

INSTITUTE of HYDROLOGY

AN INTRODUCTION TO HYDATA

C S Green

Institute of Hydrology

Wallingford

Oxfordshire

U.K.

29th January 1987

AN INTRODUCTION TO HYDATA

<u>Contents</u>

8.

١.	introduction
2.	Types of data stored
3.	Management of data
١.	General operation of the system
5. -	Editing and presenting data
5.	Example printout and plot
1.	Analysis programs

Further information

1. Introduction

HYDATA is a hydrological database and analysis system designed for use on modern micro-computers. This note is an introduction to the system. For a full description of its operation refer to the HYDATA Operation Manual.

HYDATA stores, edits, prints, plots and provides some analysis of basic hydrological data. The system is designed for use either in developing countries or for project use where low cost and ease of use are of particular importance. One of the most important design criteria for the system has been the ease of use for the operators. This is particularly important for staff with limited or no experience of computers. This challenge has been met by extensive use of screen menus, adopting an interactive approach throughout and with error checking of each operator response. In order to allow staff to concentrate on the scientific aspects of operation, the system has been designed to be self-contained and to require minimum knowledge of the computer operating system and datafile structure. Both on screen and plotter graphics aid data interpretation.

HYDATA stores and presents data in calendar or hydrological years. The choice of start month is made during the installation of the system.

A primary requirement of any hydrological database system is to produce 'yearbook' type summaries of daily data for publication. In addition HYDATA produces monthly data, graphical output and data in ASCII text form for transfer on floppy disc to other machines.

The database manager, which is transparent to the user, consists of a set of storage and retrieval routines which were originally developed at the Institute of Hydrology for mainframe storage of hydrological data. Among other applications, these routines are used in the U.K. Surface Water Archive system. HYDATA itself has been used in studies in the UK and has been applied in Somalia, Thailand, Fiji, Honduras, Ivory Coast and Lesotho.

HYDATA requires a computer running under MS-DOS or PC-DOS with a hard disc system, 512k byte memory and an EPSON compatible printer. Although not essential, enhanced colour graphics are strongly recommended on any machine. In addition a pen plotter (Hewlett Packard 7475A or similar) is necessary for quality hard copy of graphical output.

The system has run successfully on the following machines:

IBM-PC/AT
Olivetti M24-SP
Compaq Portable II
Compaq Deskpro 286
Opus II
Amstrad 1512 (under MS-DOS)
Tandon PCA series

The system is written in FORTRAN which will aid portability to different machines in the future and provides relatively fast execution speeds. A FORTRAN library is available to enable users to abstract daily data directly for their own analysis or modelling programs.

HYDATA will operate in single colour on a monochrome display or in multiple colour on a colour display.

2. Types of data stored

The system currently supports six types of stations which store the following data:

- (a) River stage or lake level (Between 1 and 100 readings/day)
- (b) Rating equations and flow gauging data (maximum 332 gaugings & 20 rating equations/station)
- (c) Daily flow
- (d) Daily rainfall
- (e) Daily general (evaporation, catchment rainfall or other)
- (f) Daily reservoir storage

Stage or lake level may be stored in a choice of three formats to allow precision, numerical range or flags to be assigned to the data. Flags may be used to indicate source of data such as original, observer, telemetry or logger.

Gauging information comprises date, water level, total cross sectional area, mean velocity and estimated discharge. Rating equations are stored as three parameter and up to three segment logarithmic relationships of the form:

where,
$$Q = discharge m^3 s^{-1}$$

 $h = stage m$
 $a1,a2,a3,b1,b2,b3,c = parameters$

There may be up to 332 discharge measurements and 20 rating equations for each station. Rating equations are date marked and are used within the system to calculate daily mean flow.

Flags may be attached to all types of daily data (Flow, Rainfall, General, Reservoir Storage) to show the source of each data item. For example data may be flagged as original, estimated or modelled. This facility enables the data set to be infilled by modelling or correlation whilst still allowing the original data to be retrieved at a later date when required. A 'General' station may be used to store any data on a daily basis such as evaporation and catchment rainfall.

Comments of up to 32 characters in length may be stored with each month of data for stage, flow, rainfall, general and storage stations. This facility may be removed for any or all station types to save disc space.

Monthly data may be abstracted for any of the daily data stations.

3. Management of data

Stage, flow, rainfall, general and storage data are stored and retrieved in blocks of hydrological years. HYDATA handles all aspects of file storage: the user needs only to specify the station number and the year of data to be abstracted. Rating station information of river gaugings and rating equations are also stored and retrieved automatically by the system.

