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Abstract 
Climate change could have significant impacts on hydrology. This paper uses UK Climate 
Projections 09 (UKCP09) products to assess the impacts on flood frequency in Britain. The 
main UKCP09 product comprises conditional probabilistic information on changes in a number 
of climate variables on a 25x25km grid across the UK (the Sampled Data change factors). A 
second product is a Weather Generator which produces time-series of current weather 
variables and future weather variables based on the Sampled Data and consistent with the 
change factors. A third product comprises time-series from a Regional Climate Model (RCM) 
ensemble which were used to downscale Global Climate Models (GCMs) on which the 
projections are based and whose outputs were used in the production of the Sampled Data. 
 
This paper compares the use of Sampled Data change factors, Weather Generator time-series, 
RCM-derived change factors and RCM time-series. Each is used to provide hydrological model 
inputs for nine catchments, to assess impacts for the 2080s (A1B emissions). The results show 
relatively good agreement between methods for most catchments, with the four median values 
for a catchment generally being within 10% of each other. There are also some clear 
differences, with the use of time-series generally leading to a greater uncertainty range than the 
use of change factors because the latter do not allow for the effects of, or changes in, natural 
variability. Also, the use of Weather Generator time-series leads to much greater impacts than 
the other methods for one catchment. The results suggest that climate impact studies should 
not necessarily rely on the application of just one UKCP09 product, as each has different 
strengths and weaknesses. 
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Climate change; probabilistic climate projections; hydrological impacts; flood 
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1. Introduction 
Anthropogenic climate change is already having significant impacts on the 
global hydrological cycle (IPCC 2007) and this is now being demonstrated even 
at the national level for the UK (Pall et al. 2011, Kay et al. 2011a). Of particular 
concern are potential changes in the frequency of floods and droughts. 
Hydrological models are often used to assess such changes, driven by time-
series considered to represent plausible future climates. For instance, Bell et al. 
(2009) used a grid-based hydrological model for the UK driven by time-series of 
precipitation and potential evaporation data derived from a 25km resolution 
version of the HadRM3H Regional Climate Model (Jenkins et al. 2003). Their 
results suggested increases in flood frequency across much of the country by 
the 2080s, although with varying magnitude in different locations. Kay et al. 
(2006a) also used HadRM3H time-series data, to drive a lumped hydrological 
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model for 15 individual catchments across Britain, and similarly found that the 
impact on flood frequency varied by catchment. Graham et al. (2007) used data 
from the EU PRUDENCE project (http://prudence.dmi.dk) for a variety of Global 
and Regional Climate Models (GCMs and RCMs). For the 2080s they found 
decreases in summer flows of up to -42%, in the Rhine basin, and increases in 
winter flows of up to 54%, in the Baltic basin, suggesting possible increased 
problems with both droughts and floods in these basins. Dettinger et al. (2004) 
used downscaled GCM data for 1900-2099 to drive a hydrological model for 
three catchments in California. They found, by 2100, earlier snowmelt, an 
increased frequency of winter flooding and reduced summer flows. 
 
Much effort has been put into developing projections of future climate via GCMs 
and nested RCMs, but the cascade of uncertainty (e.g. Kay et al. 2009b, 
Prudhomme and Davies 2009, Wilby and Harris 2006) makes it difficult to 
assess the likelihood of the changes projected by any one run of one model 
combination. Furthermore, the complexity of such models generally makes the 
production of very large ensembles infeasible, particularly with fully coupled 
atmosphere-ocean GCMs and nested RCMs. Relatively small ‘ensembles of 
opportunity’ (e.g. from PRUDENCE) may give misleading impressions of the 
likely range of climate change impacts since they are not designed to sample 
the full range of model uncertainty (Kendon et al. 2010). The 
climateprediction.net project has produced very large climate model ensembles 
(e.g. Frame et al. 2009) by perturbing parameters in a GCM across a range of 
values judged plausible by experts on the GCM’s representation of the climate 
system components (Murphy et al. 2004). These were then run on distributed 
computing power using personal computers, but with relatively limited 
information available from each ensemble member since the computers do not 
have the bandwidth to return large data volumes. However, New et al. (2007) 
used information from climateprediction.net (in the form of seasonal changes to 
precipitation and potential evaporation) to model changes in the median flow of 
the Thames at Teddington. They discuss how such a probabilistic approach can 
provide more informative results, but that the details are conditional on the 
approach. 
 
Recently the Met Office Hadley Centre has developed a new technique to use 
statistical emulators (Rougier 2008) with a relatively large GCM ensemble (a 
280-member perturbed-physics ensemble, or PPE) to emulate the behaviour of 
ensemble members using sets of untried parameters. Thus a larger emulated 
ensemble (106 members) was generated and its members weighted according 
to performance compared to recent observations. This larger ensemble was 
then used as the basis for the UK Climate Projections 2009 (UKCP09), 
following the incorporation of information from several other modelling and 
statistical processing steps (Murphy et al. 2009). These steps included: 

• modifying the ensemble according to predictions from GCMs with 
(structurally) different representations of the climate system;  

• adding information about transient climate change based on a 17-
member subset of the original 280-member GCM PPE ensemble, 
modified to incorporate a full dynamic ocean model; 

• adding detail at a finer spatial resolution based on downscaling an 11-
member subset of the latter 17-member GCM PPE ensemble using a 
25km European RCM version of the parent GCM. 
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The resulting UKCP09 projections (http://ukclimateprojections.defra.gov.uk/) 
provide a probabilistic representation (conditional on the methodology outlined 
above) of (monthly, seasonal or annual) changes in a number of climate 
variables, averaged over seven over-lapping 30-year time-slices. The main 
UKCP09 product is this set of Sampled Data (as described in Murphy et al. 
2009, Section 4). A weather generator is also provided (Jones et al. 2009), to 
enable production of daily (or hourly) time-series over defined areas based on 
the Sampled Data. Time-series data from the 11-member RCM PPE are also 
available (Murphy et al. 2009, Section 5). 
 
