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Non-technical summary 
Lake phytoplankton metrics proposed by the EC WISER Project for ecological quality 
assessment of European lakes are shown to be robust metrics.  Latest results from the WISER 
pan-European field campaign reveal that variability in metric scores is largely due to variability 
between lakes and is significantly related to differences in eutrophication pressure (total 
phosphorus concentrations).  Differences in locations around a lake, or sampling and analytical 
variability, only account for a small proportion of the variability in metric scores.  These results 
are especially true for four candidate phytoplankton metrics being considered for 
Intercalibration: chlorophyll, PTI, MFGI and cyanobacteria abundance, for which >85% of the 
variability in metric scores was attributed between lakes and total phosphorus concentration was 
the best single predictor of variation in these metrics.  Although, much among-lake metric 
variation still remained unexplained by the available environmental data, we conclude that these 
four proposed metrics are sufficiently robust metrics for ecological status assessment and are 
suitable for adoption in the Intercalibration process. 
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Techinal summary 
A central tenet of the Water Framework Directive (WFD) is that attributes of biological 
communities are used to make inferences about the ecological quality of rivers, lakes and 
coastal/transitional waters. For lakes, the phytoplankton are a key biological community, or 
Biological Quality Element (BQE), to be used for this purpose. Phytoplankton communities are 
complex, containing many species responding to changes in many different environmental 
factors. In order to use phytoplankton to indicate ecological quality, it is necessary to develop 
metrics that describe high-level properties of the phytoplankton community that are sensitive to 
environmental pressures, such as nutrient enrichment. In the earlier stages of the WISER 
project, six candidate metrics were proposed as either phytoplankton composition or bloom 
metrics, to be considered alongside the established metric of chlorophyll a (chl), which is used 
to represent phytoplankton abundance.  

If such metrics are to be useful indicators of differences in ecological quality among 
lakes, it is necessary to know the extent to which they can be affected by sampling and sample 
processing procedures. Phytoplankton communities vary spatially across lakes and so we could 
expect phytoplankton metrics to show similar variation among sampling locations. Also, the 
results of phytoplankton sample processing depend upon procedures used to analyse samples in 
the laboratory and the expertise of the analyst processing the sample (people vary in their 
abilities to discriminate between species). If phytoplankton metrics vary more with differences 
in sampling and sample processing procedures within a lake than they do among lakes of 
different pressure then these metrics are unlikely to provide a sensitive means of describing 
differences in the biological impacts of an environmental stressor among lakes. On the contrary, 
little variation with sampling and sample processing compared to variation among lakes would 
indicate the potential for relationships between metrics and environmental pressures to be 
detected after accounting for sample/sample processing “errors”.  Here we analyse the results of 
a multi-scale field campaign of 32 European lakes, to resolve the extent to which chl and the six 
proposed WISER phytoplankton metrics vary among lakes and with sampling/sample 
processing. We also relate these metrics to different environmental variables, including total 
phosphorus concentration as an indicator of eutrophication.  

The seven metrics analysed show some similarities in their variation among countries, 
lakes and samples, indicating that some of them reveal similar information on changes in 
phytoplankton communities. However correlations among metrics are not perfect, suggesting 
that each metric is potentially also showing a unique aspect of phytoplankton community 
change. For all seven metrics, between 65% and 96% of the variability in metric scores is due to 
variability among lakes, much higher than variability occurring due to sampling/sample 
processing. After the among-lake variation, errors associated with sub-sampling of field samples 
(2-13%) and variation in analysts (2-19%) are more important than spatial variation between 
locations within a lake (<1–4%). Importantly, among-lake variation in most of the metrics can 
be related to differences in total phosphorus concentrations, though this effect is often better 
described when also taking account of some aspects of lake geography (longitude and altitude). 
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These variables typically explain only a modest proportion of total among-lake metric 
variability, indicating that metrics are additionally sensitive to unmeasured environmental 
factors.  These positive findings on metric robustness and sensitivity to pressure are especially 
true for four candidate phytoplankton metrics being considered for Intercalibration: chlorophyll, 
PTI, MFGI and cyanobacterial blooms, for which > 85% of the variability in metric scores was 
attributed between lakes, and, total phosphorus concentration was the best single predictor of 
variation in these metrics.  This WISER study, therefore, concludes that these four proposed 
metrics are robust metrics for ecological status assessment and are suitable for adoption in the 
Intercalibration process. The study was carried out following clear sampling, counting and 
identification guidelines and it indicates that rigorous standardisation of procedures helps 
minimise sampling and analytical variability and makes possible more meaningful comparisons 
of ecological status among lakes.   
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1 Introduction 
The central tenet of the Water Framework Directive (2000/60/EC) is that key communities, or 
Biological Quality Elements (BQEs), should be used to assess the water quality of lakes, rivers 
and coastal/transitional waters. The phytoplankton have been identified as a key BQE to be used 
in lake ecological quality assessment and are widely used as an important water quality indicator 
because of its high species differentiation and sensitivity to environmental factors. Murphy et al. 
(2002) list the following main advantages of using phytoplankton in lake monitoring: 

1. As primary producers, algae are directly affected by physical and chemical factors and 
changes in phytoplankton community status have direct implications for the biointegrity of the 
lake ecosystem as a whole. 

2. Algae generally have rapid reproduction rates and very short life cycles, making them 
valuable indicators of short-term (scales of days – weeks) impacts.  

3. Phytoplankton provide a good indication of lake trophic state, measurable for example as 
chlorophyll a concentration, and respond quickly and predictably to changes in the nutrient 
status of the lake system. Relatively standard methods exist for evaluation of functional and 
non-taxonomic structural (biomass, chlorophyll measurements) characteristics of algal 
communities.  

4. Sampling is easy, inexpensive, and creates minimal impact to resident biota. Laboratory 
chlorophyll a analysis is quick and cheap.  

5. Algal assemblages are sensitive to some pollutants which may not visibly affect other aquatic 
assemblages, or may only affect other organisms at higher concentrations (e.g. herbicides).  

