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Summary1

The spatial variation of soil metal content arising from diffuse pollution in industrial2

regions cannot be analyzed by conventional geostatistical methods because predictions3

are influenced by metal content from natural sources and extreme values from point4

source pollution. We analyze a survey of soil arsenic, copper, lead, and tin at 372 lo-5

cations around Swansea (Wales, UK). We use the approach of Hamon et al. (2004) to6

determine the native metal concentrations in contaminated regions from the iron con-7

tent. However we find that this indicator is not appropriate around Swansea because8

the iron content is elevated across the contaminated region. Therefore the natural9

concentration of each metal is approximated by the median concentration on nearby10

uncontaminated rural soils on the same parent material. We divide the remaining vari-11

ation between diffuse pollution and point source pollution by the robust winsorizing12

algorithm of Hawkins & Cressie (1984). This leads to a plausible log-Gaussian model13

with a constant mean which represents the diffuse pollution and estimates of the con-14

tribution of point-source pollution at each observation site. Point source pollution is15

found to occur at sites historically associated with production, transport and disposal16

of industrial wastes. The pattern of diffuse pollution is consistent with emissions from17

multiple smelters located throughout urban Swansea and the effects of prevailing wind18

and topography are evident.19
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Introduction20

Soil contamination because of human activity has been identified as one of the ma-21

jor threats to soil function by the European Union in their thematic strategy for soil22

protection (Commission of the European Communities, 2006). National governments23

across the EU have separate legal frameworks for dealing with historic soil contamina-24

tion. Local agencies with statutory responsibilities for the assessment and remediation25

of soil contamination require effective methods to map the magnitude and extent of26

pollution. The spatial distribution of metal and metalloid contaminants in the soil is27

often complex because the effects of natural sources of metals are combined with dif-28

fuse and point-source pollution. Our understanding of the processes can be enhanced29

by spatial predictions of the variations due to each of these three separate sources. In30

areas of widespread soil contamination, knowledge of the relative proportions of metal31

arising from natural and anthropogenic sources could aid quantitative assessments of32

risk to human health since the bioaccessibility of a soil contaminant can be related to33

the chemical form in which it entered the soil (Smith et al., 2008).34

Generally, regional estimates of the contribution of natural sources to metal con-35

centrations in contaminated soil are made from the summary statistics of surveys made36

in areas which are assumed to be unaffected by anthropogenic processes. It is possi-37

ble to distinguish between natural and anthropogenic sources of some elements such38

as lead by the stable isotopes (Clark et al., 2006) but in other cases the metals may39

only have one stable isotope or analytical methods may not be widely available for the40

determination of isotope fractions (e.g. copper and tin). Hamon et al. (2004) tested41

whether various soil properties could be used as indicators of the background or nat-42

ural metal content of contaminated soils. They found that the natural concentrations43

of arsenic, chromium, cobalt, copper, lead, nickel, and zinc could be approximated in44

terms of the iron and manganese concentrations in the soil. Their tests were conducted45

in south-east Asia but they suggest that these relationships may hold worldwide. This46

approach assumes that the iron content of contaminated soils is not elevated by an-47
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thropogenic processes. Such behaviour has been observed in previous surveys of urban48

soil contamination in the UK. For example, Figure 1 shows that metal processing in49

Sheffield has enriched the lead content of the soils in comparison with uncontaminated50

rural soils, but the iron content is relatively unchanged.51

Conventional geostatistical methods are most efficient when the property being52

mapped approximates, or may be transformed to approximate, a Gaussian distribution.53

However point-sources of pollution lead to hotspots or outliers in the distribution of soil54

metals which are inconsistent with the Gaussian assumption. Therefore robust geosta-55

tistical methods have been applied to surveys of soil metal pollution. Robust methods56

estimate the statistics of the underlying variation of metal concentrations with mini-57

mum effect of outliers. In geostatistical analysis we first estimate a variogram model58

which describes the spatial variation of the property of interest based upon the obser-59

vations. This model is then used to predict the property at unsampled locations. In60

conventional geostatistics the variogram model is estimated by Matheron’s method of61

moments estimator (Webster & Oliver, 2007). This estimator is sensitive to outlying62

observations. Therefore robust variogram estimators have been devised that model the63

underlying variation in the presence of outliers. Three such robust estimators were64

compared by Lark (2000). Lark (2002) suggested a statistic which may be used to65

identify outlying observations. This statistic was used to identify outliers in surveys of66

heavy metal contamination in Sheffield, UK (Rawlins et al., 2005) and Zhangjiagang,67

