosphenc interactions, flood and low-flow predictions, catchment response and engneering hydrology.

The budget of the Institute comprises $£ 4.5$ million per year About 50 percent relates to research programmes funded directly by the Natural Environment Research Council. Extensive commissioned research is also carried out on behalf of government departments (both UK and overseas), vanous intemational agencies, environmental organisations and private sector clients. The Institute is also responsible for nationally archived hydrological data and for publishing annually HYDROLOGICAL DATA: UNITED KINGDOM.

# West Bay Groundwater Model Study Doha, Qatar 

Final Report

Institute of Hydrology<br>Wallingford, UK

July 1990

## SUMMARY

## BACKGROUND

1.1 Introduction 1
1.2 Study Area

1

## 2. DATA COLLECTION PROGRAMME

2.1 Drilling and Testing Programme ..... 3
2.1.1 Borehole drilling programme ..... 3
2.1.2 Testing programme ..... 4
2.1.3 Water balance study ..... 5
i. GEOLOGY
3.1 General ..... 6
3.2 Distribution and Lithology ..... 6
3.2.1 Dammam Formation ..... 6
3.2.2 Coastal deposits ..... 8
3.2.3 Fill deposits ..... 9
WATER LEVELS ..... 10
4.1 Water Table Elevation ..... 10
4.2 Depth to Water Table ..... 10
; RECHARGE AND DISCHARGE ..... 12
5.1 Recharge ..... 12
5.1.1 Rainfall ..... 12
5.1.2 Surface Inflow ..... 13
5.1.3 Seawater Ingress ..... 14
5.1.4 Pipe Distribution Losses ..... 14
5.1.5 Irrigation ..... 14
5.1.6 Recharge from sewerage ..... 14
5.1.7 Domestic water ..... 15
5.1.8 Reservoir losses ..... 15
5.2 Discharge ..... 15
5.2.1 Evaporation ..... 15
5.2.2 Subsurface outflow ..... 15
5.2.3 Downward leakage to deeper aquifers ..... 15
5.2.4 Leakage into sewerage pipes ..... 16
AQUIFER CHARACTERISTICS ..... 17
6.1 General ..... 17
6.2 Hydraulic Conductivity ..... 17
6.2.1 Estimates from Pumping Test estimates ..... 17
6.2.2 Input tests ..... 18
6.2.3 Grain size estimates ..... 21
6.3 Storage Coefficient ..... 22
6.3.1 Pumping Test estimates ..... 22
6.3.2 Tidal fluctuations ..... 22
6.3.3 Rainfall events ..... 23
MODELLING ..... 24
7.1 Introduction ..... 24
7.2 Model Structure ..... 24
7.3 Model Inputs ..... 25
7.3.1 Aquifer geometry and properties ..... 26
7.3.2 Boundary conditions ..... 26
7.3.3 Recharge and discharge ..... 26
7.3.4 Initial conditions ..... 27
7.4 Model Runs for Present Conditions ..... 28
7.4.1 Steady state runs ..... 28
7.4.2 Transient runs with tidal effects ..... 28
7.4.3 Transient runs with rainfall ..... 29
7.4.4 Summary ..... 29
7.5 Model Runs for Increased Development ..... 30
7.6 Implications of Modelling Results ..... 32
References ..... 33
Appendix 1 List of Engineering Reports for West Bay
Appendix 2 Summary of Borehole Data
Appendix 3 Water Level Data for Project Boreholes
List of Tables
2.1 Project Boreholes
4.1 Rainfall at Doha Airport, 15-25 February ..... 1988
4.2 Rainfall at Montaza Park, 6-15 December ..... 1989
5.1 Probability of Annual and Storm Rainfalls at Doha Airport
5.2 Summary of Artificial Recharge and Discharge Sources
6.1 Details of Pumping Test Boreholes
6.2 Summary of Pumping Test Programme
6.3 Results of Pumping Tests
6.4 Results of Input Tests
6.5 Permeability from Grain Size Data
7.1 Aquifer Properties
List of Figures
1.1. Topography
1.2 Areas of Development
2.1 Location of Project Boreholes
3.1 Outcrop Geology
3.2 Geological Cross Section
3.3 Elevation of Top Surface of Dammam Formation
3.4 Elevation of Top Surface of Midra Shale
3.5 Area of Sabkha along Original Coastline
3.6 Cross Section showing Variability of Coastal Deposits
3.7 Thickness of Coastal Deposits
3.8 Elevation of Base of Hydraulic Fill
3.9 Thickness of Hydraulic Fill
4.1 Elevation of Water Table
4.2 Depth to Water Table
4.3 Change in Water Levels during December 1989 Rainfall Event
4.4 Hydrographs from Borehole in Hydraulic Fill
4.5 Hydrographs from Boreholes in Coastal Deposits and Dolomite
4.6 Locations of Boreholes Monitored for Tidal Fluctuation
4.7 Tidal Response in Three Boreholes
4.8 Amplitude Ratio and Distance from Coast
5.1 Annual Rainfall (1962-1986) at Doha Airport
5.2 Mean Monthly Rainfall at Doha Airport
6.1 Permeability Frequency
6.2 Log Permeability Frequency
6.3 Log Cumulative Permeability Frequency
7.1 Grid of West Bay Model
7.2 QAR Zones and Development Areas
7.3 Difference between Observed and Steady-state Model Water Levels
7.4 Hydrograph and Hyetograph and February 1988 storm for specificnodes, with Present Development 13th Feb - 12th April 1988
7.5 Depth to Water for February 1988 storm with Present Development: 17th February 1988
7.6 Depth to Water for February 1988 storm with Present Development: 24th February 1988
7.7 Depth to Water for February 1988 storm with Present Development: 24th March 1988
7.8 Rise in Groundwater at Steady state with Maximum Development
7.9 Hydrograph and Hyetograph for February 1988 for specific nodes with Maximum Development: 13th Feb - 12th April 1988
7.10 Depth to water for February 1988 storm with Maximum Development: 17th February 1988
7.11 Depth to water for February 1988 storm with Maximum Development: 24th February 1988
7.12 Depth to water for February 1988 storm with Maximum Development: 24th March 1988
7.13 Depth to water for February 1988 storm with Present Development and Pumping: 24th February 1988
7.14 Depth to water for February 1988 storm with Maximum Development and Pumping: 24th March 1988

Existing, but limited hydrogeological data for the West Bay district was supplemented by a field investigation programme to provide appropriate and reliable information for the design and calibration of a groundwater model of the West Bay and the immediate area inland.

The model was used to examine the water table response to occasional but heavy rainfall events, to an expected increase in recharge from the ongoing urban development, and to a combination of both of these conditions.

The results suggest that:
(a) Water levels in the West Bay area are likely to rise by 10 to 40 cm when the development is complete if the proportional level of recharge and discharge continue. In itself, this will be unlikely to result in surface flooding as water levels will still be 1 m or more below ground level even in the low lying areas.
(b) After development is complete, heavy rainfall events are likely to result in an increase in the area of flooding which presently occurs in the low lying area along the old shoreline but are not expected to cause new areas of flooding. A combined surface-groundwater drainage scheme would be appropriate to reduce water levels in this particular area.

The implications of these results are that a widespread network of drains would not be required throughout the area and there would be no need for a pilot drainage scheme.

# WEST BAY GROUNDWATER MODEL 

## Chapter 1

## BACKGROUND

### 1.1 INTRODUCIION

The West Bay district of Doha is formed from reclaimed land along the northern shore of Doha Bay. The low lying parts of this district are subject to flooding after heavy rainfall due to the presence of a shallow water table and the collection of surface run-off in closed depressions. These floods can persist for several days but occur only infrequently, the last occasion prior to this study being in February 1988.

Urban development of the West Bay area is now taking place and the associated water demands will increase the amount of recharge from garden irrigation and from leaking pipes whilst current renovation works will decrease the infiltration losses into sewers. This could result in a permanent rise in the water table causing more frequent and persistent flooding unless water level control measures are implemented.

It was considered that a network of groundwater drains would be needed to combat the expected rise in groundwater levels and prevent future flooding. The design of this network would require an understanding of the local hydrogeological conditions, particularly concerning the hydraulic characteristics of the fill deposits. However, the lithology of the area is highly variable and the existing information very sparse. Consequently, a programme of data collection was undertaken during 1989 to provide the necessary information for the construction of a numerical groundwater model of the West Bay area. This model was then used to predict areas at greatest risk from flooding and to assist the design of a drainage network to alleviate such flooding.

### 1.2 STUDY AREA

The study area is shown in Figure 1.1. It covers an area of about 25 km 2 , which includes the West Bay district and, for modelling purposes, a zone extending 6 km inland.

The development of West Bay is already about $50 \%$ complete. The extent of built-up areas is shown in Figure 1.2. The present development includes two large housing estates just inland
of the former coastline and, on the peninsula itself, offices and an hotei along the southern shore as well as diplomatic buildings along the eastern and northern shores. A number of major urban development projects are planned in the central area, but most new development is scheduled for the northern part of the area and on the peninsula.

Reclamation of West Bay began in the late 1970's and continued into the early 1980's. The materials used for this reclaimation consist of "hydraulic fill" dredged from near shore deposits and "desert fill", which consists of rubble brought from inland for the final stage of backfilling. These have been placed over a sequence of coastal silts, sands and gravels, which in turn rest on dolomitic limestone.

Backfilling and compaction are still taking place and the best estimate that can be made of the current topography is shown in Figure I.1. This was compiled from 1:2000 scale maps prepared in 1983 supplemented by elevation data obtained from the new boreholes drilled during this study. The main topographic features include:
a marked increase of slope inland of the 4 m Qatar National Datum (QND) contour, which marks the position where dolomite bedrock riscs from bencath the cover of coastal deposits and fill material;
the low elevation (generally less than 3 m QND) over most of the peninsula and the original forcshore;
a ridge about 5 m high parallel to the coast along the eastern and northern perimeters of the peninsula:
and the former shoreline, which is based on a pre-reclamation map of 1964.

The area of particular interest lies seaward of the 4 m QND contour where a significant rise in water levels would have the greatest impact.

## Chapter 2

## DATA COLLECTION PROGRAMME

### 2.1 DRILLING AND TESTING PROGRAMME

Whilst some geological information has been obtained from existing reports for various building projects carried out in the West Bay area over the past 10 years (see list in Appendix 1), these reports do not contain sufficient information to design a model of the area. A programme of data collection was therefore undertaken between April and November 1989 to obtain information on the geometry and hydraulic characteristics of the main lithological units.

The field investigations were carried out within well defined hydraulic boundaries selected specifically to assist the modelling. These are described in Section 7.3.2 and shown in Figure 2.1.

### 2.1.1 Drilling Programme

A total of 58 boreholes were drilled within the model area during the present investigation. Their locations are shown in Figure 2.1, which also shows those building projects for which existing geological data were available. The project boreholes were grouped into five series, prefixed GWS 1 to GWS 5 . Each series had specific objectives as summarised in Table 2.1.

Series GWS 1 and GWS 2 comprised 37 shallow boreholes drilled to a depth of 1 m below the water table to obtain water level information. The GWS 4 series comprised six boreholes drilled on the outcrop of the Dammam dolomite. Each fully penetrated the dolomite and provided essential water level control data for this western part of the study area. Series GWS 3 and GWS 5 comprised 15 boreholes drilled through the full thickness of the fill and coastal deposits to the top of the Dammam Formation. These were used to obtain information on the hydraulic characteristics of these deposits and for geological and water level data.

A summary of the borehole information is given in Appendix 2. Water level monitoring data are listed in Appendix 3.

Table 2.1 Project Borehole objectives

|  |  | Information Objective |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Borehoie no. | Depth | Water Table Eievation | Depth <br> of Fill | Ihickness of Dammam dimestonc | Slug <br> Tests | Pump <br> Tests | Tidal Efficiency |
| $\left.\underset{2 / 1-2 / 18}{ } \mathrm{GWS}^{2} 1 / 1 \cdot 1 / 19\right)$ | 1 metre below water table | - |  |  |  |  |  |
| GWS3/1-3.1 | To top of Dammam Limestone | - | - |  | - |  |  |
| GWSA/1-4/6 | To base of Dammam Limestone |  |  |  |  |  |  |
| GWS5/1.5/5 | To top of Dammam Limestonc |  |  |  |  |  |  |
| $\left.\begin{array}{c} G w s 5 / 3 \\ 1 / 18 \\ 2 \beta \end{array}\right\}$ |  |  |  |  |  |  |  |

### 2.12 Testing Programme

Several techniques were employed to obtain information on the hydraulic characteristics of the sequence:
input tests. These tests involve the instantancous removal of a "slug" of water from the borehole and monitoring the subsequent recovery. They were undertaken on the series 3 and 5 boreholes.
pumping tests. These tests were carried out on the series 5 borcholes for estimates of the transmissivity, hydraulic conductivity and storage coefficient.
grain size data. The information available from grain size analyses given in carlier site investigation reports were also used to estimate hydraulic conductivity.
tidal response. Values of storage coefficient were derived from a correlation of water leve! response to tidal flucruations.

The results are presented and discussed in Chapter 6.

### 2.1.3 Water Balance Study

A parallel study was undertaken to quantify the recharge from garden irrigation and leaking pipes and the discharge of groundwater into sewers for the period from November 1988 to November 1989 to update earlier estimates made in 1983. The results for the study area are presented in Chapter 5.

## Chapter

## GEOLOGY

### 3.1 GENERAL

West Bay is an area of reclaimed land built out from an original, low lying coastline fringed with saline sand flats (Sabkhas). A mixture of sand, silt and gravel dredged from the adjacent sea floor has been used for the reclamation, which spreads some distance inland from the original coastline. It overlies and largely conceals coastal silts and sands associated with the old shoreline, which still outcrops inland of the fill, although the precise position of the boundary between the two formations is uncertain.

The bedrock of the area is the Upper Dammam Formation, a series of indurated fractured dolomites of Eocene age. Where the dolomite emerges from beneath the cover of fill and coastal deposits, along the line of the 4 m ground surface contour, there is a distinct break of slope. From this point the dolomite rises inland to over 20 m QND within the model area. A generalised map of the geology is shown in Figure 3.1 and a simplified cross section presented in Figure 3.2.

All of the formations above the Midra Shale in the area are permeable and can be considered as 'aquifers'. An impermeable base to the sequence is taken as the Midra Shale, a variably thick calcareous mudstone that underlies the Dammam dolomite. Above the shale there is free regional hydraulic connection between the fractured dolomite and the overlying coastal deposits and hydraulic fill. The water table passes laterally from the dolomite into the overlying material approximately along the line of the former coast. Although there is free hydraulic connection on a regional scale, impersistent silt and mudstone horizons within the hydraulic fill and particularly the coastal deposits provide local barriers to groundwater movement.

### 3.2 DISTRIBUTION AND LITHOLOGY

## 3.2 .1 <br> Damman Formation

The entire study area is underlain by the Damman Formation, which consists of fractured dolomites and limestones with a recorded thickness of between 13 and 35 m . Typically the formation is an off-white to grey dolomite. The dolomite and carbonate mud mixture is generally indurated with much of the dolomite having a blue-grey siliceous appearance.

The upper 10 m of the Dammam Formation contains numerous large vugs (cavities, which are mostly filled with carbonate mud) and has the appearance of a weathered horizon. Commonly the vugs are between 2 and 20 cm in diameter but are not interconnected. Most of the open vugs have originated by the removal of soluble material infilling fossil shells. The lower part of the formation below 10 m is characteristically a zone of massive off-white dolomites with few vugs and little fracturing. This part of the sequence is significantly less permeable than the upper 'weathered' zonc. (ASCO, 1983; JICA. 1987).

Groundwater flow in the dolomite does not take place uniformly throughout the entire saturated thickness but along well-defined, widely spaced networks of fissures that have little or no hydraulic connection. Small irregular fractures are common, although many have been re-cemented. Larger fractures are less common, but where present are frequently sub-horizontal, up to 30 cm in width and extend laterally for many tens of metres. Increased fracturing in the upper 10 m ensures that the highest permeability, and thus most flow, takes place in this part of the formation.

The clevation of the top surface of the Dammam formation is shown in Figure 3.3. To the west of the 4 m ground contour the formation outcrops at the surface, its top being reffected by the ground topography. To the east, where it disappears beneath the cover of fill and coastal deposits, the dolomite dips gently toward the coast reaching its lowest point in the vicinity of the Sheraton Hotel, where it lies at 7m QND. Otherwise the most noteworthy feature is a slight ridge which extends along the northern part of the peninsula.

The Midra Shale forms an impermeable base to the dolomite. This is an alternating sequence of brown and green carbonate shales and thin dolomites of lower Dammam age. It is between $5-10 \mathrm{~m}$ thick and acts regionally as a confining layer, preventing large scale vertical movement into and out of the overlying dolomite. The elevation of the top surface of the Midra shale is shown in Figure 3.4. There is a tendency for high and low regions on the Midra surface to coincide with ground surface highs and lows which is due to the solution and collapse of evaporite deposits in formations lying below the Midra. Ihis unsystematic collapse has created numerous unconnected depressions that are characteristic of the Qatar landscape. Because collapse is initiated by removal of material below the Midra, the shale itself subsides in the same way as the ground surface. Locally, the shale has been fractured and broken allowing some limited vertical migration of groundwater. However, on a regional scale the amount of water transferred is very small so the shale can still be considered an efficient 'aquitard'.

The original coastline is characterised by a number of flat inter- and supra-tidal deposits or 'sabkhas', interspersed with other areas of silts, sands and gravels. The sediments extend from below the former low tide mark to approximately the line of the 4 m ground surface contour.

Sabkhas are salt encrusted, flat lying areas of silt and sand. They are common in coastal areas of the Arabian Gulf (Evans et al., 1969; Fookes et al., 1985). Evaporation from shallow water tables within these flat-lying areas provide an important mechanism for the discharge of coastward moving groundwater, leading to increase pore water concentration and the precipitation of aragonite, calcite, gypsum, anhydrite and halite salts, all of which are commonly present in sabkha sequences.

In the West Bay area, sabkhas form the floor of several embayments along the original coastline. The major areas are shown in Figure 3.5 although most have now been covered by a thin mantle of backfill. However, they still show through in small isolated patches, for example immediately to the south east of the West Bay sports stadium and alongside the coast road in the northern part of the region.

From a drainage point of view the areas of thinly-covered sabkha are important for several reasons: they form depressions where the water table is shallow and into which surface run-off concentrates and they have a low permeability. As a result serious groundwater and surface water drainage problems are associated with these areas.

The original coastal deposits form an extremely complex sequence of carbonate rich silts, sands and shelly gravels. Vertical and horizontal variation is such that it is impossible to devise any simple division. Correlation between boreholes is very difficult, even over distances of a few tens of metres. This is illustrated by Figure 3.6, which shows the lithology encountered in six boreholes drilled during construction of the West Bay Sports Club, where, although distances between boreholes are generally less than 100 m , there is no consistent pattern in the sedimentary sequence.

At any single location the succession is likely to consist of a variable sequence of silts, sands and shelly gravels with silty sands being perhaps the most commonly encountered lithology. The presence of silt horizons means that vertical movement of groundwater will be restricted locally. However, on a regional scale the succession can be treated as a single hydraulic unit due to the impersistent nature of individual beds.

The thickness of the coastal deposits is shown in Figure 3.7. This ranges from zero below parts of the West Bay peninsula to over 6 m in areas inland of the former coastline.

### 32.3 Fill Deposits

The fill consists of two types of material:-
(a) 'Hydraulic Fill'. This is sediment dredged from the nearby sea floor and pumped as a slurry behind bunds to build up reclaimed areas. It comprises a mixture of silty sands, shelly gravels and limestone cobbles. Having been deposited as a slurry it is well mixed and thus tends to be more uniform in composition than the underlying coastal sediments.
(b) 'Desert Fill'. This material has been placed on top of the 'hydraulic fill' during later stages of the reclamation work but is unevenly distributed and where present tends to form only the top metre of the succession. It consists of various types of natural and man-made rubble bought from inland and dumped by lorry. It is much more variable in composition than the hydraulic fill; pieces of wood, concrete and plastic are commonly encountered, along with large blocks of dolomite.

The hydraulic fill is simply re-worked coastal sediment and as such is difficult to distinguish from the undertying coastal deposits. Consequently, the clevation and thickness of the base as shown in Figures 3.8 and 3.9 are to some extent speculative. A means of distinguishing the two has been to assume that all material to the cast of the former shoreline lying above present day sea level is hydraulic fill. The elevation of the base of the fifl declines steadily eastward to below $-3 m$ QND whilst the thickness increascs uniformly in the same direction to over 8 m along the eastern coast of the peninsula.