6. Changes in community composition can provide finer-scale assessment of changes due to 
ecological impacts. 

Because of these features, phytoplankton was included in the Water Framework Directive 
monitoring scheme as a relevant quality element for all surface water categories. As parameters 
to be studied, the WFD prescribes phytoplankton abundance, composition, and the frequency 
and intensity of blooms. All these parameters are considered to undergo degradation along the 
pressure gradient and the extent of this degradation can be “translated” into WFD normative 
definitions. Phytoplankton is widely recognised as being especially suitable for detecting 
eutrophication (Carvalho et al., 2006).  Phytoplankton community composition and diversity 
are, however, regulated by a complex interplay of intrinsic and extrinsic drivers such as climate, 
resource availability, patterns of competition and predation, and dispersal (Reynolds 2006) but 
they may also act as sensitive indicators of environmental pressures such as changes in nutrient 
status (Kuemmerlin 1998, Padisák & Reynolds 1998). To this end, the WFD requires 
quantitative high-level indicators, or metrics, of these complex systems which can be used to 
monitor the status of freshwater communities in the face of anthropogenic pressures, and 
identify improvements to ecological status as a result of management interventions. A number 
of metrics have been proposed as part of WISER (Mischke et al 2010, Phillips et al. 2010). 
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However, there is an urgent need to assess the likely uncertainty in ecological status assessments 
when using such metrics (Hering et al. 2010). Phytoplankton communities show marked spatial 
heterogeneity within lakes, over a range of spatial scales, as a result of patterns in lake 
circulation and mixing, and spatial gradients in flushing, grazing and nutrient availability (Pinel-
Alloul & Ghadouani 2007). In addition, variation in phytoplankton metrics may occur due to 
differences in the analysts processing samples and sub-sampling procedures (Vuorio et al. 
2007). Therefore, it is highly likely that the choice of sampling location within a lake and 
sample processing will affect the values of metrics based upon phytoplankton community data. 
Where metric values fall close to ecological status class boundaries, then these variations may 
fundamentally influence of the overall assessment of a waterbody (Clarke et al. 2006). This has 
led to suggestions that results of ecological status classification should be given in terms of 
probabilities (Hering et al. 2010). 

 

Until now, there has not been a formal assessment of the multiple sources of uncertainty that are 
inherent in phytoplankton metrics. The statistical tools to make this assessment exist (Carvalho 
et al. 2006, Clarke & Hering 2006) but there is a need for new data, collected according to a 
sampling design that allows distinction of different and independent sources of variability in 
metric scores. Herein, we present the results of a novel analysis of seven established 
phytoplankton community metrics based on a pan-European field sampling from 32 lakes. 
Rigorous standardisation of sampling and sample processing procedures, along with a hierarchic 
sampling design targeted at uncertainty estimation, allow an entirely consistent analysis of 
sources of phytoplankton metric variation within and among European lakes. Specific objectives 
are to 1) quantify among-lake and within-lake variation in phytoplankton community metrics, as 
well as the effect of variation in sample analysts and, 2) examine variation in phytoplankton 
metrics due to physical, chemical and geographical attributes of lakes, with a specific focus on 
total phosphorus concentration as an indicator of eutrophication pressure. 

2 Methods 

2.1 Field survey 

The present analysis is based upon water samples collected from 32 lakes in eleven European 
countries during the spring and summer of 2009 (Table 3.1). These collectively represented lake 
types found within Member States comprising the Alpine, Northern, Central/Baltic and 
Mediterranean Geographical Intercalibration Groups (GIGs) identified within the WFD. All 
lakes were less than 10 km2 in surface area and had mean depths ranging between 3.5 and 34 m. 
Northern lakes were generally low alkalinity (<0.2 m equiv. L-1), while Central/Baltic and 
Mediterranean lakes were high alkalinity (>1 m equiv. L-1).   
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Table 3.1. Lakes sampled in the field campaign. GIG indicates the Geographical Intercalibration Group 
within which each lake falls: AL = Alpine, CB = Central/Baltic, M = Mediterranean, N = Northern. 
Lake Country GIG Latitude 

(°N) 
Longitude 
(°W) 

Mean 
depth (m) 

Maximum 
depth (m) 

Nordborgsø Denmark CB 55.06 9.76 5.0 8.5 
Fussingsø Denmark CB 56.47 9.88 12.6 31.0 
Saadjärv Estonia CB 58.54 26.65 8.0 21.7 
Viljandi Estonia CB 58.35 25.60 5.5 9.5 
Sääksjärvi Finland N 62.17 25.73 9.3 15.2 
Vuojärvi Finland N 62.41 25.94 4.4 10.2 
Iso-Jurvo Finland N 62.60 25.93 8.6 29.6 
Salagou France M 43.66 3.40 15.6 49.3 
Caramany France M 42.74 2.59 14.5 36.0 
Glindower See Germany CB 52.36 12.92 4.9 14.3 
Grienericksee Germany CB 53.10 12.89 4.7 11.5 
Roofensee Germany CB 53.11 13.02 9.0 19.1 
Alserio Italy AL 45.78 9.21 5.0 8.0 
Bidighinzu Italy M 40.56 8.66 7.5 21.8 
Candia Italy AL 45.33 7.92 5.0 7.5 
Monate Italy AL 45.80 8.66 18.0 34.0 
Segrino Italy AL 45.83 9.27 3.5 8.0 
Nøklevann Norway N 59.88 10.88 19.0 31.0 
Longumvatnet Norway N 58.49 8.76 14.0 35.5 
Temse Norway N 58.38 8.64 6.0 10.2 
Rumian Poland CB 53.38 20.00 6.0 14.0 
Lidzbarskie Poland CB 53.26 19.80 10.0 24.0 
Kielpinskie Poland CB 53.35 19.79 5.8 10.0 
Vencías, Las Spain M 41.43 -3.96 8.0 14.8 
Vega de Jabalón Spain M 38.76 -3.79 6.6 10.8 
Arquillo de San Blás Spain M 40.36 -1.21 34.0 38.0 
Fiolen* Sweden N 57.08 14.53 3.8 10.0 
Skirösjön* Sweden N 57.36 15.38 5.2 8.0 
Västra Solsjön* Sweden N 59.08 12.29 12.3 40.0 
Loweswater UK N 54.58 -3.36 8.0 14.8 
Grasmere  UK N 54.45 -3.02 8.4 19.4 
Rostherne mere UK CB 53.35 -2.39 11.5 29.7 
  *Only chlorophyll data included   

