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(i)
SUMMARY

The purpose of the consultant's mission was to carry out an independent
evaluation of the forecasting procedures implemented under UNDP/WMO Project
INS/78/038 for the Citarum River Basin. The forecasting system developed
under the project, which utilizes the COSSARR model for forecasting flows
and reservoir levels up to two days ahead, underwent its first ‘trial run'
during the 1980/81 high water season, and is scheduled to have its first
operational rua in 1981/82.

The consultant's approach to the evaluation of forecasting procedures
was to calibrate some simple models for the flows at two gauging stations
within the basin, to use these models for forecasting over the 'trial run'
period and to compare the results with those obtained for the COSSARR model.
Prior to this work, a review of the basic rainfall and flow data used to
calibrate the COSSARR model was carried out. Since it was found that a
significant proportion of the rainfall data had been infilled, rainfall
stations with complete records of observed data were identified and further
COSSARR calibration studies were initiated together with the calibration of
some simple models. The results showed that the agreement between observed
and simulated flows obtained with the simple models was similar to that
obtained with the more complex COSSARR model.

Over the 1981/82 'trial-run' forecast period, forecasts of rainfall
one and two days ahead was made within the Project using qualitative
meteorological information coupled with a quantitative statistical procedure;
a comparison with other procedures showed that these forecasts are as good
as can be obtained with the available information. A comparison of one day
_ - and two day ahead forecasts made by the COSSARR and simple models over the
3 j:fﬁf: *trial-run’ period showed that the latter model gave slightly better forecasts.

‘"fift The main conclusion drawn from the consultant's work is that, while
"7 the COSSARR model has performed adequately during its trial run, a similar
forecasting accuracy (and hence level of benefits) can be obtained from a
simpler model costing much less to implement and run operationally. . If
other forecasting projects are fb be set up throughout Indonesid;ithen the
use of simple forecaﬁting modelé should be considered; since it is’uhlikelj”
that the full capability of the COSSARR model to simulate river regulation
by complex systems of reservoirs would be required.
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BACKGROUND AND TERMS QF REFERENCE

River Forecasting Project INS/78/038, under which a forecasting system
has been developed and implemented for the Citarum River Basin, is now
entering its third year; the system, which employs the COSSARR model for
forecasting flows and reservoir levels, underwent its first 'trial run®
during‘the‘period December 1980 - April 1981, and is scheduled to provide
‘operational run' forecasts for the 1981-82 high water season.

The appointment as Consultant to Project INS/78/038 was made under WMO
Special Service Agreement No. 29.743/A/PEX.(dated-11 June 1981) for the
period 6 July - 22 Aug 1981, with exclusion of the period 1-11 Aug. The
terms of reference for the appointment were specified in the Special Service
Agreement as follows:

‘to prepare an independent evaluation of flood forecasting procedures
and of the usefulness of the various forecasting models implemented
under the project!

The consultant arrived in Jakarta on 7 July, and visited the Meteorological
and Geophysical Institute and UNDP offices in Jakarta on 8 July. The periods
9 - 31 July and 12 - 18 Aug were spent at the Project Office in DPMA,
Bandung where the Programme of Work described in Section 2 of this report
was carried out; the consultant arrived in Geneva on 20 August and visited WMO
headquarters on 21 August, departing for London on 22 August.
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PROGRAMME OF WORK

During the consultant's assignment, work was carried out under the following
headings:

(a) Review of basic data: the rainfall and flow data used to calibrate

the various models implemented under the project were reviewed to assess
if these were of satisfactory quality;

{b) Calibration of simple flow forecasting models : the COSSARR model
has been calibrated for the Citarum River Basin using daily rainfall and

flow data for the period 1974-77;, a number of simpler models were calibrated
during the consultant's mission to allow comparisons with the results
obtained from the COSSARR model;

(¢} Evaluation of results for 'trial run' forecast period, Dec.1980-Apr. 1981:

the COSSARR model was used to provide one day and two day ahead forecasts
of flow in the Citarum River and of Jatiluhur reservoir level over the
above period; one and two day ahead forecasts of rainfall were also
required for this purpose. A number of error statistics have been
calculated for these forecasts and compared with those obtained from

some of the simpler models calibrated under (b) above;

{d} Lectures: three lectures were delivered on the following topics:
1. Raingauge network rationalization
2. Rainfall-runoff modelling

3. Real-time flow forecasting

Summaries of these lectures are given in Appendix A;

{e) Preparation of report: this report describes the programme of work

carried out by the consultant
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3. THE FORECASTING SYSTEM FOR THE .-CITARUM RIVER BASIN

River Forecasting Project INS/78/038 commenced in August 1979 with
the objective of establishing a forecasting system for the Citarum River Basin
which would act as a pilot project for possible future river forecasting
projects throughout Indonesia. In developing the forecasting system, work
has been carried out under the following major headings:

{a) installation of reporting network

{b) calibration of COSSARR model for forecasting river
flows and reservoir levels;

(c) statistical studies of rainfall characteristics and patterns;

(d) operational testing of forecasting system during 'trial-run’
period December 1980 - April 1981.

In the first year of the project, a network of single side band
(SSB} radio transmitters was installed; the observers at these stations,
of which there are 11 distributed throughout the basin, report directly
to the Project Office at DPMA. (Figure 3.1). In addition, there are a
number of other rainfall reporting stations which transmit daily rainfall
amounts through other channels of communication (Figure 3.71).

The SSARR river basin model, and its derivative, the COSSARR model
{(a version of SSARR developed for relatively small basins and small
computers) are fully documented in the Project reports (e.g. Rockwood, 1980;
Sangsnit, 1980) and will not be described here. In preparation for
operational usage, the COSSARR model was calibrated for three areas
(Rockwood, 1980).

(a) the Citarum River at Nanjung (area 1718 km?)
(b) the Citarum River at Palumbon (area 4061 km?)

(c}) Palumbon Local (area 4061-1718 = 2343 km?)

For (c) the Palumbon Local inflows were obtained for the years 1974-77 by
routing the observed flows at Nanjung through the channel storage from
Nanjung to Palumbon and subtracting the routed flows from the observed
flows at Palumbon. Thus, simulated flow at Palumbon is obtained by
simulating the flow contribution from the Palumbon Local area and

adding this to the simulated flow at Nanjung routed to Palumbon. The data
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used in these calibration studies are described in Section 4, and the
results obtained are discussed in Section 5.

The statistical studies of rainfall characteristics and patterns in

the Citarum River Basin have been carried out to assist in making one

day and two day ahead forecasts of rainfall during the 'trial run'
forecast period December 1980 - April 1981, as no quantitative meteorological
information is available to the Project in real-time other than the
general forecast from tne Indonesian Meteorological and Geophysical Institute
(BMG) that rainfall over the Citarum River Basin in the coming 24 hours
will be either

— (a)--Isolated,

(b) Scattered,

or (c} MWidespread

Using historical rainfall data for a number of stations in the Citarum River
Basin, the frequencies (in four ciasses) of basin rainfall have been computed

by Sangsnit and Maung (1981). Thus, the BMG forecast identifies the type of

rainfall to be expected; then if, for example, the rainfall in the previous
part of the month has been above average, one of the upper classes
for the appropriate category is used as the forecast.

In making one day and two day ahead forecasts of discharge over the
period December 1980 - April 1981, a three hourly time step was used by

'the COSARR model. At 7.00 each morning, the SSB network relays to the

Project Office rainfall amounts at SSB stations during the previous

24 hours, and stage levels for Nanjung, Palumbon and Jatiluhur reservoir.
Using these daily rainfall values augmented with an isohyetal

map of monthly rainfall, isohyets of basin rainfall are drawn by hand and

basin averages computed for the Nanjung, Palumbon Local and Jatiluhur

Local areas. If data from some of the other reporting stations become

available in time, these are included. The bafin averages, thus computed,

for the current day and two previous days (the back-up period) are then

fed into the COSSARR model together with forecasted basin rainfalls for

the coming two days (the forecast period) and processed in one operation

to give one day and two day.ahead forecasted flows and reservoir levels at
07.00 hours. The observed basin rainfalls during the 'back-up' period are
adjusted iteratively until the model is deemed to accurately represent the

observed flows in this period prior to making forecasts. Forecasted daily

basin rainfalls are broken down into three hourly totals in accordance




with the fairly regular observed distribution of rainfall in time; in
the 'back-up' period, this distribution may be altered if information
to this effect has been received. Execution time on the IBM 1130 at
DPMA takes about 20 minutes; forecasts are disseminated to the relevant
authorities by 12 noon on each day.

The results obtained during the 'trial-run' forecast period Dec. 1980 -
Apr. 1981 are discussed in Section 6.
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‘with observed data were used for infilling,

h:.
: .

4, REVIEW OF BASIC DATA

4.1 Rainfall data

In a previous report, Sugawara (1980} had suggested that the rainfall
data supplied for calibration of the Tank Model on the Citarum River Basin
we?e not observed data; the daily rainfall data at some stations had apparently
been infilled from those at others. Sugawara identified a number of stations

for which he considered observed data were available and used these in calibration
studies of the Tank Model. Through reference to the original manuscripts obtained

from the Meteorological and Geophysical Institute (BMG), a list of rainfall
stations was drawn up for which observed data were available for the period
1974-76 (Table 4.1); most of these stations lie within the Citarum River
Basin, This list was then used to check the rainfall data used in the COSSARR
and Tank Model calibration studies; for stations where the daily data had
been infilled, the stations used to do the infilling were also identified.

The rainfall stations used in the COSSARR calibration runs are listed in
Table 4.2 for Nanjung and Palumbon together with the weights used in computing
average daily basin rainfall. These weights are taken as the ratios of annual
average basin rainfall to annual average rainfall at the stations in question;
two sets of stations are listed since it was found that the final COSSARR
calibration runs had used additional rainfall stations. In Table 4.3, these
rainfall data are classified into observed and infilled, and the relation-
ships existing between them are also depicted. The infilling had been
carried out using monthly scaling factors which were taken as the ratios
of the long-term average monthly rainfalls at the stations in question. Since
daily rainfall totals vary greatly over the Citarum River Basin due to the
localized nature of rain storms, this infilling procedure cannot be considered
satisfactory, particularly for daily rainfall-runoff modelling.

