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Abstract  Identifying climate-driven trends in river flows on a global basis is 

hampered by a lack of long, quality time series data for rivers with relatively 

undisturbed regimes. This is a global problem compounded by the lack of 

support for essential long-term monitoring.  Experience demonstrates that with 

clear strategic objectives, and the support of sponsoring organizations, 

Reference Hydrologic Networks can constitute an exceptionally valuable data 

source to effectively identify, quantify and interpret hydrological change - the 

speed and magnitude of which is expected to a be a primary driver of water 

management and flood alleviation strategies through the future - and for 

additional applications. Reference hydrologic networks have been developed 

in many countries in the past few decades. These collections of streamflow 

gauging stations that are maintained and operated with the intention of 

observing how the hydrology of watersheds responds to variations in climate 

are described. The status of networks under development is summarized.. We 

suggest a plan of actions to make more effective use of this collection of 

networks. 

 

 



Résumé 

L’identification de tendances induites par le climat dans les débits de rivières est entravée par 

le manque de longues séries chronologiques de qualité provenant de rivières dont le régime 

est peu altéré.  Ce problème global est aggravé par le manque de soutien aux initiatives de 

suivi à  long terme.  L’expérience démontre qu’avec des objectifs stratégiques clairs ainsi que 

le soutien des organismes de parrainage, les réseaux de référence hydrométriques peuvent 

s’avérer une précieuse source de données pour l’identification, la quantification et 

l’interprétation des changements hydrologiques.  La vitesse et l’ampleur de ces derniers seront 

probablement des moteurs majeurs de la gestion de l’eau et de la lutte contre les inondations 

dans le futur.  Pour cette raison, ainsi que pour d’autres applications, des réseaux de 

référence hydrologiques ont été développés dans plusieurs pays dans les quelques dernières 

décennies. Ces collections de stations de suivi hydrométrique, qui sont maintenues et 

exploitées dans l’intention d’observer la façon dont l’hydrologie des bassins versants répond 

aux variations climatiques, sont décrites et l’état actuel de développement des réseaux est 

résumé.  Nous suggérons un plan d’action visant une utilisation plus efficace de ces réseaux.  
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Introduction 

Over the past 15 years many countries have invested in reference hydrologic networks (RHN), 

collections of streamflow gauging stations that are maintained and operated with the intention 

of observing how the hydrology of watersheds responds to variations in climate (Stahl et al. 

2010, Monk et al. 2011). For climate-sensitive hydrological observations, and discharge 

information in particular, a RHN needs to be defined with stable conditions and/or a minimum 

of direct human influences on the hydrological regime in the concerned basin.  Data 

requirements for climate change detection studies are demanding; they should be based on 

good quality data from observation networks of rivers with near-natural conditions (Slack and 

Landwehr 1992, Harvey and Grabs 2003, Hannah et al. 2011). 



In general, streamflow records from RHNs represent near-natural river flow regimes from 

catchments with varying hydrological characteristics, usually assumed to be representative of 

broad regions. These networks provide time series records for investigating the predominant 

climate and catchment processes that govern changes in regional hydrology. A further 

advantage of such networks is that the gauged catchments are typically small, by virtue of the 

need to minimise the impact of human disturbance. In larger catchments, processes with 

opposing hydrological influences may act simultaneously. For example, as a response to a 

warming trend in early summer, snowmelt in a catchment’s mountain headwaters may 

increase but higher evapotranspiration in lowland regions may counter this effect, hence 

resulting in no net change at the downstream gauging station. Data from such “reference” 

networks are therefore of fundamental importance for detection and attribution studies and for 

validation of large-scale climate and hydrological models. The objective of the current article 

was to review and synthesize the development of RHNs from around the world based upon 

our collective national experiences; to assess the state of development and compare between 

networks; and to consider how to provide guidance for the future of these networks. 

Hydrologic networks are designed to gather information on the quantity (and sometimes 

quality) of water moving through catchments and along rivers. The most common type of 

network is a set of water-level recorders: their records, together with periodic measurements of 

river flows, provide time series of river flows for each catchment monitored (Pearson 1998). 