 

Lakes were all sampled according to the same rigorously standardised protocol. 
Sampling was conducted according to a hierarchic design that allowed the total variability in 
chlorophyll a concentration (Chl) and phytoplankton community structure, as indicated by a 
range of metrics, to be decomposed into a series of different components, each indicating a 
potential source of uncertainty. The sampling design was as follows (Fig. 2.1): 

• Within each lake, water samples were collected at three stations: above the deepest point 
of the open water zone, and at points representing the mean depth of the lake and a depth 
intermediate to the mean and maximum depths. This allowed quantification of within-
lake spatial heterogeneity in phytoplankton community composition and metric scores, at 
the basin scale.  

• Two water samples were collected at each of the three stations. This allowed 
quantification of errors associated with repeated sampling at a specific location, as a 
result of smaller-scale heterogeneity in the phytoplankton community. 

• Each sample was sub-sampled in order to quantify variations in phytoplankton metric 
scores due to sub-sampling errors and differences in the analyst identifying and 
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enumerating phytoplankton in the sub-samples. Three sub-samples were collected from 
the first sample. Two of these were processed by the same analyst (revealing sub-
sampling error), while the third was processed by a different analyst (to evaluate 
variability in metric scores due to differences in the approach used by different analysts). 
From the second sample, only one sub-sample was collected, to allow comparison with 
metric scores derived from the first sample. Prior to microscopic examination an aliquot 
(sub- sub-sample) of each sub-sample was collected and put into a sedimentation 
chamber. This of course is confounded with sub-sample variation in what follows. For 
Chl analysis, which followed a rigorously standardised spectrophotometric protocol, the 
effect of the analyst was not addressed and only two sub-samples were taken from the 
first replicate to evaluate the sub-sampling error   .     
 
At each station, water samples were collected using an integrated tube sampler. If a lake 

was thermally stratified samples were taken from the euphotic layer (estimated as 2.5 x Secchi 
depth). When the water column was mixed samples were collected from throughout the whole 
water column, down to 0.5m above the sediment surface. Sub-samples were collected from each 
sample after thorough mixing, If immediate extraction of Chl samples was not possible, they 
were stored in a refrigerator or ice box for as short a time as possible. Samples for microscopic 
analysis were preserved using a solution of Lugol’s iodine (final concentration approximately 
0.5% by volume) and stored in the dark.  

Water samples were collected from the deepest point of each lake and analysed for 
alkalinity and concentrations of total phosphorus (TP). TP was measured following sulphuric 
acid-potassium persulphate digestion of unfiltered samples, according to Murphy & Reilly 
(1962). Secchi depth was also recorded at the deepest point of each lake.   
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Fig. 2.1. The hierarchic sampling design employed in each lake. Samples were collected from three 
stations, above the deepest point (zmax), the mean depth (zmean) and a depth intermediate between the 
maximum and mean depths (zint). Two samples (S1, S2) were collected at each station. At each station, 
three sub-samples (Sub1, Sub2, Sub3) were collected from sample 1 and one sub-sample from sample 
2. In each case, two sub-samples from the first sample and the only sub-sample from the second sample 
were processed by one analyst (An1 or An2), while the third sub-sample from sample one was 
processed by a different analyst (An1 or An2).   

 

2.2 Sample processing 

2.2.1 Chlorophyll a 

Avoiding direct sunlight, samples were immediately filtered through 47-mm GF/F filters 
using vacuum of less than 100 mm Hg (~0.15 atm). The volume of water filtered was dependent 
on the amount and type of seston present in the water. A fixed volume was kept for one lake.  

The moist filter was placed immediately face inside in a 15-ml centrifuge tube (with a 
cap) prefilled with 10 ml of 96% ethanol for pigment extraction. The 47 mm GF/F filters retain 
0.8 ml of water adjusting the final extraction solution to 89% ethanol and the final extraction 
volume to 10.8 ml (Knap et al., 1996). The extraction lasted 24 hours in a fridge or cooling bag 
at 4 °C. No folding, drying, freezing, grinding or sonication of the filter was applied to avoid 
introduction of additional variation of results. 

Following extraction, samples were shaken, filters were pressed to the bottom of the tube 
with a glass stick and spun down in a centrifuge for 5 minutes to remove filter and cell debris.  
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The spectrophotometer was allowed to warm up and stabilize prior to use according to 
the instrument manual. The extract was decantated from the centrifuge tube to 1-cm cuvette. 
The external surfaces of the cuvette were wiped clean with a soft tissue. The spectrophotometer 
was zeroed with 90% ethanol. 

Readings of spectrophotometric absorption (A) were taken at following wavelengths: 

1. Peak in the range of Chl a absorption maximum 662-665 nm (Apeak) 
2. 750 nm (correction for light scattering, A750). 

The sample was then acidified with 2 drops of 1.2 M HCl and readings at 662-665 nm and 750 
nm were repeated resulting, correspondingly, in acApeak and acA750. 

To correct the absorbance for scattering, the A750 was subtracted from readings in unacidified 
samples and acA750 from the acidified samples, i.e.  