## Chapter 4

## water levels

### 4.1 WATER TABLE ELEVATION

The general configuration of the water table is shown in Figure 4.1. The main features to note are:
each of the three major lithological units above the Midra Shale are in regional hydraulic continuity. The water table is therefore a composite of all three formations and passes west to east from the dolomite, into the coastal deposits and finally into the hydraulic fill (Figure 3.2.). Water is able to pass from one to the other, despite the local presence of impersistent silt horizons in the coastal sediments.
gradients of up to 1 in 150 occur in the western part of the associated with the prominent groundwater mound marking the south-western boundary. This mound rises to elevations in excess of 8 m QND within the Dammam dolomites and is caused by high recharge from garden irrigation and leaking water pipes within the Madina Khalifa district compounded by local areas of low permeability in the dolomite.
elevations within the sequence of fill and coastal deposits are less than 1 m QND; on the peninsula they do not exceed 0.6 m QND. Hydraulic gradients are low in the coastal area, reducing to as little as 1 in 4500 on the peninsula itself.
a distinct groundwater ridge extends along the southern part of the peninsula. This can be attributed to extensive irrigation along the central reservations and sides of the roads converging on the Sheraton Hotel. Otherwise there is little other evidence to suggest the water table has yet been affected by imported water recharge.

## 4.2 <br> DEPTH TO WATER TABLE

The depth to water is shown in Figure 4.2. Two distinct provinces exist: the backfill-coastal
deposit areas, where groundwater generally lies within 3 m of the surface, and the dolomite outcrop, where depths are greater than 3 m . The dividing line between the two coincides with the 4 m ground surface contour.

The dolomite outcrop faces no immediate threat from rising groundwater since depths are commonly in excess of 10 m . However, the backfill-coastal deposit areas are obviously at risk.

Backfilling of the peninsula has raised ground elcvations to more that 3 m above OND in many places, such as along the northern and eastern coasts where it is above 5 m QND. However, although backfilling has extended westward and inland of the original shoreline, it has not been built up as high as on the peninsula itself with the result that the old coast-line has a lower elevation than areas further east. This gencral area has the lowest ground elevation in the region. Consequently, the areas with the shallowest water table are not located, as might otherwise be expected, nearest the coast, but in this narrow zone which extends parallel to and just inland of the former shorcline.

This area of low lying ground was severely affected by the heavy rainstorms in February 1988 when the cotal monthly rainfail was 140 mm , with 39.8 mm falling within a 24 hour period (Table 4.1).

Table 4.1 Rainfall at Doha Aiport 15 . 25 February 1988

| FEBRUARY 1988 | 15 th | 16 th | 21 st | 22 nd | 24 th | 25 th |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ARPP(ORI (mm rain) | 10.1 | 49.8 | 3.8 | 47.4 | 3.8 | 25.8 |

An area badly affected by the storms in February 1988 was the West Bay Sports Stadium where the combination of a topographic depression, shallow water table and the presence at the surface of patches of silty sabkha combined to cause serious flooding. This particular flood event was caused by an exceptionally intense rainstorm and much of the problem lay with inadequate surface drainage from low lying areas.

Rainfall data from Montaza Park during December 1989 (Table 4.2) were also used to examine the groundwater level reponse to rainfall events described in Section 6.3.3.

Table 4.2 Rainfall at Montaza Park: 615 December 1989

| DFCEMBER 1989 | 6 th | 12 h | 13 h | 141 h | 15 th |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MONTAZA PARK (mm rain) | 4.4 | 26 | 1.2 | 48.6 | 10.0 |

## Chapter 5

## RECHARGE AND DISCHARGE

The natural and artificial sources of recharge to and discharge from the West Bay area need to be quantified to assist the design of the drainage network. These various sources are as follows:

```
Recharge: Natural rainfall
                            - subsurface inflow
    Artificial .- mains distribution losses
    - irrigation
    - leakage from sewers
    - reservoirs
    - domestic
Discharge: Natural . direct evaporation
            - evapotranspiration
            - subsurface outflow
            - downward leakage to deeper aquifers
        Artificial - leakage to sewers
```

These sources are described briefly in the following sections.

### 5.1 RECHARGE

### 5.1.1 Rainfall

As in most arid zones the coefficient of variation of rainfall in Doha is very high. Rainfall usually occurs between November and May as intense local storms, which can account for as much as $65 \%$ of the annual rainfall, as indicated in Table 5.1.

A long term record of rainfall is available for Doha Airport dating from 1962. The annual and mean monthly rainfall from this station are shown in Figures 5.1 and 5.2. A shorter record dating from 1979 is also available for the port.

Table 5.1 Probability of annual and storm rainfalls: Doha airport

| Recurrence interval (years) | Annual <br> $(\mathrm{mm})$ | Storm <br> $(\mathrm{mm})$ |
| :---: | :---: | :---: |
| 5 | 35 | 7 |
| 10 | 75 | 18 |
| 15 | 120 | 40 |
| 20 | 180 | 62 |
| 25 | 260 | 105 |
| 30 | 360 | 170 |

The maximum and minimum annual rainfall recorded at Doha Airport are 303 mm (1964) and 0.4 mm (1962), respectively. The average annual rainfall over the 26 year period 1962 to 1988 is 74.7 mm . However, the average annual rainfall should not be considered as very meaningful given the high degree of variability in the total annual rainfall. The spatial distribution of the rainfall can also be very different as the storm cells are often very localised.

The likelyhood of direct recharge from rainfall is small except where water levels are particularly shallow. The various factors influencing the amount of recharge from this source include the storm intensity, pre-existing soil moisture conditions, the permeability of the soil, and the rate of evaporation. The topography has an important effect as local depressions allow the concentration of run-off thereby increasing the recharge potential.

Water balance studies carried out in individual topographic depressions in Qatar indicate that recharge from individual storms ranges from zero to $64 \%$. with a weighted mean of $15 \%$ of storm rainfall. On the basis of these studies a mean annual recharge of 10 to $12 \%$ of annual rainfall was adopted for water resource assessments.

The water table response to rainfall events in February 1988 and December 1989 has been examined with the numerical model to provide estimates of recharge in the West Bay area. The results are discussed in Sections 7.3.3 and 7.4.3.

## S.1.2 Subsurfacc Inflow

An important source of recharge to the study area is the lateral movement of groundwater from the groundwater mound on the western boundary. The amount of inflow from this source has been quantified by the model using the standard Darcy equation.

### 5.1.3 Scawater Ingress

During high tide conditions sea level is raised above groundwater levels near the coast for short periods causing seawater to flow inland until the tide recedes. The amount of flow from this source has been estimated by the model by setting the initial tidal conditions at high tide and applying the standard Darcy equation.

## S.1.4 Pipe Distribution Losses

ASCO (1983) estimated that losses from the piped distribution system in Doha were $20 \%$. This is comparable to distribution systems throughout developed countries. The results of the recent water balance study undertaken during 1989 are given in Table 5.2. This indicates that distribution losses in the study area are about $1.1 \mathrm{Mm} 3 / \mathrm{y}$, or $17 \%$ of the total losses, all of which is assumed to reach the water table. About $50 \%$ of losses from the distribution system occur in QAR zones 10,34 and 37 (see Figure 7.2) which have the highest number of water mains.

### 5.1.5 Irrigation

Recharge from irrigation within the study area is estimated to be as follows: garden irrigation, $0.9 \mathrm{Mm} 3 / \mathrm{y}$; landscape irrigation $0.55 \mathrm{Mm} 3 / \mathrm{y}$; and treated sewage effluent (TSE) irrigation, 1.1 Mm3/y. The distribution of recharge from these sources in each QAR zone is given in Table 5.2. About 60 to $70 \%$ of the recharge from landscape irrigation and the use of TSE for irrigation occurs in QAR zones 60 and 61.

These recharge estimates assumed that $23.5 \%$ of the potable water supply is used for garden watering and that $45 \%$ of this reaches the water table. Landscape irrigation rates were taken to be 16 litres $/ \mathrm{m} 2$ of which $81 \%$ reaches the water table. These are the same assumptions as applicd by ASCO in 1983.

## S.1.6 Recharge from Sewerage

Recharge within the study area from sewage is estimated to be $1.3 \mathrm{Mm} 3 / \mathrm{y}$, of which 1.29 $\mathrm{Mm} 3 / \mathrm{y}$ is contributed from septic tanks in areas not served by piped systems. About $34 \%$ of the recharge from this source occurs in QAR zone 10 (Table 5.2). The piped sewerage system is not pressurised but some leakage losses are likely where the pipes are laid above the water table and a nominal loss of $1 \%$ of the piped sewage is assumed to contribute to reclarge.
TH3! \# 5.2


### 5.1.7 Domestic Water

It is assumed that about $2 \%$, or $0.07 \mathrm{Mm} 3 / \mathrm{y}$, of all water supplied for domestic use contributes to groundwater recharge.

### 5.1.8 Reservoir Losses

Recharge from reservoirs occurs only in QAR zones 20 and 67 and contributes about 20 $\mathrm{m} 3 / \mathrm{d}$, or $0.007 \mathrm{Mm} 3 / \mathrm{y}$.

### 5.2 DISCHARGE

### 5.2.1 Evaporation

Significant groundwater discharge occurs by direct evaporation from the shallow water table in the coastal sabkhas. In eastern Saudi Arabia, evaporation from sabkhas are reported to vary from $1.1 \mathrm{~mm} / \mathrm{d}$ in winter to $1.8 \mathrm{~mm} / \mathrm{d}$ in summer (Pike,1971).

Many of the original sabkha areas in West Bay have now been covered by backfill deposits. However, groundwater evaporation is still expected to occur where water levels are within 1 m of the surface. It has been assumed for modelling purposes that evaporation takes place at a rate of $2 \mathrm{~mm} / \mathrm{d}$ at a depth of 1 m increasing to the potential evaporation rate when flooding occurs.

## S.2.2 Subsurface Outflow

The model calculates the groundwater discharge at the coast in the same way as for flow into the area (see 5.1.2).

### 5.23 Downward Leakage to Deeper Aquifers

Any increase in water levels in the formations overlying the Midra Shale could result in downward leakage through fractures into deeper aquifers. However, the quantities involved will be small and can be ignored as the permeability of the underlying formations is low (ASCO, 1983).

## S.2.4 Leakage into Scwerage Pipes

It was assumed by ASCO in 1983 that some $36 \%$ of sewerage flow was actually derived from groundwater leaking into the sewer pipes in those areas where the pipes occur below the water table. This would apply to QAR zones 61 and 63 to 67 , where the total discharge into sewers is estimated to be $1.1 \mathrm{Mm} 3 / \mathrm{y}$ (Table 5.2 ). Recent renovation of the sewers will have reduced these losses.

## Chapter 6

## AQUIFER CHARACTERISTICS

### 6.1 GENERAL

Estimates of hydraulic conductivity (K) were derived from pumping and input tests undertaken as part of the field programme. These were supplemented by estimates based on grain size data. Values of storage coefficient ( $S$ ) were also obtained from the pumping tests but supplemented by a comparison of water level changes associated with tidal fluctuations.

### 6.2 HYDRAULIC CONDUCTIVITY

### 6.2.1 Pumping Test Estimates

Pumping tests were carried out at sites GWS $5 / 1$ to $5 / 5$. The location of each test site is shown in Figure 2.1 and information on each site is summarised in Table 6.1. Each site had two observation boreholes fully screened through the unconsolidated deposits, which at all sites consisted of silty, fine to coarse sand with gravel. The coastal sands form the whole saturated sequence at sites $5 / 1$ to $5 / 3$ but $65 \%$ and $73 \%$ of the sequence at $5 / 4$ and $5 / 5$.

Table 6.1 Details of pumping test boreholes

| Site Number | Ground Level <br> Elevation (m) | Depth to <br> Water (n) | Depth to <br> Bedrock (m) | Saturated <br> Thickness (m) |
| :---: | :---: | :---: | :---: | :---: |
| $5 / 1$ | 2.95 | 2.80 | 6.5 | 3.7 |
| $5 / 2$ | 2.08 | 1.26 | 4.0 | 2.7 |
| $5 / 3$ | 2.43 | 2.20 | 4.5 | 2.3 |
| $5 / 4$ | 2.30 | 2.40 | 5.0 | 2.6 |
| $5 / 5$ | 2.59 | 1.60 | 4.0 | 2.4 |

The pumping tests were undertaken during October and November 1989 at rates ranging from 0.5 to $5.75 \mathrm{t} / \mathrm{s}$. Three tests with up to 2 days continuous pumping were performed at sites $5 / 2,5 / 3$ and $5 / 4$. A single, constant rate test was undertaken at $5 / 5$. Unfortunately, the low yield of site $5 / 1$ prevented a successful test from being carried out. A summary of the test programme is given in Table 6.2.

Table 6.2 Summary of Pumping Test Programme

| Borehole Sile | Date of Test | Rest Water level (m) below datum | $\begin{aligned} & \text { Rate } \\ & \left.\mathrm{V} / \mathrm{m}^{3} / \mathrm{d}\right) \end{aligned}$ | Duration (mins) | Recovery (mins) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5-2-1 | 25/10/89 (A) | 1.280 | 5.67 (490) | 77.5 | 50.5 |
| 5-2-1 | 29/1089 (B) | 1.260 | 5.75 (497) | 450.0 | 45.0 |
| 5-2-1 | 30/10 ${ }^{\text {( } / 11 / 89 ~(C) ~}$ | 1.245 | 5.75 (497) | 2885.0 | 120.5 |
| 5-3-1 | 5/10/89 (A) | 1.990 | 0.71 (61) | 61.0 | 2.0 |
| 5-3-1 | 7/10/89 (B) | 200 | 0.967 (84) | 345.0 | 40.0 |
| 5-3-1 | 8/10 - 9/10/89 (C) | 2010 | 0.85 (73) | 1320.0 | 152.5 |
| 5-4-1 | 15/10/89 (A) | 2830 | 0.85 (73) | 255.0 |  |
|  |  |  | 0.967 (84) | 44.5 |  |
| 5-4-1 | 16/10/89 (13) | 2.550 | 1.060 (92) | 2400 | 180.0 |
| 5-4-1 | 17/10 ${ }^{\text {a }}$ 19/10/89 (C) | 2.490 | 0.95 (82) | 3225.0 | 120.0 |
| 5-5 | 5/11/89 (A) | 1.639 |  | 1605.5 | 60.0 |

The pumping test data were affected by complex tidal fluctuations and no reliable correction could be determined to remove the effect of these fluctuations. Hence whilst the data appear to fit a Boulton or Neuman type curve, which would suggest water table conditions, the type curve analytical techniques could not be applied with any confidence. The test well data were also affected by considerable dewatering during the tests which reduced the saturated thickness by 90 and $96 \%$ at sites $5 / 3$ and $5 / 5$, respectively, and by 52 and $54 \%$ at sites $5 / 2$ and $5 / 4$ respectively.

Due to these limitations. estimates of transmissivity ( T ) and storage coefficient were based on approximation methods at early pumping times and from Jacob's method for distance and time drawdown data and recovery phase. The results are summarised in Table 6.3. Whilst the $T$ values appear to show a wide range, the various methods suggest that a typical value for the unconsolidated deposits would be about 100 to 150 m 2 d .

### 6.22 Input Tests

Estimates of hydraulic conductivity were also obtained from "input" tests. which involved the rapid removal of a fixed volume of water using a bailer and monitoring the water level recovery with a transducer and millivolt recorder until equilibrium levels were re-established. These tests were carried out on 15 holes: 10 of the series 3 boreholes (diameter 168 mm ) and 5 of the series 5 boreholes (diameter 203 mm ). The test site locations are shown in Figure 2.1.

Table 6.3 Results of Pumping Tests

|  | $5 / 2$ | 5/3 | 5/4 | 5/5 |
| :---: | :---: | :---: | :---: | :---: |
| 1. Logan Approximation @ $\mathrm{t}=5$ mins. | $\begin{array}{lr} \mathrm{Tm}^{2} / \mathrm{d} & 1240 \\ \mathrm{Km} / \mathrm{d} & 460 \end{array}$ | $\begin{aligned} & 90 \\ & 48 \end{aligned}$ | $\begin{gathered} 145 \\ 69 \end{gathered}$ | $\begin{array}{r} 140 \\ 72 \end{array}$ |
| 2. Distance-drawdown (early data) | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~K} \\ & \mathrm{~S} \end{aligned}$ | $\begin{gathered} 125 \\ 40 \\ 0.2 \% \end{gathered}$ | $\begin{gathered} 105 \\ 45 \\ 0.2 \% \end{gathered}$ | $\begin{gathered} 1975^{* *} ? \\ 820 \\ 3 \times 10^{-4} \end{gathered}$ |
| 3. Time-drawdown (Jacob) |  | $\begin{aligned} & 25 \\ & ? \\ & \\ & 105 \\ & 0.3 \% \end{aligned}$ | $\begin{aligned} & 70 \sim 90 \\ & 0.25 \% \\ & \\ & 115 \cdot 135 \\ & 0.15 \quad 0.2 \% \end{aligned}$ | $\begin{array}{r} 140 \\ 5 \\ \\ 75 \\ 0.2 \% \end{array}$ |
| 4. Recovery | T | 100 | 140 |  |
| carly data Tl late | data $=$ rapid | $=\mathrm{inf}$ | y leakage |  |

The water level data were analysed using methods derived by Cooper (1967) and by Bouwer and Rice (1976), which both assume that well losses are negligible and that the aquifer is isotropic and homogeneous. The Cooper method takes well storage and aquifer storativity into account, whereas the Bouwer and Rice method only takes account of well storage.

In the Cooper method, values of head divided by initial head are plotted on a semi-log scale against log time. The data plots are then compared to type curves to derive a value of T from which $K$ is obtained from $K=T / D$, where $D$ is aquifer thickness. The Bouwer and Rice method involves plotting the head change $(\mathrm{H})$ against time on a semi-log scale to then obtain K from the following equations:

$$
\ln r_{c} / r_{w} \quad\left[\begin{array}{ll}
\frac{1.1}{\ln \left(H / r_{w}\right)} & \frac{C}{L / r_{w}} \tag{1}
\end{array}\right]^{-1}
$$

$$
\begin{equation*}
K=r_{c}^{2} \frac{\ln \left(r_{c} / r_{w}\right)}{2 L} \frac{1}{1} \quad \ln \quad \frac{H o}{H} \tag{2}
\end{equation*}
$$

where: $\mathrm{C}=$ dimensionless parameter
$L=$ length of the perforated screen
$r_{c}=$ effective radius over which head changes
$r_{c}=$ radius of the well casing
$r_{w}=$ well radius

The test results are presented in Table 6.4. It was not possible to obtain any results for sites $3 / 1$ to $3 / 3$ and $5 / 1$ due to exceptionally low or high permeabilities. The wide range of $K$ values obtained from the tests reflects the variability of the sequence. although this variability must also be due to the subjectivity of the analytical methods themselves This type of ecst also represents only the permeability of the deposits immediately surrounding the screen and is therefore usually considered less representative than controlled pumping tests.

## Table 6.4 Results of Input Tests

| Borchole | No. . of tests conducted | Saturated thickness (m) | Zones of saturation | Method of Cooper | ( $\mathrm{m} / \mathrm{d}$ ) <br> Analysis <br> Bouwer \& Rice |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3/1 | 1 | 3.20 | lumestone | (0) high for test | too high for test |
| $3 / 2$ | 3 | dry | limestore |  |  |
| $3 / 3$ | 1 | 3.28 | limestone | (fx) low for tesi | too low for test |
| 3/4 | 5 | 3.24 | sand | 242 | $20 \quad 35$ |
| 3/5 | 5 | 1.57 | fill | 18 | $15 \quad 81$ |
| 316 | 4 | 4.70 | sand | 338 | 141398 |
| 37 | 4 | 205 | fill | No type curve fit | 33 |
| 3/8 | 4 | 205 | sand | 135 | $55 \quad 228$ |
| $3 / 9$ | 4 | 3.70 | fill/sand | 12 | 35 |
| 3/10 | 4 | 250 | fillisand | 55 | 1134 |
| 5/1 |  | 3.64 | sand | too low for test | too low for test |
| $5 / 2$ |  | 3.90 | sand | No type curve fit | 40 |
| $5 / 3$ |  | 239 | sand | No type curve fis | $9 \quad 130$ |
| 5/4 | 5 | 260 | sand | 19 | 2888 |
| $5 / 5$ | 5 | 2.40 | sand | 322 | 22103 |

Hydraulic conductivities of 15 to $80 \mathrm{~m} / \mathrm{d}$ for the fill deposits and 10 to $400 \mathrm{~m} / \mathrm{d}$ for the coastal deposits are generally consistent with estimates based on the pumping tests and grain size analyses.