From Tables 4.2 and 4.3, it can be seen that the estimates of average
basin rainfall for Nanjung and Palumbon Local basins used in the early and
final COSSARR calibration runs were based on observed data from a relatively
small number of stations. While it is appreciated that the infilled stations
were chosen to coincide as far as possible with the stations in the reporting
network; this in-itself does not constitute a sufficient basis for selectiony
particuiarly when, in the case of the Nanjung basin, relatively few stations




TABLE 4.1

66  CISEUREUH

70 PACET

77 LAMPEGAN (PERK HARJISARI)
90a  VADA

91a  CUGENANG

94 GUNUNG CEMPAKA

95a  CAMPAKA

98 SUKANEGARA

122 CIRANJANG

123 PASIK GOMBONG

125  BOJUNGPICUNG

1252 BOJUNGPICUNG (PERK)
126  CIBARENGKOK

127 MONTAYA

1278 GUNUNG HALU

period January, 1374-December, 1976

136
145a
147
150
151¢
153b
154b
156a
160
163
163¢
164
168
170
174
185

Stations for which observed rainfall data available for

CICACING
CIMANGSUD (PERK)
SUKAWANA
PADALARANG
BATUJAJAR
CIWIDEY
MARGAHAYU
LEMBANG

PAKAR

BANDUNG
CISONDARI
JATINANGOR (PERK)
ARJASARI (PERK)
CIDAKU (PASEH)
CIBEUREUM

PERK JALUN
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Table 4.2 Lists of rainfall stations used to calculate basin rainfalls

for COSSARR calibration runs

(a) Early COSSARR Calibration Runs

Nanjung Weight Palumbon Weight
Local
162a CIHEMPELAS(I) 0.95 66 CISEUREUH(O) 0.72
163c CISONDARI: (0) 0.90 91 CIANJUR (I) 0.99
167  MAJALAYA (I) 1.17 94 GUNUNG CAMPAKA(O) 0.97
172 CINYIRUAN(I) 0.77 127 MONTAYA (0) 0.96
151a SINDANGKERTA(T) 0.97
162a CIHEMPELAS (1) 1.18
(b) Final COSSARR calibration runs
Nanjung Weight Palumbon Weight
Local
160 PAKAR(0) 0.99 66 CISEUREUH (0) 0.72
172a CIHEMPELAS(I) 0.95 91 CIANJUR (1) 0.99
163c CISONDARI (0) 0.90 94 GUNUNG CAMPAKA(O) 1.18
167 MAJALAYA (I) 1.17 151a SINDANGKERTA(T) 0.97
170 PASEH(0) 0.68 162a CIHEMPELAS(I) 1.18
172 CINYIRUAN(I) 0.77
180 MALABAR (I) 0.87

Note: O denotes observed while I denotes infilled
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Tabte 4,3 Stations with observed and infilled rainfall data, and
linkages between them

0BSERVED INFILLED
90a  VADA — > —e 91 CIANJUR
127 MONTAYA . - ¢15la SINDANGKERTA
151¢  BATUJAJAR ~— » — 152  CIMAHI
160c  PAKAR L 162a CIHEMPELAS
163c  CISONDARI 167  MAJALAYA
170 PASEH 172 CINYIRUAN

180  MALABAR

Table 4.4 Stations used by Sugawara (1980) in calculating
average rainfall for Nanjung and Palumbon basins

Nanjung Weight Palumbon(total) Weight
152 CIMAHI(I) 1.60 152 CIMAHI({I) 1.5
163c CISONDARI(O) 0.85 163c CISONDARI(0) 0.9
160 PAKAR(0O) 1.35 160 PAKAR(0) 1.35
170 PASEH (0) 1.15 170 PASEH(0) 1.2
66 CISEUREUH(O) 0.75

91 CIANJUR (I) 1.00

127 MONTAYA(0) 1.20

90a VADA(0) 1.10

150 PANDALARANG(0) 1.45

Note: O denotes observed while [ denotes infilled,
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The rainfall stations used by Sugawara {(1980) for the Nanjung and Palumbon
basins are listed in Table4.@pf the total of 9 rainfall stations used to

model flow at Palumbon the data far 7 were observed while those for 2 had been
infilled.

Since 1t seemed desirable to identify a new set of rainfall stations
for further model calibration studies from the full set of stations with
observed data listed in Table 4.1, seven stations were identified within
each of the Nanjung and Palumbon Local Basins; the locations were chosen
to give good areal coverage and to be as near as possible to stations
in the reporting network. The number of stations was limited to seven
in each case since this is the maximum number that the COSSARR Program
on the IBM 1130 computer at DPMA can handle; however, during subsequeht
model calibration studies, errors in simulating flow for the Palumbon
local basins with other models were found to be attributable to the use of
an insufficient number of stations in estimating average basin rainfall
and so a further 3 stations were added to make a total of 10 stations
for the latter basin. The weights used in computing average daily basin
rainfall were calculated as described above.

Thus, to summarize, results for model calibration studies based on
four different estimates of average basin rainfall will be presented in the
report; these will be referred to as sets SAl and SA2 corresponding to the
initial and final COSSARR runs (results of model calibration studies for
set SAl will be presented since it was not established until the middle
of the consultant's visit that set SA2 had been used in the final COSSARR runs},
and sets NS]1 and NS2 corresponding to the new selections

described above; the new selections are summarized in Table 4.5. The
locations of the rainfall stations used in selections SAl and SA2 are
shown in Figures 4.1 and 4.2 while Figure 4,3 shows the locations of
the stations used in selections NS1 and NS2.




Table 4.5 New selections of rainfall stations for computing Nanjung
and Palumbon Local basin rainfalls

(a) New selection NSI

Nanjung Weight Palumbon Local Weight
156a LEMBANG 1.09 66  CISEUREUH 0.75
163  BANDUNG 1.22 91a CUGENANG 1.00
163¢c  CISONDARI 1.01 122 CIRANJANG 1.13
164  P.JATINANGOR 1.20 94  GUNUNG CAMPAKA 0.78
168  ARJASARI 0.90 127 MONTAYA 0.96
170 PASEH 0.97 147 SUKAWANA 0.96
185  PERK JALUN 0.87 151c BATUJAJAR 1.36

(b} Extra stations added to selection NSI to give selection NS2

Palumbon Local Weight
77 PERK. HARJASARI 0.80
125 BOJUNGPICUNG 0.68
145a CIMANGSUD {PERK) 0.78
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4.2 Flow data

The records of average daily discharge at Nanjung and Palumbon used in

the COSSARR model calibration studies have been computed by visually
aséessing‘the average stage over each 24 hour period {midnight to midnight)

and then converting these values to average discharge using the available

rating curve. For days on which large fluctuations in stage occur, more
accurate estimates of average daily discharge could be obtained by extracting
a-sufficient number of stage readings to define reasonably well the fluctuations
in stage within the 24 hour period, converting these readings to discharge,

and then averaging the resulting values.

As part of the Indonesian Floods Study currently being carried out
jointly by DPMA and the Institute of Hydrology, UK, the rating curves for
Nanjung and Palumbon have been assessed. In the case of Nanjung, a fair
amount of scatter is observed at high flows; the maximum stage at which
a gauging has been carried out is 4.3 m, while the maximum observed stages
are 5.24 m (1931) and 5.03 m{1975). For Palumbon, there is little scatter
up to the maximum gauging of 4.58 m ; the maximum observed stages are
8.52 m (1%40) and 7.80 m (1978).

Within the Hydrometry Section at DPMA, rating curves are changed
periodically on the basis that, if new gaugings depart from existing curves, the
crosssections may have changed, For example during the period 1974-76,
the rating curve for Manjung was found to have been changed in early 1976,

The discharge record at Nanjung for the period 1974-76 is complete;
for Palumbon, the data for the period Nov.l1 - Dec. 1, 1975 are missing.
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CALIBRATION OF SIMPLE FLOW FORECASTING MODELS

5.1 Description of models

To facilitate an evaluation of the resuits obtained from the CO-
SSARR model calibration studies carried out using data for
the period 1974-77, a number of models with relatively simple structures
were calibrated using historical flow data for Nanjung and Palumbon; as
discussed in Section 4, results for 4 different estimates of average
basin rainfall were obtained, all for the period January 1974-December 1976.
The models which were fitted fall into 3 classes:

(1) linear and non-linear transfer function (TF) models;
(11) constrained linear System (CLS) models;

(111) simple conceptual models.

Brief descriptions of these models and the procedures used to calibrate
them are given here; more detailed descriptions, and appropriate
references are given in Appendix B.

For the basic linear TF model, it is assumed that
observed discharge can be represented as

9 T Gt (5.1)

where Gy is a deterministic component of flow and Nt is ‘a stochastic
component; the linear TF model is then used to represent qt as

qt= Sy agy T8h9tp T T S apat g Pyt

W Peopey ¥ W1 Peopeos-] (3.2)

where Pt_p* Pyop-1? -+ Py-p-g-7 2T rainfall inputs lagged by a pure

time delay b, and 6] v, 8 and w

cee a i
r b w,_y are r autoregressive

.and s moving average parameters, respectively; the model in shorthand

notation may be written as TF(r,s,b). TF(r,s,b) models may be shown to
be equivalent to the traditional impulse response or unit hydrograph
representations of catchment response widely used in hydrology (Appendix B);
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TF representations are however to be preferred on the grounds that they
involve far fewer parameters.

In modelling the rainfail-runoff process, the assumption of linearity
may prove restrictive; non linear TF(r,s,b) models can be obtained either
by applying a transformation or a threshold to the rainfall input. If
an antecedent precipitation index (API} is computed at time t as

APIt = ¥ APIt_] * P (5.4)

where K may be constant or may vary seasonally for daily data as

= 2n(t-9)
Kt = K + a Cos “‘%gg‘l {5.5)

A transformed rainfall input can then be obtained as

*x =

P APlt.pt {5.6)
whence pz is used instead of Py in equation (5.2). TF models with

thresholds may be obtained by using the API to generate two separate
rainfall inputs as follows:

(1) _ {2} _
APIt > T Py = g Pt pt (5.7)
(1) -, . (2} _
APIt < T 2N Pes Py 0
The TF model is then written as
s (), (6 (1)
L I A T A R RS
(1) (1)
Wg-1 Ptebes-1 (5.8)

Procedures for the identification of values of r, s and b for a particular
application are described in Appendix B. A recursive procedure is employed
for parameter estimation; this has the advantage that all the data need
not be stored in the computer for processing, but can be read from file one
observation at a time, thus requiring very 1ittle computer storage. Data
sequences with gaps also present no problems and can be processed in one
operation, giving one set of estimated parameters.
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The Constrained-Linear Systems (CLS) approach hypothesizes that the
response 0of a hydrological system to one or more inputs can be written as

n,
- (L 1 2 2
qt - 1§0 \;[1 )U(t-% + IZO Vg ) ui'% )
or (r) (r)
r r
+ izo viituply e (5.9)

where vgl), vi(z), ces vgr) denote the ordinates of the impulse responses

. . 1 2
corresponding to the inputs {ug ), ug ), e ugr)} » Nys My oo N

represent the numbers of ordinates in the impulse responses, and Ei is
a noise term. The inputs {ugl),ugz) ces ugr)} can be either upstream
tributary flows or precipitation inputs; in estimating the ordinates
of the corresponding impulse responses, constraints are imposed as follows

in accordance with physical hydrological principles:
a) inequality constraints : v v(z), cer vir) 5o 5.10)
i i i

(J) . -
] Vi - CJ! J - ]’2’ ...,I" (5.]])

n
(b) equality constraints )

where Cj in the case of a precipitation input corresponds to the observed

coefficient of runoff, and in the case of a tributary flow input is

equal to one in accordance with continuity.