Epeak = Apeak – A750 and  

acEpeak = acApeak – acA750 

Finally the concentration of chlorophyll-a was calculated  according to equation given in ISO 
10260 (1992):  

Chl a [mg/m3] = 29.6 * (Epeak - acEpeak) * a/(L * V) 

Where  a = final extraction volume (ml) 

     V = volume of water filtered (L) 

     L = length of the light path through the cuvette (cm) 

 

2.2.2 Microscopy 

Microscopic examination of phytoplankton followed the same standardised protocol 
across Member States, and was based upon procedures outlined in CEN 15204 (2006), National 
Rivers Authority (1995) and Brierley et al. (2007). Briefly, samples were examined in 
sedimentation chambers with an inverted microscope, according to the Utermöhl technique 
(Utermöhl 1958). For each sample, a low magnification (40x or 100x) whole chamber count, 
two intermediate magnification (200x or 250x) transect counts and 50-100 field of view counts 
at high magnification (400x or greater) were completed. Phytoplankton were identified to the 
highest possible taxonomic level. Counts of each taxon were converted to biovolumes by 
measuring cell/colony dimensions and approximating each taxon to a simple geometric shape 
(Brierley et al., 2007). Phytoplankton cells were measured using eye-piece graticules, after 
calibration with a stage micrometer. All subsequent phytoplankton metric calculations were 
based upon the biovolume data. All data entry and biovolume calculations were carried out 
using standard WISER data entry sheets and collated on a common master database on the 
WISER intranet site.    
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2.3 Phytoplankton metrics 

Seven phytoplankton metrics are considered herein, a brief description of which is given below. 
Full details on each metric are provided in WISER Deliverable D3.1-1: Report on phytoplankton 
composition metrics, including a common metric approach for use in intercalibration by all 
GIGs (Phillips et al. 2010) and WISER Deliverable D3.1-2: Report on phytoplankton bloom 
metrics (Mischke et al 2010). Metric values were calculated from the WISER field campaign 
database using the algorithms described below.  

2.3.1 Abundance metrics 

• Chlorophyll a concentration (Chl). Chlorophyll a concentration (in mg m-3) is a 
measure of phytoplankton abundance, commonly used to represent the ecological status 
of a lake with respect to eutrophication pressures. 

2.3.2 Composition metrics 

• Phytoplankton Trophic Index (PTI). This is developed from the “trophic scores” of 
phytoplankton taxa along a eutrophication gradient. After a Canonical Correspondence 
Analysis (CCA) constrained by total phosphorus, taxa optima on the first ordination axis 
were derived indicating the TP concentration for the mean occurrence of each taxon. For 
each sub-sample, PTI was calculated as the weighted average of these taxa optima, 
where the weighing factor is the proportional biovolume of each taxon. The PTI 
increases with increasing lake trophic state.  

• Size Phytoplankton Index (SPI). The phytoplankton taxa within a sub-sample are 
grouped into a series of size categories, each one encompassing a doubling of cell 
biovolume e.g. ≤0.5μm3, 0.5-1.0 μm3, 1.0-2.0 μm3, 2.0-4.0 μm3 etc. The SPI is then 
calculated as a function of the size categories and “trophic scores”/”indicator values” for 
those categories (Phillips et al. 2010). Trophic scores indicate the trophic position of a 
size class along the trophic spectrum and indicator values estimate the “power” of each 
size class as a biotic indicator. Analysis of data from the WISER lakes database has 
shown that the SPI tends to increase with increasing lake trophic state, due to a shift 
towards increased dominance of larger, rather than smaller, phytoplankton (Phillips et al. 
2010). 

• Morpho-Functional Group Index (MFGI). The phytoplankton taxa within a sub-
sample are grouped into a series of categories (“Morpho-Functional Groups”) based 
upon their morphological attributes e.g. presence/absence of flagella, colonial or 
unicellular, large or small size (Salmaso & Padisak 2007). The MFGI is then calculated 
as a function of the Morpho-Functional Groups and the “trophic scores”/”indicator 
values” for those groups (Phillips et al. 2010). Analysis of data from the WISER lakes 
database has shown that the MFGI tends to increase with increasing lake trophic state, 
due to an increase in the dominance of colonial cyanobacteria, large 
diatoms/chlorophytes/coniugatophytes, and unicellular/colonial chlorococcales (Phillips 
et al. 2010). 

• Functional Traits Index (FTI). This is the arithmetic mean of the SPI and MFGI, and 
thus combines information on both the size spectrum and morpho-functional traits of the 
phytoplankton community. Phillips et al (2010) recommend the use of the FTI for water 
quality assessment. 
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2.3.3 Bloom metrics 

• Evenness metric. This is Pielou’s evenness index, which expresses the ratio between the 
Shannon diversity of a sub-sample and the maximum possible value of the Shannon 
diversity index (Pielou 1969, 1975). Evenness has been shown to decline in more 
productive lakes, due to an increase in the dominance of a small number of tolerant 
species with high growth rates (Mischke et al 2010). 

• Cyanobacterial abundance. This is the total cyanobacterial biovolume (mm-3 l-1) within 
a sub-sample, and is expected to increase with increasing lake trophic status (Mischke et 
al 2010). 
 

2.4 Statistical modelling 

Linear mixed effects models (LME) were used to analyse metric scores based upon 
count data from samples from the hierarchic sampling campaign. A nested random effects 
structure was used to emulate the hierarchical nature of the sampling campaign and model non-
independence between metric scores based upon data from the same sub-sample, sampling 
station, lake, etc. In this structure, lake was nested within country, sampling station within lake 
and sample within station. Sub-sample was modelled as the error (“unexplained”) variability and 
analyst was included (except for Chl) as a crossed random effect, representing the fact that it 
does not naturally nest within the sample hierarchy. As a first step, a null model (i.e. including 
only the random effects) was run for each metric. The estimated variance parameters for each 
level in the random effects hierarchy were extracted in order to compare metric variation among 
lakes with that among samples and sub-samples/analysts. When examining these random effects 
structures in the resulting models, to determine patterns of among and within-lake metric 
variability, restricted/residual maximum likelihood (REML) estimation was used during model 
fitting. This gives unbiased estimates of the random effects. 