### 6.23 Grain Size Estimates

Grain size data are available for the general area from site investigations although grain size analyses were not undertaken on the samples collected during the field programme. The distribution of sites with grain size data is shown in Figure 2.1.

The samples for which grain size data are available were assigned to either the fill or coastal deposits based on an interpretation of the borehole log. The number of such samples relating to each were 68 and 38 , respectively. The specific surface method was used to provide initial estiamtes of K from the grain size data for this study. A value of 50000 was assumed for the constant used for this method. Table 6.5 gives the ranges and arithmetic and geometric means in $\mathrm{m} / \mathrm{d}$. The geometric mean is about $50 \%$ of the arithmetic mean and should be a more accurate estimate of the mean $K$ as the few high $K$ values have less effect on the geometric mean. The results indicate that the $K$ of the fill and coastal deposits are very similar, although there is a wide variation in the $K$ of both types of deposits. The constant applied was based on well sorted, marine sands and, despite the variability in K, produces a mean K similar to that derived from the input and pumping tests.

## Table 6.5 Permeability from grain size data (m/day)

|  | Fill | Coastal Deposits |
| :--- | :---: | :---: |
|  |  |  |
| Min K | 2.13 | 2.31 |
| Max K | 515 | 277 |
| Arithmetic mean K | 68.6 | 53.6 |
| Standard Deviation | 89.4 | 64.3 |
| Geometric mean | 35.4 | 26.5 |
|  |  |  |

A plot of the $K$ values (Figure 6.1) shows a skewed distribution. The values were therefore converted to a logarithmic form to produce a lognormal distribution (Figure 6.2). A frequency analysis was also undertaken by assigning $K$ values to classes in units of $10 \mathrm{~m} / \mathrm{d}$. These were then expressed as a cumulative percentage to overcome the difference in the number of samples from each type of deposit. The results are plotted as Figure 6.3, which further confirms the similarity in K of the fill and coastal deposits.

Values of permeability assigned in the numerical model are $35 \mathrm{~m} / \mathrm{d}$ for the hydraulic fill and $25 \mathrm{~m} / \mathrm{d}$ for the coastal deposits. No tests were carried out to determine the permeability of the dolomite. Instead values have been taken from the ASCO (1983) report. In the model
an average value of $145 \mathrm{~m} / \mathrm{d}$ has been assigned, although it is recognized that the actual value will vary by several orders of magnitude due to the prescence of fracture zones.

### 6.3 STORAGE COEFFICIENT

The storage coefficient (S) will largely determine the rise in water level in response to recharge and has been estimated from pumping tests and from groundwater fluctuations caused by tides or rainfall events.

### 63.1 Pumping Test Estimates

Values of $S$ obtained from the pumping test range from about 0.2 to $0.3 \%$ as shown in As the late test data could not be analysed due to the combined effects of tidal fluctuations and small drawdowns, these estimates were based on the early data and are considered to underestimate the true specific yield (Sy).

### 63.2 Tidal Fuctuations

Storage coefficients can be estimated from the ratio of the change in groundwater level to the change in tidal level at a known distance from the coast using the following formula from Ferris, 1951:

$$
S=\frac{t_{0} \Gamma}{\Pi}\left[\frac{1}{x} \quad \log \left[\frac{2 S_{0}}{S_{r}}\right]\right]^{2}
$$

```
where: \(\mathrm{t}_{0}=\) Tidal period (days)
\(\mathrm{T}=\) Transmissivity of aquifer ( \(\mathrm{m}^{2} /\) day )
\(x=\) Distance from coast (m)
\(S_{0}=\) Half amplitude of tidal variation (m)
\(S_{r}=\) Amplitude of groundwater variation (m)
```

This method was applied to water level data from 13 locations (see Figure 4.6) and gave the results shown in Table 6.6.

Discounting the very high $S$ value of $17 \%$ from site $1 / 20$ and the low value of $0.1 \%$ from site $3 / 7$, the results have a reasonably consistent range from 0.5 to $4 \%$ averaging $1.8 \%$.

Table 6.6 Estimates of $S$ based on groundwater fluctuations

| BOREHOLE No. | Distance from <br> coast $(\mathrm{m})$ | Amplitude <br> ratio $(2 S o / S r)$ | Storage <br> $\%$ |
| :---: | :---: | :---: | :---: |
| $1 / 5$ | 570 | 6.07 | .72 |
| $1 / 14$ | 550 | 21.85 | 2.27 |
| $1 / 17$ | 230 | 3.62 | 2.27 |
| $1 / 20$ | 260 | 53.9 | 17.0 |
| $2 / 3$ | 470 | 3.86 | 0.6 |
| $2 / 7$ | 200 | 4.46 | 4.05 |
| $2 / 9$ | 460 | 11.27 | 0.48 |
| $2 / 10$ | 460 | 12.76 | 1.98 |
| $2 / 13$ | 400 | 17.73 | 2.21 |
| $2 / 15$ | 480 | 16.19 | 2.6 |
| $3 / 4$ | 590 | 1.21 | 1.6 |
| $3 / 7$ | 160 | 37.5 | 0.1 |
| $3 / 9$ | 900 | 1.2 |  |

### 6.33 Rainfall Events

The change in water level in response to the rainfall event of December 1989 has also been used to estimate storage coefficients based on an infiltration rate of $20 \%$. This approach gave values for $S$ of $2 \%$ for the coastal deposits and dolomite and $4 \%$ for the hydraulic fill, which are very similar to those obtained from the tidal fluctuation data.

## Chapter 7

## MODELLING

### 7.1 INTRODUCTION

The aim of the modelling was to describe in mathematical terms the main processes influencing the distribution and movement of subsurface water in the West Bay area. In outline, the model was designed from field information on aquifer geometry, aquifer properties and sources of recharge and discharge. Simulations of water levels at borehole locations were then computed and compared with measured data in order to calibrate the model, which was then used to predict the effects of expected changes in recharge due to the urban development of the West Bay area.

## 72 MODEL STRUCIURE

Two principles are fundamental to groundwater modeling; first, water which moves from one location must appear elsewhere; and, secondly, the rate of movement of groundwater between two locations is proportional to the slope of the water table between them. The first of these principles is expressed mathematically as the continuity equation, and the second as Darcy's Law. In two horizontal dimensions these may be written:

$$
\begin{gather*}
S \frac{\partial h}{\partial t} \quad \frac{\partial q_{x}}{\partial x} \quad \frac{\partial q_{y}}{\partial y}  \tag{7.1}\\
T \frac{\partial h}{\partial x}  \tag{7.2}\\
q_{y} \quad T \frac{\partial h}{\partial y}
\end{gather*}
$$

The terms appearing in these equations are: $S$ storage coefficient (dimensionless); $h$ head ( 1 ); $q_{x}$ flux in $x$ direction $\left(\ell^{2} t^{-1}\right) ; q_{y}$ flux in $y$ direction $\left(\ell^{2} t^{-1}\right) ; R$ sources and sinks $\left(\ell^{2} t^{-1}\right)$ and, $T$ transmissivity $\left(\ell^{2} \mathfrak{t}^{-1}\right)$

The two horizontal coordinates are represented by $x$ and $y$. With an average gradient to the sea of the order of $1: 1000$, vertical flow is small in relation to horizontal flow and is assumed negligible for this application. Vertical flow due to infiltration of rainwater was
accommodated by adding the appropriate amount of water to the water table, rather than describing its movement through the soil. Equations 7.1 to 7.3 then give the spatial and temporal relationship between heads over the model area.

Simulated values of head at specific points in time and space were found by solving these equations 7.1 to 7.3 for $h$ using finite element analysis, in which the equations were discretised in space and time. These were calculated over a grid defined by a network of nodes dividing the area into quadrilateral elements with the head values at intermediate points are found by interpolation. The gridding technique reduces the model to a set of linear equations which are solved at time steps of 0.1 days.

The model grid which consists of 160 nodes and 139 elements as, shown in Figure 7.1. The distribution of nodes was based on a number of criteria:
nodes were located at the intersections of main roads;
the coarsest mesh was used for the areas of the Dammam dolomite outcrop except towards the south-western boundary where steeper groundwater gradients required some fining of the mesh;
a fine mesh was used for areas overlain by hydrautic fill or natural coastal deposit; and.
no surface element had all three surface nodes assigned as fixed heads.

The finite element solution used the Galerkin formulation with linear basis functions and integration using $2 \times 2$ Gaussian quadrature. The half bandwidth of the system of linear equations is 41 , and was solved by an efficient direct method. An implicit finite difference scheme was used to approximate the derivative with respect to time. Aquifer characteristics were computed iteratively when head changes were large, based on the arithmetic mean of their values at the start and end of the relevant time step.

### 7.3 MODEL INPUIS

The information required to run the model consisted of numerical values for the aquifer geometry, aquifer properties, boundary conditions and internal sources and sinks at nodes or elements.

### 7.3.1 Aquifer geometry and properties

At each model node the height above QND of the base and top of each of the Dammam, sabkha and hydraulic fill were assigned by interpolation from borehole logs at locations shown in Figure 2.1

Numerical values of the storage coefficient and transmissivity must be specified at each node. Transmissivity is the product of the hydraulic conductivity of the aquifer and its saturated thickness. For an aquifer with several layers, such as at Doha, this can be approximated by the weighted sum of the transmissivities of each layer. Initial estimates of the hydraulic conductivity of the Dammam was taken from the ASCO report (1983), whose findings were based on pumping tests, and for the sabkha and hydraulic fill were derived as described in Chapter 6.

The storage coefficient(s) of the aquifer is defined as the change in water content of the aquifer for a given change in head. It consequently relates only to that part of the aquifer in which the head is changing at a particular time. The storage coefficient at each node is therefore computed as the value for that component in which the water table presently lies. Initial values for the Dammam were taken from the ASCO report (1983), and for the sabkha and hydraulic fill were computed as described in Chapter 6.

### 7.3.2 Boundary conditions

The model requires knowledge of either the heads or the fluxes across the boundaries. Generally it is convenient to seek natural no-flow boundaries, either along flow lines or at watersheds. Where surface water is present this may form a measured head boundary. In the West Bay model area shown in Figure 7.1 the southwest boundary corresponds approximately to a groundwater divide. Recharge to the north-east flows towards the sea within the model area, while recharge to the south-west flows away from the model area towards the desert. The north-west and south-east boundaries coincide approximately with flow lines and therefore form no-flow boundaries. At the coast the sea forms a measured head boundary, varying with the tide whose height is taken from tidal records. The northern boundary follows the line of a depression which is roughly at sea level and is also treated as a fixed head boundary independent of tidal fluctuations.

Numerical values of recharge and discharge are required for each element of the model.

Besides infrequent heavy rainfall the main sources of groundwater recharge to the West Bay area are seepage from irrigation and leakage from pressurised water mains. Drainage of groundwater to the sewage system and its subsequent pumped removal is the most significant internal sink. Information on these sources and sinks for 1988 is given by the QAR zones shown in Figure 7.2 and quantified in Table 5.2. As information on the possible seasonal variation in recharge and discharge is not available, they are assumed to be constant throughout the year and redistributed to elements of the model by partitioning according to overlapping arcas.

Recharge duc to rainfall is computed from measured rainfall at Montaza Park, Doha. An accurate allocation of rainwater to surface runoff, replenishment of moisture in the unsaturated zone, or recharge to groundwater cannot be made. The ASCO report (1983) suggests a recharge rate of $10 \%$ over the Dammam, reducing to $7.5 \%$ in urban areas, and any remaining rainfall is assumed to be held in the unsaturated zone until it evaporates.

The use of a percentage recharge is inappropriate when the water table is close to or even at the ground surface, as occurs in parts of the West Bay area. In such regions proper accounting of the water balance is necessary. For the larger storms we have assumed that the amount of rainwater reaching groundwater as recharge is $20 \%$ when the water table is more than Im below the ground surface. When groundwater is within 1 m of the surface. it is assumed that all rainfall infiltrates such that the moisture content of the unsaturated zone is in equilibrium with groundwater. The moisture characteristic used to calculate the moisture profile of the unsaturated zone is derived from a grain size analysis of the hydraulic fill and sabkha.

Evaporation is computed as varying linearly from 2 mm per day at Im depth to its potential rate when the surface is fully saturated.

### 7.3.4 Initial conditions

Initial estimates of the head at each node must be specified for transient (time-varying) runs. For steady state runs they are not essential, but are useful for comparison with simulated steady state heads. Initial heads at each node are computed from borchole measurements by interpolation. Depending on the particular model run, these may be adjusted for tidal effects.

### 7.4 MODEL RUNS FOR PRESENT CONDITIONS

### 7.4.1 Steady state runs

The model was first run in steady state and the measured and predicted heads compared. The comparison was complicated by the fact that borehole measurements were made at different states of the tide, and this has a significant effect on levels at some locations near the coast. Measurements were adjusted to estimated high tide levels, and the boundary heads in the model fixed at their high tide values. The difference between simulated and observed heads is shown in Figure 7.3. The major discrepancies are along the southwestern boundary where borehole information is sparse and interpolated initial heads are likely to be erroneous. This does not, however, rule out the possibility that spatial variability in aquifer properties or inaccurate estimation of recharge may be responsible for head differences. In the region near the coast, discrepancies may in part be due to inaccurate tidal correction to measured data.

This steady state run is independent of the storage coefficient, but can be used to calibrate hydraulic conductivity. Re-running the model with differing hydraulic conductivities and using the mean square prediction error as a measure of goodness of fit suggests a hydraulic conductivity of $145 \mathrm{~m} /$ day in the Dammam. This calibration assumes the no-flow boundaries are accurately located, that recharges are correctly specified, and that the aquifer geometry is as assumed. Calibration of the hydraulic conductivity of sabkha and hydraulic fill did not indicate significant differences from the values suggested by field tests. The initial estimates of aquifer properties are summarised in Table 7.1

## Table 7.1 Aquifer properties

|  | Hydraulic Conductivity <br> $\mathrm{m} / \mathrm{d}$ | Storage Cocfficient <br> $\%$ |
| :--- | :---: | :---: |
| Dammam | 145 |  |
| Sabkha | 25 | 4 |
| Hydraulic fill | 35 |  |

### 7.4.2 Transient runs with tidal effects

Sequential head measurements from boreholes close to the coast confirmed the presence of tidal effects on groundwater levels, as described in Chapter 4 . These were used to calibrate storage in the sabkha and hydraulic fill. In these model runs the heads along the shore were
given fixed values at each new time step. Calibration of the storage coefficient gave values shown in Table 7.1. This used combined information from transient runs with tidal effects and with rainfall.

### 7.43 Transient nuns with rainfall

Floods may last for several weeks after heavy rain. In the short term this may be due in part to surface flow, but flooding after the cessation of rainfall is sustained by raised groundwater levels.

Rainfall is included in the model as increased recharge (section 7.3.3). with no further changes. Two measured periods of heavy rainfall, February 1988 and December 1989, have been used to assess model performance in simulating flooding. The first storm had a return period of 17 years, and the second of 27 years (FAO,1982). Both produced extensive flooding in low lying areas which lasted several weeks. For the February 1988 rainfall this was clearly shown on aerial photographs.

Figure 7.4 shows the hyetographs for the February 1988 storm, with simulated heads at four nodes adjacent to borcholes 2339.750, 2239.231 and 2239.232 for which time series of water level measurements were available. The location of these nodes is indicated in Figure 7.i. Model runs for this storm give simulated flooding as shown in Figures 7.5 to 7.7. The flooded locations correspond with those observed, but the simulated depth of flooding cannot be checked against observed depths as measurements are not available. Since it is likely that flooding after rainfall has a significant surface runoff component, simulations of the depth and precise locations of flooding must be regarded as approximate.

### 7.4.4 Summary

Those steady state and transient runs for a variety of conditions where the model simulations can be compared with measurements suggest that the model is a reasonable representation of the groundwater processes although flooding after intense rain may have a significant surface water component which is not modelled. Most simulated heads in the absence of rainfall are within 20 cm of interpolated measured heads. Following rainfall, the model simulates flooding in approximately the locations where it is observed, although simulated depths cannot be checked.

Further residential and other development of reclaimed land will result in recharge from irrigation, leakage from water pipes and other sources in the areas concerned. To assess the likely effect of this two stages of development have been included; firstly, the development already underway both on the West Bay peninsula and in an area in the northern part of the mode! area, and, secondly, maximum development to cover the whole of the West Bay peninsula. Recharge on an equivalent area basis is assumed similar to that for parts of the West Bay area already developed. The areas concerned are indicated in Figure 7.2.

The model has been used to examine whether increased recharge will by itself cause an unacceptable rise in groundwater levels, and also the extent to which increased recharge will exacerbate flooding whose primary cause is heavy rainfall.

To investigate the first of these concerns the model was run steady state with recharges assumed to be as for the existing area of development. This run suggested that, for development already underway, there will be a groundwater rise of up to about 40 cm over the northern area. However, as water levels will still be at least 4 m below ground surface. there will be no risk of flooding despite a fairly large rise in the water table. A rise of only 10 cm is expected in the area of the peninsula, which is due to the proximity of the sea and the relatively permeable nature of the sabkha and hydraulic fill such that large head differences cannot be sustained so close to the coast even with the anticipated increase in recharge. Heads over most of the peninsula will remain around 2 m below the surface ( 1 m along parts of the former coastline). With maximum development of the West Bay peninsula, the rise in water table, shown in Figure 7.8 , is still only expected to be 20 cm in the absence of rain.

The area of flooding likely to result from the planned maximum development when heavy rainfall occurs (represented by the February 1988 storm) are shown in Figures 7.10 to 7.12. The corresponding water level hydrographs for representative model nodes are shown in Figure 7.9. (The comparable results for the present development are shown in Figures 7.5 to 7.7 and 7.4 , respectively). These model runs indicate that the area of flooding would become more extensive but would still be restricted to a narrow, low lying zone some 3 km long situated just infand from the original coastline where flooding already occurs rather than in areas of the new development.

Figures 7.13 and 7.14 show the water table depth if "pumping" was carried out at the nodes shown in order to contain this flooding to maintain water levels at 0.5 m or more below ground level with the "worst case" scenario described above. A discharge rate of $21000 \mathrm{~m} 3 / \mathrm{d}$
would be required for a short period during and following the storm, although the discharge required to cope with the effects of urbanisation alone need only be about $1300 \mathrm{~m} 3 / \mathrm{d}$ to maintain water levels at a depth of 1 m .

## 7.6 IMPLICATIONS OF MODEL RESULIS

The West Bay district of Doha was considered to face two major hydrological problems at the start of this study, namely short-term, local flooding from infrequent storms and a more permanent and widespread flooding associated with a possible long-term rise in groundwater levels due to urban development.

The model was used to examine the water level changes resulting from the proposed development assuming that the estimated present rates and different sources of recharge and discharge (see Table 5.2) would remain proportionally the same. The additional response caused by a major rainfall event, as represented by that which occured in February 1988, was then superimposed.

The main conclusions from the various model runs undertaken during this study are twofold:

- The urban development itself is unlikely to directly result in surface flooding. Whilst water levels are expected to rise by 20 cm on the West Bay peninsula and by about 40 cm to the north of the present area of development the depth to water level will still be 1 m or more even in the tow lying areas.
- When the future development has taken place. heavy rainfall can be expected to cause an increase in the extent and duration of flooding compared to the present development. However, this flooding would still be limited to the low-lying area along the old shoreline where floods already occur rather than in new areas.

Hence, the model suggests that the long term rise in water levels will not cause a more widespread permanent flooding and that the short-term flooding would still be limited to a relatively small area of West Bay district following periods of heavy rainfall. These results have the following implications:

1. A widespread network of drains throughout the whote area would not be required as the long-term rise in water level from the urban development would not have the consequences originally anticipated.
2. The pilot drainage scheme study foreseen at the inception of the study is no longer justified.

A combined surface and groundwater drainage network within the low lying area subject to short-term flooding would be sufficient to alleviate the local flooding in this particular area following the planned urban development. An efficient network of surface drains to rapidly remove surface water would reduce the amount of infiltration and the severity of the groundwater problem. The model suggests that the groundwater drains in the low lying area should be capable of removing $21000 \mathrm{~m} 3 / \mathrm{d}$.