Further details of the CLS model and parameter estimation procedure
are given in Appendix B; thresholds can also be applied to the precipitation
inputs in a similar fashion to that described for TF models.

The simple conceptualnmodéié which were employed assume that the
runoff volume in each time interval can be derived by applying a coefficient
of runoff to the rainfall input; this coefficient of runoff may be taken
as constant throughout the year, in which case

ro

t = C.Py {5.12)
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or to vary with season as

B _ 2n{t -4
¢ ~ ey + Crind/28 + Uepay = Cpipl/2) Cos "_éEK__l (5.13)

where Crax and Crin are maximum and minimum coefficients of runoff occurring
throughout the year, and ¢ is a phase shift in days. Runoff is then

generated as

The generated runoff volumes ro, are then routed through a linear

t
reservoir with impulse response given by

v(t) = pe /K (5.18)
to give the flow rate at the end of a particular time interval, or the
average flow over that interval, depending on the form of the observed
data with which model output is to be compared. The parameters occurring

in these models are estimated through non-linear optimization (Appendix B).

5.2 Model calibration

5.2.1 Statistics of model fit

All of the models applied to the Citarum River Basin can be written
in the form of equation {(5.1), and the statistics of the errors Ny

can be used to assess the goodness of fit over calibration and test
periods. The statistics calculated during the present studies were
the following:

= ]

n = Y (a - q,) (5.15)
S.D. (ny) = (2, I (- 0)2%° (5.16)

R = (F2 - F2)/F2 (5.17)

where




Ty

a perfect fit; a value of R? = 0 indicates that the simulation from the
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2 _ LY

Foo= 1 (9 - Q) (5.18)

2 - - 2

F2 o= T (a, - q,) (5.19)
and where qy denotes observed discharge and q, denotes a deterministic
simulation of discharge from a model. A value of R? = 1 corresponds to

model is no better than would be obtained from the use of the mean
discharge over the period of calibration.

5.2.2 Results for data set SAIl

As discussed in Section 4, calibration studies were carried out
using 4 different sets of rainfall data; data set SAl corresponds to
the early calibration runs carried out with the COSSARR model.

(a) Transfer function models: The steps involved in the identification
of the appropriate order (r, s, b) for a TF model are described in
Appendix B; a linear TF(1,1,0) or TF(1,2,0) model was found to
be appropriate for the Nanjung basin. A TF(1,1,0) model has two
parameters and is written as

A = 8y qpg oy Py

From Table 5.1 it can be seen that a TF(1,2,0) model {R? = 0.516) does
not give significantly better results than a TF(1,1,0) model
(R? = 0,515).

A multiplte-input transfer function model for Palumbon was estimated
for which the inputs were Nanjung flow {in mm over the catchment) and
Palumbon Local rainfall (mm); the numbers of terms in the TF model were
r=1, 51 = 2 (Palumbon Local rainfall) and S, = 1 (Nanjung flow), with
notation TF(1/2,0/1,0). A value of R? = 0.847 was obtained; the parameter
values in Table 5.1 illustrate that the model assigned a very heavy weight
to Nanjung flow and refat?velyliitt]e wefght to Palumbon Local rainfall,
whereas, in the observed data, the proportion of flow at Palumbon due to
Nanjung is less than that from the Palumbon Local basin. While measured
Nanjung flow is clearly the best predictor of Palumbon flow, a model in

which continuity is maintained for Nanjung flow would be preferable
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on physical grounds; in addition, if a complete catchment simulation

were to be carried out, the above model would be heavily dependent on

the accuracy of the simulation of Nanjung flow which might not be desirable
if a better simulation of the local Palumbon fiow contribution could be
obtained. Hence, this type of model for Palumbon was not pursued further.

(b) Simple conceptual models: Three versions of the models described
in Section 5.1 were implemented :

Model SCM(1) : Parameters c, k
Model SCM(2) : Parameters min’ max, k : ¢(fixed) = 62 days
Model SCM(3) : Parameters Cmin® Smax’ k, ¢

The value of ¢ for model SCM(2) was chosen on the basis that the soil
moisture deficit in the Citarum River Basin is thought to be at a maximum
around Aug.31. The results obtained for the three models are given
in Table 5.1 for Nanjung; the value of R? = 0.53 obtained for model
SCM(1) 1is very similar to that obtained for the TF(1,1,0) model for
Nanjung as expected, since the same assumptions {a constant coefficient
of runoff and the discrete time equivalent of the linear reservoir) are
implicit in the TF(1,1,0) model. The improvements in R? for models
SCM(2) (R? = 0.56) and SCM(3) (R* = 0.56) are not very significant,

and suggest that the coefficient of runoff does not appear to vary
significantly with season for the Nanjung basin. No runs were carried
out with the CLS model for this data set.

5.2.3 Results for data set SA?

(a) Transfer function models

__ A linear TF(1,2,0) model was estimated for Nanjung with a value
of R? = 0.603 (Table 5.2);the improvement in R? aver data set SAl
(R? = 0.515) is partially attributable to the improved estimate of basin
rainfall for data set SA2, and partially due to the elimination of an

'erhqr"infthe program for computing basin rainfall which affectéd the

results for data set SAl...
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A threshold was applied to an API computed using a constant
coefficient K = 0.95 as described in Section 5.1; results for different
values of the threshold are qiven in Table 5.2 illustrating that, for the
best model {R* = 0.633), the improvement over the linear model is small,

A Tinear multiple input TF model was estimated for Palumbon, the
inputs being Nanjung basin rainfall and Palumbon Local basin rainfall;
a value of R? = 0,663 was obtained (Table 5.2).
(b) COSSARR model: The final calibration runs carried out with the
COSSARRmodel used data set SAZ; the statistics of model fit (Table 5.2)
give R? = 0.64 for Nanjung and R? = 0.75 for Palumbon; for the latter
model, the simulated flow at Nanjung was routed to Palumbon. '

The result obtained for the best TF model with a threshold for
Nanjung (R? = 0.63) is virtually identical to the fit obtained with
the COSSARR model; for Palumbon, a TF model comparable to the COSSARR,
with simulated Nanjung flow routed to Palumbon, was not developed for
this data set. The result for the Tinear TF model with Nanjung and
Palumbon Local basin rainfall inputs (R? = 0.66) compares favourably
with the result for the SSARR model, given that the former model is
linear and includes no routing component,

5.2.4 Results for data set NSI

{a) CLS models

A linear CLS model was calibrated for Nanjung with a value of
R* = 0.72. For Palumbon, a CLS model was estimated in which Palumbon
flow was related to upstream Nanjung flow and Palumbon Local basin rainfall;
both equality and inequality constraints (5.10) and (5.11} were used in the
estimation, thus ensuring fhat continuity was maintained for routed NanjUﬁg'
flows. The value of R? obtained for this model was 0.86. The impulse
response for Nanjung consisted of one ordinate of unit at lag zero, thus
implying that average daily discharge for Nanjung can be translated directly
tp Palumbon. Using an API, a threshold was applied to the rainfall input for
Patumbon Local but no significant improvement over R? = 0.86 was, obtained.
However, the number of runs which could be carried out with the CLS model was
restricted sincé the program could only be gxecuted when other programs were
not being run on the Honeywell Mini, '
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{(b) Transfer function models: A linear TF(1,1,0) was estimated for
Nanjung, with R2 = 0.714; this represents a significant improvement over
the result for data set (R2 = 0.603), and demonstrates the necessity

of having an adequate estimate of basin rainfall for model calibration on
the Citarum River. A TF(1,2,0) model did not give any improvement over
the TF(1,1,0) and so a (1,1,0) structure was adapted for all further
calibrations for Nanjung, TF models with thresholds were estimated using
an APl with a seasonally varying coefficient (equation 5.5) computed with

K =0.80, a = 0.15 and ¢ = 62 days. The best model (R* = 0.756) was obtained
with T = 90 (Table 5.3).

The result obtained above with the CLS model for Palumbon implied
that a model for Palumbon Local flow could be developed separately by
relating the difference between total Palumbon flow and Nanjung flow to
Palumbon Local basin rainfall. A linear TF(1,1,0) model gave a value of
R? = 0.509 which is much lower than the value of R? obtained for the linear
TF(1,1,0) model for Nanjung (0.714). Inspection of the simulation errors
suggested than an insufficient number of raingauges had recorded localized
storms in a number of cases, and so the number of gauges was increased
from 7 to 10; the results are presented in Section 5.2.5 (Data set NS2).

A multiple input linear TF model of total Palumbon flow (inputs
Nanjung rainfall, Palumbon Local rainfall) gave a value of R? = 0.675,
which represents only a marginal improvement over the result obtained for
the same model with data set SA2 (R? = 0.663); although the Palumbon
local basin produces the dominant contribution to Palumbon total flow,
the improvement in the estimate of basin rainfall for Nanjung might have
been expected to produce a better fit. To analyse this result further,

a quantity called the gain can be computed for the inputs to the TF model;
for data set SA2, the gains for the TF(1,1,0) model are

GNJ = To%. 0.278

(2)
“0.f =0.295
- El
where f is a factor to take account of the different measurement units
for rainfall and discharge. For data set NS1, the corresponding
results are

w3}
n
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Table 5.3 Statistics of model fits obtained using data set NS}

Error Statistics

Catchaent Model Inputs Parameters
n $.0.n R?
Kanjung CLS (linear) Kanjung basin lmpulse respaonse
: rainfall ordinates 0.000 3.824 0.724
Linear TF(1,1,0}Nanjung basin 6] a-0.764 u_ s 2.465[2.)4] 35.496 0.714
rainfall o
16(1,1,0) with [Nanjuag basin & « - 759 wl!) 07,939 3.389 32.830 0.756
threshold rainfal) (split) ?2)
- w =2.267
K=0.80a=0.15 0
é = 62 Ts 90.
SR (Y) Nanjung basin c =« 0.530 k = 3,743 1.558 36.823 0.692
rainfall
StH (2) Nanjung basin Cain = 0-376 ¢gy, 206405 357 33.356 0.746
kK =3.470¢9 =62
SCH (3) Nanjung basin e+ 0.374 ¢ =0,639
rainfall ain oax 2.395 33.350 0.146
kK .= 3.462 ¢ =60.44
Palumbon Local |Lipear TF(1,1,0) |Palumban Local §y = - 0.741 w, = 4.020 [5.23 53.15) 0.50%
basin rainfall °
Palumbon .
CLS (linear) (1) Nanjung flow
(total.ares) {measured) lmpulse response 0.000 50.620 0.859
(2) Palumbon Local ordinates
basin rainfall
. . .. (n,
Linear TF(1,1,0) :I; Nanjung rainfall 6| 0.706 Wy 3.598 8.620 13.566 0.675
2} Palumbon Local {2},
rainfall wg = 3.866
Linear TF(1,1,0) as abave as above 6.195 69.292 0.710
Models for
Manjung and
Falunbon
Local combined
FCH(I) Palumbon basin c» 0.489 k = 4,028 '15.556 Be2.218 0.579
rainfall
BCM{2 Palumban hasin C » 0.361 c_. =0.564
@ rainfall @in ax 16.834 | 77.159 0.625
k « 3.893¢= 62
3 P = 0. ¢ . =0, -
PCN(3) Palunbon basin “min " 0-389 <5, "0-585 e gar | 7s.603 0.643
k = 3.91] ¢ « 104.85