Security of data is important. Many days, months or even years of work can be lost due to hard disc failure or theft of the computer. HYDATA has its own data backup system which permits any number of copies of datafiles to be made onto floppy discs or a second hard disc. Since datafiles may be large, larger even than the capacity of a single floppy disc. HYDATA splits files where required to ensure files are copied whatever their size. A data restore facility reverses this process and restores the hard disc files from a data backup.

4. General Operation of the system

Entry to the system is protected by password to help safeguard data. Passwords can have one of three levels of authority. The lowest level permits interrogation of data, printing, plotting and transfer to text file. In addition to the above, the second password level allows data to be changed and the results saved on disc. The highest level of password allows all operations including addition of new stations and deletion of data.

The system is operated by a system of screen menus giving the options available at any particular point in the system. For example the plotting menu for daily flow data is as follows:

Plot options - E12

[1] Ouit [2] Start date [Jan 1] [3] End date [Dec 31] [4] Max value f 200.01 [5] Min value [0.0] [6] Colour [Yes] [7] A3/A4 [A4] [8] Plot edits [No] [Yes] [9] Draw grid [10] Key position [2] [11] Histogram [No] [12] Change more [13] Paper plot [14]

Screen plot

If a plot was required for the month of January only, the operator would first select option [3] and then enter Jan 31. Option [13] or [14] would then be selected depending on whether the plot was required on the pen plotter or on the screen. At every stage the operator response is checked and an informative message given if a mistake is made. In the above example if option [5] was selected and a minimum value of 300.0 entered, the following message would appear:

ERROR Maximum must be greater than minimum

Screen editors are available for all types of data. This facility allows the operator to move quickly through a block of data and undertake additions and corrections easily.

Special keys (function keys) assist with operation and have the following actions :

- (1) Return to the computer operating system
- (2) Abort previous selection
- (3) Read from file
- (4) Move cursor in menu selection and screen editors

At any stage input of data or commands may re-directed from the operator to a named file. This facility allows frequently used sequences of commands to be stored in a file or allows data to be transferred from a second computer. HYDATA can also write data into an ordinary text file. The format of the data in this file is the same as the HYDATA input format. This enables data to be transferred between two computers running HYDATA and is useful where the systems are operating in regional offices.

A system summary may be requested at any time to provide a list of stations on the system, the station details such as name, latitude and longitude and period of record.

Station numbers may be from one to eight digits (1 - 99999999). It is possible to have the same station number for different types of station; for example stage station 100, rating station 100 and daily flow station 100 are allowed. Station numbers may be changed later if required.

At present there is a limit of 1000 stations on the system and data is required to come from this century. However these restrictions can be lifted on request.

5. Editing and presenting data

Editors are provided for all types of data stored on the system. The appropriate editor for a particular data type is selected by menu operation as descibed in Section 4. Editors cover a wide range of functions:

- (a) Entry and quality control of data
- (b) Printout of data
- (c) Plotting of data
- (d) Conversion of stage to flow (or reservoir storage)
- (e) Writing of data to text files
- (f) Changing station details such as number, name altitude, etc.

For all but rating data, the operator selects the data to be edited by the station and year. Immediate access is then provided to 12 months of data. Since plotting is available within the editor it is possible to check data entered by plotting a graph before 'saving' the results onto disc. Quality control checks are applied to data as they are entered. Checks are made against preset station maxima and minima and against excessively large jumps between readings. The staff gauge editor also permits conversion of stage to flow (or reservoir volume), either immediately stage data are entered, or at a later date. In addition, if an independent graphics screen is fitted to the system, the stage editor is able to plot data as they are entered in the form of a scrolling hydrograph.

Comments may be stored on a monthly basis for stage, flow, rainfall, general and storage stations.

The rating data editor has access to all discharge measurements and rating equations for the station and has the ability to to develop 3-segment, 3-parameter rating equations for any subset of discharge measurements. Comprehensive facilities are available for investigating shifts in rating and plotting of discharge measurements and rating equations.

Examples of HYDATA printer and plotter output are given below in Section 6.

6. Example printout and plots

Examples of HYDATA print and plot output are given in this section. These do not represent the full range of output available but illustrate some of the possible options.

Printed output is designed to be easily copied onto A4 or quarto sized paper. This is useful if output is required for yearbook presentation or for inclusion in reports.