China (Zhao et al., 2007). The outliers were removed from the datasets before the68

diffuse pollution was predicted across these study regions. However, although outliers69

are likely to be dominated by point-source pollution they may still contain information70

about the diffuse pollution. Therefore Marchant et al. (2010) used a robust prediction71

algorithm (Hawkins & Cressie, 1984) to winsorize the observations. This winsorizing72

process separated each observation into two components, one because of localized pro-73

cesses and one because of diffuse processes. A similar approach was applied by Papritz74

(2007) when mapping pollution around a Swiss smelter.75
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Although the winsorizing algorithm of Hawkins & Cressie (1984) was devised76

more than 25 years ago it has not been widely applied. Instead Reimann et al. (2005)77

indentified outliers in geochemical data by looking at properties of the empirical data78

distribution. This approach does not account for the dependence structure of the data79

and therefore does not explore whether the outliers are extreme relative to their nearest80

neighbours. The local Moran’s I statistic used by Zhang et al. (2008) does compare each81

observation with its neighbours but the weight applied to each neighbour is selected82

arbitrarily. In contrast the winsorizing algorithm of Hawkins & Cressie (1984) ensures83

that the amount of influence each neighbour has is determined from a robust model of84

the underlying variation of the property.85

In this paper we are concerned with mapping the metal content of soils around86

the Swansea and Neath Valleys (Wales, UK) based upon a survey of 390 observations87

made at 372 sites. Swansea was the world-centre of copper-smelting in the late 18th
88

and early 19th centuries and there were other non-ferrous smelters processing arsenic,89

lead, zinc, silver and tin. Our aim is to quantify the effects of diffuse pollution across90

the study region. We test whether the natural soil content of arsenic, copper, lead91

and tin can be related to the concentrations of iron by conducting a second survey92

in a rural area that is not contaminated. We subtract our estimate of natural metal93

concentrations from the urban observations and separate the anthropogenic metal con-94

centrations which remain into components due to diffuse and point-source pollution by95

robust geostatistical methods. This analysis yields a continuous map of diffuse metal96

pollution across the region and estimates of the point-source pollution at each obser-97

vation site. We interpret the patterns of point-source and diffuse pollution in relation98

to maps of current and historical land use, and two factors which dominate deposition99

of airborne metals: prevailing wind and topography.100

Theory101

Geostatistical Prediction of Soil Properties102

The variation of a soil property may be described by the linear mixed model (LMM)103
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which divides the spatial variation between fixed and random effects (Lark & Cullis,104

2004) and accounts for variation between observations made at the same site which105

we may think of as measurement error. The fixed effects are a linear combination of q106

covariates and represent variation of the expectation of the property across the study107

region. The random effects describe the spatially correlated component of variation of108

the property. The LMM is written109

z = Mβ + Zu + ε, (1)

where z is a length n vector of observations of the property of interest at ns ≤ n110

distinct sites, the matrix M (n × q) is the design matrix for the fixed effects and111

contains values of the covariate at each observation site, the vector β of length q112

contains the fixed effects coefficients, the n× ns matrix Z is the random effects design113

matrix, the vector u of length ns contains the random effects and the length n vector ε114

contains measurement errors. The design matrix Z allows multiple observations from115

the same location to be included. If observation i is made at site j then element (i, j)116

of Z is 1. The other elements of the jth column are 0. The random effects are assumed117

to be a realization of a Gaussian random function U with expectation zero across118

the study region and covariance matrix V. If the assumption of Gaussian underlying119

random effects is not plausible for a particular dataset then a transformation should120

be applied. The measurement errors are assumed to be independent realizations of a121

Gaussian function with expectation zero and variance σ2
ε . The measurement errors can122

be distinguished from the nugget variation only if n > ns.123

The elements of V are obtained from a parametric function C(h) where h is the124

lag vector separating two observations. It is common in the geostatistical literature for125

the spatial covariance of a random variable to be expressed in terms of the variogram126

γ (h) =
1

2
E
[
{U (x)− U (x + h)}2

]
. (2)

For a second order stationary random variable127

C (h) = C (0)− γ (h) . (3)
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The variogram may vary with both the length and direction of h. In this paper we128

assume that the function is isotropic and varies only according to the length of h which129

we denote h.130

A number of authorized variogram functions have been suggested which ensure131

that V is positive definite. One such example is the Matérn function (Matérn, 1960)132