It is recommended that:
(a) A more detailed model, which should also take into account the accumulation of surface run-off, would be required to assist the design of a drainage network for this low lying area. This model could be used to evaluate the impact and duration of flooding following storms of different intensity.
(b) The existing West Bay regional model could be used to examine different recharge and discharge scenarios asociated with the urban development.
(c) The water table response to the urban development should be monitored by incorporating selected piezometers drilled during this study in the Doha observation well network.

Following heavy rain our simulations indicate that flooding will be more extensive following planned and potential development, but that this flooding will occur close to regions already subject to flooding rather than at the location of the new development. The extent of additional flooding is indicated in Figures 7.10 to 7.12 , which may be compared with Figures 7.5 to 7.7. The water level rise for specific nodes is presented in Figure 7.9.

## References

Akili, W. and Torrance, J.K.: 1981. The development and geotechnical problems of sabkha, with preliminary experiments on the static penetration resistance of cemented sands. Q.J Eng. Geol. London 14, 59-73.

ASCO, 1983. Rising Water Table Project. (for Ministry of Electricity and Water).

Bouwer, H. \& Rice, R.C. 1976. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partiatly penetrating wells. Water Resources Res. 12(3) 423-428

Cooper H.H. Jr, Bredehoeft, J.D. \& Papadopulos, I.S. 1967. Response of a finite diameter well to an instantaneous charge of water. Water Resources Res. 3(1) 263-269

Evans, G., Schmidt, V., Bush, P. and Nelson, H. 1969. Stratigraphy and Geologic History of the Sabkha, Abu Dhasi, Persian Gulf. Sedimentology, 12 (1969) pp 145-159.

Ferris, J. G. 1951.. Cyclical fluctuations of water level as a basis for determining aquifer transmissivity. Asoc. Int. Hydrol. Sci. (33).

Fookes, P.G., French, W.J. and Rice, S.M.M. 1985. The influence of ground and groundwater geochemistry on construction in the Middle East. Q.J Eng Geol.London 18, No.2, 101-129

JСА, 1987. The study of drainage improvement plan, Doha City

Pike. J.G: 1971. Evaporation of groundwater from coastal playas (sabkha) in the Arabian Gulf. J.Hydrol. 11, pp79- 88.





Elevation of top surface of Damman Formation (m)QMD






Thickness of Hydraulic Fill (m)





Rainfall (mm)


Aainfall (mm)






DOHA AIRPORT
Annuai Rainfall


Figure 5.1

Mean Monthly Rainfall (1962-1988)


Figure 5.2

Permeability Frequency Diagram


Figure 6.1

Log Premeability Frequency Diagram

Fin

Figure 6.2

Log Permeability K (classes)

Cumulative Frequency Diagram


Figure 6.3





（W）JHNO ヨ＾OQV 7ヨヘヨา 8ヨ1VM

（Wつ）7רVINIVY




Depth to water for February 1988 storm for present development(m)

Figure 7.8

Hydrograph and hyetograph of February 1988 storm for specific nodes, for maximum development






Depth to water for February storm for maximum development and pumping (m)


REPORT A: July 1989, Gulf Laboratories. Senior staff housing project, sub-surface site investigation. No. GD/199/.

REPORT B: January 1983, Wimpey Laboratories. Govt. of Iraq. Proposed new embassy in the new district of Doha. No. S/19872.

REPORT C: January 1982, Wimpey Laboratories. Gulf Organization Consulting Doha, Report on site investigation. No. S/18659.

REPORT D: May 1981, Wimpey Laboratories. Qatar General Petroleum Corporation. Proposed extension to headquarters building at new Doha. Report on site investigations. No.S/18003.

REPORT E: March 1983, Wimpey Laboratories. Proposed villa for H.E. Issa Al Kawari, New District of Doha. Report on site investigations. S/19931.

REPORT F: January 1983,Wimpey Laboratories. Government of Pakistan. Proposed new embassy of Pakistan in the New District of Doha. Report on site investigation. No. S/19673.

REPORT G: June 1984, Wimpey Laboratories. Islamic Republic of Iran. Proposed new embassy in the New District of Doha. Report on site investigation. No. S/21210.

REPORT H: February 1983, Wimpey Laboratories. Qatar General Insurance and Reinsurance Company. Proposed multi- storey office building in the New District of Doha. Report on site investigations. o. S/19923.

REPORT J: October 1982, Wimpey Laboratories. Qatar National Cement Company. Proposed headquarters building in the New District of Doha. Report on site investigation. No.S/19287.

REPORT K: September 1981, Wimpey Laboratories. Ministry of Works (ESD). Proposed offices for Ministry of Education, New District of Doha. Report on site investigation. No. S/18204.

REPORT L: April 1985, Wimpey Laboratories. Ministry of Public works. Qatar Sports Club. Site investigation report. No. S/16987/2.

REPORT M: October 1982, Wimpey Laboratories. Mannai Trading. Proposed Office and commercial Centre in the New district of Doha.Report on site investigation. No. S/19496.

REPORT N: March 1989, Gulf Laboratories. Qatar National Navigation and Transport Company. Proposed NNTC HQ - West Bay. Report on site investigation. No. GD/188/SI.

Summary of Borehole Data

BOREHOLE NO. G.ELEV. DATUM CO-ORDINATES TEST DEPTH DEPTH ELEV TOP ELEV TOP ELEV.
(m) (m) DEPIH

HYDRAULIC
NATURAL NATURAL DAMMAN FILL MATERIAL MATERIAL
(in)
(m)
(m)
(m)
(m)

| GWS | 1/1 | 3.37 | 3.71 | 22985 | $\leqslant$ |  | $0.0-0.25$ | G.SURFACE | 3.12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 40071 |  |  |  |  |  |
| GWS | $1 / 2$ | 3.9 | 4.38 | 22947 | $\checkmark$ |  | $0.0-0.5$ | G.SURFACE | 3.4 |
|  |  |  |  | 40048 |  |  |  |  |  |
| GWS | $1 / 3$ | 2.15 | 2.52 | 23061 | 6 | 0-0.5 | $0.5-\mathrm{EOH}$ | 1.65 |  |
|  |  |  |  | 40044 |  |  |  |  |  |
| GWS | 1/4 | 3.33 | 3.54 | 22989 |  |  | $0.0-1.0$ | G.SURFACE | 2.3 |
|  |  |  |  | 39963 |  |  |  |  |  |
| GWS | 1/5 | 1.78 | 1.99 | 23009 | 6 | 0-1.0 | 1.0 - EOH | 0.78 |  |
|  |  |  |  | 39917 |  |  |  |  |  |
| GWS | 1/6 | 268 | 2.9 | 23009 |  |  | $0.0-\mathrm{EOH}$ | G.SURFACE |  |
|  |  |  |  | 39917 |  |  |  |  |  |
| GWS | $1 / 7$ | 6.82 | 7.05 | 22848 |  |  | 0.0-0.5 | G.SURFACE | 6.32 |
|  |  |  |  | 39913 |  |  |  |  |  |
| GWS | $1 / 8$ | 3.54 | 3.62 | 22959 | 6 | 0-1.0 | 1.0-5.0 | 254 | 1.4 |
|  |  |  |  | 39882 |  |  |  |  |  |
| GWS | 1/9 | 2.42 | 2.58 | 23003 | 6 | 0-0.5 | 0.5 - EOH | 1.92 |  |
|  |  |  |  | 39866 |  |  |  |  |  |
| GWS | $1 / 10^{*}$ |  |  | 22886 |  |  | 0.0-2.0 | G.SURFACE |  |
|  |  |  |  | 39863 |  |  |  |  |  |
| GWS | 1/11 | 2.61 | 2.79 | 23062 | 6 | $0 \cdot 3.75$ | $3.75 \cdot \mathrm{EOH}$ | 1.15 |  |
|  |  |  |  | 39880 |  |  |  |  |  |
| GWS | 1/12 | 2.13 | 2.38 | 23017 | 6 | $0 \cdot 1.5$ | 1.5 - EOH | 0.7 |  |
|  |  |  |  | 39825 |  |  |  |  |  |
| GWS | 1/13 | 1.93 | 2.19 | 22970 |  |  | 0.0-1.0 | G.SURFACE | 0.9 |
|  |  |  |  | 39802 |  |  |  |  |  |
| GWS | 1/14 | 2.52 | 2.86 | 23030 | 6 | 0-2.52 | 2.52 - EOH | 0 |  |
|  |  |  |  | 39806 |  |  |  |  |  |
| GWS | 1/15 | 3.13 | 3.4 | 22950 |  | 0.5 | 0.5-4.5 | 2.63 | 1.37 |
|  |  |  |  | 39772 |  |  |  |  |  |
| GWS | 1/16* | 6.31 | 6.5 | 22882 |  | 0 | $0.0-\mathrm{EOH}$ | G SURFACE |  |
|  |  |  |  | 39750 |  |  |  |  |  |
| GWS | 1/17 | 3.13 | 3.44 | 23099 | 6 | 0-4.0 | 4.0-6.0 | - 0.87 |  |
|  |  |  |  | 39752 |  |  |  |  |  |
| GWS | 1/18 | 5.36 | 5.53 | 23228 | 6 | 0 . EOH |  | - 0.6 |  |
|  |  |  |  | 39753 |  |  |  |  |  |
| GWS | 1/19 | 2.1 | 2.36 | 22970 |  |  | 0.0 - EOH | G.SURFACE |  |
|  |  |  |  | 39742 |  |  |  |  |  |
| GWS | $1 / 20^{*}$ | 3.24 | 3.56 | 23211 |  |  |  |  |  |
|  |  |  |  | 39748 |  |  |  |  |  |
| GWS | $2 / 1$ | 4.06 | 4.25 | 23179 | 6 | 0 . EOH |  | 1.9 |  |
|  |  |  |  | 39750 |  |  |  |  |  |
| GWS | $2 / 2$ | 2.13 | 2.45 | 23025 | 6 | 0-2.13 | 2.13 - EOH | 0 |  |
|  |  |  |  | 39733 |  |  |  |  |  |
| GWS | $2 / 3$ | 2.11 | 2.25 | 23139 | 6 | 0-4.5? | 4.5 - EOH | - 24 |  |
|  |  |  |  | 39712 |  |  |  |  |  |
| GWS | $2 / 4$ | 4.06 | 4.37 | 22948 | 6 | 0-1.2? | 1.2 - EOH | 286 |  |
|  |  |  |  | 39702 |  |  |  |  |  |
| GWS | $2 / 5$ | 7.36 | 7.57 | 22912 |  |  | 0.00 .5 | G.SURFACE | 6.86 |
|  |  |  |  | 39685 |  |  |  |  |  |

BOREHOLE NO. G.ELEV. DATUM CO-ORDINATES ELEV.
(m) (m)
m)

TEST DEPTH DEPTH ELEV TOP ELEV TOP DEPTH HYDRAULIC NATURAL NATURAL DAMMAN FIL MATERIAL MATERIAL
(m)
(II)
(m)
(m)
(II)

| GWS $2 / 6$ | 297 | 3.13 | 23027 | 6 |  | $0.0-0.5$ | G.SURFACE$\text { - } 2.7$ | 2.47 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 39676 |  |  |  |  |  |
| GWS 27 | 3.28 | 3.47 | 23231 | 6 | 0-EOH |  |  |  |
| GWS $2 / 8$ | 2.02 | 2.34 | 23101 | 6 | 0-2.0 | $2.0-\mathrm{EOH}$ | 0 |  |
|  |  |  | 39654 |  |  |  |  |  |
| GWS $219{ }^{*}$ | 3.84 | 4.02 | 23206 | 5 | O-EOH |  | 1.2 |  |
|  |  |  | 39651 |  |  |  |  |  |
| GWS $2 / 10$ | 2.38 | 2.56 | 23128 | 6 | 0-4.0? | $4.0-\mathrm{EOH}$ | 1.6(7) |  |
|  |  |  | 39631 |  |  |  |  |  |
| GWS $2 / 11$ | 2.55 | 2.89 | 23062 | 6 | 0-3.5 | 3.5 - EOH | 0.95 |  |
|  |  |  | 39635 |  |  |  |  |  |
| GWS $2 / 12 *$ | 9.58 | 9.88 | 22928 |  |  | 0.5 | G.SURFACE |  |
|  |  |  | 39622 |  |  |  |  |  |
| GWS 2113 | 2.32 | 2.63 | 23068 | 6 | 0-3.0 | $3.0-\mathrm{EOH}$ | - 0.7 |  |
|  |  |  | 39595 |  |  |  |  |  |
| GWS 2/14 | 2.46 | 2.76 | 22981 | 6 | 0-2.46 | $2.46-4.0$ |  | 1.54 |
|  |  |  | 39572 |  |  |  |  |  |
| GWS $2 / 15$ | 2.31 | 2.53 | 23032 | 6 | 0-2.5 | $2.5-\mathrm{EOH}$ | - 0.19 |  |
|  |  |  | 39566 |  |  |  |  |  |
| GWS 2/16 | 2.2 | 2.65 | 23062 | 6 | 0-4.0? | 4.0 - EOH | $1.8 ?$ |  |
|  |  |  | 39545 |  |  |  |  |  |
| GWS $2 / 17$ | 3.23 | 3.43 | 22995 | 6 | 0-1.5? | 1.5-3.25 | 1.73 | 0.02 |
|  |  |  | 39529 |  |  |  |  |  |
| GWS $2 / 18$ | 2.39 | 2.5 | 23017 | 6 | 0-4.5 | 4.5-EOH | 2.1 |  |
|  |  |  | 39503 |  |  |  |  |  | GWS $2 / 19$

GWS $3 / 1$

- Gws $3 / 2$

GWs $3 / 3$

- GWs $3 / 4$

GWS $3 / 5$

- GWS $3 / 6$
- gws $3 n$
- GWS $3 / 8$

GWS 3/9
GWS $3 / 10^{*}$

| 5.8 | 6.29 |
| :--- | :--- |
| 6.43 | 6.88 |
| 5.3 | 5.57 |
| 2.05 | 2.2 |
| 1.95 | 2.12 |
| 2.57 | 2.75 |
| 4.57 | 4.71 |
| 2.23 | 2.53 |
| 2.27 | 2.41 |
| 2.33 | 2.51 |


| 22895 |  |  |  |  |  | 5.8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40032 |  |  |  |  |  |  |
| 22858 |  |  |  | - 1.7 | G.SURFACE | 4.73 |
| 39974 |  |  |  |  |  |  |
| 22956 |  |  | 0.0 | - 1.4 | G.SURFACE | 3.9 |
| 39937 |  |  |  |  |  |  |
| 23032 | 5 | 0-1.3 |  | - 3.4 | 0.75 | 1.3 |
| 39882 |  |  |  |  |  |  |
| 23071 | 6.3 | 0-4.0? |  | - 4.8 | - 2 | 2.85 |
| 39772 |  |  |  |  |  |  |
| 22997 | 3.4 | 1. 1.0 | 1.0 | 3.25 | 1.57 | 0.68 |
| 39755 |  |  |  |  |  |  |
| 23255 | 10 | 0-8.0 | 8.0 | 9.5 | 3.4 | 4.9 |
| 39701 |  |  |  |  |  |  |
| 23152 | 7 | 0-3.45 | 3.45 | - 5.5 | 1.2 | 3.27 |
| 39678 |  |  |  |  |  |  |
| 23011 | 5.4 | 0-2.0 |  | - 4.9 | 0.27 | 2.63 |
| 39608 |  |  |  |  |  |  |
| 23039 | 6.6 | 0-4.0? | 4.0 | - 5.0 | 1.7 | 2.67 |
| 39531 |  |  |  |  |  |  |

BOREHOLE NO. G.ELEV. DATUM CO-ORDINATES TEST DEPTH DEPTH ELEV TOP ELEV TOP ELEV.
(m) (m) DEPTH HYDRAULIC NATURAL NATURAL DAMMAN FILL MATERIAL MATERLAL
(m)
(m)
(m)
(m)
(II)

| GWS 4/1 | 9.87 | 10.16 | 22788 | 18 | 9.87 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| GWS 4/2 | 8.05 | 8.18 | 29982 |  | 8.05 |
| GWS 4/3 | 18.93 | 19.17 | 39884 | 35 | 18.93 |
| GWS 4/4 | 18.46 | 18.55 | 32803 | 18.8 | 18.8 |
| GWS 4/5 | 20.82 | 20.98 | 39804 | 25 | 20.82 |
| GWS 4/6 | 16.5 | 16.67 | 22732 | 16.5 | 16.5 |

* Some Information not available


## APPENDIX 3

Water Level Data for Project Boreholes

Date
Time

822

| 5 | Jul 89 | 922 |
| :---: | :---: | :---: |
| 12 | 14189 | 754 |
| 19 | Jul 89 | 852 |
| 26 | Jul 89 | 740 |
| 2 | Aua 89 | 739 |
| 9 | Aug 89 | $7 \times 2$ |
| 15 | Aus ac | 729 |
| 2 S | Aug 89 | 739 |
| 30 | Aug 89 | 721 |
| 6 | Sep 9 9 | 742 |
| 13 | Sep B\% | 206 |
| 20 | Sep 8 ? | 759 |
| 27 | Sep 89 | 751 |
| 4 | Oct 59 | 811 |
| 1 | Nov 89 | 8.7 |
| 10 | Nov 89 | 78\% |
| 11 | Nov 89 | 1524 |
| 15 | Nov 89 | 1524 |
| 29 | Nov 89 | 840 |
| 7 | Dec 89 | 8.8 |
| 10 | Dec 89 | 1516 |
| 13 | Dec 89 | 1523 |
| 17 | Dec 89 | 750 |
| 19 | Dec 89 | 151\% |
| 21 | Dec 89 | 808 |
| 27 | Dec 89 | 1527 |
| - | Ian 90 | Q28 |
| 10 | Jan 90 | 152 O |
| 17 | Jan 90 | 825 |
| 24 | Jan 90 | 85 |
| 31 | $\tan 90$ | 826 |

Depth to water
(m below
detum levej)
3.08
2.065
3.045
3.045
3.025

צ.025
3.000
2.990
2.975
2.990
$\therefore .000$
צ. 000
3.000
3.050
B.0BO
-.060
$\therefore .010$
2.990

उ. 100
$\because .080$

- 100
3.055
2.560
2.620
2.580
2.780
2.980
3.010
E. OO

צ.0.0
3.040

Elevation of water table
(m above see level)

$$
\begin{aligned}
& 0.675 \\
& 0.645 \\
& 0.665 \\
& 0.665 \\
& 0.695 \\
& 0.695 \\
& 0.710 \\
& 0.720 \\
& 0.765 \\
& 0.720 \\
& 0.710 \\
& 0.710 \\
& 0.710 \\
& 0.660 \\
& 0.630 \\
& 0.650 \\
& 0.700 \\
& 0.720 \\
& 0.610 \\
& 0.680 \\
& 0.610 \\
& 0.655 \\
& 1.150 \\
& 1.090 \\
& 1.030 \\
& 0.930 \\
& 0.680 \\
& 0.700 \\
& 0.710 \\
& 0.680 \\
& 0.670
\end{aligned}
$$

Station No

GWS1/10

Date

| 2 | Aug 89 | $90 \%$ |
| :---: | :---: | :---: |
| 7 | Aug 89 | 8.7 |
| 1.6 | Aug 89 | 日S 1 |
| 23 | Aug 89 | 845 |
| 30 | Aug 89 | 824 |
| 6 | Sep 89 | 851 |
| 13 | Sep 89 | 915 |
| 20 | Sep 89 | 918 |
| 27. | Sep 89 | 855 |
| 4 | Oct 89 | 917 |
| 1. | Nov 89 | 100 J |
| 10 | Nov 89 | $8 \pm 5$ |
| 11 | Nov 89 | 16.17 |
| 15 | Nov 89 | 1619 |
| 27 | Nov 89 | 938 |
| 7 | Dec 89 | 9 O |
| 10 | Dec 89 | 1608 |
| 13 | Dec 89 | 1.612 |
| 17 | Dec 89 | 842 |
| 19 | Dec 89 | 1622 |
| 21 | Dec 89 | 853 |
| 27 | Dec S9 | 1612 |
| 3 | Jan 90 | 923 |
| 10 | Jan 90 | 1406 |
| 17 | Jan 90 | 919 |
| 24 | Jan 90 | $94 \%$ |
| 31 | Jan 90 | 915 |