In this paper, all three of the above UKCP09 products are applied; Sampled 
Data, Weather Generator data and RCM ensemble data. Each product is used 
to provide inputs for hydrological modelling, for nine catchments spread across 
Britain. The resulting modelled flows are then analysed in terms of flood peaks, 
comparing the impacts on flood frequency suggested by the application of the 
alternative products (for the 2080s time-slice under the A1B SRES emissions 
scenario, IPCC 2000). Section 2 describes the hydrological modelling, the 
catchments modelled, and the way in which each UKCP09 product has been 
applied. Section 3 presents the results, which are discussed in Section 4. 
 

2. Methodology 
2.1 Hydrological modelling 
The hydrological model applied is the Probability Distributed Model (PDM; 
Moore 1985, 2007), a lumped, conceptual rainfall-runoff model widely applied in 
the UK which forms part of the River Flow Forecasting System (Moore et al. 
2005). A simplified version is used here, to allow automatic calibration via 
Monte Carlo sampling of the parameter space of the PDM. This version has six 
catchment-specific parameters, three of which require calibration. A fourth is set 
using soils data and the remaining two are set according to catchment location. 
This version of the PDM, and its automatic sequential calibration method, are 
refinements of those described by Kay et al. (2007). 
 
The PDM is used along with a simple temperature-dependent snowmelt module 
(Bell and Moore 1999), which essentially delays the input of water if 
temperatures are low. This model combination, when run at a daily time-step, 
requires daily time-series of catchment-average precipitation and potential 
evaporation (PE), along with a point time-series of mean daily temperature, the 
altitude to which the temperature relates, and information on the area of the 
catchment within different elevation zones (taken from a digital terrain model). 
 
The model combination was calibrated for 120 catchments in Britain (76 at a 
daily time-step) as part of Defra Flood and Coastal Erosion Risk Management 
(FCERM) project FD2020 ‘Regionalised impacts of climate change on flood 
flows’ (Reynard et al. 2009). See Crooks et al. (2009) for more detail on 
calibration. Briefly, for each catchment modelled at the daily time-step: daily 
gauged flow data were available from the UK National River Flow Archive; daily 
catchment-average rainfall data were estimated from gauged rainfall data from 
the UK National Water Archive; daily catchment-average PE data were derived 
from 40x40km monthly gridded Met Office Rainfall and Evaporation Calculation 
System data (MORECS, Thompson et al. 1982), divided equally over each day 
of the month; daily mean temperature time-series data were taken from the 
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5x5km gridded observed temperature dataset produced for UKCP09 (see 
Annex 1 of Jenkins et al. 2007). Calibration is a two-pass sequential process, 
using Monte Carlo sampling. For the first pass, each parameter is calibrated in 
turn following sampling of the parameter space of the so-far un-calibrated 
parameters. In the second pass, each parameter is re-calibrated in turn while 
the other parameters are held at their last calibrated values, thus allowing 
parameter re-adjustment. 
 
2.2 Catchments and flood frequency analysis 
Nine catchments are used here, details of which are given in Table 1 and their 
locations are shown in Figure 1. These catchments were used for the 
uncertainty analysis in project FD2020 (Kay et al. 2009a) where they were 
chosen to be representative of the range of sensitivity of catchments to changed 
rainfall inputs, using the sensitivity framework of Prudhomme et al. (2010). 
 
For each catchment, simulated river flows are used to produce flood frequency 
curves, using the peaks-over-threshold method (Naden 1992). The impacts of 
climate change on daily mean peak flows are then calculated by looking at the 
difference between flood frequency curves simulated for current and future 
periods. The analysis is done for peak flows at two return periods: 2-years and 
20-years. It is these impacts which are presented for each of the nine 
catchments, using each of the UKCP09 products and methods of application 
described in the next section. 
 
2.3 Application of UKCP09 products 
The UKCP09 products and variables applied are: 
1. Sampled Data change factors: 10,000 monthly ‘change factors’ for 

precipitation and temperature; 
2. Weather Generator time-series of daily precipitation, minimum and 

maximum temperature and PE (from version 1 of the Weather Generator); 
3. RCM ensemble data for daily precipitation, mean temperature and PE, from 

the 11-member ensemble. 
 
Although UKCP09 generally provides information for seven over-lapping 30-
year time-slices and three emissions scenarios, only the 2080s time-slice 
(2070-2099) and the Medium (A1B) emissions scenario are used here. The 
2080s time-slice is chosen as this is the latest one, so allows for the largest 
anthropogenic climate changes relative to natural climate variability. The A1B 
emissions scenario is chosen as the RCM ensemble data are only available for 
this emissions scenario. 
 
2.3.1 Methods of application 
There are two alternative types of application: a) change factors and b) time-
series. The Sampled Data are supplied as change factors, whereas the 
Weather Generator produces time-series based on the Sampled Data. The 
RCM ensemble data are available as time-series, which can be used to produce 
monthly change factors. The RCM ensemble data will thus be applied in both 
ways, for comparison. 
 