Plotter output may be produced in single or multi colour. If single colour is selected various dashed lines are used rather than lines of different colour obtained in the multi-colour mode. Although all plots shown are A4 size, A3 plots can also be produced. In fact plots of almost any size can be produced by changing overall scaling factors. This is useful if a small plot is required for inclusion within the text of a report. For plots larger than A3, the system will draw the plot in parts on separate A3 sheets. These may then be joined manually to form the larger plot. Many of the plotting parameters such as axis length and letter size are held in the installation file which may be changed to suit the user's preferred format. Screen graphics are identical to plotter graphics except that screen resolution is normally less than can be achieved on a pen plotter.

The following tables illustrate some of the print options:

Table 1 List of stations and parameters (part of output)

Table 2 File allocation and usage for stage stations

Table 3 Summary of stage data for one year

Table 4 Annual listing of daily mean flow

Table 5 List of discharge measurements and comparison with rating equation (part of output)

Table 6 Rating table (part of output)

Table 7 Monthly summary of daily flows

The following figures illustrate some of the plotting possibilities:

Figure 1 Annual stage hydrograph

Figure 2 Histogram of annual daily flows

Figure 3 Discharge measurements plotted on linear and log scales with fitted rating equation. These figures also illustrate the flexibility of the graphics showing two plots on a single page, achieved by movement of plotting origin and adjustment of overall X and Y scaling factors

Figure 5 Comparison of two annual series of reservoir storage

Figure 6 Plot of monthly rainfall data

7. Analysis programs

At present the following analysis programs are provided as an addition to the basic HYDATA system:

(a) Double mass plots (on daily data)

(b) Flow duration curves (on daily flow data)

(c) Logarithmic plot to determine slope of hydrograph recession

(d) Baseflow Index (automated hydrograph separation of groundwater component of total flow hydrograph)

All analysis programs are fully compatible with the basic HYDATA system, are menu operated, and offer the same standards of print and plot output. Data for the analysis software is taken directly from the database files. The following figures illustrate some of the graphical output:

Figure 7 Double mass plot of a rainfall and flow station

Figure 8 Comparison of three flow duration curves

Figure 9 Baseflow Index (hydrograph separation)

8. Further information

Contact:

Dr Chris Green or Dr Alan Barr Institute of Hydrology Wallingford Oxfordshire United Kingdom

Telephone: Wallingford (0491) 38800 Telex: 849365 (HYDROL G)