Depth to water
( $\pi$ below
datum level)
Elevation of water table (m above sea level)

| 2.000 | $*$ |
| :--- | :--- |
| 2.080 | $*$ |
| 2.000 | $*$ |
| 2.040 | $*$ |
| 2.000 | $*$ |
| 2.010 | $*$ |
| 2.060 | $*$ |
| 2.040 | $*$ |
| 2.030 | $*$ |
| 2.070 | $*$ |
| 2.100 | $*$ |
| 1.990 | $*$ |
| 1.990 | $*$ |
| 2.080 | $*$ |
| 2.050 | $*$ |
| 1.990 | $*$ |
| 2.050 | $*$ |
| 2.005 | $*$ |
| 1.690 | $*$ |
| 1.430 | $*$ |
| 1.550 | $*$ |
| 1.690 | $*$ |
| 1.780 | $*$ |
| 1.850 | $*$ |
| 1.860 | $*$ |
| 1.890 | $*$ |
| 1.930 | $*$ |

Date
Time

> Depth to water (m below datum levej)
water table
(m above sea level)
GWS1:11

| 5 | Ju1 89 | 806 |
| :---: | :---: | :---: |
| 12 | Jul 89 | 7.8 |
| 19 | Ju1 99 | 821 |
| 26 | Jud 89 | 727 |
| 2 | Aug 87 | 727 |
| 9 | Aug 89 | 720 |
| 16 | Aug 89 | 716 |
| 23 | Aug 89 | 725 |
| 30 | Alig 89 | 710 |
| 6 | Sep 89 | 729 |
| 13 | Sep 99 | 753 |
| 20 | Sep 89 | 745 |
| 27 | Sep 89 | 740 |
| 4 | Oct 89 | 759 |
| 1 | Nov 89 | 923 |
| 10 | Nav 89 | 71.9 |
| 11 | Nov 89 | 1515 |
| 15 | Nov 89 | 1513 |
| 29 | Nov 89 | 825 |
| 7 | Dec 89 | 828 |
| 10 | Dec 89 | 1507 |
| 13 | Dec 89 | 1513 |
| 17 | Dec 89 | 782 |
| 17 | Dec 89 | 1520 |
| 21 | Dec 89 | 758 |
| 27 | Dec 89 | 1517 |
| $\pm$ | 9an 90 | 819 |
| 10 | Jan 90 | 1510 |
| 17 | Jan 90 | 812 |
| 24 | Jan 90 | 888 |
| 31 | Jan 90 | 816 |


| 2.455 | 0. 3.4 |
| :---: | :---: |
| 2.465 | 0.324 |
| 2.550 | 0.239 |
| 2.485 | 0.304 |
| 2.500 | 0.239 |
| 2.380 | 0.409 |
| 2.500 | 0.289 |
| 2.290 | 0.499 |
| 2.470 | 0.317 |
| 2.310 | 0.479 |
| 2.560 | 0.229 |
| 2.180 | 0.609 |
| 2.520 | 0.269 |
| 2.235 | 0.554 |
| 2.240 | 0.549 |
| 2.460 | 0.829 |
| 2.260 | 0.527 |
| 2.400 | 0.389 |
| 2.230 | 0.559 |
| 2.300 | 0.487 |
| 2.470 | Q. 317 |
| 2.375 | 0.414 |
| 1.920 | 0.867 |
| 2.270 | 0.519 |
| 2.130 | 0.609 |
| 2 O 00 | 0.489 |
| 2.140 | 0.649 |
| 2.350 | $0.45 \%$ |
| 2.270 | 0.519 |
| 2.350 | 0. 459 |
| 2.850 | 0.409 |

Station No Date Time

GWS1/12
858

| F | 14189 | 858 |
| :---: | :---: | :---: |
| 12 | 9u1 69 | 1006 |
| 19 |  | 855 |
| 26 | Juj 99 | 810 |
| 2 | Aug 89 | 815 |
| 9 | Aug 89 | B0\% |
| 16 | Aug 89 | 759 |
| 2 S | Aug 89 | 807 |
| 80 | Aug 99 | 741 |
| 6 | Sep 99 | 899 |
| 13 | Sep 89 | 8 S |
| 20 | Sep 89 | 825 |
| 27 | Sep 89 | 319 |
| 4 | Qct 87 | 8.6 |
| 1 | Noy g9 | 908 |
| 10 | Nov 89 | 759 |
| 11 | Nov 89 | 1544 |
| 15 | Nov 89 | 1547 |
| 29 | Nov 89 | ¢05 |
| 7 | Dec: 89 | 900 |
| 10 | Dec 89 | 1583 |
| 13 | Dec 89 | 1541 |
| 17 | Dec 8 ? | 310 |
| 19 | Dec 89 | 1552 |
| 21. | Dec: 89 | 926 |
| 27 | Dec 89 | 1544 |
| \% | Ian 90 | es 1 |
| 10 | Jan 90 | 1580 |
| 17 | Jan 90 | 849 |
| 24 | Jan 90 | 918 |
| $\underline{1}$ | Ten 90 | 846 |

Depth to water (in below datum level)
1.540

1. 505
1.520
2. 515
3. 500
1.490
1.470
1.490
1.470
4. 500
5. 540
1.500
6. 5.5
7. 545
8. 570
1.540
1.5 .15
1.510
$1 \times 550$
1.560
1.600
9. 540
1.040
1.115
1.210
1.290
1.260
1.420
1.470
1.490
1.550

Elevation of water table
(a) above sea level)
0.840
0.875
0.860
0.865
0.880
0.890
0.890
0.890
0.890
0.880
0.840
0.880
0.850
0.835
0.790
0.840
0.865
0.870
0.880
0.890
0.780
0.840
1.340
1.255
1.170
1.090
1.020
0.750
0.910
0.870
0.8 O

Station No Date Time

EWS $1 / 13$

| 5 | Ju1 89 | 902 |
| :---: | :---: | :---: |
| 12 | Jul 89 | $9 \mathrm{9B}$ |
| 19 | dul 89 | 857 |
| 26 | Jul 89 | 812 |
| 2 | Fug 89 | 819 |
| 9 | Aug 89 | 905 |
| 16 | Aug 89 | 800 |
| 23 | Aug 39 | 813 |
| 30 | Fug 89 | 747 |
| 6 | Sep 89 | S13 |
| 13 | Sep 89 | 834 |
| 20 | Sep 89 | 927 |
| 27 | Sep 89 | 821 |
| 4 | Oct 89 | 888 |
| 1 | Nov 89 | 910 |
| 10 | Nov 89 | 800 |
| 11 | Nov 89 | 1546 |
| 15 | Nov 89 | 1549 |
| 29 | Nov 89 | 906 |
| 7 | Dec 89 | 902 |
| 10 | Dec 39 | 1585 |
| 13 | Dec 99 | 1542 |
| 17 | Dec 89 | Q13 |
| 19 | Dec 89 | 1558 |
| 21 | Dec g9 | 629 |
| 27 | Dec 89 | 1545 |
| $\pm$ | $\tan 90$ | 853 |
| 10 | Jan 90 | 1540 |
| 17 | Jan 90 | 851 |
| 24 | Jan 90 | 920 |
| 31 | Jan90 | 848 |

Depth to water
(m below
datum level)
1.100

1. 080
1.070
2. 050
1.050
1.040
1.040
1.040
1.040
1.050
1.070
1.080
1.090
3. 120
1.195
1.080
1.070
1.085
1.140
1.130
1.125
1.110
0.550
0.650
0.700
0.800
0.860
0.976
0.990
1.020
1.060

Elevation of water table
(m above sea level)

## Station No

Date Time

GWS1/14

| 5 | Jul 89 | 802 |
| :---: | :---: | :---: |
| 12 | Jul. 99 | 78 |
| 19 | Jul E9 | 817 |
| 26 | Jul B9 | 724 |
| 2 | Aug 89 | 723 |
| 9 | Aug 8 ? | 717 |
| 16 | Aug 89 | 713 |
| 23 | Aug 89 | 721 |
| 30 | Aurg 89 | 707 |
| 6 | Sep 89 | 725 |
| 13 | Sep 89 | 75.1 |
| 20 | Sep 89 | 74.2 |
| 27 | Sep 89 | 737 |
| 4 | Dct 89 | 756 |
| 1 | Nov 89 | 820 |
| 10 | Nov 89 | 715 |
| 11 | Nov 89 | 1510 |
| 15 | Nov 89 | 1511 |
| 27 | Nov 89 | 822 |
| 7 | Der 89 | 825 |
| 10 | Der 89 | 1505 |
| 13 | Dect 8 ? | 1510 |
| 17 | Dec 89 | 728 |
| 19 | Dec 89 | 1519 |
| 21 | Dec S? | 755 |
| 27 | Der 99 | 1515 |
| $\because$ | Jan 90 | 812 |
| 1.7 | Jan 90 | 809 |
| 24 | Jan 90 | $8 \div 5$ |
| $\pm 1$ | Jan 90 | 814 |

Depth to water
(in below
datum level)

Elevation of water table
(im above sea level)

| 2.020 | 0.839 |
| :---: | :---: |
| 2.08 | 0.824 |
| 2.040 | 0.317 |
| 2.045 | 0.814 |
| 2.050 | 0.809 |
| 2.080 | 0.829 |
| 1.975 | 0.864 |
| 2.000 | 0.859 |
| 2.040 | 0.819 |
| 2.060 | 0.799 |
| 2.090 | 0.759 |
| 1.700 | 1.159 |
| 2.020 | 0.839 |
| 1.755 | 1.094 |
| 2.100 | 0.759 |
| 2.080 | 0.779 |
| 2.050 | 0.807 |
| 2.040 | 0.819 |
| 2.070 | 0.789 |
| 2.090 | 0.769 |
| 2.100 | 0.759 |
| 2.080 | 0.779 |
| 1.600 | 1.259 |
| 1.710 | 1.149 |
| 1.770 | 1.089 |
| 1.850 | 1.009 |
| 1.900 | 0.759 |
| 2.010 | 0.849 |
| 2.030 | 0.529 |
| 2.100 | 0.759 |

Station No

GWS1/15

| 5 | Jul 89 | 906 |
| :---: | :---: | :---: |
| 12 | Tul 99 | 84.5 |
| 19 | Jul 89 | 901. |
| 26 | Jul 97 | 814 |
| 2 | Aug 89 | 822 |
| 9 | Aug 89 | 807 |
| 16 | Aug 89 | 802 |
| $2 \times$ | Aug 89 | 815 |
| 30 | Aug 8 ? | 750 |
| 6 | Sep 89 | 915 |
| 18 | Sep g\% | 8.6 |
| 20 | Sep 89 | Q31 |
| 27 | Sep 9 ? | 824 |
| 4 | Oct 89 | 840 |
| 1 | Nov 89 | 912 |
| 10 | Nov 89 | Q0S |
| 11 | Nov 89 | 1543 |
| 15 | Nov 89 | 1551 |
| 29 | Nov 89 | 908 |
| 7 | Dec 89 | 904 |
| 10 | Dec g9 | 1586 |
| 13 | Dec 89 | 15.44 |
| 17 | Dec 89 | 815 |
| 19 | Dec 89 | 1556 |
| 21 | Dec 39 | 8.0 |
| 27 | Dec 89 | 1549 |
| $\bigcirc$ | Jan 90 | 854 |
| 10 | Ian 90 | 1542 |
| 17 | Jan 90 | 853 |
| 24. | Jan 90 | 922 |
| 31 | Jan 90 | 849 |

Time
Depth to water
(m below
detum level.)

Elevation of water table
( $n$ above sea level)

| 2.220 | 1.180 |
| :---: | :---: |
| 2.190 | 1.210 |
| 2.180 | 1.220 |
| 2.155 | 1.245 |
| 2.150 | 1.250 |
| 2.150 | 1.250 |
| 2.150 | 1.250 |
| 2.150 | 1.250 |
| 2.160 | 1.240 |
| 2.165 | 1.2S5 |
| 2.190 | 1.220 |
| 2.180 | 1.220 |
| 2.200 | 1.200 |
| 2.230 | 1.170 |
| 2.290 | 1.110 |
| 2.150 | 1.210 |
| 2.175 | 1.225 |
| 2.150 | 1.210 |
| 2.250 | 1.150 |
| 2.225 | 1. 175 |
| 2.220 | 1.180 |
| 2.210 | 1.190 |
| 1.660 | 1.740 |
| 1.740 | 1.660 |
| 1.790 | 1. 510 |
| 1.890 | 1.510 |
| 1.950 | 1.459 |
| 2.050 | 1.350 |
| 2.070 | 1.300 |
| 2.100 | 1. 300 |
| 2.150 | 1.250 |

Station No

GWS $1 / 16$

Date
Time

942
922
742
84.4
$85 ?$
$8 \pm 4$
828
842
818
847
909
906
85
913
944
$8 \%$
1611
1613
9.1

925
1558
1607
8.7

1616
849
1607
917
1601
913
938
910
Depth to water
(m below
dathm level)
5.160
1.540
5.125
5.110
5.095
5.090
5.090
5.080
5.080
5.090
5.075
5.090
5.100
5.110
5.135
5.200
5.159
5.115
5.115
5.170
5.160
5.195
5.145
4.650
4.670
4.670
4.740
4.850
4.900
4.750
5.020
5.060

Elevation of water table (m above sea level)

1. 3.75
1.390
2. 495
1.410
1.420
1.420
1.420
1.420
1.425
1.410
1.400
1.390
1.365
3. 300
1.250
4. 385
5. 355
6. $\mathbf{~ B O}$
1.340
1.305
1.35
1.850
1.8 .30
1.850
1.760
1.650
1.600
7. 550
1.4.40
1.440

| Station No |  | Date | rime | Depth to water (m below datum level) | Elevation of water table (m above sea level) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| GWS1/17 | 5 | Jul 89 | 754 | 8.065 | 0.375 |
|  | 12 | Jul 89 | 726 | \%.090 | 0.850 |
|  | 17 | Jul 89 | 511 | \%.180 | 0.260 |
|  | 26 | Jul 89 | 718 | - 150 | 0.290 |
|  | 2 | Aug 89 | 716 | \%.110 | 0.350 |
|  | 9 | Aug 89 | 710 | 5.020 | 0.420 |
|  | 16 | Aug 89 | 707 | 3.130 | 0.310 |
|  | 2 S | Aug 89 | 71.6 | 2.930 | 0.510 |
|  | 6 | fug 89 | 459 | 3.070 | 0.370 |
|  | 6 | Sep 89 | 71.7 | 2.920 | 0. 520 |
|  | 13 | Sep 87 | 745 | 5.160 | 0.280 |
|  | 20 | Sep 89 | 735 | 2.820 | 0.620 |
|  | 27 | Sep 89 | 781 | 5.120 | 0.320 |
|  | 4 | Oct 87 | 749 | 2.850 | 0.590 |
|  | 1 | Nov 89 | 812 | 2.860 | 0.580 |
|  | 10 | Nov 89 | 708 | 3.050 | 0.390 |
|  |  | Nov 89 | 1504 | 2.395 | 0.545 |
|  | 15 | Nov 87 | 1505 | -. 055 | 0.895 |
|  | 29 | Nov 89 | 916 | 2.840 | 0.600 |
|  | 7 | Dec 89 | 819 | 2.735 | Q. 505 |
|  |  | Dec 89 | 1500 | 3.050 | 0.390 |
|  |  | Dec 89 | 1505 | 3.050 | 0.410 |
|  |  | Dec 89 | 722 | 2.680 | 0.760 |
|  | 19 | Der 89 | 1511 | 2.870 | 0.570 |
|  |  | Dec 39 | 750 | 2.790 | $0_{0} \leqslant 50$ |
|  |  | Dec 89 | 1507 | 2.890 | 0. 560 |
|  |  | Jan 90 | SO6 | 2.760 | 0.680 |
|  |  | Jan 90 | 80\% | 2.850 | -. 690 |
|  | 24 | 1 an 90 | 825 | 2.860 | \%. 580 |
|  | 31 | $\operatorname{Jan} 90$ | 810 | 2.980 | 0.510 |
| GWS1/13 |  | Tan 90 | 1502 | 5.390 | 0.140 |
|  |  | Jan 90 | 750 | 5.500 | 0.080 |
|  |  | Jan 90 | 315 | 5.500 | 0.030 |
|  |  | Ian 90 | 758 | 5.600 | -0.070 |

Station No

6wS1/19

Date
Time

918

| 5 | Jut 89 | 918 |
| :---: | :---: | :---: |
| 12 | Jul 89 | 958 |
| 19 | Jul 89 | 909 |
| 26 | Jul $\mathrm{B}^{\text {9 }}$ | 823 |
| 2 | Aug 89 | 88\% |
| 9 | Aug 89 | 816 |
| 13 | Aug 89 | 8.11 |
| 23 | Aug 89 | 824 |
| 30 | Alig 89 | 759 |
| 6 | Sep 89 | 924 |
| 13 | Sep 99 | 845 |
| 20 | Sep g\% | 839 |
| 27 | Sep 39 | 8.5 |
| 4 | Oct 89 | 849 |
| 1 | Nov 89 | 720 |
| 10 | Nov 89 | 913 |
| 11 | Nov 89 | 1556 |
| 15 | Nov 89 | 1559 |
| 29 | Nov 89 | 917 |
| 7 | Dec 8 ? | 912 |
| 10 | Dec 89 | 1544 |
| 13 | Dec 39 | 1550 |
| 17 | Dec 89 | 822 |
| 19 | Dec 89 | 1608 |
| 21 | Dec 89 | 836 |
| 27 | Der 99 | 1554 |
| $\because$ | Ian 90 | 901 |
| 10 | Jan 90 | 1549 |
| 17 | Jan 90 | 900 |
| 24 | Jan 90 | 926 |
| 31 | Jan 90 | 955 |

Depth to water (m) below datum level.)