The change factor method involves the application of monthly (percentage or 
absolute) changes in a variable to a baseline time-series for that variable. In this 
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case the baseline comprises the observed daily precipitation and mean 
temperature time-series and the MORECS PE time-series for the period 1961-
2001. Here, the monthly change factors are applied equally to each day of the 
relevant month (although more complex applications are possible, see for 
example Prudhomme et al. 2002). That is, the monthly percentage changes 
given for precipitation (or PE) are applied to each day of the corresponding 
month in the observed precipitation (or PE) time-series, and the monthly 
absolute changes given for temperature are added to each day of the 
corresponding month in the observed temperature time-series. Note that the 
Sampled Data change factors use 1961-1990 as the baseline period, thus 
applying them to observed data for the period 1961-2001 is not strictly correct, 
but allows for greater natural climatic variability. 
 
A summary of the four methods of application of UKCP09 data, including the 
two types of application for the RCM ensemble data, is given in Table 2. Some 
of the choices within each application are described in Section 2.3.2. 
 
2.3.2 Choices 
Using each of the UKCP09 products involves choices about exactly what to 
apply and how. Some of these choices are discussed below, along with details 
on what has been done here and why. 
 
1. Sampled Data change factors (Method 1: SD-CF); 

i. Sub-samples of the full Sampled Data can be requested, based on either 
random selection (with replacement) or through specifying Sample Id 
numbers. The full set of 10,000 has been used here, for completeness. 

ii. The Sampled Data for any location in the UK can be obtained for a) boxes 
on an approximately 25x25km grid (that of the RCM, for those boxes 
categorised as ‘land’), b) 16 administrative regions or c) 23 river-basin 
regions (Murphy et al. 2009, Figure 1.2). Here, Sampled Data for relevant 
grid boxes have been used (see below). 

iii. When applying the Sampled Data, it is important to note that they are not 
spatially coherent (Murphy et al. 2009, Annex 4). That is, line n of change 
factors for a given grid box cannot be considered to coincide with line n of 
change factors for any neighbouring grid box. This means that, for a 
lumped catchment model, it is not possible to average the Sampled Data 
across all grid boxes covering a catchment to obtain an average set of 
Sampled Data for the catchment. Similarly, it is not possible to apply 
different change factors to different parts of a catchment modelled with a 
(semi-)distributed hydrological model. Instead, a single set of Sampled 
Data has to be chosen for each catchment (e.g. that for one grid box or for 
the appropriate river-basin region). Here, the single set of Sampled Data 
applied is that from the grid box containing the catchment centroid (Table 
3). 

iv. When applying the Sampled Data, it is also important to note that the 
variables have been processed for UKCP09 in two separate batches and 
that data are not coherent between these batches (see Murphy et al. 
2009, Annex 4). That is, line n of change factors for a variable in batch 1 
cannot be considered to coincide with line n of change factors for a 
variable in batch 2. One consequence of this is that formulations of PE 
requiring surface radiation data, such as the often-used Penman-Monteith 
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formulation (Monteith 1965), cannot be applied in a standard way as the 
short wave and long wave flux terms are in batch 2 whereas temperature 
is in batch 1 (see Murphy et al. 2009, Table A.2). Formulations using 
relative humidity and/or cloud as well as temperature could be applied, as 
these variables are all in batch 1. Here, for simplicity, a purely 
temperature-based formulation has been applied (Oudin et al. 2005), and 
the baseline and adjusted temperature time-series used to estimate 
monthly percentage changes in PE corresponding to each line of Sampled 
Data. These PE change factors have then been applied to the baseline 
(MORECS) PE data for the catchment in order to derive future PE data for 
input to the hydrological model.  

 
2. Weather Generator time-series (Method 2: WG-TS); 

i. The Weather Generator is set-up on a 5x5km grid over Britain and, similar 
to 1iii above, separate runs for neighbouring grid boxes are not spatially 
coherent. However, the weather generator does allow the selection of 
multiple adjoining squares (up to an area of 1000 km2, or 40 squares), for 
which it can be run to produce a single time-series for the selected area 
for each variable. As stated in the weather generator report (Jones et al. 
2009, Section 5.3), “Care must be taken in the interpretation of this series 
however, as it still corresponds to a single point but one which is 
representative, on average, of the region. The weather generator variables 
in the series are not areal-averaged values”. Here, a set of adjoining 
5x5km squares has been chosen to cover each catchment (Table 3), and 
the time-series produced for the chosen region have been used directly to 
drive the PDM hydrological model for the catchment. This seems to be the 
best way to get the input time-series required by the PDM, although ideally 
the weather generator would be capable of producing spatially consistent 
time-series which could be used to produce catchment-average inputs. 

ii. The Weather Generator can be used to produce a specified number of 
runs (N). Generally, the N runs correspond to a random choice of N of the 
10,000 Sampled Data change factors (with replacement), but N is limited 
to a maximum of 1000 (to limit the volume of data produced), and a 
minimum of 100 (considered the smallest number of samples allowable to 
maintain the probabilistic nature of the data). Here, the minimum of 100 
time-series are used for each catchment. It should be noted that re-
running the weather generator to produce 100 more runs for the same 
location will generally produce quite different climatic time-series (unless 
the same initial seed is specified), and thus lead to a potentially different 
set of impacts. However, tests suggested that any error introduced in the 
distribution of flood frequency impacts by using 100 rather than 1000 runs 
is rather less than the probabilistic impact range (Kay et al. 2011b). Note 
that time-series can also be requested for specific, rather than randomly 
selected, change factors if required (sampling by Sample Id number; 
although re-running without specifying the same initial seed would still lead 
to different climatic time-series). 