γ (h) = c0 + c1

{
1− 1

2ν−1
Γ (ν)

(
h

a

)ν

Kν

(
h

a

)}
for h > 0,

γ (h) = 0 for h = 0, (4)

where c0 is the nugget variance, c1 is the partial sill variance, a is a distance parameter,133

ν is a smoothness parameter, Kν is a modified Bessel function of the second kind of134

order ν (Abramowitz & Stegun, 1972) and Γ is the gamma function.135

Conventionally the covariance parameters α = [c0, c1, a, ν, σ2
ε ] are fitted by Math-136

eron’s method of moments (Webster & Oliver, 2007). A point estimate of the variogram137

is made for several lag distances h based upon the mean squared difference between138

observations separated by lag h and a model is fitted to this point estimate by weighted139

least squares (Webster & Oliver, 2007). If the mean of the property varies over the140

study region then an initial estimate of the fixed effects coefficient can be made by141

least squares and the variogram is fitted to the residuals rather than the observations.142

Once the covariance parameters of the LMM have been fitted they may be substituted143

into the best linear unbiased predictor (BLUP) to calculate β̂, an estimate of the fixed144

effects parameters and Ẑ(x0) a prediction of the soil property at unobserved site x0.145

The BLUP, which is often referred to as universal kriging or kriging with external drift146

when fixed effects are included, also yields an estimate of the prediction variance σ2
147

at each unobserved site. The BLUP predictions are weighted sums of the observations148

with the weights λ determined according to the LMM.149

The validity of the fitted LMM may be confirmed by leave-one-out cross vali-150

dation. For each sampling location i = 1, . . . n, the value of the property at site xi151

is predicted by the BLUP using z(−i), the vector of observations excluding z (xi) to152
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calculate153

θi =

{
z (xi)− Z̃(−i)

}2

σ2
(−i)

, (5)

where Z̃(−i) and σ2
(−i) denote the prediction and prediction variance at xi when z (xi)154

is omitted from the transformed observation vector. If the fitted model is a valid155

representation of the spatial variation of the soil property and the prediction errors are156

Gaussian then θ = [θ1 . . . θn]T is a realization of a χ2
1 distribution with mean θ̄ = 1.0157

and median θ̆ = 0.455. Quantile-quantile (QQ) plots of the (θi)
1
2 can be drawn to158

confirm that the assumption of Gaussian errors is reasonable.159

Robust Geostatistical Methods160

The LMM representation of spatial properties assumes that the random effects can be161

transformed to a multivariate Gaussian distribution. However this assumption will not162

be plausible if the variation of a property due to an underlying process is contaminated163

at a small proportion of sites by a secondary process which leads to the observations164

at these sites being outliers. In a survey of soil metal pollution the underlying process165

may be the diffuse pollution and the secondary process the point-source pollution. The166

Matheron method of moments estimator is sensitive to outliers which lead to inflated167

estimates of the variance of the underlying process. Often these estimators ensure168

that upon cross-validation θ̄ ≈ 1.0 but the outliers cause θ̆ to be significantly less169

than 0.455. Outliers also have undue influence on BLUP predictions, leading to an170

exaggeration of the spatial extent of hotspots around an outlier.171

Robust method of moments variogram estimators have been devised by Cressie172

& Hawkins (1980), Dowd (1984) and Genton (1998). The methods make robust point173

estimates of the variogram of the underlying variation. Lark (2000) tested these esti-174

mators by looking at validation statistics of variogram models fitted to simulated data.175

He suggested that θ̆ was a suitable robust statistic to assess the fitted variograms. Lark176

(2000) found that Matheron’s estimator outperformed the robust estimators when the177

property was not contaminated. However when there was contamination each of the178

robust estimators outperformed Matheron’s estimator. The relative performance of the179
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robust estimators varied with the form of contamination.180

Lark (2002) suggested that once a robust variogram model has been fitted, out-181

liers could be identified by a threshold on the θi from cross-validation. Rawlins et al.182

(2005) followed this approach and removed outliers before predicting soil metal con-183

centrations at unsampled sites. However the removal of entire observations discards184

information about the underlying process. Therefore, when analysing a survey of soil185

metal contamination across France, Marchant et al. (2010) used a winsorizing algo-186

rithm suggested by Hawkins & Cressie (1984) to divide each observation between a187

component from underlying processes and a component from the secondary processes.188