List of stations & details - Part 1

Type	Number	Name	Sasin Nc.	Latitude	Longitude	Altitude	Area
Stage	1	H-117 - Sovani creek /Nasarowaca	54	16:35:45 S	178:5J:15 E	D.0	3.4
Stage	2	H-116 - Vunisea creek & road brg	55	16:37:10 S	178:49: C E	0.0	4.2
Stage	3	H-153 Korotolutolu at Saw Mill	54	16:31:25 5	178:58:40 E	6.0	49.0
Stage	۷	H-119 Naselesele Crk at Main Rd	55	16:39: 0 5	178:45:40 E	30.5	29.8
Stage	5	H-070 Namuka Creek at Tabia	53	15:28: 0 S	179:15: O E	15.0	25.5
Stage	Ę	H-038 Qawa river at Bulileka	53	16:26:35 S	179:25:30 E	1.0	38.3
Stage	7	H-101 Saivou creek	54	16:36:10 5	:79: 9:10 E	70.C	29.2
Stage	115500	HA - 065 Teidamu below Wainisavu	11	17:34: 4 5	177:32:48 E	0.0	56.0
Ŝt a g e	115501	HAD67 - Vitogo at Vakabul.	11	16:36:14 5	177:31:47 E	0.0	47.5
Stage	126501	HAD64 - Varaciva at New Headwoks	12	17:35:41 5	177:38:48 E	0.0	17.0
Stage	127500	HAO93 - Ba at Toge	12	17:37:30 S	177:44:11 E	0.0	579.C
Stage.	128400	HA162 - Ba at Navala	12	17:39:49 5	177:48:51 E	40.0	322.0
Stage	137600	HAD71 - Nasivi at Vatukaula Brdg	13	17:29:35 S	177:52: 5 E	0.0	96.0
Stage	310900	HA163 - Navoa at Waibogi	31	18: 7:16 5	177:59:39 E	0.0	462.C
Stage	311801	HADD3 - Navda at Nakavu	31	18:11:25 S	178: 6:15 E	0.0	763.D
Stage	311900	HA132 - Wainikavou above Falls	31	18: 6:30 S	179: 3: 5 E	0.0	24.0
Stage	312800	HADD4 - Wainikavika at R. Bridge	31	18:11:15 S	178: 9:20 E	0.5	7.5
Stage	355900	HA095 - Tamanua at Balenabelo	35	18: 9: 5 5	177:37:42 E	9.0	61.0
Stage	415401	HADB7 - Sabeto at Masicasi	41	17:43:14 5	177:30: 8 E	0.0	71.3
Stage	424200	HA156 - Vatuma at Vatuma	42	17:52:19 5	177:27:57 E	125.0	4.5
Stage	424201	MA167 - Masi at Masi	42	17:54: 3 5	177:27:14 E	158.0	4.7
Stage	425200	HADZ1 - Namosi at Yavuna	42	17:49:30 S	177:32:28 E	0.0	62.C
Stage	425201	HA100 - Navaka at Natuaceri	42	17:15:14 5	177:28:18 E	0.0	70.0
Stage	425300	HADZO - Nadi at Votualevu	42	17:46:26 S	177:30:53 E	0.0	164.C
Stage	439401	HA160 - Nukunuku at Lewa	43	17: 0:40 5	177:54:48 E	561.û	18.8
Stage	445000	HAO90 - Sigatoka at Namuka	44	18: 2:17 5	:77:33:28 E	0.6	1333.0
Stage	454000	HAD74 - Tuva at Emuri	45	18: 3:37 5	177:22:44 E	0.0 3.0	208.0 213.7
Stage Stage	454 (C1	HA166 - Tuva at Sems bridge	45	18: 4:44 S 16:24:55 S	177:22:48 E 179:29: D E	7.3	213.7 80.0
Stage	525600 523601	HAD82 - Bucaisau at Delemumu	52 52	16:23:15 5	179:34:30 E	6.0	46.7
Stage	527801	HAL41 - Wainikoro at Nasasa	34	10.53.13 3	177-36-30-2	e.u	40.7
Stage	535600	MA142 - Dawala at Nakoroutari	53	16:32:35 5	179:24:10 E	4.5	93.0
Stage	535601	HA169 - Lovo upstream Matalolo	53	16:34: 3 5	179:25:35 E	0.C	18.0
Stage	535702	HAD49 - Wailevu at Nakama	53	16:29:25 5	179:21: 5 E	5.0	77.0
Stage	540600	HAO66 - Nabiti at Nabiti	54	16:36:10 5	178:53:50 E	1.5	31.1
Stage	542601	HAO77 - Dreketi at Ford Batiri	54	16:34:40 5	179: 3:25 E	1.5	317.0
Stage	542703	HAOSS - Oreketi at Natua Pap Hse	54	16:31: 0 S	179: 8:45 E	80.0 7.2	197.6
Stage	559500	HA-036 - Sarovaga at Naroga	55 54	16:41:55 5	178:47:55 E	3.0	99.0
Rating	1	H-117 - Sovani creek/Nasarowaga	54	16:35:45 5	178:50:15 E	0.0	
Rating	2	H-116 - Vunisea creek a road brg	55	16:37:10 5	178:49: D E	0.0	
Rating	3	H-153 - Karatolutolu	54	16:31:25 5	178:58:40 E	6.0	

File allocation & usage for Stage — stations

YEAR

1980-09 1910-19 1920-29 1930-39 1940-49 1950-59 1960-69 1970-79 1980-89 1990 - 2060 0123456789 01256789 01256789 01256789 01256789 01256789 01256789 01256789 01256789 01256789 01256789 01

Station

1							
2			dddddxd	dddddxddxx	ddxxdddxxx	x	-
3							
6					ddxxx	х	-
7			• · · · • • · · · ·		ddddxxx	x	-
10		-ddxddddd	ddddddddd	44444444	ddddddixxx	x	-
11			dddiddd	dddddxdddd	dddddddxxx	x	-
12							
14			bbbbbbb	ddddddddd	ddddddxxx	x	-
15			ddddddx	xdxxxxdddd	dddddddxxx	x	•
16		-,				x	_
101							
i 02							
103	***************************************						
104			· · • • • • • • • • • • • • • • • • • •	• • • • • • • • • • •	ddddddxxxx	χ	-
105							

Key :

= cutside project period
. = inside project period
x = space allocated - no data
d = space allocated - data on

Summary of stage data

Station number: 10 Name: Shebelli at Beled Weyn

Latitude : 0:0:0 N Altitude : 176.11

Basin no. : 2 Longitude : 0:0:0 E Area : 211800. Rating : 10 Convert to : Flow Store in : 10