iii. The Weather Generator can be used to produce (stationary) daily time-
series of length L, where L can be a minimum of 30 years and a maximum 
of 100 years, or any multiple of 10 within this range. Here, only runs of 30 
years have been applied, as this is the standard time-slice length for 
climate analyses and is consistent with the length of the RCM time-series 
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used and with the length of observed data often available. Tests 
suggested that using longer time-series did not lead to significantly 
different distributions for the flood frequency impacts, particularly in terms 
of the median impact (Kay et al. 2011b). 

iv. In the change factor method only a single baseline is available (observed 
time-series data). However, the Weather Generator gives a set of N 
possible baselines (representing natural variability as characterised in the 
observed data used to construct the weather generator) as well as N 
possible futures (representing uncertainty in various aspects of climate 
change as well as natural variability). Thus the question arises of which 
baseline to use with each future, when calculating the impacts. Here, while 
baseline i of N has been used with future i of N, for i in (1,…,N), this is not 
strictly necessary since the baseline is purely a natural variability 
ensemble – none of the parameters of the weather generator have been 
changed (in contrast to the RCM baseline ensemble, see discussion in 3iv 
below). 

 
3. RCM ensemble data (Methods 3a and 3b: RCM-CF and RCM-TS); 

i. For each catchment, the RCM-derived change factors (Method 3a) are 
taken from the grid box containing the catchment centroid (Table 3), just 
as for the Sampled Data change factors (Method 1). The difference when 
applying RCM-derived change factors as against Sampled Data change 
factors is that the former are spatially coherent, and thus could be used to 
apply different changes to inputs in different parts of a large catchment 
modelled with a (semi-)distributed model. 

ii. The only PE time-series data available directly from the RCM are ‘open-
water’ PE. These can be transformed into time-series of PE from a 
vegetated surface in a way which emulates the often-used Penman-
Monteith PE formulation (Monteith 1965), using other variables available 
from the RCM (Bell et al. 2011). These estimates of vegetated-surface PE 
are then used to provide both the PE change factors for Method 3a (RCM-
CF) and the PE time-series for Method 3b (RCM-TS). 

iii. When the actual RCM time-series for the baseline (1961-1990) and future 
(2070-2099) time-slices are used to run the hydrological model (Method 
3b: RCM-TS), it is necessary to produce time-series of catchment-average 
precipitation and PE data from the gridded RCM data. This is done using 
the method of Kay et al. (2006b), whereby the catchment boundary is 
overlaid on the RCM grid and area-weighting used, in combination with 
weighting using Standard Average Annual Rainfall (SAAR) data for 
precipitation. The temperature time-series applied is simply that for the 
grid box containing the catchment centroid, which is used in the snowmelt 
module along with information on the average altitude of the grid box from 
the RCM orography file. 

iv. When the actual RCM time-series are used to run the hydrological model 
(Method 3b: RCM-TS), the baseline time-slice and future time-slice pair for 
each ensemble member should be kept together when calculating the 
impacts. This is to ensure that results from comparable approximations of 
the present and future climate (i.e. each from a model with the same set of 
parameters) are used to calculate the impact of the change between these 
simulated present and future climates. 
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2.4 Comparison of baselines and climatic changes 
Figure 2 shows, for each of the nine catchments, the three different sets of 
baseline flood frequency curves used (see Table 2). These are: 

• Observed baseline: The single flood frequency curve simulated with 
observed data, which is used with Methods 1 and 3a (SD-CF and RCM-
CF). 

• Weather Generator baselines: The range of flood frequency curves 
simulated using weather generator baseline data, which are used with 
Method 2 (WG-TS; see point 2iv in Section 2.3.2). 

• RCM baselines: The 11 flood frequency curves simulated using RCM 
data for the baseline period, which are used with Method 3b (RCM-TS; 
see point 3iv in Section 2.3.2). 

The plots show relatively good agreement between these sets of baseline flood 
frequencies. The clearest difference between the baselines occurs for 
catchment 38003, where the weather generator baselines are relatively low 
compared to the observed baseline, whereas the 11 RCM baselines are higher 
than the observed baseline. The absolute differences are small however, as the 
flow peaks themselves are small. It should be noted that very close agreement 
should not expected between either weather generator or RCM baselines and 
the observed baseline, since such simulated baselines include aspects of 
natural variability. This is particularly the case for the RCM baselines, as the 
RCM runs include multi-decadal natural variability as well as the shorter term 
variability included in the weather generator runs (Kendon et al. 2008, Räisänen 
and Ruokolainen 2006).  
 
Figure 3 shows the monthly Sampled Data change factors and RCM-derived 
change factors for each catchment, for precipitation, temperature and PE. 
These plots show that, for precipitation and temperature, the 11 RCM-derived 
changes are (almost) always within the range of the 10,000 Sampled Data 
changes for each month. However, the 11 RCM-derived changes are not 
necessarily fully representative of the Sampled Data distributions, particularly 
for temperature where they appear to be biased towards larger increases in 
summer for more southerly catchments (e.g. 43005, 47007 and 54008) and in 
winter for more northerly catchments (e.g. 02001, 07002 and 14001). The latter 
could affect the results through greater changes in snow processes.  
 