O
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w&lzf
GNJ = '1—?"8‘] = 0,260
£
6oy © Tog ¢ 0.279

Thus, for data set SA2, the model predicts that 0.278 and 0.295 of Nanjung
and Palumbon Local basin rainfalls, respectively, will become flow,
comparison with the results for data set NS1 shows that, while the absolute
values of the gains have changed slightly, their ratio has not and so the
model has not assigned more weight to Nanjung rainfall. This is consistent
with the improvement obtained in R%, but it is a little surprising that

the model did not assign more weight to Nanjung rainfall,

The simulated flows obtained from the linear TF{1,1,0) model for
Tocal Palumbon flow (R? = 0.509) were added to the simulated flows for
the linear TF(1,1,0) model for Nanjung (R? = 0.714) to obtain total
simulated flow at Palumbon, with a calculated value of R? = 0.710. Hence,
this approach provides a better simulation of total Palumbon flow than
the multiple input model discussed above.

(c) Simple conceptual models : Models SCM(1)-(3) were calibrated for

Nanjung‘and total Palumbon flows; in the latter case, all of the stations
used to estimate basin rainfall for the Nanjung and Palumbon Local areas

were used to provide a single estimate of total basin rainfall at Palumbon
(area 4061 km?). The results in Table5.3show that, for Nanjung, the

SCM(1) mode! gives a similar R? value (0.692) to that for the TF(1,1,0)

model {0.714) as expected; an improvement to R? = 0.746 was obtained with

the seasonally varying coefficient of runoff. For Palumbon, the corresponding
results are R? = 0.580and R? = 0.643; thus,the use of a routing component

for Nanjung to Palumbon gives a better model for Palumbon (R? = 0.710)

than a total basin rainfalli-runoff model.

5.2.5 Results for data set NS2

As noted in Section 4, the number of stations used in calculating
Palumbon Local basin rainfall was increased from 7 to 10 for this data
set; the number for Nanjung remained unchanged. A linear TF({1,1,0) model
for Palumbon local flow gave R? = 0.567, compared with RZ = 0.509 for

data set NS1; this result suggests that 7 stations, and perhaps 10,
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are insufficient to provide an accurate estimate of Palumbon Local
basin rainfall, The best result for a 7F{1,1,0) model with a threshold
was R? = 0.581 (T = 60), while for the multiple input model (Nanjung
rainfall, Palumbon Local rainfall), a value of R? = 0.703 was obtained,
compared with R? = 0,675 for data set NS{. By combining the best
models for Nanjung (TF(1,1,0) with T =90 ) and Palumbon Local flows

(TF(1,1,0) with T = 60) a value of R? =0-7sresulted for total simulated

flow at Palumbon (Table 5.4).

5.3 DISCUSSION

At the time of writing, the results from the COSSARR model calibrations
on data set NS1 were not available, and so a direct comparison with the
results from the simpie models can only be made for data set SAZ. For
Nanjung, a TF{1,1,0) model with a threshold gave a similar fit to the
data (R*> = 0.63) as the COSSARR model (R? = 0.64); however, for Palumbon,
the latter model (R?* = 0.75) gives a better result than the linear
TF(1,2,0) model with Nanjung and Palumbon Local basin rainfall inputs
(R* = 0.67). A better non linear TF model for Palumbon was not sought
with this data set, since it was noted that, with data set NS1, large
errors in simuiated discharge were attributable to errors in sampling
localized rain storms. The progressive improvement in the results from
the simple models for data sets SAl, SA2, NS1 and HSZ2 is almost entirely
attributable to improvements in estimating the basin rainfall inputs;
hence, it is surprising that the COSSARR model achieved such a good
result for Palumbon with data set SAZ,

The best TF model (with threshold) obtained for Nanjung gave R? = 0.746
for Nanjung (data set NS1) while the best result which could be obtained for
Palumbon Local flow was R? = 0.581 (data set NS2). The disparity in these
R? values is surprising; however, an improved fit was obtained for Palumbon
Local flow when the number of raingauges used in computing basin rainfal
was increased (7 for data set NS1 to 10 for NS2); 2 further improvement
in fit might be obtained by increasing the number of gauges still further,
The raingauge densities for Nanjung for data set NSV (1 per 245 km?) and
Palumbon Local for data set NS2 {1 per 234 km?) are very similar; a closer
analysis of the sampling of rain storms over the Palumbon Local area

would be required to establish if this can account for the difference in
fit obtained for the two catchment areas.
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The best-overall model for Palumbon was obtained by combining the
best TF models for these two catchment areas to give a value of R? = 0.75
i.e. the same as that obtained for the COSSARR model with data set SA2.
However, the COSSARR model might be expected to do better with data set NS,
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6.  EVALUATION OF RESULTS FOR 'TRIAL RUN' FORECAST PERIOD
DECEMBER 1980 -~ APRIL 1981

6.1 Rainfall forecasting

The procedure used for making one and two-day ahead rainfall
forecasts for the Citarum River Basin has been described in outline
in Section 3; to assess how this procedure performed over the operational

.test period December 1980-April 1981, the one day and two day forecasts

were punched up together with the observed values of average rainfall

for the Nanjung and Palumbon Local basins, and the mean, standard deviation
and R? value (5.15-5.17) of the forecast errors were computed for those
days for which forecasts were made. The mean and standard deviation of
observed rainfall are also presented in Table 6.1; the calculated values
of R* indicate that the forecasting procedure gives slightly better results
than the use of the mean R of the set of observations as the forecast

which corresponds to R? = 0. However, the mean R would not be known

a priori and so this does not constitute a basis for an operational
comparison with the Project procedure. The following alternative procedures
were employed to provide a basis for assessing the Project procedure:

(a) a procedure which specifies that the rainfall on days (t + 1)
and (t+2) will be the same as on day t ;

(b} wuse of an autoregressive moving average (ARMA) time series
model with parameters estimated from historical rainfall
data i.e.

Re = R =0 (Rey = R) ~0p(Ryp = R) = ooy Ry, - R)
+ at + 8] at-l + 62 at_2-+ "'*'eqat-q (6.1)

where R is average rainfall, ¢] cee ¢p are p autoregressive parameters,

8] . eqare q movingaverage pprametersand a, 1s an independently distributed
, :

random variable with zero mean,

(c) use of the recursively estimated mean of the observations
over the forecast period i.e. the mean of the set of
observations up to the current time point is used as the
forecast :
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Table 6.] Statistics of 1-day and 2-day ahead Project rainfall forecast
errors for the Nanjung and Palumbon Local basins for the period
December 1, 1980 - April 30, 1981
Nanjung Basin Palumbon Local Basin
1 day 2 day 1 day 2 day
n 119 117 119 117
R 5.488 5.791 7.249 7.543
S.D.(Rt) 5.916 5.888 7.754 7.794
mean error - (0.030 0.466 0.680 1.312
st. dev. 5.810 5.677 7.351 7.525
R? 0.043 0.072 0.101 0.048
Table 6.2 Fitted parameter values and R? statistic for AR(4) and

AR(3) models fitted to Nanjung and Palumbon Local Basin rainfalls,
respectively, for data set NSI,

(a) Nanjung Basin

Modei Parameters R
AR R O K %3 o

all data  7.219 -0.422 -0.010 --0.010 -0.143 0.288"

w.5. data 9,359 -0.395 -0.104 -0.027 -0.087 0.217

(b) Palumbon Local Basin

Model Parameters R?

AR{3) R ¢ b ¢

all data 6.216 -0.419-0.043-0,103 0.234

w.s. data 7.806 -0,434-0.036-0,046 0.207

......................‘...........
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(6.2)

Historical rainfall data for the period 1974-76 were used to identify
and fit ARMA(p,q) models for Nanjung and Palumbon Local average basin
rainfalls; vresults for data set NS1 are presented here. Models were
developed using (i) all the daily data within each year and (ii) using
'dnly wet season daily data (November 1- April 30). AR(4)

and AR(3) models were identified for Nanjung and Palumbon Local Basin
rainfalls, respectively (both for all data and wet season data); the
estimated parameters and values of R? are given in Table 6.2. '

The results obtained when procedures (a)-{c) were applied to the data
for the period December 1, 1980 to April 30, 1981 are presented in Table
6.3; for the autoregressive models, the parameter values used were those
given in Table 6.2 for 'all data', 1974-76. As expected the R,“_2 = R
model performs worst but serves as a baseline for comparison; the

tel ~ "t

remaining procedures give results in the neighbourhood of R? = 0. The
results for the Project forecasts presented in Table 6.1 -are somewhat better
than the best results in Table 6.3, although not by a significant amount.
The results obtained for the AR models could probably be improved by
applying these models to longer series of data; also, the use of recursive
parameter estimation in real-time for such models might also lead to
improved results.

6.2 Flow forecasting

-

As described in Section 3, forecasts of discharge at 07.00 hours
: at Nanjung and Palumbon one and two days ahead were made durjngithe
¥ griai run’ itest period December 1, 1980 - April 30, 1981; from these, and
forecasts of the Jatiluhur Local flow contributions, forecasts of
Jatiluhur reservoir level were computed. The statistics of the one day
and two day ahead forecasts of Nanjhng discharge,'Palumbon discharge and.
Jatiluhur reservoir level at 07.00 hours are given in Table 6.4; with
the exception of Jatiluhur reservoir levels, the values of R? are relatively
lTow, since they are heavily influenced by the errors in the rainfall

forecasts.
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Table 6.3 Statistics of 1-day and 2-day ahead rainfall forecast errors
for various procedures applied to the Nanjung and Palumbon
Local basins

(@) Nanjung Basin

Rt+2 = Rt+] = Ry AR(4) Recursively Est, Mean
1 day 2 day 1 day 2 day 1 day 2 day
n 119 17 119 17 119 17
mean V:018 0.019 -0.762 -1.055 -1.125 -1.141
st. dev, 7.295 7.800 5.830 5.831 5.948 5.98
R? -0.508 -0.724 0.021 0.005 -0.038 -0.051

(b) Patumbon Local Basin

Rt+2 =R * Ry AR(3) Recursively Est. Mean
1 day 2 day 1 day 2 day 1 day 2 day
n 119 117 119 117 119 17
mean -0.186 0.297 0.400 0.748 -1.170 -1.099
st. dev. 10.781 10.146 8.328 7.817 8.018 8.081
R? -0.906 -0.690 -0.140 -0.011 -0.077 20.091
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Table 6.4 Statistics of one day and two day ahead COSSARR forecast errors
for Nanjung flow, Palumbon flow and Jatiluhur reservoir level
at 07.00 hours. The mean and standard deviation of observed
discharge for Nanjung were 85.1 and 56.9 and for Palumbon were
238.0 and 145.2 m’/s, respectively.