In order to investigate the extent to which metrics varied with physical and chemical 
features of the lakes studied, models were then re-run to include certain measured environmental 
variables as fixed effects. The precise environmental variables measured, and the number of 
determinations of each, were variable among data sets from different data providers. Metric 
values were linked to values of environmental data collected at the same location and time. For 
environmental data, measurements collected from the first sample at the deep station were used 
in all lakes. Where there were multiple determinations of a variable within this sample, these 
were averaged. Unfortunately, only total phosphorus was recorded in all lakes during the 
phytoplankton field campaign. Alkalinity data were missing for some lakes and so 
representative values were necessarily derived from the data set collected under the macrophyte 
uncertainty exercise (Dudley 2010). Once a complete data set for total phosphorus and alkalinity 
was attained, models were fitted with different combinations of these explanatory variables. As 
proxies for broad climatic gradients that might impact upon phytoplankton communities, 
latitude, longitude and altitude were also considered as fixed effects. Secchi depth was omitted 
since the direction of causality between this variable and the phytoplankton community is 
equivocal. Maximum likelihood (ML) estimation was used during model selection, and models 
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were compared by using the Akaike Information Criterion (AIC) to find the model with the most 
optimal combination of environmental predictor variables i.e. lowest AIC value (Burnham & 
Anderson 2002, Zuur et al 2009).  

Models with each of the explanatory variables as the sole fixed effect were fitted first, in 
order to find the variable which was the “best” single predictor of the modelled metric. After 
this, additional explanatory variables were included and those that caused the greatest reduction 
in the AIC were retained. During the model fitting exercise it was necessary to simplify the 
random effects structure by omitting the “Country” random effect. Preliminary analyses 
revealed that the inclusion of this effect resulted in convergence errors, due to a high level of 
model complexity. All analyses except for Chl were conducted using the base and lme4 
packages of R version 2.12.1 (Pinheiro & Bates 2000, R Development Core Team 2009). The 
partitioning of Chl variance among the different levels of sampling design was analysed using 
the Variance Estimation and Precision (VEPAC) package of STATISTICA 8.0 (StatSoft. Inc. 
1984-2007). Similarly to R, REML estimation was used during model fitting and the AIC 
criterion was used to determine the strength of single predictors among environmental variables 
and select the best model when multiple fixed effects were included.  

3 Results 

3.1 Data exploration: metrics  

Frequency histograms of the metrics studied (Fig. 3.1) showed that the chlorophyll a and 
cyanobacterial biovolume metric were positively skewed, while the evenness metric was 
negatively skewed. This skewness was most pronounced in the case of the chlorophyll a and 
cyanobacterial biovolume metrics and so, prior to statistical modelling, we log10 (x+0.1) 
transformed these metrics in order to reduce the potential influence of the minority of relatively 
high values in the dataset. This improved the spread of the data, however, the transformed 
dataset for cyanobacterial abundances was still dominated by large numbers of low values. 
Evenness values, though also skewed, were not transformed prior to model fitting. Due to these 
skews, residuals from models based upon all metrics were examined for evidence of departure 
from a Normal distribution. It is the residuals, rather than the original data, that are required to 
be Normally distributed.  
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Fig. 3.1. Frequency histograms of the seven phytoplankton metrics studied. PTI = Phytoplankton Trophic 
Index, MFGI = Morpho-Functional Group Index, FTI = Functional Traits Index, Chl = Chlorophyll a 
concentration (spectrophotometric). 

There are clear geographical variations in both average metric values, and their within-country 
variability (Fig. 3.2). However, patterns of variability among countries differ between metrics. 
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One commonality is that Norwegian lakes have comparatively low median values of the PTI, 
SPI, MFGI and FTI metrics. German and Danish lakes also tend to demonstrate low median 
scores for these metrics (excepting PTI), as do Finnish lakes (excepting SPI). In contrast, French 
lakes are perhaps most exceptional in terms of median chlorophyll a concentration and total 
cyanobacterial biovolume. Median evenness was lowest for the German and Danish lakes. 
Interestingly, within-country metric variability is itself very different when comparing the 
different countries. Higher levels of within-country variability can be seen for Germany, Spain 
and Finland for all metrics but evenness. These differences in within-country variation may 
occur 1) due to differences in the trophic gradient represented by the lakes sampled within each 
country or 2) by chance due to the small sample size (number of lakes) per country.  
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Fig. 3.2. Boxplots of metric scores, categorised by country. Bold horizontal lines indicate median values. 
Metrics are PTI = Phytoplankton Trophic Index, MFGI = Morpho-Functional Group Index, FTI = 
Functional Traits Index. Countries: DE = Germany, DK = Denmark, EE = Estonia, ES = Spain, FI = 
Finland, FR = France, IT = Italy, NO = Norway, PL = Poland, SE = Sweden, UK = United Kingdom. 
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Fig. 3.3. Spearman rank correlation matrix of metric scores at the sub-sample scale. Below diagonal – 
scatterplots with smoothers. Above diagonal – Spearman rank correlation coefficients. 

As a next step, the different metrics were correlated with each other in order to assess the extent 
to which they yielded similar “information” on variations in phytoplankton community 
structure. This was done using the original data, resolved at sub-sample level (Fig. 3.3), and also 
on lake-level averages of the different metrics (Fig. 3.4). As data for chlorophyll a was analysed 
separately, this metric was not included the figures. All correlations were based upon Spearman 
rank coefficients due to the non-Normal distributions of at least some metrics. Patterns of among 
metric correlation were essentially similar at both the sub-sample and lake scales. As would be 
expected due to its method of calculation, the FTI index was very strongly correlated with both 
SPI and MFGI. The PTI index was positively correlated with MFGI, FTI, log total 
cyanobacterial biovolume and SPI, though only weakly in the latter case. Log cyanobacterial 
biovolume was also weakly correlated with MFGI and FTI, while evenness was poorly 
correlated with any other metric. Chl a (not shown) had significant correlations with Log 
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cyanobacterial biovolume (Spearman r=0.744), PTI (r=0.618), and MFGI (r=0.393) whereas 
those with SPI and evenness were weak and non-significant. 
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Fig. 3.4. Spearman rank correlation matrix of metric scores at the lake-averaged scale. Below diagonal – 
scatterplots with smoothers. Above diagonal – Spearman rank correlation coefficients. 