For PE, Figure 3 shows that the RCM-derived changes are more variable 
relative to the changes derived for the Sampled Data. This could be due to the 
use of the purely temperature-based PE scheme with the Sampled Data, 
whereas the RCM PE changes take account of changes in other atmospheric 
variables like humidity and wind speed. However, the largest differences occur 
in winter, where even large percentage changes in PE are not significant since 
the baseline PE is very small. Although the choice of PE scheme is an 
additional source of uncertainty in the hydrological modelling, the effect of this is 
smaller for the high flows modelled here than for lower flows, and is also likely 
to be small relative the range of climate modelling uncertainty (Kay and Davies 
2008). 
 

3. Results 
Figure 4 shows the results for one catchment, the Yealm@Puslinch (47007), in 
terms of percentage changes in flood peaks at two return periods; 2-years and 
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20-years (that is, the peak flow that would be expected to be exceeded, on 
average, once every 2 years or once every 20 years). The range of impacts for 
Method 1 (SD-CF) and Method 2 (WG-TS) are plotted as histograms (Figure 
4a) and cumulative distribution functions (cdfs; Figure 4b). Also shown are the 
11 individual results for Methods 3a and 3b (RCM-CF and RCM-TS), plotted as 
symbols below the zero x-axis, at the correct x-position for each modelled 
impact. 
 
The plots in Figure 4 show considerable similarity in the average results from 
each of the four methods, with their medians all within about 10% of each other 
(within 5% at the 2-year return period). When comparing the distributions from 
Methods 1 and 2 (SD-CF and WG-TS) with the 11 individual RCM ensemble 
data results from Methods 3a and 3b (RCM-CF and RCM-TS), the minimum 
RCM result might be expected to lie close to the 10th percentile of the range, 
with the maximum RCM result close the 90th percentile of the range (if the RCM 
ensemble is providing a good coverage of the range of uncertainty). In 
comparing the two change factor applications, the minimum impacts from 
Method 3a (RCM-CF) fit relatively well with the 10th percentile impacts from 
Method 1 (SD-CF), although the maximum impact from Method 3a (RCM-CF) 
seems to underestimate the 90th percentile from Method 1 (SD-CF), particularly 
at the 20-year return period. In comparing the two time-series applications, the 
minimum (maximum) impacts from Method 3b (RCM-TS) fit relatively well 
(within 10%) with the 10th (90th) percentile impacts from Method 2 (WG-TS). 
 
Also shown in Figure 4 are lines connecting the equivalent results from Methods 
3a and 3b (that is, those derived using the same RCM ensemble member for 
RCM-CF and RCM-TS). These show that there is considerable cross-over in 
results when information from the same ensemble member is applied in 
different ways – the ordering of the ensemble member impacts when the 
change factors are applied (RCM-CF) is not the same as the ordering when the 
time-series are applied (RCM-TS). This is discussed later. 
 
The results for all nine catchments are summarised in Figure 5, where box-and-
whisker plots are used to summarise the distributions for Methods 1 and 2 (SD-
CF and WG-TS). These show that, for most catchments, there is a reasonable 
correspondence between the results from each of the methods. That is, there is 
generally considerable overlap between the distributions from Methods 1 and 2 
(SD-CF and WG-TS) and the 11 individual results from Methods 3a and 3b 
(RCM-CF and RCM-TS), with the four median values for a catchment generally 
within 10% or so of each other, and the 10th (90th) percentiles often fitting 
relatively well with the minima (maxima) from the equivalent RCM-based 
results. 
 
The main exception to this is catchment 07002 at the 20-year return period, 
where the median from Method 2 (WG-TS) sits around 20% higher than the 
medians from the other methods (RCM-TS, RCM-CF and SD-CF). Moreover, 
the 25th percentile from Method 2 (WG-TS) sits above the 75th percentile from 
Method 1 (SD-CF). Since catchment 07002 is, by virtue of its location, the most 
affected by snowfall / snowmelt of the nine catchments, initially it was 
speculated that the difference could be due to threshold effects in snowmelt 
modelling when using weather generator temperature data. However, this 
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proved incorrect, since re-running the hydrological model without the snowmelt 
module led to no appreciable change in the set of impacts (not shown). 
Similarly, producing 100 new sets of weather generator time-series for 
catchment 07002, and re-running the hydrological model, led to no appreciable 
change in the set of impacts (not shown). An analysis of the daily rainfall 
simulated by the weather generator for catchment 07002 showed that the 
average number of days per year with extreme rainfall (>20mm) increased by 
2.5 days, from 6.5 days in the baseline period to 9 days in the future period. 
This is likely to be the reason for the larger increase in 20-year return period 
flood peaks using Method 2 (WG-TS) than Method 3b (RCM-TS) for catchment 
07002, as the RCM rainfall time-series for this catchment show a smaller 
increase in the average number of days with extreme rainfall (1.4 days). For the 
other eight catchments, the increase in the number of extreme rainfall days from 
the weather generator is much more similar (in percentage terms) to that from 
the RCM. This apparent discrepancy for catchment 07002 could be due to the 
use of the weather generator for a region of more variable topography (Table 1), 
as the spatial averaging of the weather generator coefficients could result in 
rainfall time-series not fully representative of catchment-average rainfall. This is 
discussed further in Section 4. 
 