Location Nanjung ' Palumbon Jatiluhur
Lead time 1 day 2 day 1 day 2 day 1 day 2 day
n 112 112 112 112 109 109
mean 9.286 14.868 13.712 18.413 -0,020 0.031
st.dev. 37.469 44.977 120.047 104.608 0.207 0.255
R? 0.543 0.323 0.314 0.354 0.996 0.994
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The 1 day ahead forecasts for Palumbon (R® = 0.314) are better than the
two day ahead forecasts (R? = 0.354) which is surprising, given that the
reverse is true for the rainfall forecasts (Table 6.1); . also the one
day ahead forecasts for Nanjung (R? = 0.543) are better than those for
Palumbon (R? = 0.314). As the simulation model results for Palumbon

(Rz =0.75) were better than for Nanjung (R? = 0.64) this result may
reflect the updating procedure used with the COSSARR model.

The very high values of R* observed for Jatiluhur reservoir levels
reflect the fact that large errors in forecasted inflows transiate to
small errors in reservoir level forecasts because of the large surface
area of the reservoir. This raises the question as to what the desired
accuracy in forecasting reservoir levels should be. It is when high
rainfalls occur that forecasts of reservoir level are likely to be of
greatest importance; however, as the Project rainfall forecasting
procedure underestimates considerably the magnitude of high rainfall
over the Citarum Basin, forecasts of high discharge tend to be made
one day late i.e. after the rainfall has been observed and measured
discharge is already high, thus detracting from the value of the forecasts.

To allow the simple TF models developed in Section 5 to be used
for real-time forecasting, a procedure for updating model forecasts
in real-time is required; this is achieved by developing a noise model
for the term ne i.e the difference between observed flow 9 and the
simulation obtained from the TF model - An ARMA(p,q) model can be used
to describe the structure of the Ny s and a recursive procedure applied to
estimate the model parameters (Appendix B) from the un series derived from
fitting the TF model over the calibration period; the composite model
is called a transfer function noise (TFN) model. Noise models were
estimated for the Ny series obtained from fitting 1linear TF(1,1,0) models
at Nanjung and Palumbon for data set NS) (Table 5.3 }; AR(4) models were
found to be appropriate in each case, and the parameter values and R? values
are given in Table 6.5.
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Table 6.5. Parameters and R? values for AR(4) models estimated from
n, series for linear TF({1,1,0) models fitted using data

set NSI
Nanjung Palumbon
2 2
¢1 ¢ b3 L7} R % ¥ ¢4 s R
-0.672 -0.107 0.053 -0.118( 0.633 |-0.491 -0.108 -0.076 -G.103[ .451

The values of R? indicate that there is more persistence in the Ny series
for Nanjung than for Palumbon,

The TFN models were applied in simulated 'real-time' mode over the
test period December 1980 - April 1981; as forecasts of discharge at 07.00 hours
one and two days ahead had been provided by the COSSARR model, similar
forecasts were required from the TFN model for comparison purposes. However,
the TFN models had been calibrated using average daily discharge data, and
thus should be used to forecast these quantities. This was not possible
since only three discharge values (at 0700, 1100 and 1700 hours) were recorded
during the test period, and only the value at 07.00 hours was available at
the time the COSSARR forecasts for the next two days were made, Hence, the
TFN model was used to provide forecasts of discharge at 07.00 hours although
such values would not be expected to be representative of average daily
discharge which the model had been calibrated on. The mean,standard deviation

‘and R? values for the one day and two day ahead TFN forecasts are given in

Table 6.6; comparison with Table 6.4 shows that the results are sdméwhat
better overall than those for the COSSARR model. The two‘day;ahééq"fofecasts
for Palumbon are slightly better than the.one day forecasts; this result was

also obtained with the COSSARR model (Table 6.5). In producing the forecasts
Afrom the TFN model, the observed rainfall_used_up to the. 'current” timq_
.point ‘was that computed when the data from all the reporting stations -in

‘the Citarum Basin had. been_received. This appears to give an'adyéﬁtage,to

the TFN model since the 'observed rainfall' used by the COSSARR model was based
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largely on the data obtained from the network of stations reporting in
real-time to the Project Office. However, it is unlikely that this
would make much difference to the results, since, in real-time, observed
discharge data are available up to the current time point, and the noise
model can compensate for any inadequacies in the simulation from the TF
model due to the rainfall input.

Table 6.6 Statistics of 1 day and 2 day ahead forecast errors at
07.00 hours for Nanjung and Palumbon for the TFN model
using forecasted rainfali

Nanjung Palumbon
One day Two day One day Two day
Mean 5.617 11.239 19.818 24.829
St.dev. 35.456 40.469 110.645 97.601
R? 0.605 0.468 0.406 0.419

The linear TFN models have also been run assuming perfect knowledge
of future rainfall i.e. observed rainfall is used instead of forecasted
rainfall in making one day and two day ahead forecasts of flow. For
example, the value of R? for one day ahead forecasts at Palumbon is

0.692 {Table 6.7) compared with 0.406 for forecasted rainfall (Table 6.6};

this illustrates the large component of error that is attributable to
forecasted rainfall. In Table 6.7, the value of R? for two day ahead
forecasts is higher than for one day ahead. To explain this result, the

forecast errors have been inspected and it has been found that a number of
large one day ahead errors occurred on days for which no two day ahead Palumbon

forecast was made, and so the apparent anomaly is attributable to the
different sub-sets of forecasts used to calculate the statistics.
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féble 6.7 Statistics of one day and two day ahead forecast errors
at 07.00 hours for Nanjung and Palumbon for the TFN model
using future observed rainfall

Nanjung Palumbon
One day Two day One day Two day
Mean 5.485 9.394 15.717 14.374
St. dev.26.391 25.733 79.459 58.140
R2 0.777 0.774 0.692 0.795

It is also of interest to see how well the TF model performs
when used in simulation mode to reconstitute the flows at Nanjung and
Palumbon for the 'trial run' period; the results for the linear TF
models used for 'real-time' forecasting over this period are given in
Table 6.8. The values of R? obtained are much lower than for the fitting
period (1974-76); this is largely due to a consistent underestimation
of the flows at 07.00 hours. Since the peak daily flow rates for
Nanjung and Palumbon usually occur in the early hours of the morning,
flow at 07.00 hours will tend to be consistently higher than average
daily flow, thus accounting for the large positive values of n in
Table 6.8. If these biases are corrected for in computing the R? values
i.e. F2 in (5.19) is computed as

2 _ - A2
F¢ = & (nt n)
then the resulting values of R? are much higher (Table 6.8) and similar
to the values obtained over the fitting period (Tables 5.3 and 5.4).

Table 6.8 Statistics of simulation errors when linear TF({1,1,0) models
used to reconstitute flows over period December 1980 - April 198}
at Nanjung and Palumbon

Nanjung Palumbon,
n 31.154 70.034
s.d. Ny _33.922 84.741
R2 0.3910 0.407
R*(corrected) 0.6707 0.648
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6.3 DISCUSSION

The results presented in Section 6.1 suggest that the procedure
used within the Project for rainfall forecasting utilizes the available
{nformation effectively; however, the forecasts are statistical in
nature, rather than deterministic, and so should have some error bounds
or confidence 1imits quoted with them., These, when translated into
forecasts of flow and reservoir level, would give the user an idea of
‘the uncertainty associated with the forecasts.

Despite the fact that the simple TFN models had been calibrated
using average daily discharge data, the TFN model forecasts of flow at
0700 hours for Nanjung and Palumbon were better than the COSSARR mode)
forecasts over the 'trial-run' period. This result is largely due to the
ability of the noise mode) to update forecasts efficiently in real-time,
since the TF model gave a relatively poor simulation of discharge at
0700 hours which is largely attributable to the fact that the latter
flow rate is consistently higher than average daily flow. Since it is
likely that the COSSARR model would have provided a better reconstitution
of flow than the TF model over the 'trial run' period, the COSSARR
updating procedure {i.e. adjustment of observed rainfall over the
'back-up' period') is probably not as efficient as that used with the
TFN modeld.

The results obtained when the TFN models were used to make forecasts
assuming perfect knowledge of future rainfall illustrate the extent to
which the errors in flow forecasts are dominated by errors in rainfall
forecasts; under these conditions, there is little to be gained by using
complex models since any improvement that might be obtained with a
complex model cover a simple model is liable to be small compared with
that which could result from improved rainfall forecasts. The results
presented above suggest that the simpler TFN model can perform as well
as, if not better, than the more complex COSSARR model, and so under
these circumstances, little appears to be gained from using the more
complex model,

To enable the TFN model to be used to forecast Jatiluhur reservoir
levels, forecasts of flow at 0700 hours at Palumbon would need to be
converted to forecasts of average daily flow into the reservoir, and
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a reservoir routing component added to provide forecasted reservoir
levels. There was insufficient time to allow this work to be undertaken
within the consultant's assignment,




CONCLUSIONS AND RECOMMENDATIONS
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CONCLUSIONS AND RECOMMENDATIOQNS

The COSSARR model has, within the limits imposed by the available data,
performed adequately as a forecasting tool over its first 'trial run' period;
however, this conclusion must be qualified with the following considerations:

(1) in calibrating the COSSARR model, better results would have been
obtained if stations with infilled data had not been used in
estimating basin rainfall;

(i1)  simple transfer-function models with few parameters have been
calibrated for Nanjung and Palumbon during the consultant's
visit and shown to give comparable results to those obtained
with the COSSARR model;

(i11) the forecasts of daily rainfall one and two days ahead made
within the Project are as good as can be obtained with the
available information;

while the number of reporting stations used to estimate basin
rainfall in real-time is relatively small, the importance of
this is diminished by the adjustment of the rainfall input to
the COSSARR model during the 'back-up period';

(v) the real-time forecasts obtained using the simple model developed
under (ii) above over the 'trial run' period were slightly

better than those obtained from the COSSARR model; this suggests
that the COSSARR forecast updating procedure could be improved
upon;

(vi)  the full capability of the COSSARR model to simulate river
regulation by a complex system of reservoirs is not required
for the Citarum River Basin

§

Taking the foregoing conclusions into consideration, forecasts of
similar accuracy to those produced by the COSSARR model can be made by
.xéimp]er models. In cost/benefit terms, the level of benefits from both
”-Lmode]s.wouldmbeAthe.sqme-bututheuimplementation and-running.costs.for.the.... - ...
COSSARR model would be much higher : in the case of the Citarum River,
'4-6 weeks consultant's time is estimated for simple model implementation, °
and 6 months for COSSARR. Once calibrated the simple model can be run
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on a cheap desk-top micro-computer while COSSARR, developed to handle a
general configuration of rivers and reservoirs, requires a larger facility.