Year : 1964

2 Readings @ times :

8:00:00 18:00:00

Monthly & annual maxima & minima

Month	F	irst ma	ximum	F	First minimum					
	Stage	Date	Time.	Stage	Date	Time	Missing			
Jan	1.130	1	8:00:00	0.770	31	18:00:00	0			
Feb	0.760	1	8:00:00	0.420	. 26	18:00:00	0			
Mar	0.410	1	8:00:00	0.200	- 26	8:00:00	0			
Apr	1.310	30	8:00:00	0.180	6	18:00:00	0			
May	1.350	1	8:00:00	0.650	30	18:00:00	1			
Jun	0.770	15	18:00:00	0.500	11	8:00:00	0			
Jul	1.430	29	8:00:00	0.670	1	18:00:00	0			
Aug	3.310	31	18:00:00	1.350	3	8:00:00	0			
Sep	3.500	30	18:00:00	2.560	10	8:00:00	0			
Oct	3.550	2	8:00:00	2.180	16	8:00:00	0			
Nov	3.550	3	8:00:00	0.770	30	8:00:00	0			
Dec	1.450	31	18:00:00	0.580	12	8:00:00	0			
Annual	3.550	2 Oct	8:00:00	0.180	6 Apr	18:00:00	1			

Stage readings in metres

```
__________
                       Annual summary of daily data - Flow
                            10
                                          Name : Shebelli at Beled Weyn
Station number :
 Basin no. : 2
                      Latitude : D: 0: 0 N Longitude : D: D: D E Altitude : 176.11
  Area : 211800.
                                   Year : 1964
                                                                                          0ec
         Jan
               Feb
                      Mar
                              Apr
                                     May
                                                     Jul
                                                           Aug
                                                                   Sep
                                                                           Oct
                                                                                  Nav
                                             Jun
                             6.051 51.08 20.125 21.14 57.352 212.83 227.25 221.86
                                                                                         24.243
        40.995
               24,407
                     11.759
                                                                   215.6 230.61 227.55
                                                                                         24.422
        39.626
                             5.921 48.321
                                            19.581
                                                    21.538 56.464
                23.577
                       11.73
    2
                                                                   215.78 230.81 230.52 25.902
                             5.921 48.175
                                            18.481
                                                    23.903 54.132
        35.897
                22.759
                      11.587
    3
        38.194
                               5.921 45.628 17.392
                21.952
                                                           54.098 213.67 230.01 228.22
                      11.402
                                                     26.952
                                                                                          25.8
    Ł
                                                                   294.23 230.53 218.68
                      11.124
                             5.812 44.116
                                            16.797
                                                           57.146
                                                                                         24.323
    5
        37.903
                21.337
                                                    28.332
                             5.577 43.901
                                                                   179.7 225.72
                                            16.457
                                                           59.414
        37.474
               20.763
                      10.819
                                                    27.618
                                                                                  206.0
                                                                                         24 141
       37.156
                                                          62.524 164.98
                     10.518
                             5.451 40.858
                                            16.241
                                                                         222.2 177.95
                                                                                         23.347
               20.162
                                                    26.353
                             5.451 40.166
                                            15.588
                                                            66.22 150.09 215.73
                                                                                 135.25
                                                                                         21.995
        35.03
              19.621
                      10.22
                                                    25.037
    8
                                                          70.030 142.92 203.94 103.06
       35.771
                             5.451
                                            15.346
    9
              19.031
                      9.941
                                      39.918
                                                     24.367
                                                                                         21.854
                             5.622 36.094
                                            15.033
                                                           73.915 140.36 185.43 87.734
       38,226
               18.279
                        9.78
                                                     23.267
                                                                                         20.506
   10
                              7.381
                                            14.763
                                                                  141.71 166.96
       41,341
                      9.491
                                      36.619
                                                            78.D6
                                                                                 76.665
                                                                                         19.387
   11
               17.856
                                                     22.742
                        9.32 14.061
                                            15.892
                                                                   142.62 146.09 71.718
       40.692
                                      33.775
                                                     22.752
                                                          81.158
                                                                                         17.822
   12
               17.729
                      8.949 33.699
                                                          84.579
                                            19.075
                                                                           132.5 66.954
       39.585
               16.943
                                      31.904
   13
                                                     25.474
                                                                   142.71
                                                                                         18.358
                      8.643
                             39.463
                                            23.262
                                                            88.29 143.37 117.79
                                                                                 61.599
        34.236
   14
               16.598
                                      30.963
                                                     28.607
                                                                                         18.232
                      8.368 41.759
                                            24.694
       36.155
                                      25.735
                                                          91.512
                                                                  142.53
                                                                          111.0
                                                                                  57.71
   15
               16.082
                                                     29.472
                                                                                         18.454
                              39.817
                                                           96.292
                                                                   141.1 109.36 53.088
        37.334
                                            24.978
   16
                15.729
                        9.22
                                      24.071
                                                     28.79
                                                                                         18.449
                                            24.554
                                                     28.535 101.43
                                                                   141.71 109.81 49.565
       37:488
                              37.402
   17
               15.203
                        8.205
                                      23.167
                                                                                          18.765
                                                           111.89 144.34 110.23
                                                                                46.452