 

3.2 Data exploration: environmental data 

Data on total phosphorus indicated that the 29 lakes (32 lakes for Chl analysis) spanned a wide 
eutrophication pressure gradient (Fig. 3.5). However, lakes were not evenly dispersed across this 
gradient with many lakes yielding low phosphorus concentrations during the field campaign and 
only a few high concentrations. Lakes fell within two major groups with respect to alkalinity, 
with most falling within either the 0-1 meq/l or 2-3 meq/l range.  The majority of lakes were 
found at comparatively low altitude but were more evenly dispersed with respect to latitude and 
longitude. Due to the positive skew in the total phosphorus, mean depth, and altitude data, we 
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log transformed these variables prior to further analysis in order to avoid the minority of high 
total phosphorus/altitude lakes having an excessive influence on model fitting. 

 
Fig. 3.5. Frequency histograms of the six environmental variables.  

Relationships between predictor variables were examined in order to determine whether they 
were strongly inter-related; an issue which could complicate subsequent model fitting (Fig. 3.6). 
This was again done using Spearman rank correlation, due to the non-Normal distributions of 
the data (Fig. 3.5). Some correlations were apparent but were not judged sufficiently strong to 
omit any of the variables from subsequent analyses. Alkalinity increased non-linearly with log 
total phosphorus concentration. The mean depth of lakes increased towards lower longitudes and 
deeper lakes tended to have lower phosphorus concentrations. Geographic variables were also 
modestly inter-related, with higher altitude lakes being found typically at low latitude (the 
Spanish lakes, all with altitudes in excess of 600m a.s.l.). Latitude and longitude were also 
correlated since lakes were distributed along a SW-NE axis.  
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Fig. 3.6. Spearman rank correlation matrix of lake-level environmental variables. Diagonal – frequency 
distributions of the variables. Below diagonal – scatterplots with polynomial smoothers. Above diagonal – 
Spearman rank correlation coefficients. 

 

 

3.3 Mixed-effects modelling 

Results from null models of all seven metrics (Table 3.2) suggest that the majority of metric 
variance occurred between waterbodies. The Country and Waterbody random effects accounted 
for between 65% and 96% of the total metric variance. It is noteworthy that the Analyst and 
Error (sub-sample level) variance components were the major contributors to the within-
waterbody component, suggesting that analyst differences and sub-sampling errors may account 
for more variation in the phytoplankton composition metrics than differences between samples 
and stations within a waterbody.  
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Table 3.2. Proportions of metric variance at different levels in the sampling hierarchy, for null models of 
the six different metrics. Total between  = Country + Waterbody, Total within = Station + Sample + 
Analyst + Error(sub-sample). 
Metric Country Waterbody Station Sample Analyst Error 

(sub-
sample) 

Total 
within 

Total 
between

Chl 0.00 0.96 0.01 0.01 - 0.02 0.04 0.96 
PTI 0.00 0.88 <0.01 0.00 0.04 0.07 0.12 0.88 
SPI 0.00 0.65 0.03 0.00 0.19 0.13 0.35 0.65 
MFGI 0.00 0.86 0.02 <0.01 0.05 0.08 0.14 0.86 
FTI 0.00 0.81 0.02 0.00 0.09 0.08 0.19 0.81 
Evenness 0.00 0.69 0.04 0.00 0.17 0.10 0.31 0.69 
Log total 
cyanobacteria 

0.09 0.86 0.01 0.00 0.02 0.03 0.06 0.94 

 

For subsequent analyses of metric scores with respect to environmental predictor variables, the 
random effects structure was simplified by removing the “Country” level of the hierarchy. For 
each metric, the AIC values of the null model (i.e. no predictors) and models containing 
different combinations of predictor variables were then compared in order to determine the best 
single predictor, and best combination of predictors (i.e. which predictors resulted in the model 
with the lowest AIC). For Chl, cyanobacterial biovolume, PTI and MFGI, total phosphorus 
concentration was the best single predictor of metric values (Table 3.3). All metrics increased at 
higher phosphorus concentrations. However, there was much scatter around these relationships 
(Figs. 3.7, 3.9, 3.13, 3.19). For PTI and MFGI, once the total phosphorus effect was modelled 
metric scores also appeared to vary systematically with altitude, while for cyanobacterial 
biovolume there appeared to be some effect of longitude. The effect of these geographic 
variables was strongest in the case of MFGI, and modest for the other two metrics (AIC 
comparison of TP models including and excluding altitude/longitude, Table 3.3). For SPI, FTI 
and evenness altitude was the best single predictor of metric scores though, in all cases, only a 
small reduction in AIC compared to the null model was achieved by including this variable in 
the model; indicative of a weak effect (Table 3.3). This can be seen from the scatter in the 
bivariate relationships between these variables (Figs 3.11, 3.15, 3.17). For Chl where also the 
effect of lake morphometry was studied, the mean depth of the lake was the second strongest 
predictor after TP. 

Models of SPI, FTI and evenness that included predictor variables as fixed effects were only a 
modest “improvement” upon null models (difference in AIC between the null model and models 
with predictors = 0.4-1.3, Table 3.3). For the remaining metrics, differences in AIC between null 
models and models including predictor variables ranged from 2.8 (MFGI) to 51.7 (Chl). This 
would indicate the metric scores for MFGI, PTI, total Cyanobacterial biovolume, and especially 
Chl are better predicted by the measured environmental variables.  

 

Comparisons of standard deviations in metric scores in null models and models with the most 
optimal combination of predictor variables (and therefore lowest AIC) show that among-lake 
variability is reduced more by the inclusion of environmental variables for Chl, total 



 
 
Deliverable D2.1-1: Formatvorlagenvorschlag ask 

 

Page 23/42 

Cyanobacteria and PTI (Figs. 3.8, 3.10) than for SPI, MFGI, FTI and evenness (Figs. 3.12, 3.14, 
3.16, 3.18). For all seven phytoplankton community metrics, it is clear that there is still 
considerable among-lake variation in metric scores that is not explained by the environmental 
variables considered i.e. the non-zero standard deviations associated with the “lake” random 
effect in the models with fitted predictor variables (labelled “top model” in Figs. 3.8, 3.10, 3.12, 
3.14, 3.16, 3.18). The fact that the “lake” level standard deviation is still substantial after 
inclusion of predictor variables indicates the presence of “unexplained” among-lake variability 
in metric scores. This unaccounted variability between lakes could, however, still include other 
responses to eutrophication pressures that are not represented by total phosphorus (nitrogen, 
turbidity, etc.).  A model for Chl including TP and Alkalinity as significant positive fixed effects 
and Mean depth and Altitude as significant negative fixed effects, showed the greatest 
explanatory power, with more than 3.5 times lower variance at the lake level compared with the 
null model (Fig. 3.20). 