Elevation of water table (in above sea level)

| 1.180 | 1.179 |
| :---: | :---: |
| 1.1 .45 | 1.214 |
| 1.130 | 1.22? |
| 1.120 | 1.289 |
| 1.150 | 1.209 |
| $1=111$ | 1. 248 |
| 1.110 | 1. 249 |
| 1.095 | 1.264 |
| 1.100 | 1. 259 |
| 1.100 | 1.259 |
| 1.130 | 1.209 |
| 1.140 | 1.219 |
| 1.150 | 1.209 |
| 1.190 | 1.179 |
| 1.240 | 1.119 |
| 1.150 | 1.209 |
| 1.135 | 1.224 |
| 1.145 | 1.214 |
| 1.210 | 1.149 |
| 1. 190 | 1.169 |
| 1.210 | 1.149 |
| 1.175 | 1. 184 |
| 0.650 | 1.709 |
| 0.720 | 1.659 |
| 0.760 | 1.597 |
| 0.830 | 1.529 |
| 9.910 | 1.449 |
| 1.000 | 1.359 |
| 1.080 | 1. 327 |
| 1.070 | 1.299 |
| 1.120 | 1.237 |

Station No Date Time

GWS1/2
926

| 5 | JuJ 9 9 | 926 |
| :---: | :---: | :---: |
| 12 | Jul 39 | 757 |
| 19 | Jul 89 | 8.4 |
| 26 | Jul 8 ? | 742 |
| 2 | Aug 89 | 74. |
| 9 | Aug 59 | 734 |
| 16 | Aug 89 | 729 |
| 23 | A49 3? | 740 |
| 30 | Aug 89 | 722 |
| 6 | Sep 59 | 744 |
| 13 | Sep 89 | 809 |
| 20 | Sep 8 \% | 800 |
| 27 | Sep 8\% | 758 |
| 4 | Oct 99 | 813 |
| 1 | Nov 89 | 839 |
| 10 | Nov 89 | 755 |
| 11 | Nov 99 | 1526 |
| 15 | Nov 89 | 1526 |
| 27 | Nov 89 | 842 |
| 7 | Dec 89 | 340 |
| 10 | Dec 89 | 15.18 |
| 13 | Dec 89 | 1524 |
| 17 | Dec 89 | 752 |
| 19 | Dec 29 | 1538 |
| 21 | Dec 89 | 809 |
| 27 | Dec 87 | 1526 |
| 3 | Ian 90 | 929 |
| 10 | Jan 90 | 15\% |
| 17 | Jan 90 | 827 |
| 24 | Jan 90 | 057 |
| S 1 | Jan 90 | 829 |

Depth to water
(in below
datum level)
3.660
8.670
8.655
3.650
3.630
3.620
3.610
3.600
3.500
3.590
3.590
8.590
3.600
$\pm .635$
3.670
5.6 .60
3.615
-590
3.700
3.676
3. 680
3.665
3.200
3.190
3.230
3.370

- 460
3.600
$3 \cdot 500$
3.600
3.620

Elevation of water table
(f above sea level)
0.720
0.710
0.725
0.730
0.750
0.760
0.770
0.780
0.300
0.800
0.790
0.790
0.780
0.745
0.710
0.720
0.765
0.790
0.680
0.710
0.700
0.715
1.180
1.190
1.150
1.010
0.930
0.760
0.800
0.780
0.760

## Date

Time

746

| 5 | Jul 89 | 746 |
| :---: | :---: | :---: |
| 12 | Jul 89 | 716 |
| 19 | Jul 89 | 806 |
| 26 | Jul 39 | 712 |
| 2 | Aug 39 | 710 |
| 9 | Aug 89 | 706 |
| 16 | Aug 89 | 701 |
| 2 S | Aug 89 | 711 |
| 30 | Aug 89 | 654 |
| 6 | Sef 8 ? | 714 |
| 13 | Ser 99 | 740 |
| 20 | Sep 89 | 728 |
| 27 | Sep 39 | 720 |
| 4 | Dct 89 | 742 |
| 1 | Nov 89 | 804 |
| 15 | Nov 89 | 1459 |
| 29 | Nov 89 | 1917 |
| 7 | Dec 89 | 814 |
| 17 | Dec 89 | 717 |
| 21 | Dec 89 | 745 |
| $\Sigma$ | Jan 90 | 801 |
| 17 | Jan 90 | 752 |
| צ1 | Jan 90 | 800 |

Oos

Depth to water
(in below
datum level)
3.310

を. BO
3.350
3.550
3.380
․ 36
2.360
3.350
B. 370
3. 370
※.415
3.395
3.410
3.440
3.470
3.450
3.480
3.460
3.570
3.400
3.420
3.466
3.520

Elevation of water table
(m above sea level)

GWS1/20

Date

GWS1/S

| 5 | Jul 89 | 919 |
| :---: | :---: | :---: |
| 12 | Jul 89 | 749 |
| 17 | Jul 9 c | 828 |
| 26 | Jul 89 | 786 |
| 2 | Aug 89 | 735 |
| 9 | Aug 89 | 727 |
| 16 | Aug 89 | 728 |
| 23 | Aug 8 9 | 784 |
| 30 | Attg 99 | 717 |
| 6 | Sep 89 | 7.8 |
| 13 | Sep as | 801 |
| 20 | Sep 89 | 755 |
| 27 | Sep 3\% | 747 |
| 4. | Oct 89 | 808 |
| 1 | Nov 89 | 8? |
| 10 | Nov 89 | 730 |
| 11 | Nov 89 | 1521 |
| 15 | Nov g9 | 1521 |
| 29 | Nov 89 | 8 8 4 |
| 7 | Dec 89 | 835 |
| 10 | Dec 89 | 1518 |
| 13 | Dec 89 | 1520 |
| 17 | Dec 89 | 747 |
| 19 | D®C 8 ? | 1528 |
| 21 | Dec S? | 805 |
| 27 | Der 89 | 1528 |
| S | Jan 90 | 995 |
| 10 | Jan 90 | 1518 |
| 17 | Jan 90 | 822 |
| 24 | Jan ¢0 | 852 |
| 31 | Jan 90 | 824 |

Time

819 749 Q2e
786
735
727
-

717
78
801
75.

7
BE
736
1521
1521
$8 \geq 5$
1513
1520
747

805
$152 \%$
895
1518
82

824

Depth to water
(in below datum level)

Elevation of water table
( $m$ above sea level)

| 1. 965 | 0.554 |
| :---: | :---: |
| 2.095 | O. 4.34 |
| 2.075 | 0.444 |
| 2.100 | 0.419 |
| 2.060 | 0.459 |
| 2.075 | 0.444 |
| 2.050 | 0.469 |
| 2.020 | 0.499 |
| 2.040 | 0.479 |
| 2.060 | 0.459 |
| 2.120 | 0.397 |
| 1.980 | 0.589 |
| 2.110 | $0.40 \%$ |
| 2.040 | 0.479 |
| 2.020 | 0.499 |
| 2.110 | 0.409 |
| 2.025 | 0.494 |
| 2.005 | 0.514 |
| 2.010 | \%. 509 |
| 2.070 | 0.449 |
| 2.180 | 0.58 |
| 2.040 | 0.479 |
| 1.660 | 0.859 |
| 1.900 | 0.619 |
| 1.950 | O. 569 |
| 1.980 | 0.58 |
| 1.990 | O. 529 |
| 2.100 | 0.419 |
| 2.070 | $0.44 \%$ |
| 2.060 | 0.459 |
| 2.150 | 0.369 |

## Station No

Date
Time
Depth to water
(mbelow
detum level)
Elevation of water table
(m above sea level)
GWS 1:4

| 5 | Jul 89 | 838 |
| :---: | :---: | :---: |
| 12 | Jul 8 9 | 907 |
| 19 | Jul 99\% | 841 |
| 23 | Jul 99 | 748 |
| 2 | Aug 89 | 747 |
| 9 | Aug 89 | $7 ¢ 9$ |
| 16 | Ang 9 9 | 755 |
| $2 \times$ | Aug 9 ? | 746 |
| 30 | Aug 8 ? | 728 |
| 6 | Sep 89 | 750 |
| 13 | Sep 59 | 819 |
| 20 | Sep 89 | 812 |
| 27 | Sep 89 | 806 |
| 4 | Oct 89 | 818 |
| 1 | Nov 89 | 846 |
| 10 | Nov 89 | 743 |
| 11 | Nov 89 | 1531 |
| 15 | Nov 89 | 1533 |
| 29 | Nov 89 | S51 |
| 7 | Dec 89 | 846 |
| 10 | Dec 89 | 1522 |
| 13 | Deec 89 | 1529 |
| 17 | Dec 89 | 1757 |
| 19 | Dec 89 | 15.7 |
| 21 | Dec 89 | 814 |
| 27 | Dec 89 | 1582 |
| \% | Jan PO | 888 |
| 10 | ana 90 | 1520 |
| 17 | Jan 90 | 8.2 |
| 24 | Jan 90 | 904 |
| $\bigcirc 1$ | Jan 90 | $8 \leq 2$ |


| 2.980 | O.559 |
| :---: | :---: |
| -. 000 | 0.535 |
| 2.950 | 0.589 |
| 2.890 | 0.649 |
| 2.865 | 0.674 |
| 2.840 | 0.699 |
| 2.810 | $0.7 \%$ |
| 2.750 | 0.799 |
| 2.750 | 0.789 |
| 2.720 | 0.819 |
| 2.720 | 0.819 |
| 2.720 | 0.819 |
| 2.750 | 0.909 |
| 2.785 | 0.754 |
| 2.750 | 0.789 |
| 2.710 | 0.829 |
| 2.910 | 0.629 |
| 2.850 | 0.689 |
| 3.060 | 0.479 |
| 2.750 | 0.589 |
| \%.000 | 0.537 |
| 2.750 | 0.789 |
| 2.360 | 1.179 |
| 2.610 | 0.929 |
| 2.660 | 0.879 |
| 2.830 | 0.709 |
| 2.880 | 0.659 |
| 3.300 | 0.289 |
| 2.920 | 0.619 |
| 2.980 | 0. 559 |
| 2.820 | 0.619 |

## Station No

Time

> Depth to water (m below datum level)

Elevation of water table
(im above sea level)
GWS1/5

| 5 | Jul 89 | 814 |
| :---: | :---: | :---: |
| 12 | Jul 89 | 744 |
| 19 | Jul 99 | 825 |
| 26 | Inl B9 | 78 |
| 2 | Aug 39 | 732 |
| 9 | Aug 89 | 725 |
| 16 | Aug 89 | 720 |
| 28 | Aug 89 | 732 |
| 30 | Aug 99 | 714 |
| 6 | Sep 89 | 73 |
| 13 | Sep 89 | 757 |
| 20 | Sep 89 | 750 |
| 27 | Sep 89 | 74.4 |
| 4 | Oct 89 | 803 |
| 1 | Nov 89 | 828 |
| 10 | Nov 89 | 725 |
| 11 | Nov 89 | 1517 |
| 15 | Nov 89 | 1518 |
| 29 | Nov 8 ? | 880 |
| 7 | Der 8 ? | 8 8 |
| 10 | DEc 89 | 1511 |
| 13 | Dec 99 | 1517 |
| 17 | Dec 89 | 744 |
| 19 | Dec 39 | 1525 |
| 21 | Dec 89 | 802 |
| 27 | Dec 89 | 1521 |
|  | Jan 90 | 222 |
|  | Jan ¢o | 1514 |
|  | Jan 70 | 818 |
|  | Jan 90 | 920 |


| 2.520 | -0.530 |
| :---: | :---: |
| 2.555 | -0.565 |
| 2. 585 | -6.595 |
| 2.585 | -0. 595 |
| 2.575 | -0.585 |
| 2.580 | -0.540 |
| 2.550 | -0.560 |
| 2.480 | -0.490 |
| 2.545 | -0.555 |
| 2.520 | -0.630 |
| 2.630 | -0.640 |
| 2.465 | -0.475 |
| 2.620 | -0.630 |
| 2.510 | -0.520 |
| 2.520 | -0.530 |
| 2.590 | -0. 600 |
| 2.490 | -0.500 |
| 2.520 | -0.580 |
| 2.510 | -0. 520 |
| 2.540 | -0. 550 |
| 2.650 | -0.640 |
| 2.540 | -0.650 |
| 2.110 | -0.120 |
| 2.380 | -0. -40 |
| 2.860 | -6, 90 |
| 2.440 | -0.450 |
| 2.440 | $-6.450$ |
| 2.540 | $\cdots .970$ |
| 2.530 | -0. 540 |
| 2.600 | -0.610 |

Station No

GWS $1 / 6$

Date Time

| 5 | 34189 | 942 |
| :---: | :---: | :---: |
| 12 | Jul 89 | 611 |
| 15 | Jut 89 | 8.44 |
| 26 | Jud. 97 | 750 |
| 2 | Aug 89 | 750 |
| 9 | Aug 89 | 741 |
| 16 | fug 89 | 787 |
| 23 | Aug 89 | 749 |
| 30 | Aug 89 | 780 |
| 6 | Sep 99 | 752 |
| 13 | Sep 89 | 821 |
| 20 | Sep 89 | 814 |
| 27 | Sep 89 | 808 |
| 4 | Oct 89 | 825 |
| 1 | Nov 89 | 848 |
| 10 | Nov 89 | 745 |
| 11 | Nov g9 | 15צ\% |
| 15 | Nov 89 | 1584 |
| 29 | Nov 99 | 953 |
| 7 | Dec 89 | 848 |
| 10 | Dec 99 | 1524 |
| 13 | Dec 89 | 15.1 |
| 17 | Dec 89 | 758 |
| 19 | Dec 3 ? | 1589 |
| 21 | Dec 39 | 815 |
| 27 | Dec 99 | 158 |
| $\square$ | $\operatorname{Jan} 90$ | 340 |
| 10 | Ian 90 | 1527 |
| 17 | Jan 90 | 834 |
| 24 | Jan 90 | 906 |
| 31 | Jan 90 | 85 |

## Depth to water (m below datum level)

| 2.156 | 0.745 |
| :--- | :--- |
| 2.150 | 0.750 |
| 2.140 | 0.760 |
| 2.120 | 0.780 |
| 2.115 | 0.705 |
| 2.100 | 0.800 |
| 2.110 | 0.790 |
| 2.110 | 0.790 |
| 2.110 | 6.790 |
| 2.100 | 0.800 |
| 2.125 | 0.775 |
| 2.100 | 0.800 |
| 2.110 | 0.790 |
| 2.150 | 0.750 |
| 2.180 | 0.720 |
| 2.110 | 0.790 |
| 2.035 | 0.820 |
| 2.080 | 0.710 |
| 2.190 | 0.750 |
| 2.170 | 0.740 |
| 2.160 | 0.770 |
| 2.130 | 1.200 |
| 1.760 | 1.180 |
| 1.720 | 1.120 |
| 1.780 | 1.000 |
| 1.700 | 0.900 |
| 2.000 | 0.790 |
| 2.116 | 0.760 |
| 2.140 | 0.740 |
| 2.140 | 2.160 |

Depth to water
(mbelow
datum level)

Elevation of water table
( $m$ above sea level)
GWS1/7

| 5 | Jul 89 | 951 |
| :---: | :---: | :---: |
| 12 | Jul 89 | 9.35 |
| 19 | Jul 89 | 951 |
| 26 | Jul 89 | 951 |
| 2 | Aug 89 | 906 |
| 9 | Aug 89 | 840 |
| 16 | Aug 89 | 934 |
| 28 | Aug 89 | 347 |
| 30 | Fug 89 | 828 |
| 6 | Sep 89 | 854 |
| 13 | Sep 89 | 917 |
| 20 | Sep 89 | 916 |
| 27 | Sep 89 | 859 |
| 4 | Oct 89 | 922 |
| 1 | Nov 89 | 1006 |
| 10 | Nov 8? | 8 8 |
| 11 | Nov 89 | 1620 |
| 15 | Nov 89 | 1622 |
| 27 | Nov 89 | 941 |
| 7 | Dec 8? | 787 |
| 10 | Dec 89 | 1605 |
| 13 | Dec 89 | 161.6 |
| 17 | Dec 89 | 846 |
| 19 | Dec 89 | 1625 |
| 21 | Dec 89 | 855 |
| 27 | Dec 89 | 1615 |
| $\pm$ | Jan 90 | 925 |
| 10 | Jan 90 | 1609 |
| 17 | Jan 90 | 922 |
|  | Jari 90 | 946 |
| 31 | Jan 90 | 916 |


| 5.880 | 1.170 |
| :--- | ---: |
| 5.354 | 1.196 |
| 5.850 | 1.200 |
| 5.845 | 1.205 |
| 5.840 | 1.210 |
| 5.830 | 1.220 |
| 5.830 | 1.220 |
| 5.820 | 1.230 |
| 5.820 | 1.280 |
| 5.810 | 1.240 |
| 5.830 | 1.220 |
| 5.820 | 1.230 |
| 5.835 | 1.215 |
| 5.850 | 1.200 |
| 5.885 | 1.165 |
| 5.875 | 1.175 |
| 5.840 | 1.210 |
| 5.830 | 1.220 |
| 5.870 | 1.180 |
| 5.870 | 1.190 |
| 5.870 | 1.180 |
| 5.855 | 1.195 |
| 5.400 | 1.650 |
| 5.310 | 1.740 |
| 5.300 | 1.720 |
| 5.420 | 1.630 |
| 5.580 | 1.520 |
| 5.600 | 1.450 |
| 2.650 | 4.400 |
| 5.690 | 1.360 |
| 5.730 | 1.320 |

Station No
Date

GWS1/G

| 5 | Jul 89 | 851 |
| :---: | :---: | :---: |
| 12 | Jul 89 | 819 |
| 17 | Jul 39 | 849 |
| 23 | Jul 89 | 904 |
| 2 | Alug 99 | 809 |
| 9 | Aug 89 | 757 |
| 16 | Aug 89 | 758 |
| 23 | Aug 89 | 801 |
| 30 | Aug 89 | 735 |
| 6 | Sep 89 | $80 \%$ |
| 13 | Sep 89 | 826 |
| 20 | Sep 89 | 819 |
| 27 | Sep 89 | 813 |
| 4 | Oct 89 | 8.50 |
| 1 | Nov 89 | 900 |
| 10 | Nov 89 | 751 |
| 11 | Nov 8 ? | 15.8 |
| 15 | Nov 89 | 1541 |
| 29 | Nov 89 | 858 |
| 7 | Dec 89 | S5S |
| 10 | Dec 89 | 1523 |
| 13 | Dec 89 | 1535 |
| 17 | Dec 89 | 804 |
| 19 | Dec 89 | 1545 |
| 21 | Dec 89 | 920 |
| 27 | DEC 89 | 1589 |
| 三 | Jan 90 | 945 |
| 10 | Jan 90 | 153\% |
| 17 | Jan 90 | 942 |
| 24 | Jan 90 | 912 |
| 3.1 | Jan 90 | 940 |

Depth to water
(m below
datum level)
2.760
2.735
2.720
2.695
2.680
2.675
2.670
2.650
2.670
2.660
2.700
2.700
2.700
2.785
2.780
2.700
2.680
2.690
2.780
2.755
2.750
2.725
2.190
2.280
2.10
2.480
2.540
2.640
2.660
2.680
2.710

Elevation of water table
(on atove sea level)

$$
0.869
$$

0.884
$0.89 \%$
0.934
0.739
0.944
0.949
0.559
0.749
0.959
0.919
0.919
0.919
0.884
0.839
0.919
0.989
0.939
0.839
0.884
0.369
0.894

1. 429
1.35
1.09
2. 1.39
1.079
0.959
0.959
0.936
0.909

Date
Time

854
5 Jul 89
12 Jul. 89
19 Jul 89
26 Jul 89
2 Aug 89
9 Atug 8 9
16 Aurg 89
23 Aug 89
30 Aug 89
6 Sep 89
1 S Sep 89
20 Sep 99
27 Sep 99
4 Oct 89
1 Hov 89
10 Nov 89
11 Nov $89 \quad 1541$
15 Nov 891545
29 Nov $89 \quad 902$
$\begin{array}{rrr}7 \text { Dec } 89 & 857 \\ 10 & \text { Dec } 89 & 159\end{array}$
17 Dec $89 \quad 807$
19 Dec 391549
21 Dec 89824
27 Dec 891542
3 Jan 90
10 Jan 90
17 Jan 90 24 Jan 90
31 Jan 90

828
852
808

801
756
804
759
806
8.80

825
916
35
905
755
8.24
542

848
1537
846
916
84.4

Depth to water
(m below
datum level)
$1.765 \quad 0.814$
1.7550 .824
$1.760 \quad 0.819$
$1.755 \quad 9.824$
$1.750 \quad 0.829$
1.730
1.730
1.750
1.780
1.745
1.775
1.760
1.780
1.800
1.850
1.780
1.760
1.750
1.820
1.810
1.790
1.276
1.365
1.436
1.510
1.510
1.696
1.730
1.750
1.800

Elevation of water table (m above sea level)
0.849
0.849
0.949
0.849
0.834
0.804
0.819
0.799
0.779
0.729
0.799
0.819
0.829
0.759
0.769
$0.78 \%$
1.309
1.214
1.149
1.069
0.769
0.899
0.947
0.829
0.779

Station No Date Time

GWS2/1

| 5 | Jul g ¢ | 751 |
| :---: | :---: | :---: |
| 12 | Jul 99 | 721 |
| 19 | Jul 89 | 809 |
| 26 | Jul 89 | 714 |
| 2 | Aug 89 | 713 |
| 9 | Fug 89 | 708 |
| 16 | Aug 5 ? | 704 |
| 23 | Aus 89 | 718 |
| 30 | Alug 89 | 656 |
| 6 | Sep 89 | 716 |
| 13 | Sep 89 | 1742 |
| 20 | Sep 89 | 780 |
| 27 | Sep 89 | 728 |
| 4 | Oct 89 | 744 |
| 1 | Nov 89 | 809 |
| 10 | Nov 89 | 70 S |
| 11 | Nav 89 | 1.459 |
| 15 | Nov 89 | 1501 |
| 29 | Nov 89 | 810 |
| 7 | Dec 89 | 516 |
| 10 | Dec 89 | 1457 |
| 12 | Dec 89 | 1502 |
| 17 | Dec 9? | 720 |
| 19 | Dec 39 | 1508 |
| 21 | Dec 89 | 747 |
| 27 | Dec 89 | 1505 |
| 3 | Jan 90 | 805 |
| 10 | Jan 90 | 1505 |
| 17 | Jan 90 | 755 |
| 24 | Jan 90 | 817 |
| 31 | Jan 90 | 802 |

Depth to water
(fri below
datum level)

| 4.090 | 0.160 |
| :---: | :---: |
| 4.055 | 0.195 |
| 4.090 | 0.160 |
| 4.050 | 0.200 |
| 4.075 | 0.175 |
| 4.05 | 0.215 |
| 4.100 | 0.150 |
| 3.980 | 0.270 |
| 4.050 | 0.200 |
| \%.980 | 0.270 |
| 4.070 | 0.180 |
| 8.740 | 0.310 |
| 4.090 | 0.160 |
| 3.975 | 0.275 |
| 4.050 | 0.220 |
| 4.140 | 0.110 |
| 4.055 | 0.195 |
| 4.125 | 0.125 |
| 4.040 | 0.210 |
| 4.060 | 0.190 |
| 4.180 | 0.120 |
| 4.120 | 0.130 |
| - 8.700 | 0.350 |
| 4.010 | 0.240 |
| -980 | 0.270 |
| 4.010 | 0.240 |
| 3.940 | 0.310 |
| 4.080 | 0.200 |
| 4.000 | O. 250 |
| 4.050 | 0.200 |
| 4.050 | 0.190 |