The following recommendations are made by the consultant:

{a) Effort should be devoted to improving the rainfall forecasts;
this can only come if more quantitative meteorological informa-
tion (e.g. from radar) is supplied in real-time by BMG;

(b) the simple models developed by the consultant should be run
operationally alongside the COSSARR model during the 1981/82
'operational run' forecasting period;

(c) no effort should be made to implement further complex models
{e.g. the Stanford Watershed Model) under the Project since

(i) the data to support such models do not exist for
the Citarum River Basin;

(i1) even if sufficient data were available, the results
presented in Section 6 show that the factor limiting
the accuracy of flow and reservoir level forecasts
is the accuracy of the rainfall forecasts;

(d) if the COSSARR model were to be transferred to other river basins,
then

(i) appropriate computing facilities would be needed to
run the model at the various forecasting centres;

(i1) staff would have to be trained in its use.

Hence, considerable resources would be required for implementation on a
multi-basin scale. Before any such transfers are contemplated, the following
steps should be taken:

A, the benefits should be carefully assessed, both in terms of
transfer of knowledge and for operational flood warning,
reservoir management etc.

B. calibration studies should be carried out at DPMA with simple
models and the COSSARR model, and the models then run over
hypothetical trial forecasting periods; unless the COSSARR
can be shown to give significantly better results, the simple
models should be adapted for implementation;
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the development of a forecasting capability for other
river basins throughout Indonesia would be best undertaken
through the operation of a forecasting model development
centre, with some specialist support, at DPMA; simple
models could then be transferred to regional centres to

be run operationally on minimum cost desk-top computers
where required throughout Indonesia. In this way the
expertise and computing facilities concentrated at DPMA
would be exploited to maximum effect.
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RAINGAUGE NETWORK RATIONALIZATION

Sumnary

In the United Kingdom, there are about 6,500 daily, weekly or
monthly—;ead raingauges; the collection, processing and dissemination of
the rainfall data are shared by the Meteorclogical Office and the ten
fRegional Water Authorities who are responsible for all aspects of water
resources planning and management within their respective areas. The costs
of collecting and processing rainfall data have increased in recent years,
and reservations have been expressed about the guantity of data which are
collected and processed, To establish whether the UK raingauge network
fulfils its role in the most cost effective way, a project was undertaken
jointly by the Institute of Hydrology and the Meteorological Office to
develop methods of evaluating raingauge networks and for redesigning them,

and to apply these techniques to some of the Regional Water Authority

networks in the UK,

A network of raingauges provides information about rainfall at only
a limited number of points within a region; some procedure must then be
adopted to estimate the rainfall for other chosen points and areas within
the region; in addition, the accuracy of rainfall estimates must be
quantified so that a comparison with the regquirements of user of rainfall

data can be made. Optimal estimation procedures have been developed which

‘minimize the mean square error of estimation; these can be applied to

areas with any number and configuration of raingauges. The techniques

can be applied to the redesign-of existing networks of gauges by mapping the

. root mean square error of point interpolation, allowing the identification

©f these areas where these are surplus gauges or where new gauges are

‘needed to meet some specified criterion of accuracy.

The techniques which have been developed have been applied to the re-

désidn of the Wessex Water RAuthority raingauge network in Southern England.
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RAINFALL - RUNQFF MODELLING

Summagx

Over the past twenty years, considerable research effort has been
devoted to the development of mathematical models of the rainfall-runoff
process, While the main scientific objective of such work has been to
obtain a better understanding of the complexity of catchment response,
the reseach has also been motivated by the necessity for such models in the
short-term management of water resources. One of the main potential areas
of application of rainfall-runoff mecdels is in the short-term forecasting
of streamflow, where forecasts from such models form the basis of decisions

pertaining to flood warning, flood control or river regulation.

Given the considerable number of rainfall-runoff models which have
been developed to date, the guestion then arises as to what type of model
is most suitable for real-time use. In this context, it is useful to

distinguish between three types of model.

(a). Distributed physics-based models:

With such models, the objective is to use the equations of
mass, energy and momentum to describe the movement of water over the land
surface and through the unsaturated and saturated zones. The resulting
system of partial differential equations has to be solved numerically at
all points on a three dimensiocnal grid representation of a catchment
system, Such models are very much at the developrment stage at present
(eg. the Eurcpean Hydrological System, Jonch-Clausen. 1979) but will
eventually offer the possibilities of satisfactorily predicting the hydro-
logical effects of and- use changes, and of satisfactorily predicting the

response of ungauged cafchmgntg.

(b). Lumped conceptual models:

The essence of these models is that they are quasi physical in
nature; rather than using the relevant equations of mass, energy and
momentum to describe the component processes of the rainfall-runoff process,

simplified but plausible conceptual representapipﬁs of these processes

are adopted. These representations frequently involve several interlinked
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stores and simple budgeting procedures which ensure that at all times
a complete mass balance is maintained between all inputs, outputs and
inner storage changes. The forerunner of this type of conceptual model is

the Stanford Watershed Model develcped originally by Crawford and Linsley
(1963).

(c}. Input - output or black box models:

With such models, attention centres on identifying a relation-
ship between rainfall input and streamflow output without attempting to
describe the internal mechanisms whereby this transformation takes place.
This dpproach is frequently referred to as the systems apprcach, as it
relies heavily on techniques of systems analysis. A classical example of
a model of this type is the unit hydrograph which postulates a linear
relationship between ‘effective rainfall' and ‘*storm runoff' and which
can be identified using any one of a number of techniques of input - output

analysis,

Examples of each of the above types of model will be given and

their suitability for real-time flow forecasting will be discussed,
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REAL-TIME FLOW FORECASTING

Summary

With the increasing use of telemetry in the control of water resocurce
systems, a considerable amcunt of effort is being devoted to the develop-
ment of models and parameter estimation techniques for real-time use.- Of
particular importance is the use of efficient computational procedures

for updating flow forecasts as new data are received in real-time.

The various procedures which can be used for updating flows forecasts
from conceptuval models are discussed; these include adjusting the model
parameters, adjusting the contents of the various storages, adjusting the
rainfall input or employing a stochastic model to forecast the residuals
obtained from the simulation model. In the case of input-output models,
more scphisticated recursive estimation procedures can be employed which
update model forecasts recursively in real-time. These procedures when
used with simple input-output models require minimal computational

facilities,

After outlining the basic principlesof recursive estimation, a particular
class of input-output models suitable for real-time use will be described;
these models are called transfer function noise models, and they employ
a recursive procedure for parameter estimation. The basic transfer function
-model is linear; procedures for introducing non-linearity into these models
will be described. 8ome results obtained from applying them to some British

catchments will be presented,
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B.1l TRANSFER FUNCTION NQISE (TFN) MODELS

B.1.1 Transfer function (TF)! models )
T1° basic modelling approach assumes that the observed flow q can ke

considered to be the sum of a linearly deterministic cozponent a. and
a stochastic component nt

o oen N
a, et N, (B1.1).

The deterministic component of flow, Qe is defined such that it is
eractly related to the input, U {which may be rainfall p_ or sonme

other guantity which influences flow) by the deterministic linear model

+ 6 + ... + 0 = + + ...
e T 0 G r Teor T 9% b T ¥ Yeepn *WPsl1 Yeobos-1

where & , W, are parameters, and b is the pure time delay before the
flow output responds te a change in the rainfall input. Introducing the
backward difference operator, B, defined in ab u = u , the above

may be expressed concisely in difference equation for%—bas:

§(8) q,- = w(® u (BL.2)

where the autoregressive and moving average operators G(B) and w(B) are
polynomials in B of degree r and s-1 respectively, i.e.,

§(B) = 1+ 8B+ ...+ 8 B,
1 r
w(B) = w + W B+ + W ps1 (B1.3)
o 1 s-1 : Sty

On writing (Bl.2)as

a 6B wid) B2 u = vI(B)u (B1.4)

‘t t t’ At e
where

o )
v (B} v0 + v1 B + VZB +

the series of coefficients v, v, ... is called the system impulse
response function. This is equivalent to the unit hydrograph encountered
in the hydrological literature, except that the coefficients are used

to define the relationship between total flow and rainfall and are not
constrained to sum to unity; in fact their sum is. called'the gain of.
.the system which may be equated to the runcff coefficient of a catch—
ment. Since in general the order of a polynomial anproxxmation to. v(B)
will be larger. than the sum of the orders of §(B) and w(B), the form.of )
(31;2f!offers important advantaqes by virtue of its parametric efficiency
(Box and Jenkins,1970). Also the dependence of current flow on past
flows (that is, the autoregressive nature of (Bl 2)15 of particular,

Y e e —
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importance in real-time forecasting applications: it provides a
natural mechanism whereby forecasts may be based on the most recently
observed values of flow, and not just on past rainfall as in the unit
hydrocraph (or impulse response function) representation (ioore and

0'Connell, 1978).

Bl.2 ARMA noise models

Tne stochastic component, , 1s atrributed to the aggregated
disturbance effects of modef errors, and measurenent errors., It is
normal practice when estimating the unit hydregraph (UH) ordinates
to assume that the model errors, nN,, form an uncorrelated seguence:
this assumption allows the UH ordinates to be estimated, for example
by least scuares (Snyder,1955). However in general the noise, n_,
will not form an uncorrelated secuence, and inefiicient parameter
estimates will result if least squares is used. The noise, n_, can
he reasonably assumed to be related to white noise (an uncorrélated
sequence of random variables) by the difference equation

¢(3)n, = 8(Bla, (B1.5)

where the autoregressive and moving average operators are defined as

G(B) = 1 + ¢1B + + ¢po , and

(B1.6)

8{B) = 1 +8.B + + 0 B
1 q

respectively . The white noise sequence, a,_, is assumed to have zero
=¢an and variance G;, and to be uncorrelated with the input, ut.

The deterministic transfer function (TF) component of the model
represented by eguation ({p].2)will be referred tc as the process model,
and eguation (BL.5) relating the process noise, n_, to white noise, a ,
will be referred to as the noise model. Eliminating ¢_, by combining
{Bl.2)and (B1.5) using {BL1l)., gives the composite, or transfer function
noise (TFN) model

oowm o m (B1.7)

e 5(8) “t-b (@ °t

depicted in-FigureiB.l_f This composite model thus not only provides a
more efficient parameterisation than the UH representation of a linear
system but also,by acknowledging that the hydrological system is
stochastic, provides a model for the correlated model residuals which
can be used to improve upon the deterministic forecast of flow provided
by the process model.