       37.893
                                            23.016
   15
                14.4
                        7.961
                               36.909
                                      22.56
                                                     30.034
                                                                                         19.071
                                                           120.94
                        7.588 36.014
                                            21.392
                                                                   149.16 120.79 43.085
   19
        37,402
                14.317
                                       22.5
                                                     33.996
                                                                                         18.938
                                            20.609
                                                           129.48 152.01
                               32.386 22.157
                                                                          130.92
                                                                                 40.502
   20
        36.684
               14.012
                        7.421
                                                     37.911
                                                                                         18.192
                                                                   158.81 137.29 38.009
                        7.302
                                            20.356
                               30.643
                                                           141.28
   21
        35.708
               13.696
                                      22.119
                                                     42.483
                                                                                         19.586
                              31.924
24.419
22.837
22.506
25.345
33.751
                                            20.188
                                                            149.9
   22
        34.473
                13.513
                        7.161
                                      22.721
                                                     42.973
                                                                   170.11
                                                                          145.65
                                                                                   35.55
                                                                                         19.969
                                            20.873
                                                                         153.98 33.168
                                                           158.65
   23
        32.703
                       7.944
                                      24.151
                                                    43.725
                                                                   177.67
                                                                                          19.39
               13.184
                                                                   185.49 158.14 32.116
                                                           170.11
                                            21.304
                      6.892
   24
        32.117
               12.858
                                      25.499
                                                    45.421
                                                                                          18.505
                                                                   192.86
                      6.639
                                                           177.52
   25
        30.961
               12.535
                                      25.587
                                              22.07
                                                    47.112
                                                                          170.11
                                                                                  30.9
                                                                                         19.182
                                            23.033
                                                                    203.0 177.52
                      6.212
                                                          182.12
   26
        29.663
                                      24.049
                                                     50.711
                                                                                  29.458
                                                                                          27.027
               12.216
                                            22.393 53.766
                                                            187.9
                                                                   211.86 182.49
                      5.4C6
                              33.751
   27
        28.724
                                                                                  28.435
                                                                                          35.751
               12.044
                                      22.513
                                                           193.64
196.64
              12.044
                      6.406
                              41.112 21.875
48.909 21.018
                                            21.574
   28
                                                                   215.86
                                                                           189.C
                                                                                  27.246
                                                                                         40.204
        27.838
                                                     56.358
                                                                   220.43 197.99
                      6.294
                                            21.14
   29
                                                    58.391
                                                                                  26.659
                                                                                         47.499
       26.964
              12.027
                                            21.107 58.56
                                                                   224.38 207.94
   30
                                                            202.14
                                                                                  25.118
                                                                                         52.521
         26.1
                       5.162
                              51.381 20.394
                                                          202.14
206.57
        25.248
                                                     58.021
                                                                           215.58
                                                                                         57.873
   31
                        6.162
                                      20.259e
                                                                                 90.354
        35.11 16.703 8.5719
                              23.63 31.029
                                             19.91
                                                   35.301 114.89
                                                                   174.73 174.01
                                                                                         25.152
Head
                                                           206.57
                                                                                 230.52
                                     51.08
                                            24.978
                                                    58.56
                                                                   224.38 230.81
Maximum 41.341 24.407
                      11.759 51.381
                                                                                         57.873
                                                           54.098
                                                                          109.36
                                                                                 25.118
Minimum 25,248 12.027
                       6.162 5.451
                                     20.259
                                            14.763
                                                    21.14
                                                                   140.36
                                                                                         17.822
                       1.4528
                                                                   2.1383
R/off ss 0.444 0.19759
                                                                           2.2005
                                                                                 1.1957 D.31897
                          Flows in cubic metres per second
                                  Annual statistics
             Maximum 230.805
                             Minimum 5,451 Mean 62,538 qubic metres per second
                   Total 1977.604 million cubic metres Runoff 9.337 millimetres
                                  Possible data flags
        Missing - flag "-"
                                    Original - no flag set
                                                                 Estimate - flag #e#
     ------ Table 4
Printed on 5/ 2/1987
```