Other notable differences in results include those for catchment 34003 (at the 2-
year return period), where the RCM-based changes (Methods 3a and 3b: RCM-
CF and RCM-TS) sit higher than the bulk of those for the other two methods. 
This suggests that, for this catchment, the climatic changes simulated by the 
RCM ensemble are not representative of the broader set of changes in the 
expanded GCM ensemble used as the basis for the Sampled Data and the 
Weather Generator time-series. Also, for catchment 38003 (at the 2-year return 
period), the time-series results (Methods 2 and 3b: WG-TS and RCM-TS) sit 
higher than the change factor results (Methods 1 and 3a: SD-CF and RCM-CF). 
This suggests that, for this catchment, the enhanced variability from use of 
generated or RCM simulated baseline and future time-series is important. This 
feature is also seen in the upper end of the range of changes for the 20-year 
return period events. 
 
For almost all catchments and methods, the range of uncertainty is higher at the 
20-year return period than at the 2-year return period (perhaps unsurprisingly). 
The only exceptions are for Method 3a (RCM-CF), for catchments 34003 and 
47007. Also, the range of uncertainty from Method 2 (WG-TS) is generally 
greater range than that from Method 1 (SD-CF), and the range from Method 3b 
(RCM-TS) is often greater than from Method 3a (RCM-CF), which is to be 
expected given the restrictions of change factor methods in terms of changes in 
variability, the number of wet days and the sequencing of events (Diaz-Nieto 
and Wilby 2005). Also, the time-series methods as applied here include natural 
variability in their baselines (Figure 2) as well as their futures, which is likely to 
inflate their impact ranges. 
 
Overall though, there is more difference in results for different catchments than 
there is in results from different methods applied to the same catchment. These 
differences in impacts between catchments could be related to catchment 
location (i.e. be due to spatial variation in the climate change signal itself), or be 
due to physical catchment properties (i.e. catchments with different properties 
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are likely to propagate the same climatic changes through to different impacts; 
see Prudhomme et al. 2010). Most likely, the differences in impacts between 
catchments are due to a combination of both of these factors. 
 
Also shown in Figure 5 are lines connecting the equivalent results from Methods 
3a and 3b (that is, those derived using the same RCM ensemble member for 
RCM-CF and RCM-TS). These show that, for all catchments, there is 
considerable cross-over in results when information from the same ensemble 
member is applied in different ways, as discussed for catchment 47007 (Figure 
4). This is not actually that surprising, since it is simply a demonstration of the 
effects of natural variability. To demonstrate this, the RCM-derived change 
factors have been applied to alternative baseline time-series, for three of the 
nine catchments (02001, 43005 and 47007). The results (Figure 6) show the 
same sort of cross-over occurring. Here, nine alternative baselines have been 
constructed by resampling the observed baseline in 1-month blocks; the results 
look very similar when the baseline time-series from each RCM ensemble 
member are used as 11 alternative baselines (not shown). 
 
The plots in Figure 6 also show how the specifics of the baseline time-series 
matter more for some catchments than others, in terms of the impact under 
given sets of change factors (in this case the 11 RCM-derived change factors). 
For example, the median impact is more dependent on the baseline used for 
catchment 02001 than it is for either catchment 43005 or 47007; it varies from 
about -5% to +25% for catchment 02001, but only from +5% to +20% for 
catchment 43005 and from +14% to +24% for catchment 47007. Furthermore, 
there is much more consistent overlap between the set of impacts using 
alternative baselines for catchments 43005 and 47007 than for catchment 
02001. It is notable that, for catchment 02001, the minimum impact using 
resample 8 exceeds the maximum impact using resample 2. As the resampled 
baselines allow variation in multi-month accumulations (Kay et al. 2009b), 
Figure 6 demonstrates the varying effect of this type of baseline natural 
variability when using change factors to investigate the impacts on flood peaks. 
 

4. Discussion 
This paper has compared the use of three UKCP09 products (Sampled Data, 
Weather Generator time-series and RCM ensemble data), to provide inputs for 
modelling the impacts of climate change on flood frequency in nine catchments 
across Britain. The results showed relatively good agreement between methods 
for most catchments when looking at the median changes. There are also 
differences, probably the most important being that the use of time-series 
generally leads to a greater range of impacts than when using change factors. 
This reinforces the important point that using change factors does not allow any 
account to be taken of the effects of variability, either natural variability (as 
represented in the Weather Generator) or both natural and changes in 
variability (as represented in the RCMs).  
 
Other differences include the use of Weather Generator time-series leading to 
much higher impacts than the other methods for one catchment (07002). It is 
suggested that this is due to the weather generator producing rainfall time-
series that are not fully representative of the catchment-average for regions of 
highly variable topography. The weather generator report (Jones et al. 2009, 
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Section 5.3) states that, when producing time-series for regions, “Care must 
also be taken that a homogeneous region is chosen, avoiding for example, 
large differences in elevation”. For such regions, a weather generator capable 
of producing spatially consistent time-series (e.g. Burton et al. 2008) would be 
preferable, as such time-series could be used to produce catchment-average 
inputs in the same way that gauged rainfall data are used to make observed 
catchment-average time-series. 
 
The results imply that climate impact studies should not necessarily rely on the 
application of just one UKCP09 product, as each product has different strengths 
and weaknesses. Whilst the Sampled Data provide the most comprehensive 
coverage of climate modelling uncertainty currently available, the range of 
impacts modelled using these will not necessarily fully encompass the range 
modelled using other methods. In particular, the application of the Sampled 
Data to fixed climatic baseline time-series does not allow for the effects of 
variability, at various time-scales, which require the application of the time-
series methods. However, time-series methods rely on the ability of (climate or 
weather generator) models to produce appropriate climatic inputs. Furthermore, 
the difference in the ranges from the different methods may depend on location 
or on the system being modelled, and different impact applications will have 
different data requirements and priorities, which have to be borne in mind. In 
addition, the impacts for some applications may be more dependent on the 
baseline used with change factors methods than other applications. It should 
also be noted that the impact ranges shown here are likely to under-estimate 
the full ranges, as hydrological model structure and parameter uncertainty has 
not been included. However, a number of studies have shown that uncertainty 
from these sources is generally smaller than that from climate models (e.g. Kay 
et al. 2009b, New et al. 2007, Wilby and Harris 2006). 
 