They then applied the BLUP to the underlying variation and mapped the observations189

of the secondary process separately. The steps of this winsorizing algorithm are190

1. Estimate a robust variogram of z.191

2. Compute the BLUP weights λj(−i), j = 1, . . . , i − 1, i + 1, . . . , n required for192

leave-one-out cross validation and the corresponding kriging variance σ2
(−i).193

3. Compute the weighted median z̆(−i) for i = 1 . . . n. The weighted median solves194 ∑n
j=1,j 6=i λj(−i)sign {z̆ (xi)− z (xj)} = 0, where sign (y) = −1 for y < 0 and195

sign (y) = 1 otherwise. This equation may have more than one solution but196

Hawkins & Cressie (1984) state that the number of solutions is always odd and197

therefore a unique solution can be defined by the median of these solutions.198

4. Winsorize the data by replacing zi by

zc (xi) =


z̆(−i) + cσ(−i) if z (xi)− z̆(−i) > cσ(−i)

z (xi) if |z (xi)− z̆(−i)| ≤ cσ(−i)

z̆(−i) − cσ(−i) if z (xi)− z̆(−i) < −cσ(−i)

(6)

where c is a constant 1.5 < c < 3.0.199

5. Predict the property at unsampled locations by application of the BLUP to zc200

rather than z.201

Marchant et al. (2010) repeated the above algorithm for different values of c and202

calculated cross-validation θ statistics for each zc. The use of a robust variogram203
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estimator in stage 1 ensured that for large c, θ̆ ≈ 0.455 but in the presence of outliers204

θ̄ > 1.0. The value of θ̄ decreased more rapidly than θ̆ as c was decreased and their205

final prediction of the underlying variation was based upon the zc for which θ̄ was206

closest to 1.0. In the original formulation of the Hawkins & Cressie (1984) algorithm207

the mean of z was assumed to be constant and the BLUP in Step 2 was equivalent208

to ordinary kriging. Papritz (2007) expanded the algorithm to include fixed effects.209

The fixed effect coefficients were estimated by a robust regression estimator and the210

winsorizing algorithm was applied to the residuals.211

Methods212

The Study Area213

The study region encompasses an area of south Wales (UK) shown in Figure 2 with the214

underlying soil parent materials (British Geological Survey, 2006). Figure 3 shows the215

urban area of Swansea and includes the topographic features such as the Swansea and216

Neath Valleys which extend to the north and north-east from Swansea Bay. For the217

wider study region, where bedrock is the parent material, it is dominated by medium218

to coarse-grained sandstone of the Penant Sandstone Formation, which also comprises219

claystones, siltstones and minor fine-grained sandstones that contain coal seams. The220

glacial tills are mostly associated with the Late Devensian glaciation including clasts221

of Old Red Sandstone and Carboniferous Limestone from the Brecon Beacons. In222

the Swansea Valley, the till deposits are overlain by glaciolacustrine deposits which223

include clay and silt (Figure 3). Glaciolacustrine deposits also occupy the Neath Valley,224

including sand and gravel deposits. During the Holocene, alluvium was deposited and225

peat deposits formed in upland and lowland areas of restricted drainage. The dominant226

soils across the study region have been described as fine loamy soils, sometimes with227

slight waterlogging (Soil Survey of England and Wales, 1983).228

In late 18th and early 19th century Swansea there were many smelters process-229

ing copper, arsenic, lead, zinc, silver and tin. The height of the chimney stacks was230

increased in the 19th century to disperse the toxic fumes from the copper smelters.231
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The lead-smelting industry was particularly significant in the 17th and 19th centuries,232

although compared to copper a greater proportion of smelting was undertaken in the233

ore fields. A total of 250 000 tonnes of raw copper-ore was processed in the Swansea234

Valley annually in the mid 19th century yielding 22 000 tonnes of refined copper; the235

dominant source of ore was Devon and Cornwall (Hughes, 2000). The copper industry236

was considered to be the principal contributor to Swansea’s pollution problems. Newell237

& Watts (1996) used a Gaussian plume model to estimate annual average suspended238

airborne concentrations of arsenic, lead and tin during the mid-19th century in the239

vicinity of the Llanelli copper company 12 miles north-west of Swansea. The estimates240

were between 10 and 15 µg m−3. By contrast, current EC regulations stipulate limits of241

2 µg m−3. More recently remediation has been undertaken; the Lower Swansea Valley242

project of the 1960s and 1970s reclaimed slag heaps and large tracts of derelict land.243