Thus RHN’s are subsets of such networks where the selection is based upon the following, or 

similar criteria (Slack and Landwehr 1992, Brimley et al. 1999, Harvey et al. 1999, Pilon and 

Yuzyk 2000, Hannaford and Marsh 2008). The criteria listed below are those listed in these 

published sources and the reader should be aware that these criteria are quite subjective and 

subject to interpretation.  

1. Degree of basin development. Ideally, catchments that are pristine or have stable 

land-use conditions (<10% of the area is affected);  

2. Absence of significant regulations, diversions, or water use.  A catchment is 

considered natural only if there is no substantial control structure upstream or water 

extractions within the basin, or diversions between basins. When regulation is 



present in a basin some gauging stations may be appropriate for analyzing high 

flows and average flows, but not for low flows;  

3. Record length.  Any RHN station must have a minimum record length of 20 years. 

This length ensures that underrepresented climatic or geographic areas, which are 

characterized by minimal data availability, are also included. However, record 

lengths should also be as long as possible to allow decadal variability to be 

distinguished from long-term trends; 

4. Active data collection. A station is included in the network if it is currently active 

and is expected to continue operation until it achieves the desired record length;  

5. Data accuracy. Only stations with what is considered good quality data are included 

in the network; and, 

6. Adequate metadata. Adequate metadata should be available to support the 

previous five conditions. 

These criteria are clearly aspirational and in capitalising effectively on existing hydrologic 

networks compromises are often required to ensure an enduring and geographically 

representative capability to capture and interpret climate-related hydrological trends. We 

expect that the original authors chose terms that were subjective and open to interpretation for 

this purpose. 

Reference hydrologic networks are not a new concept. Nearly 60 years ago, Langbein and 

Hoyt (1959) and Leopold (1962) proposed the establishment of a hydrologic bench-mark 

network (HBN) in the United States to document natural changes in hydrologic characteristics 

with time, and to provide a comparative base for studying the effect of human activities on the 

hydrologic environment. The USGS HBN was established in 1968 and was comprised of 57 

catchments (Cobb and Biesecker, 1971). 

In 2006 the World Meteorological Organization (WMO) requested its members to identify 

“Stream gauging stations appropriate for climate studies”. The criteria for the identification of 

these stations are identical to the criteria for RHN as discussed, with the addition that the data 

should also be available in digital format. The Global Runoff Data Center (GRDC) is collating 

the provided information for the WMO with the intention to collect the discharge time series for 



the identified stations and include them in the GRDC data holdings, so that the data can be 

made available to research and science. Since 2008 GRDC requests for data and updates 

also include the identification of “Stream gauging stations appropriate for climate studies”. 

Table 1 provides a summary of the information and data available through the WMO request 

plus additional RHN not directly reported to the WMO or GRDC.  Until now 28 countries have 

supplied station lists at various levels of completion and seven countries have provided the 

associated discharge data. From the responses to the WMO request it cannot be established 

whether the identified stations form part of a RHN or only meet (some of) the WMO stipulated 

criteria.  In some countries, pristine watersheds are not available, and other criteria need to be 

used to select those that are sufficiently natural as to warrant inclusion in a RHN.   

 

Table 1 near here 

 

The definition of what constitutes a near-natural condition is likely to vary between networks.  

In the United States and particularly in Canada, for example, there are many catchments 

which can justifiably be called “pristine”.  In the heavily populated parts of Europe, with long 

history of human disturbance, there are few pristine catchments, so some degree of 

disturbance must be tolerated.  In the United Kingdom, for example, catchments where the net 

impact of abstractions and discharges are considered to be within 10% of the natural flow at, 

or in excess of the Q95 are deemed suitable for representative basin status (Marsh and 

Hannaford 2008).  In many areas catchments have a high amount of agricultural land use. It 

may be appropriate to use these catchments in RHNs if agricultural practices have remained 

constant during the period of interest. 

The criteria regarding the absence of regulation and diversions may also be problematic as the 

possibility exists that the magnitude of any effect from them might be negligible in a very large 

watershed, but because most RHN stations (nearly 70% are in basins less that 500 km2) are in 

relatively small watersheds, regulation and diversions are more likely to have hydrological 

effects.  Others argue that even large reservoirs have no effect on annual fluxes; rather their 

effect is only on monthly flows (Vörösmarty and Sahagian 2000, Vörösmarty et al. 2000) and 

hence the natural hydrologic variation is often overlooked.  Because most large reservoirs are 



designed to not only shift water between seasons, but also between years, this should 

preclude basins with such large storages; but perhaps not those with diversions where little 

storage is present.   