The probabilistic projections from UKCP09 have been a big step forward for 
impact studies, as they provide for a risk-based approach to decision-making 
under climate change. For example, a decision-maker could decide to provide a 
level of protection equivalent to the 75th percentile impact (i.e. to protect against 
the impacts from 75% of the climate projections). Such percentile thresholds 
can be read from cdfs (or boxplots), like those presented in Figure 4b (or Figure 
5) for Methods 1 and 2. Such an approach is difficult to achieve by modelling 
impacts for only a small set of scenarios, with no weights indicating the relative 
likelihood of those scenarios (like the RCM results presented in Figure 4 and 
Figure 5). 
 
However, it is important to note that, even given UKCP09’s more 
comprehensive exploration of uncertainty in future climate than any previous 
climate modelling study, the results are still conditional on available data and 
resources. That is, the probabilities given by UKCP09 represent “the relative 
degree to which each possible climate outcome is supported by the evidence 
available, taking into account our current understanding of climate science and 
observations, as generated by the UKCP09 methodology.” (Murphy et al. 2009, 
Section 1.1.1). As New et al. (2007) point out (with reference to their use of the 
climateprediction.net ensemble), even with a more comprehensive 
methodology, “with more data, more resources or an alternative experimental 
design, the likelihoods will not be the same, though they may or may not be 
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similar”. This means that there needs to be a continual process of improving our 
understanding of the climate system, improving our (climate and impacts) 
modelling, and re-assessing the potential impacts. Thus decision-making 
processes must be based around flexible options, allowing for future changes to 
projections and to methodologies to interpret and apply these. 
 
Improving the representation of uncertainty should, preferably, not simply be a 
matter of making larger and larger climate ensembles, as many subsequent 
impact models are themselves simply too complex to enable them to be run 
with inputs derived from such large ensembles (at least without the availability 
of a significant computing resource). Where it is infeasible to run large 
ensembles of climate projections through impact models, it may be necessary 
to select a small subset of projections, but such selection would have to be 
done with great care and would upset the probabilistic nature of the resulting 
impacts. Alternatively, the impact modelling side could be developed to enable 
easier use of large ensembles. This could be done via the development of 
statistical emulators (Rougier 2008) for the impact models, as was done for the 
climate models in UKCP09, or via the development of impact response surfaces 
using a sensitivity framework approach (e.g. Prudhomme et al. 2010). 
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Tables 
 

Table 1 Detail of the nine catchments. 

Catchment 
Number 

River name Location 
Catchment 
Area (km

2
) 

Median altitude 
(range) (masl) 

SAAR61-90 

(mm) 

02001 Helmsdale Kilphedir 551.4 
200 

(17-689) 
1117 

07002 Findhorn Forres 781.9 
408 

(10-935) 
1064 

14001 Eden Kemback 307.4 
100 

(6-520) 
799 

21023 Leet Water Coldstream 113.0 
74 

(12-221) 
671 

34003 Bure Ingworth 164.7 
48 

(12-104) 
669 

38003 Mimram Panshanger Park 133.9 
122 

(47-193) 
656 

43005 Avon Amesbury 323.7 
129 

(67-294) 
745 

47007 Yealm Puslinch 54.9 
124 

(6-490) 
1410 

54008 Teme Tenbury 1134.4 
214 

(48-545) 
841 

SAAR61-90 = Standard Average Annual Rainfall (1961-1990) 

 

Table 2 Summary of methods. 

Method 
Number 

Method name 
(shorthand) 

Sample 
size 

Brief description 

1 Sampled Data 
change 
factors 
(SD-CF) 

10,000 Observed baseline daily time-series (1961-2001) used to 
run hydrological model, and flood frequency curve fitted 
to simulated flows to make baseline flood frequency. 
Then observed baseline time-series adjusted using each 
set of change factors (PE changes not available, so 
estimated using temperature changes). Resulting 
adjusted time-series used to run hydrological model, and 
flood frequency curves fitted to simulated flows to 
produce possible future flood frequencies. Percentage 
change in flood peaks calculated between baseline flood 
frequency curve and future curves. 

2 Weather 
Generator 
time-series 
(WG-TS) 

100 One baseline (1961-1990) and one future (2070-2099) 
set of daily time-series for each Weather Generator run 
(daily minimum and maximum temperature averaged to 
make daily mean temperature). Each pair used to run 
hydrological model, and flood frequency curves fitted to 
simulated flows. Percentage change in flood peaks 
calculated between corresponding pairs of baseline and 
future flood frequency curves. 

3a RCM-derived 
change 
factors 
(RCM-CF) 

11 Change factors derived from RCM baseline and future 
time-series (see below) for each ensemble member, for 
precipitation, mean temperature and PE. Hydrological 
model run as for Method 1.  

3b RCM time-
series 
(RCM-TS) 

11 One baseline (1961-1990) and one future (2070-2099) 
set of daily time-series for each RCM ensemble member. 
Hydrological model run as for Method 2. 
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Table 3 Grid boxes used for Sampled Data and Weather Generator time-series data for 
each of the nine catchments. 