The Urban Survey244

Soil samples were collected in 1994 from 372 sites around Swansea on a regular grid245

at a density of four sites per square kilometre (Figure 3). Marchant & Lark (2007a)246

and Marchant & Lark (2007b) showed that the efficiency of regular grid surveys could247

be greatly improved if a few additional samples were collected from sites close to sites248

on the regular grid. These additional samples lead to a more accurate estimate of the249

variogram over small lag distances. Therefore additional samples were collected 20 m250

away from six of the regular grid sites. At these six sites both the sample from the251

grid site and the additional sample 20 m away were split into two subsamples to allow252

measurement errors to be explored. Thus a total of 390 samples were collected.253

Samples were collected according to the protocols of the Geochemical Surveys of254

Urban Environments (GSUE) project (Fordyce et al., 2005) across Swansea, Neath,255

Port Talbot and the Mumbles area of the Gower Peninsula. Sample sites were selected256

from open ground as close as possible to the centre of each of four 500-metre squares,257

within each kilometre square of the British National Grid (BNG). Typical locations258

for sampling were gardens, parks, sports fields, road verges, allotments, open spaces,259

11



schoolyards and waste ground. Each composite sample was based on nine samples260

of equal size from the corners, sides and centre of square of side-length 2 m. Each261

sample was collected at a depth range of 0-15 cm from the soil surface using an auger262

of diameter 35 mm. At each site, information was recorded on location using 1:10 000263

scale Ordnance Survey maps, a description of any visible contamination (e.g. metallic,264

pottery, bricks, plastics etc.), Munsell colour, soil clast lithologies (e.g. sandstone,265

limestone, etc.) and land use. All soil samples were disaggregated following air-drying266

and sieved to less than 2 mm. All samples were coned and quartered, and a 50-g267

subsample was ground in an agate planetary ball mill. The total concentrations of268

18 major and trace elements were determined by wavelength and energy dispersive269

X-ray fluorescence spectrometry (XRF-S). In this paper we only consider five elements270

(detection limits in parentheses): arsenic (1 mg kg−1), copper (1 mg kg−1), total iron271

expressed as Fe2O3 (0.01 %), lead (2 mg kg−1), and tin (1 mg kg−1). For brevity we272

refer to these variables as metal concentrations although arsenic is a metalloid. Brief273

descriptions of the local land use at and around each site were tabulated for the years274

1900 and 2007 from Ordnance Survey maps of the area.275

The Rural survey276

The sampling locations for the rural survey are shown in Figure 2. In selecting the277

area in which to locate sampling sites we wished (i) to avoid the effects of atmospheric278

metal deposition in the vicinity of Swansea, giving consideration to the prevailing south279

and south-westerly wind directions (ii) to avoid the influence of other smaller urban280

areas around Swansea and (iii) to ensure the soils were derived from the same dominant281

parent material types that are found around Swansea (the Penant Sandstone Formation282

and glacial till).283

We selected an area approximately 25 km to the west of Swansea where these284

conditions were met; this area is also 2 km downwind of the coast, ensuring minimal285

atmospheric sources of metal. We chose to sample the soil at 23 sites; 15 sites over286

sandstone parent material and eight sites over areas where glacial till had been mapped287
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(British Geological Survey, 2006). The precise sampling locations were randomly se-288

lected although limitations in access to sites due to crops and livestock were taken into289

account. The soil samples were collected in January 2007. At each sampling site, five290

incremental soil samples were collected using a Dutch auger at the corners and centre291

of a square with a side of length 20 m and combined to form a composite sample of292

approximately 0.5 kg. At each of these five points, any surface litter was removed and293

the soil sampled to a depth of 15 cm into the exposed soil. On return to the laboratory,294

the same preparation and analytical protocols were applied to each sample as those295

described above for the urban survey.296

Statistical Analysis of Soil Metal Concentrations Around Swansea297

We assume that the spatial variation of soil metal concentrations in the urban soil is298

the sum of three factors, (i) natural sources of metals (ii) diffuse pollution (iii) point-299

source pollution. We attempted to separate these three components of variation. The300

variation due to natural sources was modelled from the rural observations. Regression301

analyses were conducted on the rural observations to evaluate the relationships between302

the four metals of interest and the total iron concentration as suggested by Hamon et303

al. (2004). Also, the empirical cumulative distribution function (CDF) for the rural304

iron observations was compared with the corresponding CDF from the Swansea urban305

survey to determine whether the soil iron concentration has been enriched in Swansea.306