Table 3.3. AIC comparison of models of the phytoplankton metrics. For each metric, a model with a fixed 
effect of total phosphorus concentration is compared with the corresponding null model.If inclusion of 
additional environmental variables as fixed effects improved model fit, then these are included. pos = 
positive relationship between metric and selected variable, neg = negative relationship. Models in bold 
are those where the difference in AIC from the null model is >2. 
 

Metric Predictors AIC 
Chl Null 

Log total phosphorus (pos) 
Log total phosphorus (pos)+Log Mean depth 
(neg) 
Log total phosphorus (pos)+Log Mean depth 
(neg)+Alkalinity (pos) 
Log total phosphorus (pos)+Log Mean depth 
(neg)+Alkalinity (pos)+Log Altitude (neg) 
Log total phosphorus (pos)+Log Mean depth 
(neg)+Alkalinity (pos)+Log Altitude 
(neg)+Longitude (pos) 

-347.2 
-385.2 
-391.1 

 
-394.0 

 
-397.0 

 
-398.9 

PTI 
 

Null 
Log total phosphorus (pos) 
Log total phosphorus (pos)+Log Altitude (pos) 

-195.6 
-208.0 
-208.6 

 
SPI 
 

 
Null 
Log Altitude (pos) 

 
-1814.0 
-1814.4 

 
MFGI 
 

 
Null 
Log total phosphorus (pos) 
Log total phosphorus (pos)+Log Altitude (pos) 

 
-1830.6 
-1831.0 
-1833.4 

 
FTI 
 

 
Null 
Log Altitude (pos) 
Log Altitude (pos)+Log total phosphorus (pos) 

 
-1974.0 
-1974.8 
-1974.9 

 
Evenness 
 

 
Null 
Log Altitude (pos) 

 
-784.9 
-786.2 

 
Log total cyanobacteria 
 

Null 
Log total phosphorus (pos) 
Log total phosphorus (pos)+Longitude (pos) 

    -217.4 
-229.3 
-229.7 
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Fig. 3.7. Scatterplots of log total cyanobacterial biovolume against the predictor variables included in the 
analysis. 
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Fig. 3.8 Standard deviations of log total Cyanobacterial biovolume at different levels in the sampling 
hierarchy in the null model and the model with the most optimal combination of predictor variables, 
selected according to AIC.  
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Fig. 3.9. Scatterplots of PTI against the predictor variables included in the analysis. 

 

 

 

 

 

 

 

 



 
 
Deliverable D2.1-1: Formatvorlagenvorschlag ask 

 

Page 27/42 

 

Fig. 3.10 Standard deviations of PTI metric at different levels in the sampling hierarchy in the null model 
and the model with the most optimal combination of predictor variables, selected according to AIC.  
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Fig. 3.11. Scatterplots of SPI against the predictor variables included in the analysis. 
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Fig. 3.12 Standard deviations of SPI metric at different levels in the sampling hierarchy in the null model 
and the model with the most optimal combination of predictor variables, selected according to AIC.  
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Fig. 3.13. Scatterplots of MFGI against the predictor variables included in the analysis. 
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Fig. 3.14 Standard deviations of MFGI metric at different levels in the sampling hierarchy in the null 
model and the model with the most optimal combination of predictor variables, selected according to AIC.  
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Fig. 3.15. Scatterplots of FTI against the predictor variables included in the analysis. 
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Fig. 3.16 Standard deviations of FTI metric at different levels in the sampling hierarchy in the null model 
and the model with the most optimal combination of predictor variables, selected according to AIC 
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Fig. 3.17. Scatterplots of Evenness against the predictor variables included in the analysis. 
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Fig. 3.18 Standard deviations of Evenness at different levels in the sampling hierarchy in the null model 
and the model with the most optimal combination of predictor variables, selected according to AIC 
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Fig. 3.19. Scatterplots of chlorophyll a concentration against the predictor variables included in the 
analysis. 
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Fig. 3.20 Estimated variance of Chlorophyll a at different levels in the sampling hierarchy in the null 
model and the model with the most optimal combination of predictor variables, selected according to AIC 
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4 Discussion and conclusions 
 Phytoplankton communities are taxonomically complex and are affected by a wide variety of 
intrinsic and extrinsic environmental drivers. Their responsiveness to such drivers is a desirable 
property if we are to use them as biological indicators of water quality. However, this 
mutliplicity of influential factors and species responses makes the effects of single 
environmental drivers challenging to resolve.  During the earlier stages of WISER, six candidate 
lake phytoplankton composition metrics were proposed, alongside the established metric of Chl, 
as biological indicators of the primary pressure gradient of eutrophication. Full details of these 
six metrics are given in WISER Deliverable D3.1-1: Report on phytoplankton composition 
metrics, including a common metric approach for use in intercalibration by all GIGs (Phillips et 
al. 2010) and WISER Deliverable D3.1-2: Report on phytoplankton bloom metrics (Mischke et 
al 2010). Herein, we have analysed the results of a unique hierarchic field sampling campaign to 
resolve sources of variation in these seven metrics and the relationships between metrics and 
total phosphorus (as a proxy for eutrophication), as well as other environmental factors.   

 

Exploratory analysis of the field exercise results showed that some of the seven metrics 
considered were correlated with each other (e.g. PTI with Chl, MFGI, FTI and total 
cyanobacterial biovolume) indicating that, to some extent, they yield similar “information” on 
the biological differences between sub-samples. However, these correlations were far from 
perfect, indicating that each metric was also capturing unique aspects of phytoplankton 
community change. At the extreme, the evenness metric appeared quite unrelated to any of the 
remaining metrics, suggesting that this captured changes in the phytoplankton community to 
which the other metrics were less sensitive. This may suggest that assessments based upon 
multiple metrics will provide a more sensitive indication of biological responses to pressure 
gradients, and further work on defining a minimal suite of metrics is a high priority. 