0-4		D-+4	_	Bating	Store	Walaat ***	3 = 0.0	Disabango	Compa	Micon
Order	_	Date	3	Racing	_	Velocity		Discharge	Compa	
Number	•				(m)	(m/s)	(m pa)	(cumecs)	Diff./Rat	. Plot
36	23	Jun	1980	8	1.420	0.758	20.59	15.610	-0.07/B	<-
37			1980		2.210	0.775	51.17	39.660	-0.01/B	-
38	28	Aug	1980	В	3.340	0.951	93.47	88.890	-0.00/B	-
39			1980		3.900	0.970	119.34	115.760	0.04/B	->
40			1980		3.290	0.956	91.90	87.860	-0.03/B	<-
41	15	Oct	1980	В	2.620	0.798	65.78	52.490	0.08/B	->
42	18	Nov	1980	В	1.410	0.666	22.85	15.220	-0.06/B	<-
43	20	Nov	1980	В	1.350	0.603	20.63	12.440	-0.01/B	_
44	1	Jan	1981	В	0.920	0.189	13.12	2.480	0.04/B	->
45	3	Jan	1981	В	0.880	0.164	14.09	2.310	0.01/B	-
46	8	Mar	1981	В	0.690	0.242	1.49	0.360	-0.00/B	-
47	10	Mar	1981	В	0.870	0.420	5.48	2.300	0.01/B	-
48	29	Mar	1981	В	4.900	1.090	170.05	185.350	-0.14/B	<<-
49	1	Apr	1981	В	5.460	1.152	194.00	223.490	-0.16/B	<<-
50	12	Apr	1981	. В	6.050	1.167	212.19	247.620	0.08/B	->
51			1981		6.260	1.238	224.67	278.140	-0.14/B	<<-
52	8	May	1981	В	7.510	1.244	289.34	359.940	0.04/B	->
53	17	Jun	1981	В	2.500	0.811	62.85	50.970	-0.01/B	-
54	20	Jun	1981	. B	2.260	0.535	69.18	37.010	0.11/B	->
55			1981		1.860	0.339	49.73	16.860	0.33/B	->>>
56	28	Aug	1981	. В	4.380	0.975	141.64	138.100	0.12/B	->
57			1981		4.400	0.987	144.54	142.660	0.06/B	->
58			1981		6.550	1.115	258.05	287.730	0.02/B	->
59 ·	23	Nov	1981	. B	2.070	0.841	47.94	40.320	-0.17/B	<<-
-60	16	Dec	1981	. В	1.470	0.458	33.32	15.260	-0.00/B	-
61	15	Feb	1982	В	1.140	0.451	20.27	9.140	-0.09/B	<-
62			1984		1.130		24.33		-0.19/B	<<-
63	27	Jun	1984	C	1.850	0.861	43.33	37.310	-0.31/B	<<<-

Total number of gaugings available = 63

Note: A comparison is made if a rating exists for the date of the discharge measurement (dm) and the stage of the dm is within the rating range.

```
Diff. = Difference in metres between dm and rating
```

-11

Rat. = Rating used in comparison

Plot = Plot of Diff. to help determine shift point

Rating A	from	1 Jul	1974	Q =	5.305 (h - (3. 2 80)	** 2.	728 to	4.00
Stage (a) 9.00	0.01	0.82	0.03	0.04	0.05	0.96	0,07	0.08	0.09
0.	0									
0.	1									
0.3	2									0.00
0.	3 0.00	3.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01
0.	4 0.02	0.02	0.02	0.03	0.94	0.04	0.05	0.06	0.07	0.08
0.	5 0.09	0.10	0.11	0.12	0.13	0.15	0.16	0.18	0.20	G.22
0.4	6 G.24	0.26	9.28	0.39	0.33	0.35	0.38	0.41	0.44	C.47
0.	7 0.50	0,.53	0.56	0.60	0.64	84.0	0.72	0.76	0.80	0.85
. 9.0	0.89	0.94	0.9 9	1.04	1.09	1.14	1.20	: .26	1.32	1.38
0.9	9 1.44	1.50	1.57	. 1 . 64	1.71	1.78	1.85	1.93	2.00	2.08
1.1	2.17	2.25	2.33	2.42	2.51	2.50	2.69	2.79	2.89	2.99
. 1.	3.09	3.19	3.30	3.41	3.52	3.63	3.74	3.86	3.98	4.10
1.3	2 4.23	4.35	4.48	4.61	4.75	4.88	5.02	5.16	5.31	5.45
. 1.3	3 5.60	5.75	5.90	6.06	6.22	6.38	6.54	6.71	6.88	7.95
1.4		7.40	7.58	7.77	7.95	8.14	e .33	8.53	8.72	9.92
1.9			9.54	9.75	9.97	10.18	10.40	10.63	10.85	11.08
1.6		11.55	11.79	12.03	12.27	12.52	12.77	13.03	13.28	13.54
1.		14.08	14.35	14.62	14.90	15.18	15.46	15.75	16.04	16.33
1.8		16.93	17.23	17.54	17.85	18.16	18.48	18.80	19.12	19.45
1.	9 19.78	29.12	20.45	20.80	21.14	21.49	21.84	22.20	22.56	22.93