The predicted contribution of natural sources to the observed soil metal concen-307

trations was subtracted from the total urban observation to leave the observed com-308

ponent due to anthropogenic processes. These anthropogenic observations were highly309

skewed and therefore the data were log-transformed. The components due to diffuse310

pollution and point-source pollution were separated by robust geostatistical methods.311

The approach was broadly similar to that applied by Marchant et al. (2010) when312

mapping metals across France. Matérn variograms were fitted to the anthropogenic313

observations of each metal by the method of moments in conjunction with Matheron’s314

estimator and the robust estimators suggested by Cressie & Hawkins (1980), Dowd315
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(1984) and Genton (1998). Cross-validation was performed for each fitted variogram316

and the estimator with θ̆ closest to 0.455 was selected. The observations were then317

winsorized according to the algorithm of Hawkins & Cressie (1984) for various values318

of constant 1.5 < c < 3.0. This algorithm removes both positive and negative outliers.319

However we expect that the majority of outliers will be positive and caused by point320

source pollution. Therefore we only remove these positive outliers.321

The mean of θ was calculated for each c and the winsorized observations zc for322

which θ̄ was closest to 1.0 were assumed to be observations of the diffuse pollution.323

The zc observations were predicted across the study region by the BLUP with a global324

search neighbourhood and these predictions were back-transformed to the original units325

by the exponential transform. We note that this leads to an estimate of the median326

rather than the mean in the original units. We consider the median to be the more327

appropriate statistic for a contaminated dataset. The difference between the anthro-328

pogenic observations and the observations of the diffuse pollution were assumed to be329

the effect of point-source pollution.330

We note that the choice of robust variogram estimator was based upon non-robust331

cross validation statistics. The θ̆ statistic could have been assessed after the observa-332

tions had been winsorized but this would lead to an excessive number of computations333

since it would require that the winsorizing algorithm was applied for each of the four334

robust variograms and a range of c values.335

Results336

Prediction of Natural Metal Concentrations337

Table 1 shows the summary statistics of the rural soil metal concentrations and the338

correlations between these metals and total iron. In each case these correlations are339

small and the p-values for the null hypothesis that the metal concentrations are in-340

dependent of the total iron content are greater than 0.4. Additionally, the empirical341

CDFs (Figure 4) demonstrate that iron concentrations are greater throughout the ur-342

ban survey than in the rural survey. Both of these findings indicate that the method of343
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Hamon et al. (2004) for determination of the component of the metal concentrations344

due to natural sources is not appropriate for this study. Therefore we approximate the345

natural concentration of each metal by its median in the rural survey (Table 1).346

Geostatistical Prediction of Anthropogenic Metal Concentrations347

The Matheron and robust variograms fitted to each log-transformed metal are com-348

pared in Figure 5. For the anthropogenic component of each of the metals the cross-349

validation statistics for the Matheron variogram had θ̆ < 0.455 (Table 2) and therefore350

the variogram was not valid. In each case θ̆ increased to a value closer to 0.455 when351

a robust estimator was used. The θ̄ value was greater than 1.0 for each of the robust352

estimators. However it was possible to select a winsorizing constant 1.5 < c < 3.0 such353

that θ̄ for the winsorized component zc was approximately 1.0. The values of θ̆ for the354

winsorized component were in the range 0.4 ≤ θ̆ ≤ 0.455. Our use of the θ̆ statistic to355

assess the suitability of the models assumes that the prediction errors are Gaussian. We356

confirm that this assumption is reasonable with QQ plots (Figure 6). For the robust357

variogram fitted to the uncensored observations the majority of standardized errors lie358

close to the x = y line and indicate that it is reasonable to assume that the prediction359

errors for the underlying variation are Gaussian. A number of prediction errors deviate360

from the x = y line at both extremes of the distribution. However by censoring only361

the positive outliers all these errors move closer to the x = y line. This indicates that362

the negative outliers are artefacts. They are located close to positive outliers and are363

only outliers relative to these observations. After winsoring all of the prediction errors364

for copper and arsenic are close to the x = y line. For lead and tin it appears that the365

winsorizing process has removed too much of the observation. The predicted maps of366

the metal concentrations because of diffuse pollution (the censored observations) and367

the observations of the point-source pollution (the difference between the observations368

and the censored observations) are shown in Figure 7.369

Distribution and magnitude of point and diffuse metal pollution370
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There are some common features in the maps of diffuse pollution of each metal. In each,371

the long-axis of the areas with elevated concentrations is consistent with the prevailing372

wind direction (oriented approximately 225◦ clockwise from north). Diffuse pollution373

is elevated on the western side of the Swansea Valley and within the wider Neath374