When discossing different types-of process model in later sections it
will be found convenient to express the transfer function noise mocdel

"131_7) in the form -

§(8lg, = w(Blu_, +¢€, (B1.8)

where
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4(BYR(B)

YEY at = G(B)ﬂt

The particular structure of the transfer function model will be
indicated by TF(r, s, b), where r and s specify the orders cof the
polynomials §(B) and w(B} in (B1.3)and b is the pure time delay;
similarly the structure of the noise mocdel will be indicated by the
notation ARMA(p,q) where p and g are the orders of the polynozials
$(B), 6(B) cefined in (Bl.6).

-BlU3" Extension to the multiple input case

The process model is readily extended to the case where several
hydrological inputs are consicdered to influence flow:

w. (B} u, + €

1 3 jot-by t (B1.9)

I ~13

G(B)qt =
J

where m inputs are each associated with a moving average operator
=, (B} and pure time delay b.. Wnile each input will have its own
iripulse response for this mddel, the autoregressive parameters
éi will be ccmmon to each input, thus constraining each impulse

response to have the same decay characteristics. A more general
formulation is written as

m
9. = L g, . +n
t oy At t
m  w, (B)
= I —l'_ u., +n ’
N T t (BL.10)

P
where each input is associated with the transfer function w (B)Oj (B}Bbj.

These multiple-input formulations can prove useful not only when several
measured input variables are available but also where the basic linear
TF model is inadequate, and an extension to the non-linear case is
required.

BlL.4 IDENTIFICATION OF TRANSFER FUNCTION NOISE MODELS

Bl1.4.1 Transfer function models

- ....Identification af .the_TF.(r,s,b).-model .involves .establishing.the.values
of r and s used to define the orders of the polynomials 6(B), w(B}, and
also the pure time delay b. An estimate of the impulse response
function v{B) can help infer the values of r, s and b using a relation

——— e
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between the impulse response function ordinates v.:.and the process model

parameters.éj, Wy (Box and Jenkirs,1970). Eguating coefficients of B in
& (B)v{B) = m(B)Bb gives the reguired relation:
v, = 0 j<b
]
= -6 -6 - -8 v + W bg¢ j<b+s
VJ 1 vJ-—l 2 vj—? r j-r j-b J N
= - - - -6 2 b+ s
Y3 CSl 3-1 62 ¥3-2 r '3-r )b

Note that for j 2 b + s, Vj forms an rth order difference eguation
G(B)vj = O, with r starting values vj, b+s-r¢3jsb+s-1. The
ordinates of the impulse resoonse function consegquently provide the
following information to identify b, s and r of the process model:

(i) The first b ordinates will be zero i.e. vj =0, O£ j <b.

{ii) The next {(s-r) values follew no fixed pattezrn i.e. v. for
b 3j€b+s-r~1. These irregular crdinates wiil be
absent if r > s - 1.

(11i) The remainder follow an rth corder difference equation {.e.
vj for j 3 b + ¢ - ¥ with r starting values

vj, b+s-rgjsb+s-~-1

These characteristics of the impulse response of a TF(r,s,b) model can be
used to help identify values of r, s and b from an estimated impulse
response function.

An approximate technigue to obtain an estimate of the impulse response
function is based on a cross-correlation analysis between flow and rain-
fall; the cross-correlation function itself is of little use since
autocorrelation of the separate rainfall and flow secuences in general
leads to spurious cross-correlations, However if the rainfall seguence

is first 'prewhitened’ by identifying and estimating a stochastic rainfall
rodel, then this model can be used to convert the rainfall sequence te

a residual white noise ({(uncorrelated} seguence, ut = 8"(8)0(B)pt. Tris

-1
same model is then used to transform flow to a seguence 3_ = 8 (B)0{Blg .

wnich in general will not be white noise. The cross-correlaticn function,
OGS(')' between the prewhitened series Gt' St can be shown to be

proportional to the impulse response function, v({B), such that

%3
KA Pag®? <=0, 1,

where Oy+ Og are the standard deviations of a_ and 2

B t v’
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Bl.4.2 ARMA(p,gq) Noise Models

The order (p, gq) of the stochastic model to be used for the noise series

r|t is first found by examrining the sanple autocorrelation and partial
avtosorrelation functions. Whereas the autccorrelation function indicates
the correlation between variables within a time series at different time

lags, the partial autocorrelation furnction irndicates the ccrrelation remaining

after the linear dependence on variables at intervening time lags has been
removed. Conseguently for a pure autoregressive process the partial
autocorrelation function dies out at lacgs beyond the order, p, of the
autoregressive process; similarly the autocorrelation function of a pure
moving average process dies out at lags beyend the order, g, of the
process. Tnese correlation functions are therefore particularly useful

in identifying the model orxder of pure processcs, and with experience can
also be nelpful in identifying mixed ARMA processes of low order.

Bl1.5 Parameter estimation for transfer function noise models

The Instrumental Variable - Approximate Maximum Likelihood (IVAML) Algorithm
{Young et al., 1971) is applicable to systemns where the output variable is
comprised of the sum of a deterministic compeonent and a stochastic component
as in equation (Bl.1l). The steochastic compeonent may be attributed wholly

to measurement noise in q , or might include the disturbance effect of

model errors. However, the input variables are treated as deterministic

or noise free. If equation (Bl1.8) is used as a basis for parameter
estimation, and measurement and parameter vectors are defined as

T _
¥e Ty 9 s T P Prep-1’ 0 Proposl }
GT =(6: dr... S /W ... @ 1,

t 1 2 r 01 s-1

then egquation (B1.8) can be written as

4. = X et + st (B1.11)

The presence of stochastic disturbances in the elements of x_ results
in the noise £ being autocorrelated; as a result € will ayso be

cross correlated with qt 1 Dpp? "o- which make up the measurement
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ey l

vector x_. This cross-correlation is the origin of the inconsistent
least squares estimates. If, on the other hand, equation {Bl.1) is
used as the basis for the estimation, then the resulting model is
= z. 8 +n (BL.12)

e t ot 't L.
where

«-T (— ' - D )

Tt U1 o2t " Tper PreprPeopy ot Peopes-1 )

As-the elements of © are deterministic variables uncorrelated with
-nt, this model provides a basis for consistent least squares

estimates of the elements of 8 . However, the elements q . g
- . . - t-2

of x are unknown;, to overcome this problem, an estinaté

of x, denoted by &_ and referred to as an instrumental variable

{(IVv) vector, can be provided which is defined to be highly correlated

with xt but uncorrelated with the noise 70

The instrumental variable vector is generated from a linear transfer
function model as follows. Firstly, the estimation of the parameter
vector B is formulated in recursive form so that the estimate is
updated at each time point., After all the available data have been
processed, an estimate of 8 is available; this can then be used to
generate a set of estimates of qt recursively as

~

B /\T ~ )
q, = = 9 (B1.13)

This set of estimates is then used in conjunction with the {assumed)
deterministic rainfall input as the IV variable for the next 'pass’
" through the data i.e.

~ ~ ~ A

Tt 7 e e ProprProb-1rtt Propesel ) (B1.14)

and this procedure is repeated until stability is achieved in the
estimate of 8. Details of the recursive estimation algorithm are
given in _Young et al {1971) anq_the algorithm is summarized in

Table B, l' and Figure B2 AT o oo T

ST, = - -
.-7!---_..-.\- Lt T

" . H
: e e e e )
P )

.. Once the parameter vector B has been estimated, the parameters of a
“"noise model of the form described in Section BY. 2'are estimated using
~an approximate maximum likelihood (AML) method which is agajn formulated
in a recursive form. Using the estimated parameter vector 6 and the
final instrumental variable vector z ., a series of estimated residuals
is generated as £

A

.,;n..-.-Q'.,._.'..............‘....,..’..J

¥
¢

~

‘!{f

>
@ >
!

- T -
_ Mg 7 9= Q=9 - % {B1.15)

e The estimation of the parameters of the noise model for n_ is
' approached as follows, Equation (31 5) may be written as

[
"
L@

=

i ‘).-r;.
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TABLE B.1 Summary of Recursive Instrumental Variable Algorithm

HODEL
System = 8
equation t+l t
Measurement T
eguation g + = X8 +
L e 9 T M R
ALGORITHEM
One-step T A
ahead for st = x 8
eca Sefe-1 t t-l
Innovaticn
l-step ahead a = a
( E £]t-1 9 7 9| e-1
fcrecast error)
Varjance of
innovation g2 = G2 + x P x*
t]t n t-1] -1
error
Kalman gain K = D x* a2
g t t-1le-1 "t gt
Pararmeter o o
= + K
estimate urdate et et-l t at[t-l
* Variance - covariance
matrix of T
P = I -K x )P
parameter t|t ( e X¢) t-1]t-1
estimation error
Instrumental T
variable vector x* -

* t (qt 1’ * Qe_p’ Peop” ! pt-b-s-l)
Explanatory X = (g ¢ »ee2 g ' P t +ees P )
variable wvector t t-1 t-r t=b t-b-s-1
AUXILIARY MODEL
IV estimate q = x*T é

t t
Noise series ﬁ - _
estimate t qt qt
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T
n, = & Bra (B1.16)
wheré Et is an explanatory variable vector defined as
£ (-1 ,0N r es =T , a f oee. @ )T {(B1.17)
t t-1" =2 t-p’ “t-1 t-g :
and
8 (6., @ ¢, 9,0 8 )7 18),
.lt e R ‘-r 17790 o q (B1.18)
However, the terms nt—l' nt—2' A R I YRR in equation

(B1.16) are unknown; estimates of N are obtained from (BL15) while
estimates of a_ may be obtained using (BL16) as
a n - £Tg (B1.19)
t]t-1 t e !

vhere a_; . denotes tne one-step ahead forecast error at time t
using ififormation uvp to time (£-1l), and Et is now defined as
E =(_: '_:1 ] o--_; ' ; PRPEE- | )T- (81'20)
t-2 t-p’ “t-1]t-2 t-q|t-q-1

cr

s
|

-

A recursive least squares algorithm can then be applied to yield
consistent estimates of the parapmeter vector B; initially the
~»xplanatory variable vector is defined as (assuming p 3 q)