 

Comparison of sources of variation in metric scores showed that among lake variation was by 
far the dominant component of variability for all seven metrics. This suggested that, all other 
things being equal, the capability of the metrics to respond to pressures acting at the lake level 
should not be limited by sampling variation arising from within-lake spatial variation. 
Differences in locations around a lake, or sampling and analytical variability, only accounted for 
a relatively small proportion of the variability in metric scores.  These results are especially true 
for the four candidate phytoplankton metrics being considered for Intercalibration: chlorophyll, 
PTI, MFGI and cyanobacterial blooms, for which 86% or more of the variability in metric 
scores was attributed between lakes.  Of the remainder variability, between-analyst and between 
sub-sample variation accounted for most of within-lake variation, with little attributable to 
variation between lake stations and multiple samples collected from each station. This is despite 
the fact that we have treated lake stations as “random” despite them being selected: which ought 
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to over-estimate the station-to-station variability. Lake stations were selected to represent water 
columns of mean depth or greater and it is plausible that a greater station level effect might have 
been observed if stations had been selected in shallower waters or from outflow or edge 
samples. For Chl and cyanobacterial abundance the within-lake spatial variation was very small 
(4% and 6% respectively) and nearly equal for the station, sample, sub-sample and analyst 
levels.  

 

The highest contribution of analyst and sub-sample variation was apparent for the SPI and 
Evenness metrics (32% & 27% respectively) even though these two metrics do not rely so 
explicitly on consistency in taxonomic identification.  The more taxonomically explicit metrics 
of PTI and cyanobacteria abundance had relatively low contribution of analyst and sub-sample 
variance (11% & 5% respectively). One possible reason for this was that all analysts had 
attended workshops that aimed to standardise sample processing techniques and algal 
identification/enumeration. Furthermore, counters followed standard procedures based upon 
CEN 15204 (2006), National Rivers Authority (1995) and Brierley et al. (2007).  The results 
indicate that rigorous standardisation of sample mixing and sedimentation protocols, as well as 
of taxonomic procedures, help minimise sampling and analytical variability and help make more 
meaningful comparisons of ecological status among different lakes. We should also note that, in 
the current sampling design, the effects of analyst and sub-sampling variation were crossed such 
that it was not possible to compare results derived from different analysts counting exactly the 
same fields of view from the same sub-sample, or the same analyst counting different fields of 
view from the same sub-sample. Furthermore, the sub-samples were actually sub- sub-sampled 
prior to microscopic examination; another source of potential metric variability that is currently 
unquantifiable. It is, therefore, difficult to truly isolate the effect of analyst variation upon metric 
scores and future studies targeting sources of variation arising from sampling processing and 
analyst variation alone would be welcomed.  

 

For four of the seven metrics, total phosphorus concentration was the best single predictor of 
metric variation. However model fits were frequently improved, if only modestly, by the 
inclusion of geographic variables such as longitude and altitude. Alongside these variables, total 
phosphorus concentration was included in the most optimal models of five of the seven metrics. 
This would suggest that many of the proposed metrics are indeed responsive to the 
eutrophication pressure gradient apparent across these lakes. However, bivariate scatterplots and 
comparisons of among-lake metric variability between models showed that much among-lake 
metric variation remained unexplained by the available environmental data. This is indicative of 
the existence of important unmeasured drivers of phytoplankton community structure. The 
geographic variables included will act as a proxy for the effects of broad climatic gradients upon 
community structure, via lake physical processes, but the effects of grazing, flushing, water 
colour, silica or even other parameters associated with eutrophication pressure, such as 
dissolved nitrogen and turbidity, are all likely to be influential. However, all these variables 
were not recorded consistently enough to resolve their effects in the current analysis.  The 
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variability in the Chl metric was better explained by the environmental parameters, particularly 
total phosphorus. Since the classical work by Dillon & Rigler (1974), the phosphorus – 
chlorophyll a relationship has been the most exploited chemistry-biology relationship in 
limnological models. Our analysis shows that this strong relationship is, however, modified 
along several independent natural gradients: mean depth, alkalinity and altitude (in decreasing 
importance).  The significant relationships observed in this study for Chl were the same as those 
found in regression models predicting reference Chl concentrations in European lakes (Carvalho 
et al., 2010), with the exception of colour that was not investigated in this study. 

 

Variability around the relationship between each metric and contemporaneously measured 
environmental variables is also likely to arise due to the temporal dimension inherent in these 
interactions. Current phytoplankton community structure is a biological response to previous 
environmental conditions (Madgwick et al 2006), with the time lag of the relationship 
determined by the time-scale over which phytoplankton gather resources and replicate. For this 
reason, the relationship between metrics and environmental drivers might be better resolved 
when these variables can be integrated over the growing season. In lakes with suitable time-
series data it would, in principle, be possible to model temporal variability in metric scores as a 
further source of uncertainty, and also include the temporal relationship between metrics and 
drivers. Explicit consideration of these temporal aspects could not be achieved here due to the 
sampling design, but this is highly recommended for future research.   

 

In summary, lake phytoplankton metrics proposed by the EC WISER Project for ecological 
quality assessment (Phillips et al., 2010; Mischke et al., 2010) are generally shown to be robust 
metrics.  Variability in metric scores is largely due to variability between lakes; differences in 
locations around a lake, or sampling and analytical variability, only account for a small 
proportion of the variability in metric scores.  This is especially true for four candidate 
phytoplankton metrics being considered for Intercalibration: chlorophyll, PTI, MFGI and 
cyanobacterial blooms, for which >85% of the variability in metric scores was attributed 
between lakes, and, total phosphorus concentration was the best single predictor of this 
variation.  Although, much among-lake metric variation still remained unexplained by the 
available environmental data, we conclude that these four proposed metrics are sufficiently 
robust metrics for ecological status assessment and are suitable for adoption in the 
Intercalibration process. 
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