

Applied geoscience for our changing Earth

Towards A Metadata Standard For Geomagnetic Observatory Data

Sarah Reay¹ (sjr@bgs.ac.uk), Ewan Dawson¹, Simon Flower¹, Don Herzog², Susan Macmillan¹

British Geological Survey, Edinburgh, UK
National Geophysical Data Center, Boulder, Colorado USA

© NERC All rights reserved

24th August 2009 Session V.02 11th IAGA Assembly, Sopron

What is Metadata?

"all the information, additional to the raw data itself, which a potential user of the data would need to know to be able to make full and accurate use of the data in a subsequent scientific analysis..."

Sufi, S., & Mathews, B. (2004). CCLRC scientific metadata model: version 2. CCLRC Technical Report: DL-TR-2004-001.

Benefits of Metadata (1)

Data Archive

- Metadata preserves the value of data for posterity.
- It protects against loss of organisational knowledge as personnel or institutes change.

Data Assessment

- Metadata describes the data.
- It gives us data provenance (QC history, processing and transformation steps etc).
- It is a means of declaring data limitations.

Benefits of Metadata (2)

Data Discovery

 Metadata can help other people find your data... and then obtain and use it.

Data Transfer

 Metadata is increasingly used by software systems to ingest, manipulate and analyse data.

Data Distribution

 Standardised metadata can allow participation in global data clearinghouse initiatives e.g. GEOSS, INSPIRE, WDS

Metadata Standards

- Metadata standards are a common set of terms and definitions in a structured format.
- No standard is perfect fit for geomagnetic data.
- Standards for geospatial data (FGDC, ISO) could provide framework for a geomagnetic profile.
- Temporal aspect is difficult to handle.
- Standards are complex for data providers to populate.

Why is it important?

To improve curation of data at WDCs

- Addressing inconsistencies within data holdings is difficult without metadata e.g. Apia observatory
- A clear 'paper-trail' of any transformations or corrections e.g. Eskdalemuir hourly means

To give clear quality assurance to researchers

- Assisting data selection for global models
- Negate the need for 'preliminary', 'definitive' definitions

Good data provenance is necessary for good quality science!

Current Geomagnetic Metadata Sources

Observatory yearbooks

README.HAD - WordPad - O X File Edit View Insert Format Help нар HARTLAND OBSERVATORY INFORMATION ACKNOWLEDGEM : British Geological Survey STATION ID : HAD LOCATION Hartland, Bideford, Devon, United Kingdom ORGANIZATION : British Geological Survey WEB-ADDRESS : www.geomag.bgs.ac.uk CO-LATITUDE : 39 000g LONGITUDE : 355.517e ELEVATION : 95 meters **ABSOLUTE** INSTRUMENTS : DI-flux (Zeiss theodolite with Bartington MAG 01H fluxgate) GDAS (Geomag SM90R) PPM RECORDING VARIONETER : Three component DMI suspended fluxgate ORIENTATION : HDZ DYNAMIC RANGE: +/-4,000nT RESOLUTION : 0.1nT SAMPLING RATE: 1s FILTER TYPE : 61-point cosine BACKUP WARTOMETER : Three component DMI suspended fluxgate K-NUMBERS : ASM method K9-limit 500 nT GINS Edinburgh COMMUNICATION: INTERNET Communication, 1 second data transferred to Edinburgh every minute OBSERVERS : Regular absolute observations were made by Mr S. Tredwin. CONTACT : C.W. Turbitt British Geological Survey West Mains Road EDINBURGH, EH9 3LA UNITED KINGDOM TEL: +44 131 667 1000 FAX: +44 131 650 0265 e-mail: cwtuRbgs.ac.uk < END >

File Edit Search Preferences Shell Macro Windows Help [Format IAGA-2002 Source of Data British Geological Survey (BGS) Station Name Hartland TAGA code HAD Geodetic Latitude 50.995 Geodetic Longitude 355.518 Elevation 95 Reported DHZF Sensor Orientation HDZF Digital Sampling 1-second 1-minute (00:30 - 01:30) Data Interval Type Data type provisional # This data file was created by the BGS geomagnetic data # processing software running on a Sun workstation. # D and I are reported in angular units of minutes of arc # and H, X, Y, Z and F are reported in nanotesla. # 1-minute values are derived from 1-second samples using # a 61-point cosine filter. # Missing data are denoted by 99999.00 # CONDITIONS OF USE: For scientific/academic studies only. # For all other applications please contact the Geomagnetism # team of BGS, Edinburgh. Contact details are given in the # yearbook included on the CD and are available on the BGS # geomagnetism web site - www.geomag.bgs.ac.uk TIME DOY HADD DATÉ HADH HADZ HADF 2009-08-10 00:00:00.000 222 -198.67 19663.20 44238.80 48411.90 2009-08-10 00:01:00.000 222 -198.62 19663.80 44239.00 48412.30 2009-08-10 00:02:00.000 222 -198.78 19664.80 44238.90 48412.60 2009-08-10 00:03:00.000 222 19664.00 44238.30 -198.90 48411.80 2009-08-10 00:04:00.000 222 44238 90 48413 10 -198 78 19665 90

INTERMAGNET

readme

Requirements for geomagnetic metadata

Contact Information

Name, address, institute information, responsible persons.

• **Data Description** Type of data, nature of the data, possible applications.

• **Station Description** Coordinates, elevation, possibly photographs and maps.

• **Instrumentation** Types of instruments in use.

Data Processing

Processes and methodology used to process the data from instrument recordings to the final definitive values.

• Data Quality

Assessing the quality of the data set.

Distribution

How and where the data may be acquired.

WDC efforts in metadata

- WDCs at Edinburgh, Boulder and Kyoto have begun to discuss what is required in a metadata standard.
- WDC hold limited metadata currently:

Edinburgh

- Holds simple metadata
- Requested further basic information from data providers with annual 'call-for-data'

Boulder

- Beginning to use a FGDC standard for data held in SPIDR
- Complex for data providers to fill-in

Next Steps? "Don't Duck Metadata"

- Documenting data is part of the scientific process
- Data providers are encouraged to keep metadata records of some form: yearbooks, free-form text
- WDCs will gradually request and this store metadata
- Better records of data provenance and interoperability will lead to better science!

Questions?

sjr@bgs.ac.uk

Acknowledgments

World Data Centre, Boulder and World Data Centre, Kyoto

References

- Institutionalize Metadata *Before It Institutionalizes You,* Lynda Wayne, GeoMaxim / Federal Geographic Data Committee, Nov 2005
- Geospatial Metadata, Federal Geographic Data Committee, February 2005
- The British Atmospheric Data Centre: Curation and Facilitation, Bryan Lawrence, NCAS/BADC, Rutherford Appleton Laboratory, CCLRC http://www.dpconline.org/graphics/events/presentations/pdf/BryanLawrence.pdf
- Martini, D. and Mursula, K., 2006. Correcting the geomagnetic IHV index of the Eskdalemuir observatory, Ann. Geophys., 24, 3411-3419