-~

Eap = (MmN jeeees Ny Opiil s O) (B1.21)

ces 4 equal to their expected

setting a -1 a
plp-1’ %p-1[p~2 "**_ * p+l-qlp-q ° _
values of zero; equations (B1.18) and (Bl.19) are then used recursively
in conjunction with the least squares algorithm as summarized in
Table B.2. A number of passes through the data is necessary until

stability is achieved in the estimate of B.
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TABLE B2 ; Sumnary of Recursive Approximate Maximun Likelihood Algorithm
MODEL
System equation =
: d 8t'i-l St
Measurement equation n = gT B + a
t t t t
ALCGORITHM
One-step ahead R .
fcrecast n = ¢T3
tle-1 e Beoa
Innovation (1 step
ahead forecast error) a =0, -n
t t t]t-1
Variance of . .
innovation errorxr a? = g% + ET P £
t]t a t t-lt-1 "¢
Kalman gain K P ? -2
! s t t-1]t-1 "t %te
Parameter ectimate é _ é . K ~
update t T Pl t %t
Variance-cevariance ~p
matrix of parameter P = (I - K P
X o P t|e ( e &t t-1]t-1
estimation error
Explanatory variable ¢ ~ ~ ~ o T
- = ‘e a a. )
Vector Et (nt_l t ] nt_p.- t_ll ! t,_q
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B.2 THE CONSTRAINED LINEAR SYSTEMS (CLS) MODEL

B.2.1 Linear modelling using CLS

The basis of the CLS model is a multiple-input single-output Tinear system
which has been developed for hydrological application by Natale and Todini
(1976a, b) and has been applied in non-linear form to daily rainfall-
runoff modelling by Todini and Wallis (1977). In linear form, the model
15 written as

g = Uv +e (B.2.1)

wﬁerefl is an (N x 1) vector of discrete outputs (streamflow) sampled at

a time interval At, U is an (N x nk) partitioned matrix of discrete time
input vectors, v is an (nk x 1) vector of impulse responses, and n and N
are respectively the number of inputs and the number of concurrent
observations on each input and the output. Usually the estimate of v

is obtained through a straightforward application of least squares i;volving
the inversion of the matrix (QTE; U) where I is the variance-covariance

matrix of the errors. However, this approach has a number of disadvantages,
among which are

(i)  the matrix (gT g;] U) is frequently ill-conditioned (Abadie,
1970}, and errors introduced through matrix inversions may
introduce errors comparable to the values of the parameters to

be estimated;
{i1) the estimated impulse responses may be oscillatory with a
large proportion of negative values, which is in conflict

with physical principles;

{iii) continuity is not necessarily maintained.

. .
g .

PO
PP

A PU VTN

~Natale and Todini (1976a, b) have developed estimation procedures for the
_impulse responses which do not have shortcomings (i), (ii) and (iii). Their
~formulation of the problem is to minimise the functional

. REL

Je'e) = 1V L uv -l

-1
=€ . - x = 9

2 (B.2.2)

subject to the constraints that
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V3o (B2.3)
Gv =1 (B2.4)

where the matrix G is defined to maintain continuity and/or account for
losses in converting rainfall into runoff. The minimization of J(grg)
subject to the above constraints is achieved through quadratic programming.
In the above description, the lengths of the impulse response vectors have
been assumed equal for ease of presentation; no essential difficulty is
encountered with non-equal values of k.

'To i1lustrate the application of the CLS model, two examples will
be considered. The first involves the case where rainfall is measureq at
5 gauges within a catchment (Figure B.3); it is assumed that it is regquired
to treat these as separate inputs, and to apply the constraints (B.2.3) and
(B.2.4) to the estimation of the vector of impulse responses v. In this case,
G is a {1 x 5k) matrix with elements

N-j3+1 i
Z t i=1,2, ..., 5
91’(i_]) K+ 3§ = tﬁ1 . {B2.5)
z qy =1, 2, k
t=]

to represent the following constraint:

3 N-j+1 j N
L ou,. . L p, = L
1 =1 (i-1)k+j t=1 t

n ™3

a, (82.6)

i t=]

Equation_(BZ.s) takes into account the_]osses in converting the n=5 precipitatigk
inputs pl to streamflow qt,\‘assuming p:: =0 for (1 - k) £ t £0. o
®

The second example involves the case of m=2 upstream tributary inflows,
q%, £ =1,2, and n-m = 7-2 = 5 precipitation inputs for the remaining contributing
catchment area (Figure B3). In this case, G is an (m+1, nk) = (3,7k) matrix o
for which the elements are all zeroes except

o

90, (2-1)kij = 1 - o
| ®

?.' 9, 2 =1,2 ®

93,(i-1)k+j = R t=1 — Ce3a. 7 B27) .
R G N I R °
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(a) Case of n=5 precipitation inputs

(b) case of m = 2 tributary inputs and n-m = 5 precipitation inputs

Figure B3 Schematic representations of inputs to CLS model
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which ensures that the following continuity equation is maintained for the
whole system:

7k N-g+1 . Negel 2
oL
i=3 j=1

%
Viiqyvpe: LoPeo= & [a. -z qf] (B2.8)
(i-1)k+j £=1 t t=1] t 0-1 ¢t

Once the parameters of the impulse response vector v have been estimated, an
estimate of the a priori unknown runoff coefficient relevant to each
precipitation input pL is obtained as

. -

i : V(i-])k+j = (r+¢l), ...y n (B2.9)

3

" e x

In formulating the CLS model, it is also possible to introduce Qy_y as
an additional input,this then resuits in a model of the form '

n s-1 . .
+ L 't QJ(1) u£1) + € (82.10)

s
i=1j=0 9 Ehysytlo ot

p 1 T

N ™My

q
Eoy
which is the alternative autoregressive-moving average representation of a

tinear system given by Box and Jenkins (1970) with r autoregressive terms
on previous outputs , ¥ moving average terms and a pure time delay bi for

each input. This type of model formulation is more parsimonious (i.e. involves

fewer parameters) than that given by equation (B2.1) and is particularly

relevant when real-time use of the model is contemplated, as values of
(i) L) i

Qp_1» Ggops +-- 23S well as UgZ]s Utlps --- would then be available to

make forecasts of Q> Qpyys - - at time t. This then provides the model

with a natural updating facility.

The CLS model can be applied to rainfall-runoff modelling, flow routing

or a combination of both where the assumption of linearity is deemed reasonable.

An application involving flood routing through a junction is described by
Natale and Todini (1977) while Wood (1980) has used a model of the form of
equation (10) for flow routing on the River Dee. The estimation of the
_ordinates of a unit hydrograph is an obvious application; here the use of
lordinary least squares frequently results in oscillatory unit hydrographs
with negative ordinates which have to be transformed into physically

reasonable shape using a smoothing technique (e.g. Floods Study Report, 1975).

The use of CLS obviates to a large extent the necessity for smoothing,
while the constraint given by (B2.4) ensures that the unit volume criterion
for the unit hydrograph is satisfied, something which is not necessarily
guaranteed by smoothing.
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B.2.2 Non-linear modelling using CLS

The linear form of the basic CLS model may prove restrictive for
rainfall-runoff modelling applications. This was recognised by Todini and
Wallis (1977) who introduced non-linearity into the model by means of a
threshold mechanism applied to the rainfall input. They applied the procedure
to a single lumped rainfall input, although there is no reason why the
procedure could not be applied to multiple inputs. The original procedure
described by Todini and Wallis (1977) has since been improved upon and is
app1ied as follows. An antecedent precipitation index API
time t as

t is computed at

APL, = K, APl | +p, (B2.11)

with

2n
Ky K+ acos [3 (t - ) (82.12)

where K, o and ¢ are parameters describing the seasonal variation in K
If T is then selected as a threshold value of API,, then the following

t’
operation is performed on the input vector Uy = Py to generate two separate

¢

input vectors:

if API, > T, then the value of precipitation at time t-1, Pyys s
set to zero in the first input vector, and Pty s
stored in the corresponding location of the second
input vector;

if APL, ¢ T, the value of p,_, remains in the first input vector and
a zero is placed in the corresponding location of the
second input vector.
The procedure is represented schematically in Figure B.4. Thus, for one
threshold, two inpufs are generated from a single basic input; the multiple
input capability of the basic CLS model is then utilized to derive the
impulse responses for these inputs, and ultimately to derive a model output:
which has a non-linear relationship with the original input. The basic
notion underlying the model is that different response regimes operate in a
catchment in response to different states of catchment wetness, with the
switch from one response to another achieved through the threshold, which
introduces non-linearity into the model. Further threéholds may be
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applied if considered necassary although this increases considerably the
number of impulse response parameters to be estimated.

The selection of values for the threshoid T, and the parameters ﬁ,dtwed
& 'describing the behaviour of Kt is done on a trial and error basis and
is relatively straightforward,

The application of the CLS model with thresholds to rainfall-runoff
modelling is described in Todini and Wallis (1977) and 0'Connell et al (1977,
1978).

. LIKEAR
P. Fo MODEL
1
Q. i
P LINEAR
L MODEL
2

Figure 8.4  CLS model with threshold
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B.3 OPTIMIZATION OF PARAMETERS OF SIMPLE CONCEPTUAL MODELS

The algorithm used to optimize the parameters of the simple conceptual
models described in Section 5 is a modified version of that developed by
Rosenbrock (1960). The search geometry of the original algorithm is unchanged
but modifications have been made to the way in which a minimum is found in
each of the arthogonal directions.

Constraints on the variables to be optimized are introduced by applying
sine-square transformations to the variables i.e. if o is a parameter which
it is desired to constrain between the limits Aax and Goin® then the
appropriate transformation is

= s n2

@ = onin ¥ {Opay c‘min) Sin7(x)

where x is the uncontained variable in which the search for the optimum is to
be carried out using the Rosenbrock algorithm. The transformation also has
the effect of reducing the parameters to be optimized to variables of the

same scale.

The directions searched correspond initially to the axes of the variables.
When all the directions have been searched once, new directions are defined,
one of which is the direction of advance during the first iteration (i.e. the
vector joining the initial and final points) and the others are orthogonal
to this. New searches are made in these directions and when new minima have
been estimated the directions are redefined as before and so on.

The minimum along each direction is estimated by calculating the error
function at a series of points. At the start of each linear search the variable
.is altered by 2 per cent and the error function is computed again. If an
initial failure is registered the direction of search is reversed. If a success
is indicated by a decrease in the error function, the last value of the variable
is altered by 3 per cent, then by 4.5 per cent, and this magnification of the
steps continues until a failure is registered. The minimum is predicted from
the three best error function values by quadratic interpolation using finite

difference approximations; 1if the estimation of the minimum is found to be
..within a certain tolerance the next direction is searched from this point.‘

When the function ornthe variables cease to change significantly a miqimum

is assumed to be found and the seqrch is terminated by means of a convergence

£ 0 BN BN BN BN BN NN NN BN BN BN BN NN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN NN
e e . - ce! N . -
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criterion.

The error function used to optimize the parameters of the simple
conceptual models was the sum of squares function

2 — - 2
F - Z(qt qt)

where qy denotes observed discharge and qy denotes simulated discharge from
the model.

|
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