Catchment 
Number 

Sampled 
Data 

grid box 
numbers 

Number of 
5x5km 

weather 
generator 
grid boxes 

Weather Generator grid box numbers 

02001 0378 22 2750945, 2800945, 2750940, 2800940, 2850940, 2900940, 
2750935, 2800935, 2850935, 2900935, 2950935, 2800930, 
2850930, 2900930, 2950930, 2850925, 2900925, 2950925, 
3000925, 2900920, 2950920, 3000920 

07002 0533 32 3000850, 3050850, 3100850, 2950845, 3000845, 3050845, 
3100845, 2800840, 2850840, 2900840, 2950840, 3000840, 
3050840, 2800835, 2850835, 2900835, 2950835, 3000835, 
2750830, 2800830, 2850830, 2900830, 2700825, 2750825, 
2800825, 2700820, 2750820, 2650815, 2700815, 2750815 
2650810, 2700810 

14001 0729 12 3300720, 3350720, 3250715, 3300715, 3350715, 3400715, 
3450715, 3200710, 3250710, 3300710, 3350710, 3400710 

21023 0847 5 3800650, 3850650, 3750645, 3800645, 3850645 
34003 1438 7 6150340, 6200340, 6100335, 6150335, 6200335, 6100330, 

6150330, 
38003 1589 7 5150230, 5150225, 5200225, 5200220, 5250220, 5300220, 

5300215 
43005 1623 14 4050165, 4100165, 4150165, 4200165, 4250165, 4100160, 

4150160, 4200160, 4100155, 4150155, 4200155, 4150150, 
4200150, 4200145 

47007 1694 6 2600065, 2650065, 2600060, 2650060, 2600055, 2650055 
54008 1388 40 3400300, 3400295, 3450295, 3500295, 3550295, 3600295, 

3300290, 3350290, 3400290, 3450290, 3500290, 3550290, 
3600290, 3200285, 3250285, 3300285, 3350285, 3400285, 
3450285, 3500285, 3550285, 3600285, 3200280, 3250280, 
3300280, 3350280, 3400280, 3450280, 3500280, 3550280, 
3600280, 3300275, 3350275, 3400275, 3450275, 3500275, 
3550275, 3600275, 3550270, 3600270 
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Figure 1 Boundaries and outlet locations of the nine catchments. 
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Figure 2 Flood frequency plots showing the three sets of baselines: simulated with 
observed data (one, black dashed); simulated with RCM baseline data (11, green solid); 
simulated using weather generator baseline data (100, shown by cyan boxes-and-
whiskers). The box delineates the 25th-75th percentile range and the whiskers the 10th-
90th percentile range, with the median (50th percentile) shown by the line dividing the 
box. Additional markers outside the whiskers indicate the minima and maxima. 
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Figure 3 The monthly Sampled Data change factors (boxes-and-whiskers) and RCM-
derived change factors (crosses) for each catchment, for precipitation, temperature and 
PE. The box-and-whisker plots delineate the same percentiles as in Figure 2. The RCM 
monthly change factors are connected (grey lines) for each member of the RCM 
ensemble. 
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a) histograms b) cdfs 

  

Figure 4 The percentage change in flood peaks at the 2- and 20-year return periods for 
catchment 47007, plotted as a) histograms and b) cdfs for Method 1 (10,000 SD-CF – red 
dashed line) and Method 2 (100 WG-TS – cyan solid line). Also plotted, below the zero x-
axis, are the results for Method 3a (11 RCM-CF – red crosses) and Method 3b (11 RCM-TS 
– green rectangles), joined for the corresponding members of the 11-member RCM 
ensemble (grey lines). The median results for each method are shown by corresponding 
vertical lines (above the zero x-axis for Methods 1 and 2; below the zero x-axis for 
Methods 3a and 3b; dashed for Methods 1 and 3a; solid for Methods 2 and 3b). The 10

th
 

and 90
th

 percentiles of the cdfs can be obtained from b) by noting where the 10
th

/90
th

 
percentile lines (dotted) intersect the cdfs. 
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a) 2-year return period 

 
b) 20-year return period 

 

Figure 5 Summary of the results for the nine catchments at the a) 2-year and b) 20-year 
return period. Box-and-whisker plots are used for Methods 1 (SD-CF – red) and 2 (WG-TS 
– cyan), with 11 individual points plotted for Methods 3a (RCM-CF – red crosses) and 3b 
(RCM-TS – green rectangles). The box delineates the 25

th
-75

th
 percentile range and the 

whiskers the 10
th

-90
th

 percentile range, with the median (50
th

 percentile) shown by the 
line dividing the box. Additional markers outside the whiskers indicate the minima and 
maxima, if within the plotted range of -50 to +100. The points for Methods 3a and 3b are 
joined for the corresponding members of the RCM ensemble (grey lines), and the 
medians for these methods are shown by black horizontal bars. 
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a) 02001 

 
b) 43005 

 
c) 47007 

 

Figure 6 Changes in flood frequency at the 20-year return period, for catchments 02001, 
43005 and 47007. The results from Method 3a (RCM-CF with the observed baseline; red 
crosses on the left) and Method 3b (RCM-TS; green rectangles on the right) are 
compared to those from applying the RCM-derived change factors to alternative 
baselines (derived from resampling the observed baseline in 1-month blocks; blue 
crosses). The points are joined, in each case, to those derived using the same RCM 
ensemble member (lines). 
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