Station No
Date
Time

Depth to water ( $m$ below datum level)
water table
(in above sea level)

Water levels

## Depth to water <br> ( m below datum level.)

levation of water table
(ii above sea level)

| 2.295 | 0.595 |
| :---: | :---: |
| 2.285 | 0.605 |
| 2.800 | 0.590 |
| 2.295 | 0.595 |
| 2.300 | 0.590 |
| 2.295 | 0.59 |
| 2.280 | 9.610 |
| 2.280 | 0.610 |
| 2.280 | 0.610 |
| 2.290 | 0.600 |
| 2.300 | 0.590 |
| 2.300 | 0.570 |
| 2.810 | 0.580 |
| 2.320 | 0.570 |
| 2.820 | 0.570 |
| 2.340 | 0.550 |
| 2.310 | 0.580 |
| 2.30 | 0.570 |
| 2.370 | 0.520 |
| 2.380 | 0.510 |
| 2.365 | 0.525 |
| 2.840 | 0.550 |
| 1.750 | 0.940 |
| 1.980 | 0.910 |
| 2.020 | 0.870 |
| 2.040 | 0.850 |
| 2.100 | 0.790 |
| 2.120 | 0.770 |
| 2.160 | 0.780 |
| 2.200 | 0.690 |
| 2.260 | 0.650 |

## Station No Date Time

GWS2/13

| 5 | Jul 99 | 714 |
| :---: | :---: | :---: |
| 12 | Jul 89 | 547 |
| 19 | Jul 69 | 745 |
| 26 | Jul 89 | 650 |
| 2 | Au!g 89 | 648 |
| 7 | Aug 89 | 646 |
| 16 | Aug 89 | 642 |
| 23 | Aug 9 ¢ | 652 |
| 30 | Autg 89 | 65 |
| 6 | $\operatorname{sep} 9$ | 647 |
| 13 | Sep 89 | 716 |
| 20 | Sep 89 | 705 |
| 27 | Sep 89 | 705 |
| 4 | Dct 89 | 721 |
| 1 | Nov 8 ? | 75 |
| 10 | Nov 89 | 635 |
| 11 | Nov 89 | 14.59 |
| 15 | Nov 89 | 1489 |
| 29 | Nov 8 ? | 742 |
| 7 | Dea 89 | 754 |
| 10 | Dec 89 | 14.39 |
| 13 | Dec 89 | 1443 |
| 17 | Dec 89 | 658 |
| 19 | Dec 89 | 1447 |
| 21 | Dec B? | 729 |
| 27 | Dec 87. | 1450 |
| $\pm$ | Jari 90 | 743 |
| 10 | Jan 9\% | 1442 |
| 24 | Jari 90 | 755 |
| З1 | Jan 90 | 788 |

Depth to water
(m below
datum level)

Elevation of water table
(m above sea level)

| 2.130 | 0.500 |
| :---: | :---: |
| 2.165 | 0.465 |
| 2.220 | 0.410 |
| 2.225 | 0.405 |
| 2.210 | 0.420 |
| 2.200 | 0.430 |
| 2.190 | 0.440 |
| 2.190 | 0.440 |
| 2.130 | 0.450 |
| 2.200 | 0.430 |
| 2.240 | 0.390 |
| 2.200 | 0.430 |
| 2.255 | 0.375 |
| 2.225 | 0.405 |
| 2.260 | 0.370 |
| 2.270 | 0.360 |
| 2.235 | 0.395 |
| 2.230 | 0.400 |
| 2.260 | 0.370 |
| 2.310 | 0.320 |
| 2.300 | 0.30 |
| 2.260 | 0.370 |
| 1.990 | 0.640 |
| 1.980 | 0.650 |
| 2.010 | 0.620 |
| 2.010 | 0.620 |
| 2.085 | O. 545 |
| 2.090 | 6. 550 |
| 2.150 | 0.480 |
| 2.260 | 0.370 |

Date
Time

> Depth to water
> (m below datum level)

| 1.265 | 1.494 |
| :--- | ---: |
| 1.265 | 1.494 |
| 1.270 | 1.489 |
| 1.255 | 1.494 |
| 1.260 | 1.499 |
| 1.245 | 1.514 |
| 1.245 | 1.514 |
| 1.240 | 1.519 |
| 1.240 | 1.519 |
| 1.245 | 1.514 |
| 1.276 | 1.439 |
| 1.255 | 1.504 |
| 1.285 | 1.474 |
| 1.285 | 1.474 |
| 1.330 | 1.429 |
| 1.305 | 1.454 |
| 1.270 | 1.489 |
| 1.270 | 1.499 |
| 1.210 | 1.449 |
| 1.320 | 1.489 |
| 1.35 | 1.454 |
| 1.300 | 1.459 |
| 0.890 | 1.869 |
| 0.850 | 1.909 |
| 0.840 | 1.919 |
| 0.890 | 1.879 |
| 0.956 | 1.804 |
| 1.080 | 1.729 |
| 1.060 | 1.699 |
| 1.120 | 1.639 |
| 1.180 | 1.579 |

Elevation of water table
(m above sea level)

GWS2:14

| 5 | Jul 89 | 9.81 |
| :---: | :---: | :---: |
| 12 | Jul 89 | 65 |
| 19 | Iul ag | $7 \bigcirc 7$ |
| 26 | Jul 89 | 640 |
| 2 | Autg 89 | 534 |
| 9 | Aug 89 | 636 |
| 16 | Aug 89 | 685 |
| 2 S | Aug 89 | 646 |
| 30 | Aug 89 | 628 |
| 6 | Sep 9\% | 64.1 |
| 13 | Sep 89 | 709 |
| 20 | Sep 89 | 659 |
| 27 | Sep 89 | 700 |
| 4 | Oct 89 | 714 |
| 1 | Nov 89 | 752 |
| 10 | Nov g9 | 623 |
| 11 | Nov 99 | 1428 |
| 15 | Nov 89 | 1423 |
| 29 | Nov 89 | 729 |
| 7 | Dec 89 | 750 |
| 10 | Dec 39 | 1435 |
| 13 | Dec 89 | 1488 |
| 17 | Dec 89 | 652 |
| 17 | Dec 89 | 1439 |
| 21 | Dec 8\% | 717 |
| 27 | Dec 87 | 1.441 |
| $\pm$ | Jan 90 | $7 \leq 7$ |
| 10 | Jan 90 | 1432 |
| 17 | Јan 90 | 722 |
| 24 | Jan 90 | 74.4 |
| 31 | Jan 90 | 780 |

Time

706

| 5 | Iul 99 | 706 |
| :---: | :---: | :---: |
| 12 | Jul 89 | 93 |
| 19 | Jul 89 | 731 |
| 26 | Jul 89 | 644 |
| 2 | Aug 89 | 640 |
| 9 | Aug 89 | 640 |
| 16 | Aug 89 | 6.3 |
| 23 | Aug 89 | 640 |
| 3 | Aug 89 | 622 |
| G | Sep 39 | 65 |
| 13 | Sep g\% | 70 \% |
| 20 | Sep 89 | 653 |
| 27 | Sep 89 | 653 |
| 4 | Oct 89 | 708 |
| 1 | Nov 89 | 726 |
| 10 | Nov 89 | \&16 |
| 11 | Nov 39 | 1422 |
| 15 | Nov 89 | 1423 |
| 29 | Nov 89 | 722 |
| 7 | Dec 8 ? | 74.4 |
| 10 | Dec 89 | 1429 |
| 13 | Dec 39 | 143 S |
| 17 | Dec 89 | 642 |
| 19 | Dec 89 | 1430 |
| 21. | Dec 89 | 709 |
| 27 | Dec 89 | 1435 |
| $\because$ | Jan 90 | 751 |
| 10 | Jan 90 | 1.425 |
| 17 | Jan 90 | 716 |
| 24 | Jan 90 | 788 |
| 31 | Jan 90 | 724 |

Depth to water
(in below datum level)

Elevation of water table
(m above sea level)

| 1.790 | 0.789 |
| :--- | ---: |
| 1.795 | 0.784 |
| 1.800 | 0.729 |
| 1.885 | 0.694 |
| 1.820 | 0.709 |
| 1.820 | 0.709 |
| 1.800 | 0.729 |
| 1.815 | 0.714 |
| 1.775 | 0.754 |
| 1.790 | 0.769 |
| 1.820 | 0.709 |
| 1.800 | 0.729 |
| 1.850 | 0.679 |
| 1.850 | 0.679 |
| 1.900 | 0.629 |
| 1.860 | 0.669 |
| 1.840 | 0.689 |
| 1.840 | 0.689 |
| 1.870 | 0.659 |
| 1.890 | 0.689 |
| 1.885 | 0.644 |
| 1.840 | 0.689 |
| 1.470 | 1.059 |
| 1.450 | 1.079 |
| 1.490 | 1.089 |
| 1.600 | 1.029 |
| 1.600 | 0.929 |
| 1.600 | 0.929 |
| 1.680 | 0.849 |
| 1.670 | 0.899 |
| 1.800 |  |

GWSE/16

| 5 | Jul 89 | 702 |
| :---: | :---: | :---: |
| 1.2 | Jul 99 | 621 |
| 17 | Jul 39 | 719 |
| 26 | Jul 99 | 638 |
| 2 | Aug 89 | 626 |
| 9 | Aug 89 | 6.50 |
| 16 | Aug 89 | 626 |
| 23 | Aug 8c | 638 |
| 0 | Aug 8 ? | 620 |
| 6 | Sep 89 | 6.2 |
| 13 | Sep 89 | 700 |
| 20 | Sep 89 | 650 |
| 27 | Sep 89 | 651 |
| 4 | Oct S9 | 704 |
| 1 | Nov 89 | 723 |
| 10 | Nov 39 | 614 |
| 11 | Nov 89 | 1420 |
| 15 | Nov 89 | 1421 |
| 29 | Nov 3 ? | 720 |
| 7 | Dec 89 | 741 |
| 10 | Dec 89 | 1427 |
| 13 | Dee 87 | 14.31 |
| 17 | Dec 89 | 639 |
| 17 | Dec 89 | 1.427 |
| 21 | Dec 89 | 706 |
| 27 | Dec 89 | 1483 |
| \% | Jan 90 | 720 |
| 10 | Jan 90 | 1.428 |
| 17 | Jan 90 | 713 |
| 24 | Jan 90 | 787 |
| 31 | Jan 90 | 721 |

Depth to water (m below
datum level)

Water levels

## Station No

Date
Time
ation of water table
(in above sea level)

| 2.120 | 0.580 |
| :---: | :---: |
| 2.220 | 0.480 |
| 2.270 | 0.380 |
| 2.355 | 0.295 |
| 2.180 | 0.470 |
| 2.200 | 0.450 |
| 2.235 | 0.415 |
| 2.140 | 0.510 |
| 2.160 | 0.490 |
| 2.070 | 0.589 |
| 2.285 | 0.365 |
| 1.935 | 0.715 |
| 2.250 | 0.390 |
| 1.920 | 0.730 |
| 1.885 | 0.765 |
| 2.1 .10 | 0.540 |
| 1.970 | 0.660 |
| 2.190 | 0.460 |
| 1.840 | 0.810 |
| 2.120 | 0.530 |
| 2.140 | 0.510 |
| 2.150 | 0.500 |
| 1.780 | 0.870 |
| 1.945 | 0.705 |
| 1.740 | 0.710 |
| 2.040 | 0.610 |
| 1.880 | 0.770 |
| 2.060 | 0.590 |
| 2.000 | 0.650 |
| 1.880 | 0.770 |
| 2.680 | 0.570 |

Date Time
Depth to water
(m below
datum level)

Elevation of water table
(in aloove sea level)

| EWS2:17 | 5 | Jul | 89 | 658 |
| :---: | :---: | :---: | :---: | :---: |
|  | 12 | Jul | 89 | 627 |
|  | 19 | Iut | 89 | 784 |
|  | 26 | Jul | 89 | 636 |
|  | 2 | Aus | 99 | 630 |
|  | 7 | Aung | 89 | 6.8 |
|  | 16 | Aug | 89 | 629 |
|  | 28 | Aug | 89 | 648 |
|  | 30 | Aurg | 89 | 625 |
|  | 6 | Sep | 8 9 | 6.8. |
|  | 13 | Sep | 89 | 706 |
|  | 20 | Sep | 99 | $65 \leqslant$ |
|  | 27 | Sep | 89 | 656 |
|  | 4 | Oct | 89 | 711 |
|  | 1 | Nov | 89 | 728 |
|  | 10 | Nov |  | 619 |
|  | 11 | Nov | 89 | 1425 |
|  | 15 | Nov | 89 | 1425 |
|  | 27 | Nov | 89 | 726 |
|  | 7 | Der | 89 | 746 |
|  | 10 | Dec | 89 | 14.2 |
|  | 18 | Dec | 89 | 1436 |
|  | 17 | Dec | 89 | \$45 |
|  | 1.9 | Dec | 89 | 14.2 |
|  | 21 | Dec | 89 | 711 |
|  | 27 | Dec | 89 | 1436 |
|  | $\pm$ | Jan | 90 | 783 |
|  | 10 | Jan |  | 1423 |
|  | 17 | Jan | 90 | 719 |
|  | 24 | Jan | 90 | 741 |
|  | 31 | Jan | 90 | 728 |


| 1.980 | 1.450 |
| :---: | :---: |
| 1.975 | 1.455 |
| 1.970 | 1.440 |
| 2.000 | 1.430 |
| 2.100 | 1.380 |
| 2.000 | 1.430 |
| 1.980 | 1.450 |
| 1.990 | 1.440 |
| 1.790 | 1.440 |
| 2.000 | 1.480 |
| 2.020 | 1.410 |
| 2.000 | 1.480 |
| 2.020 | 1.410 |
| 2.0さ5 | 1.395 |
| 2.080 | 1.350 |
| 2.020 | 1.410 |
| 2.010 | 1.420 |
| 2.010 | 1.420 |
| 2.060 | 1.370 |
| 2.060 | 1.370 |
| 2.055 | 1.375 |
| 2.080 | 1.400 |
| 1.530 | 1.900 |
| 1.560 | 1.880 |
| 1.600 | 1. 8.80 |
| 1.640 | 1.790 |
| 1.745 | 1.685 |
| 1.770 | 1.660 |
| 1.830 | 1.600 |
| 1.870 | 1. 5.50 |
| 1.930 | 1. 500 |

Station No

GWS2/18

Date

| 5 | JuJ. 98 | 654 |
| :---: | :---: | :---: |
| 12 | Ju1 99 | 615 |
| 19 | Jul 89 | 728 |
| 26 | Jul 89 | 629 |
| 2 | Aug 89 | 623 |
| 9 | Aug 8 ? | 6.27 |
| 16 | Aug 89 | 623 |
| 23 | fug 89 | 634 |
| 30 | Aug 89 | 6.17 |
| 6 | Sep 89 | 625 |
| 13 | Sep 89 | 657 |
| 20 | Sep 89 | 646 |
| 27 | Sep 89 | 648 |
| 4 | Oct 89 | 700 |
| 1 | Nov 89 | 720 |
| 10 | Nov 89 | 610 |
| 11 | Nov 89 | 14.17 |
| 15 | Nov 89 | 1418 |
| 29 | Nov 89 | 716 |
| 7 | Dec 39 | 780 |
| 10 | Dec 89 | 1425 |
| 13 | Dec 39 | 1429 |
| 17 | Dec 89 | 6.6 |
| 19 | Dec 89 | 1424 |
| 21 | Dec 89 | 702 |
| 27 | Dee 89 | 14.8 |
| $\Sigma$ | Jan 90 | 725 |
| 10 | Jan 90 | 1421 |
| 17 | Jan 90 | 710 |
| 24 | Jan 90 | 78 |
| 31 | Jari 90 | 718 |

Time
5.4

615
728
629
b2.

628
a. 4

617
028

646
648
700
20 ,

418
716
-
-ー․
6.5

424
1430
725
1421

78
718

Depth to water
(in below
datum level.)

| 1.300 | 1.200 |
| :---: | :---: |
| 1.810 | 1.190 |
| 1. 56 | 1.150 |
| 1. 375 | 1.125 |
| 1. 3.40 | 1.160 |
| 1. 360 | 1.140 |
| 1.350 | 1.170 |
| 1. 25 | 1. 1.85 |
| 1.325 | 1.175 |
| 1.370 | 1.130 |
| 1.380 | 1.120 |
| 1.375 | 1.125 |
| 1.385 | 1.115 |
| 1.365 | 1.135 |
| 1.360 | 1.140 |
| 1.340 | 1.160 |
| 1.3 SO | 1.170 |
| 1.290 | 1.210 |
| 1.310 | 1. 190 |
| 1.410 | 1.970 |
| 1.365 | 1. 135 |
| 1.300 | 1.170 |
| 0.880 | 1.620 |
| 0.880 | 1.670 |
| 0.920 | 1. 580 |
| 1.000 | 1.500 |
| 1.150 | 1.350 |
| 1.150 | 1.350 |
| 1.250 | 1.250 |
| 1.200 | 1.300 |
| 1.870 | 1.130 |

Elevation of water table
(ii) above sea level)
1.150
1.125
1.160
1.140
.170
1.175
1.1 .0
.120
-1.2
1.135

1. 140
1.160

170
1.190
. 9 O
. 1.5
. 170
1.620

1. 580
. 500
2. 550
1.250
3. 180

| Station | No | Date | Time | Depth to water (mi below datum level) | Elevation of water table (n above sea level) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| GWSe/2 | 5 | Jul 89 | 914 | 1.490 | 6.960 |
|  | 12 | Jul 89 | 854 | 1.475 | 0.975 |
|  | 19 | Jul 89 | 906 | 1.480 | 0.970 |
|  | 26 | Inl 87 | 820 | 1.475 | 0.975 |
|  | 2 | Aug 89 | 827 | 1.480 | 0.970 |
|  | 9 | Aug 89 | 813 | 1.470 | 0.980 |
|  | 16 | Aug 89 | 808 | 1.460 | 0.990 |
|  | 2 S | Aug 89 | 821 | 1.450 | 1.000 |
|  | 30 | Aug 89 | 755 | 1.460 | 0.790 |
|  | 6 | Sep 89 | 821 | 1.460 | 0.970 |
|  | 13 | Sep 89 | 842 | 1.480 | 0.970 |
|  | 20 | Sep 89 | 836 | 1.485 | 0.765 |
|  | 27 | Sep 89 | 828 | 1.490 | 0.960 |
|  | 4 | 0rt 89 | 846 | 1.515 | 0.985 |
|  | 1 | Nov 89 | 918 | 1. 580 | 0.870 |
|  | 10 | Nov 89 | 810 | 1.570 | 0.880 |
|  | 11 | Nov 89 | 1553 | 1.540 | 0.910 |
|  | 15 | Nov 89 | 1556 | 1. 510 | 0.940 |
|  | 27 | Nov 89 | 914 | $\pm .540$ | 0.910 |
|  | 7 | Der 89 | 910 | 1.540 | 0.910 |
|  | 10 | Dec 89 | 1541 | 1.530 | 0.920 |
|  | 13 | Dec 89 | 1548 | 1.580 | 0.920 |
|  | 17 | Dec 89 | 819 | 0.570 | 1.880 |
|  | 19 | Dec 8 ? | 1601 | 0.690 | 1.760 |
|  | 21 | Dece 89 | Q-5 | 0.750 | 1. 700 |
|  | 27 | Dec 89 | 1552 | 1.080 | 1.420 |
|  | $\underset{\sim}{3}$ | Jan 90 | 859 | 1.150 | 1. O |
|  | 10 | Jan 90 | 1547 | 1.240 | 1.210 |
|  |  | $\text { Jan } 90$ | 859 | 1. 310 | 1.140 |
|  | $\leq 1$ | Jan 90 | 85 | 1.400 | 1.050 |
| EWS2\% | 17 | Jan 90 | 759 | 1.970 | 0.230 |
|  | 24 | Jan 90 | 821 | 1.990 | 0.260 |
|  | $\leq 1$ | Jan 90 | 806 | 2.680 | 0.170 |