Flows in cubic metres per second

Basin no. : 1 Area : 24050.			La	t i tude	8: 7:1	8: 7:17 N Longitude : 5:31				31:31 ¥ Altitude : 210.0			
	Jan	Feb	Mar	Apr	May	Jen	Jul	Aug	Sep	0ct	Nov	0ec	Annua Mean
1962	_	_	_	_		8.83	21.4	114.	670	/40	120	(0.1	_
					4.89				538.	419. 500	129.	49.1	
1963 1964	18.4	11.3	9.49 5.69-	3.85	11.3	35.1 37.0	112.	286.	617.	58 9 .	274.	60.4	170. -
1764 1965	26.6	11.8	5.09e	5.95	17.3	58.6	46.8	435.	-	-	174.	128.	-
	68.2	35.6	16.6	13.5	10.9		223.	442.			154.	54.8	_
1966	26.9	13.2 15.3	8.38	16.1	16.2	30.3	35.5	231.	455.	450.	162.	58.2	126.
1967	22.6		11.7	7.83	14.0	14.4	.22	- 30:	592.	425.	93.6	36.4	-
1968	15.6	13.0	6.81	7.80	22.4	28.8	127.	326.	529.	464.	152.	52.1	145.
1969	-	14.0-	11.0	6.27	3.29	3.93	88.6	222.	402.	376.	335.	72.1	-
1970	28.8	14.0e	6.84	5.57 -	6.38	9.92 -	31.2	375.	-	-	-	-	
1971	15.5	7.58	6.62				9.88	184.	444.	278.	- 35 0		•
1972	11.6	3.91	1.81	5.02	13.7	86.0	48.7	117.	139.	85.4	35.0	9.88	46.4
1973	6.53	1.82	0.359	1.60	3.90	3 06	-	-	332.	155.	49.4	10.3	-
974	2.92	0.726	0.978e	0.553e	3.59e	3.98	11.7e	211 e	442.	302.	83.0	12.7	57. a
1975	7.67	3.182	1.22e	0.983	6.29	7.5le	24.3e		526.	199.e	10.2	-	-
976	6.68	3.15	2.50	1.89	2.26	6.86	23.8	9.21	6.30	91.5	103.	15.9	21.9
1977	5.74	1.97	0.306	-		-	-	-	-	-	-	-	•
1978	0.758	3.124	0.027	1.77	e.69		-	-	-	-	-		-
1979	1.15		, 0.0	0.0	4.72	27.7	148.	343.	801.	323.	56.2	15.5	144.
980	-	-	-	3.89e	10.2	20.4	42.9		566.	272.e	-	•	-
1981	-	-	-	-	•		55.7	249.	234.	120.	-	-	-
1982	-	-	1.15e	8.97e	6.94e	5.54e	17.1e	33.5e	118.e	56.6e	37.3e	6.69e	-
1983	1.24	0.544	0.813	1.36	3.24	3.44	6.83e	9.64	26.9	16.0	1.51	0.930	6.06
1984	0.0	0.0	0.418	0.110	7.10	10.0	23.9	57.4	147.	83.9	21.7	5.44	29.8
1985	1.95	0.215	1.94	7.43	4.80	6.42	. 51.8	468.	546.	139.	33.7	6.32e	106.
1ean	14.1	7.24	4.44	5.02	8.66	20.4	57.3	225.	393.	254.	108.	35.0	58.5
Std	16.3	8.86	4.80	4.41	5.45	20.9	55.5	143.	222.	167.	89.8	33.8	
:v	1.15	1.22	1.08	0.877	0.430	1.03	0.969	0.636	0.566	0.656	0.835	0.965	
				Mean	month	ly flo	ow in	cubic	metre	s per	5 e ¢ 0	nd	

Missing - flag "-" Original - no flag

Estimate - flag "e"

Limit to missing daily data permissible [2]

Printed on 5/ 2/1987