Valley. Less pollution is evident on the western edge of the study region. The lead and375

tin diffuse pollution is concentrated into a few localized regions whereas larger areas of376

elevated copper and arsenic diffuse pollution are evident. The pattern of arsenic diffuse377

pollution is dominated by one large area to the south-east of the Swansea Valley.378

Of the four metals, copper has the most sites at which point-source pollution is379

evident. Local details from Ordnance Survey maps of recent (2007) and historic (1900)380

land use at the sites affected by point-source pollution are presented in Table 3. Land381

use at or around the vast majority of these sites is associated with either production382

(works), transport (railways and docks) or potential disposal (collieries and quarries) of383

industrial wastes. At two sites where large concentrations of lead were reported (2768384

and 3942 mg kg −1) the land use information does not indicate any local source for385

the metal; the latter site was recorded as a domestic garden during the survey which386

could be of some concern given the potential implications for human health through387

exposure to lead in the soil.388

Discussion389

The survey confirms that the soils around Swansea remain substantially contaminated390

by historic metal and metalloid pollution. The soil metal concentrations cannot be391

represented by conventional geostatistical methods because the combination of diffuse392

and point-source pollution leads to complex patterns of variation. When conventional393

models were fitted to the data they were found to be invalid. The estimated variances394

were inflated by a small number of large observations at former industrial sites and395

thus it was not possible to accurately quantify the uncertainty of the predictions which396

result. However, plausible models did result when the diffuse and point-source pollution397

were mapped separately by robust geostatistical methods. In a previous survey, robust398
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methods were also required to map diffuse metal pollution around Sheffield (Rawlins399

et al., 2005) and it is likely that that similar methods will be required to assess metal400

contamination in other industrial regions.401

It was not possible to map the variation of the natural metal content of the402

soil. A relationship between natural metal concentrations and total iron in the soil403

suggested by Hamon et al. (2004) does not apply in this study region. However404

since the variation of metals from natural sources in this survey was dwarfed by the405

anthropogenic contribution it was adequate to assume that the natural concentration406

of each metal was constant across the study region and approximate it by the median407

concentration in a nearby uncontaminated rural area.408

Documentary evidence suggests that the majority of the diffuse metal pollution409

across Swansea was the result of atmospheric deposition of metals to the soil following410

their dispersal from smelter stacks (Hughes, 2000). The patterns of diffuse pollution411

are consistent with emissions from numerous smelters located throughout the urban412

areas. The patterns are influenced by the topography of the region and the prevailing413

wind direction. The spatial predictions could potentially be improved if these factors414

are included in a process model of deposition following atmospheric dispersal from415

specific sources across the region.416

The model used in this study assumed a constant mean across the study region.417

Once the winsorizing had been completed a LMM including fixed effects could have418

been fitted to the censored observations. We did test models where elevation and parent419

material were included as fixed effects. However modified likelihood tests (Marchant et420

al., 2009) suggested that these did not lead to a significantly improved fit. We suggest421

that elevation is not a suitable fixed effect because the amount of contamination differs422

on each side of the valleys and that the proximity of a source of contamination is a more423

important factor than the parent material. Anisotropy could also have been added to424

the model at this stage.425

The pattern of sites where point-source pollution was identified is consistent with426
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metal production, transport and disposal occurring at numerous sites across the urban427

area. We note that the robust algorithm identifies local outliers as well as global428

outliers. Local outliers are not necessarily extreme in comparison with the whole429

dataset but are extreme in comparison to neighbouring observations. For example430

one copper observation has been identified as an outlier despite the concentration only431

being 100 mg kg−1. This is because there was a second observation from the same432

site of 40 mg kg−1. Such outliers would not be found by algorithms based upon the433

empirical data distribution (Reimann et al., 2005).434

There were some differences between the soil contamination observed in Swansea435

and that previously observed in Sheffield (Rawlins et al. 2005). Elevated concentrations436

of total iron were observed throughout urban Swansea but not urban Sheffield. We437

hypothesise that the difference between the situations in Swansea and Sheffield are438

because Sheffield was a centre of metal processing whereas Swansea was a centre of439

metal smelting. Therefore more ferrous waste was brought into Swansea within the440

metal ores. Also, the median concentration of lead in topsoil from diffuse pollution in441

the survey of Swansea (180 mg kg−1) was substantially larger than the value of 73 mg442

kg−1 (urban median of 161 mg kg−1 minus rural median of 88 mg kg−1) reported by443