Station No
Date

| 26 | Jul 99 | 840 |
| :---: | :---: | :---: |
| 2 | Aug 89 | 856 |
| 9 | Aug 39 | 821 |
| 16 | Aug 89 | 925 |
| こЗ | Aug 89 | 830 |
| \% 0 | Aug 89 | 815 |
| 6 | Sep 39 | 844 |
| 13 | Sep 87 | 906 |
| 20 | Sep 89 | $90 \%$ |
| 27 | Sep 39 | 947 |
| 11 | Nov 39 | 1608 |
| 17 | Dec 89 | $8 \leq 4$ |
| 19 | Dec 89 | 1614 |
| 21 | Dec 89 | 846 |
| 27 | Dec 89 | 1604 |
| ت | Jan 90 | 91.5 |
| 10 | Jan 90 | 1559 |
| 17 | Jan 90 | 910 |
| 24 | Jan 90 | 935 |
| $\underset{\sim}{1}$ | Jan 90 | 906 |

G452/5

Jan 90
rime

840
356
831
825
-••
844
906
$90 \%$
,
$8 \leq 4$
614

604
915
559

935
06

## Depth to water ( $m$ below datum level)

| 6.100 | 1.470 |
| :--- | :--- |
| 6.085 | 1.485 |
| 6.095 | 1.485 |
| 6.085 | 1.485 |
| 6.080 | 1.490 |
| 6.090 | 1.490 |
| 6.075 | 1.495 |
| 6.090 | 1.480 |
| 6.100 | 1.470 |
| 6.100 | 1.470 |
| 6.1 .10 | 1.460 |
| 5.630 | 1.940 |
| 5.660 | 1.910 |
| 5.680 | 1.890 |
| 5.750 | 1.820 |
| 5.850 | 1.720 |
| 5.920 | 1.650 |
| 5.950 | 1.620 |
| 6.010 | 1.560 |
| 6.060 | 1.510 |

Elevation of water table (m above sea level)

Station No
Date Time

726
911
9 S 1 12.1489 17 Iul 89 26 Jul 89
2 Aug 89
9 Aug 89
16 Aug 89
23 Aug 87
30 fug 8 ?
6 Sep 89
13 Sep P?
20 Sep 89
27 Sep 89
4 Ort 89
1 Noy 8 ?
10 Nov 39
11 Nov 89
15 Nov 89
29 Nov 89
7 Der 99
10 Dec 89
13 Dec 89
17 Dec 89
19 Dec 89
21 Dec 89
27 Der $89 \quad 1444$
$\because \operatorname{Jan} 90 \quad 909$
$10 \mathrm{Jan} 90 \quad 14.5$
17 Jan 90725
24 Jan $90 \quad 747$
31 Jan 90 7®

Depth to water
( $m$ below
datum level)

Elevation of water table
(in above sea level)

| 2.190 | 0.940 |
| :--- | ---: |
| 2.175 | 0.956 |
| 2.170 | 0.960 |
| 2.165 | 0.965 |
| 2.155 | 0.975 |
| 2.150 | 0.980 |
| 2.140 | 0.990 |
| 2.150 | 0.980 |
| 2.140 | 0.990 |
| 2.145 | 0.985 |
| 2.165 | 0.965 |
| 2.160 | 0.970 |
| 2.170 | 0.960 |
| 2.190 | 0.940 |
| 2.240 | 0.890 |
| 2.210 | 0.920 |
| 2.180 | 0.950 |
| 2.170 | 0.960 |
| 2.220 | 0.910 |
| 2.220 | 0.910 |
| 2.220 | 0.930 |
| 2.200 | 1.260 |
| 1.870 | 1.380 |
| 1.800 | 1.360 |
| 1.800 | 1.275 |
| 1.855 | 1.200 |
| 1.930 | 1.140 |
| 1.990 | 1.100 |
| 2.630 | 1.060 |
| 2.070 | 1.050 |
| 2.100 |  |

Date

GWE2:7

Time

738

| 5 | Jul 89 | 758 |
| :---: | :---: | :---: |
| 12 | Jul e9 | 708 |
| 19 | Jul 89 | 801 |
| 26 | Jul 89 | 766 |
| - | Aug 89 | 704 |
| 7 | Aug 89 | 701 |
| 16 | Aug 89 | 656 |
| 23 | Aug 8\% | 706 |
| 30 | Aug 89 | 549 |
| 6 | Sep 89 | 708 |
| 13 | Sep 89 | 734 |
| 20 | Sep 89 | 722 |
| 27 | Sep 89 | 721 |
| 4 | Oct 89 | $7 \bigcirc 7$ |
| 1. | Nov 89 | 759 |
| 10 | Nov 89 | 655 |
| 11 | Nov 89 | 1453 |
| 15 | Nov 89 | 14 SE |
| 29 | Nov 89 | 802 |
| 7 | Dec 89 | 809 |
| 10 | Dec 89 | 1452 |
| 13 | Dec 89 | 1457 |
| 17 | Dec 39 | 713 |
| 19 | Dec 89 | 1502 |
| 21 | Dece g? | 741 |
| 27 | Dec 89 | 1502 |
| $\pm$ | Jan 90 | 756 |
| 10 | Jan 90 | 1456 |
| 17 | Jan 90 | 744 |
| 24 | Jan 90 | 810 |
| 31 | Jan 90 | 754 |

Depth to water
( m below datum level)

Elevation of water table
(m above sea level)

| 3.180 | 0.290 |
| :---: | :---: |
| 5.300 | 0.170 |
| 3.350 | 0.120 |
| 3.355 | 0.115 |
| 3.235 | 0.235 |
| گ.210 | 0.260 |
| 3.260 | 0.210 |
| \%.180 | 0.840 |
| S. 200 | 0.270 |
| 3.065 | 0.405 |
| 3.260 | 0.210 |
| 2.950 | 0.520 |
| 3.210 | 0.260 |
| 2.955 | 0.515 |
| 2.910 | 0.560 |
| 3.110 | 0.360 |
| 2.990 | 0.480 |
| 3.140 | 0.380 |
| 2.715 | 0.555 |
| 3.080 | 0.390 |
| 区.110 | 0.360 |
| 3.110 | 0.360 |
| 2.880 | 0.590 |
| 区. 010 | 0.460 |
| 2.970 | 0.500 |
| 3.000 | 0.470 |
| 2.860 | 0.610 |
| 2.920 | 0.550 |
| 2.870 | 0.600 |
| 2.840 | 0.630 |
| 2.880 | 0.590 |

Date Time

722

| 5 | Jul 89 | 722 |
| :---: | :---: | :---: |
| 12 | Jul 89 | 655 |
| 19 | 741 89 | 749 |
| 26 | Jul 89 | 655 |
| 2 | Aug 89 | 658 |
| 7 | Aug 89 | 650 |
| 16 | Aug 89 | 646 |
| 2 S | Aug 89 | 656 |
| 30 | Alug 89 | 639 |
| 6 | Sep 89 | 651 |
| 13 | Sep 89 | 721 |
| 20 | Sep 89 | 709 |
| 27 | Sep g9 | 709 |
| 4 | Oct 89 | 725 |
| 1 | Nov 89 | 744 |
| 10 | Nov 89 | 641 |
| 11 | Nov g? | 1442 |
| 15 | Nov 99 | 1442 |
| 29 | Nov 89 | 746 |
| 7 | Dec 89 | 759 |
| 10 | Dec 89 | 1442 |
| 13 | Dec 89 | 1446 |
| 17 | Dec 89 | 702 |
| 19 | Dec 89 | 1458 |
| 21 | Der 89 | 782 |
| 27 | Dec 89 | 1454 |
| 3 | Jan 90 | 747 |
| 10 | Jan 90 | 1445 |
| 17 | Jan 90 | 786 |
| 24 | Jan 90 | 759 |
| 31 | Jan 90 | 742 |

## Depth to water (m belaw datum level.)

| 2.525 | 0.014 |
| :---: | :---: |
| 2.365 | -0.026 |
| 2.410 | -0.071 |
| 2.485 | -0.096 |
| 2.890 | -0.051 |
| 2.370 | -0.0.1 |
| 2.385 | -0.046 |
| 2.350 | -0.011 |
| 2.860 | -0.021 |
| 2.350 | -0.011 |
| 2.440 | -0.101 |
| 2.290 | 0.049 |
| 2.425 | -0.056 |
| 2.300 | 0.039 |
| 2.310 | 0.029 |
| 2.400 | -0.061 |
| 2.325 | 0.014 |
| 2.390 | -0.051 |
| 2.310 | 0.029 |
| 2.405 | -0.066 |
| 2.410 | -0.071 |
| 2.400 | $-0.061$ |
| 2.080 | 0.259 |
| 2.150 | 0.189 |
| 2.170 | 0.169 |
| 2.200 | 0.139 |
| 2.205 | 0.184 |
| 2.240 | 0.097 |
| 2.270 | 0.069 |
| 2.260 | 0.079 |
| 2.370 | -0.0®1 |

Time

734

| 5 | Jul 99 | 75 |
| :---: | :---: | :---: |
| 12 | Ju1 8\% | 704 |
| 19 | Ju1 89 | 757 |
| 26 | Jul 89 | 708 |
| 2 | Allg 89 | 702 |
| 9 | Aug 89 | 658 |
| 16 | Aug 89 | 65 |
| 23 | Aug 89 | 703 |
| 3 | Aug 89 | 646 |
| 6 | Sep 89 | 706 |
| 13 | Sep 99 | 781 |
| 20 | Sep 89 | 719 |
| 27 | Sep 89 | 719 |
| 4 | Dct 89 | 785 |
| 1 | Nov 89 | 756 |
| 10 | Nov 89 | 55. |
| 11 | Nov 89 | 1451 |
| 15 | Nov 89 | 1451 |
| 29 | Nov 89 | 759 |
| 7 | Dec 89 | 807 |
| 10 | Dec 89 | 1450 |
| 13 | Dec 89 | 1455 |
| 19 | Dec 89 | 711 |
| 21 | Dec 89 | 1500 |
| 27 | Der 89 | $7 \Xi 9$ |
| $\pm$ | Jan 90 | 1509 |
| 10 | Jan 90 | 754 |
| 17 | Jan 90 | 1454 |
| 24 | Jan 90 | EOP |
| $\leq 1$ | Ian 90 | 752 |

746
812
802
75
815
841.

739
11 Nov $89 \quad 1528$
15 Nov 891529
29 Nov 89846

Depth to water
(m below
datum level)
7

| 3.560 | 0.459 |
| :---: | :---: |
| - 6.60 | 0.359 |
| צ.730 | 0.289 |
| 3.75 | 0.264 |
| 3.670 | 0.349 |
| 3.645 | 0.374 |
| 3.695 | 0.324 |
| S. 600 | 0.419 |
| $\bigcirc .640$ | 0.379 |
| 3.525 | 0.474 |
| 3.670 | 0.349 |
| T.335 | 0.684 |
| 5.640 | 0.379 |
| \%.4.5 | 0.584 |
| - 440 | 0.579 |
| 3.640 | 0.379 |
| ㅈ505 | 0.514 |
| $\pm 660$ | 0.359 |
| $\because .440$ | 0.579 |
| 3.680 | 0.889 |
| 3.650 | 0.359 |
| צ.650 | 0.369 |
| 3.420 | 0.597 |
| \% . 520 | 0.499 |
| 3 500 | 0.519 |
| 3. 580 | 0.499 |
| З.430 | 6. 589 |
| 3.490 | O. 529 |
| 3.460 | 0.559 |
| 3.590 | 0.459 |

$5.435 \quad 0.854$
$6.450 \quad 0.859$
5.4550 .834
$5.450 \quad 0.839$
$5.475 \quad 6.814$
$5.510 \quad 0.779$
$5.520 \quad 0.769$
$5.460 \quad 0.929$
$5.440 \quad 0.849$
$5.550 \quad 0.789$

| Station No |  | Date | Time | Depth to water (in below (datum level) | Elevation of water table (m above see level) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| GWSE/10 | 5 | Ju1 89 | 651 | 1.580 | 0.929 |
|  | 12 | Ju1 89 | 6.11 | 1.655 | 0.854 |
|  | 19 | Jut 89 | 726 | 1.700 | 0.809 |
|  | 26 | Jul 89 | 62t | 1.770 | 0.789 |
|  | 2 | Aug 89 | 620 | 1.660 | 0.849 |
|  | 9 | Aug 89 | 625 | 1.690 | 0.819 |
|  | 16 | Aug 89 | 621 | 1.685 | 0.824 |
|  | 23 | Aug 89 | 622 | 1.670 | 0.839 |
|  | 50 | Altg 89 | *15 | 1.655 | 0.874 |
|  | 6 | Sep 89 | 626 | 1.630 | 0.879 |
|  | 13 | Sep 89 | 655 | 1.740 | 0.769 |
|  | 20 | Sep 89 | 64.5 | 1.575 | 0.934 |
|  | 27 | Sep 89 | 645 | 1.720 | 0.789 |
|  | 4 | Oct 89 | 659 | 1.530 | 0.979 |
|  | 1. | Nov 89 | 718 | 1.500 | 1.009 |
|  | 10 | Nov 89 | 608 | 1.560 | 0.949 |
|  | 11 | Nov 89 | 1415 | 1.550 | 0.959 |
|  | 15 | Nov 89 | 1417 | 1.640 | 0.369 |
| GWS3/2 | 6 | Sef 89 | 857 | 5.970 | 1.010 |
|  | 13 | Sep 89 | 922 | 5.875 | 1.005 |
|  | 20 | Sep 87 | 919 | 5.885 | 0.795 |
|  | 27 | Sep 89 | 901 | 5.875 | 1.005 |
|  | 4 | Oct 89 | 925 | 5.900 | 0.980 |
|  | 1 | Nov 89 | 1009 | 5.940 | 0.940 |
|  | 10 | Nov 89 | 841 | 5.740 | 0.740 |
|  | 11. | Nov 89 | 152 S | 5.900 | 0.780 |
|  | 15 | Nov 89 | 1625 | 5.880 | 1.000 |
|  | 29 | Nov 99 | 948 | 5.950 | 0.930 |
| GWSE/E |  |  | 754 | 4.680 | 0.890 |
|  | 15 | Sep 37 | 824 | 4.700 | 0.870 |
|  | 20 | Sep 8 ? | 815 | 4.675 | 0.895 |
|  | 27 | Sep 89 | 811 | 4.700 | 0.870 |
|  | 4 | 으 89 | 827 | 4.730 | 0.840 |
|  | 1. | Nov 89 | 851 | 4.760 | 0.810 |
|  | 10 | Nov 99 | 749 | 4.735 | 0.835 |
|  | 11 | Nav 89 | 1586 | 4.700 | 0.876 |
|  | 15 | Nov 89 | $15 \% 7$ | 4.675 | 0.875 |
|  | 29 | Nov 89 | 856 | 4.820 | 0.750 |

Water levels

| Station | No | Date | Time | Depth to water (m below datum level; | Elevation of water table ( $n$ above sea level) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| GWS. / 4 | 5 | Jul 89 | 911 | 1.610 | 0.590 |
|  | 12 | Jul 89 | 741 | 1.610 | 0.590 |
|  | 19 | Jul 89 | 822 | 1. 6.80 | 0.570 |
|  | 26 | Jul. 69 | $7 \leq 1$ | 1.625 | 0.575 |
|  | 2 | Aug 89 | 729 | 1. 615 | 0. 585 |
|  | 9 | Aug 89 | 722 | 1.590 | 0.610 |
|  | 16 | Aug 89 | 71.8 | 1.600 | 0.600 |
|  | 2 S | Aug 89 | 727 | 1. 575 | 0.625 |
|  | 30 | Aug g9 | 712 | 1.600 | 0.800 |
|  | 4 | Sep 89 | 781 | 1.600 | 0.600 |
|  | 13 | Sep 39 | 755 | 1.650 | 0.550 |
|  | 29 | Sep 89 | 746 | 1. 575 | 0.625 |
|  | 27 | Sef 89 | 742 | 1.680 | 0.520 |
|  | 4 | Oct 89 | 801 | 1.620 | 0.590 |
|  | 1 | Nov 89 | 825 | 1.650 | 0.540 |
|  | 10 | Nov 89 | 721 | 1.640 | 0.560 |
|  | 11 | Nov 89 | 1514 | 1. 600 | 0.600 |
|  | 15 | Nov 89 | 1515 | 1.600 | 0.600 |
|  | 29 | Nov 89 | 828 | 1.630 | 6.570 |
| GWSE/5 | 5 | Jul 89 | 758 | 1.590 | 0.529 |
|  | 12 | Jul 89 | 729 | 1.585 | 0.584 |
|  | 19 | Jul 89 | 815 | 1.700 | 0.419 |
|  | 26 | Jul 89 | 721 | 1.610 | $0.50 \%$ |
|  | 2 | Aug 89 | 719 | 1. 620 | 0.479 |
|  | 7 | Aug 89 | 713 | 1.495 | 0.424 |
|  | 16 | Aug 89 | 709 | 1.630 | 0.489 |
|  | $2 \%$ | Aug 89 | 718 | 1.400 | 0.719 |
|  | 30 | Aug 89 | 703 | 1.580 | 0. 5.39 |
|  | 5 | Sep 89 | 721 | 1.410 | 0.707 |
|  | 13 | Sep 89 | 747 | 1.675 | 0.444 |
|  | 20 | Sep 89 | 737 | 1.259 | 0.854 |
|  | 27 | Sep 87 | 734 | 1.640 | 0.479 |
|  | 4 | Oct 89 | 753 | 1. 540 | 0.779 |
|  | 1 | Nov 89 | 815 | 1.360 | 0.759 |
|  | 10 | Nov 89 | 710 | 1.570 | 0.549 |
|  | 11 | Nov 89 | 1506 | 1.380 | 0.739 |
|  | 15 | Nov 89 | 1507 | 1.50 | 0.589 |

Water levels

Station No
Date

GWSE/6

GWS: 7

| 5 Jul 89 | 911 |
| ---: | ---: | ---: |
| 12 Jul 89 | 848 |
| 19 Jul 89 | 908 |
| 26 Jul 89 | 817 |
| 2 Aug 89 | 826 |
| 9 Aug 89 | 811 |
| 16 Aug 89 | 805 |
| 23 Aug 89 | 818 |
| 30 Aug 89 | 753 |
| 6 Sep 89 | 819 |
| 13 Sep 89 | 839 |
| 29 Sep 89 | 832 |
| 27 Sep 89 | 825 |
| 4 Oct 89 | 843 |
| 1 Nov 89 | 915 |
| 10 Nov 89 | 897 |
| 11 Nov 89 | 1551 |
| 15 Nov 89 | 1554 |

742
711
802
708
767
705
658
708
651
710
$7 \%$
723
72 B
789
801
658
1455
1455

## Depth to water (n below datum level)

Elevation of water table (in atove sea level)

| 1.665 | 1.085 |
| :--- | :--- |
| 1.645 | 1.105 |
| 1.640 | 1.110 |
| 1.6 .0 | 1.120 |
| 1.680 | 1.120 |
| 1.615 | 1.135 |
| 1.610 | 1.140 |
| 1.610 | 1.140 |
| 1.610 | 1.140 |
| 1.620 | 1.130 |
| 1.640 | 1.110 |
| 1.650 | 1.100 |
| 1.670 | 1.080 |
| 1.700 | 1.050 |
| 1.740 | 1.010 |
| 1.670 | 1.080 |
| 1.640 | 1.110 |
| 1.650 | 1.100 |

4.850
-6.140
-6.165
-0.380
-0.200
-0.200
0.050
-6.270
0.275
-0.120
0.250
-0.290
0.570
-6.200
0.525
0.550
-0.0 .00
0.400
-0.080


| Station No | Date | Time | Depth to water <br> (finelow <br> datum level) | Elevation of <br> water table |
| :---: | :---: | :---: | :---: | :---: |
| GWS5/1 above sea level) |  |  |  |  |

The demand for long-term scientific capabilities concerning the resources of the land and its freshwaters is rising sharply as the power of man to change his environment is growing, and with it the scale of his impact. Comprehensive research facilities (laboratories, field studies, computer modelling, instrumentation, remote sensing) are needed to provide solutions to the challenging problems of the modern world in its concern for appropriate and sympathetic management of the fragile systems of the land's surface.

The Terrestrial and Freshwater Sciences Directorate of the Natural Environment Research Council brings together an exceptionally wide range of appropriate disciplines (chemistry, biology, engineering, physics, geology, geography, mathematics and computer sciences) comprising one of the world's largest bodies of established environmental expertise. A staff of 550 , largely graduate and professional, from four Institutes at eleven laboratories and field stations and two University units provide the specialised knowledge and experience to meet national and international needs in three major areas:

Land Use and Natural Resources

Environmental Quality and Pollution

Ecology and Conservation


Natural
Envirorment
Research
Council