Rawlins et al. (2005) in Sheffield. These estimates are comparable because in each444

case statistical outliers or hotspots in the urban area were removed from the data.445

We believe that the substantially larger concentrations of lead across Swansea – in446

comparison to Sheffield – result from atmospherically deposited metal due to smelting447

of metal ores within the urban area of Swansea.448

In England and Wales the first tier of a human health or ecological risk assess-449

ment is a comparison between observed total soil metal concentrations at a site and450

their guideline values (Environment Agency, 2009) or screening values (Environment451

Agency, 2008). In the case of human health risk assessment, the revised Soil Guideline452

Values for arsenic concentrations in topsoil (32 mg kg −1 for residential land use) is453

exceeded by the predicted sum of natural content and diffuse pollution for 89% of the454
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study area. Ecological health risks are assessed according to the difference between455

observed concentrations and ambient background metal concentrations (ABC) in soil.456

The proposed screening values for lead (167 mg kg −1) and copper (88 mg kg −1) are457

exceeded by the predictions of diffuse pollution for 44% and 58% of the study area458

respectively. When the ABCs are established it is important to ensure that they do459

not include any diffuse metal pollution.460

Exposure to soil Pb can also occur through inhalation of airborne particulates.461

Average monthly Pb concentrations (ng m−3) of fine (PM10), particulates measured462

during 2008 in air from sites in Swansea (Swansea Coedgwilym – 8) and another in463

Port Talbot (Port Talbot Margam – 11.9) were below the average of 16 ng m−3 from464

all 24 sites in the UK Heavy Metals Monitoring Network (see Brown et al., 2010).465

Another site in Swansea (Morriston) had annual average concentrations of particulate466

Pb in air of 20.5 ng m−3, somewhat greater than the national average. Although there467

is some evidence that the enhanced concentrations of topsoil Pb concentrations across468

Swansea may enhance its concentration in airborne particulates, the overall relationship469

is complex and requires further study.470

Conclusions471

This study illustrates that when soil properties are mapped it is vital to validate the472

statistical model of the property to ensure that it is appropriate. Conventional geo-473

statistical models were not appropriate for the prediction of diffuse soil metal contam-474

ination across urban Swansea because the estimated variograms and predictions were475

overly influenced by point source pollution. However these different components of con-476

tamination were separated and mapped by robust geostatistical methods. The large477

concentrations of tin, lead, copper and arsenic in topsoil across the urban Swansea area478

have significant implications for human health and ecological risk assessments accord-479

ing to current guidance for England and Wales. The methods described in this paper480

are likely to be required to map soil pollution around other industrial centres.481
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Figure captions

Figure 1: Empirical cumulative density functions of metal concentrations in urban

soil of Sheffield (n=588 sites) and soil of surrounding rural areas (n=818 sites)

developed over the same parent material type (Coal Measures): a) iron and b)

lead (Pb). For further details see Rawlins et al. (2005).

Figure 2: Parent materials across the study region in relation to Swansea (shown in

outline) and the soil sampling locations for estimation of natural metal concen-

trations (n=23).

Figure 3: Soil sampling locations (n=373) in Swansea and their parent materials

types superimposed on a digital elevation model. Grid coordinates are metres of

the British National Grid.

Figure 4: Empirical cumulative density functions of iron concentrations in urban soil

of Swansea (n=373 sites; sampled in 1994) and rural sites (n=23 sites; sampled

in 2007).

Figure 5: Matheron (dashed curves and ‘.’s) and best robust variograms (continuous

curves and ‘x’s) for log-transformed metal concentrations.

Figure 6: QQ plots for the standardized prediction errors from a robust variogram for

the transformed observations (left) and the winsorized transformed observations

(right).

Figure 7: Predicted maps of diffuse metal pollution (a), (c), (e) and (g) and point-

source metal concentration (b), (d), (f) and (h). Labels on locations of point-

source pollution correspond to entries of Table 3. The origin of the maps is

a British national grid reference 260000, 187000 and the ticks denote 5000-m

increments.
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Figure 2:
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Figure 3:
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Figure 4:
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Figure 5:
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Figure 6:
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