Similarly, the desired record length is not just for a nominal 20 years; rather, record lengths are 

required that span periods that cover the various states of climate indices in addition to the 

period over which changing climate is of interest.  The sensitivity of hydrological trend 

detection to the time span of the records under review (Wilby et al. 2008) is such that, where 

possible, representative basin networks should include some time series of at least 50 years in 

length. Shorter records can be misleading because of multi-decadal streamflow oscillations. In 

rivers studied by Hamed (2008) and Khaliq et al. (2009), statistically significant positive and 

negative 40-year trends both existed for the same rivers within their full period of record.  

Including stations in a reference network for climate studies which might someday have 

sufficient data may be anticipatory and users might misinterpret the suitability of such records. 

However, not including them in some fashion can be viewed by sponsors as a sign these 

stations are not worthy of continuing their operation.  Finally, while no one would suggest that 

any such network should include ‘bad data’, flexibility needs to be exercised when assessing 

the value of available historical data which, though not of the quality which characterizes 

modern hydrometric practice, may still be of very high utility (e.g. providing important insights 

into longer term runoff variability). 

It has been reported that the least impressive observational evidence in the most recent IPCC 

(Solomon et al. 2007) assessment was in the area of hydrologic change. There is no single 

global pattern of hydrological change in relation to climate change; the observed trends 

collectively can become confusing as streamflow increases or decreases because of changes 

in components of the hydrological cycle. In addition, not all the hydrological changes that have 

been observed in the past decades can be solely attributed to climate variations. Trenberth et 

al. (2007) report that large changes and trends in seasonal streamflow rates for many of the 

world’s major rivers should be interpreted with caution, because many of these streams have 

been affected by the construction of large dams and reservoirs that increase low flows and 

reduce peak flows. Land use change can also have significant effects on streamflow (e.g. 

Bronstert et al. 2002, Brandes et al. 2005, Schilling et al. 2010). Nevertheless, there is 



evidence that the rapid warming between the 1970s  and 2000s had induced earlier snowmelt 

and associated peak streamflow in western North America (Dettinger and Cayan 1995, Leith 

and Whitfield 1998, Whitfield and Cannon 2000, Cayan et al. 2001, Regonda et al. 2005, 

Stewart et al. 2005) and eastern North America (Hodgkins et al. 2003, Hodgkins and Dudley 

2006, Burns et. al. 2007) as well as earlier breakup of river ice in Russian Arctic rivers (Smith 

2000), many Canadian rivers (Zhang et al. 2001), and rivers in the far northeastern United 

States (Hodgkins et al. 2005). To continue observing those changes, hydrologic networks are 

essential; in a companion paper, Burn et al. (2011) report on the use of RHN’s for trend 

studies. 

In several jurisdictions, RHNs have been established as a subset of the existing national 

hydrologic network, including the United States (Slack and Landwehr 1992), Canada (Brimley 

et al. 1999, Harvey et al. 1999) and the United Kingdom (Bradford and Marsh 2003).  Stahl et 

al. (2010) report on the assembly of a data set of gauging stations with RHN-type 

characteristics for Europe where national RHNs have not been designated (or at least not 

particularly promoted) in a majority of countries. Wilson et al. (2010) analyzed hydrological 

variables for a pan-Nordic network of gauging stations drawn from a Nordic version of the 

European Water Archive (EWA) (Roald et al. 1993).  Rennermalm et al. (2010) explored 

trends in cold-season low flows for a pan-arctic network of gauging stations, where the stations 

were selected based on criteria similar to those used to define stations for a RHN. More 

broadly, the international FRIEND (Flow Regimes from International Experimental and 

Network Data) research programme of UNESCO has developed over 25 years to become a 

global network of research communities, operational hydrological agencies and policy makers 

to exchange and share scientific knowledge and data relating to trend detection, and to 

enhance capacity building in developing countries (Demuth et al. 2006). 

The objective of the current article was to review and synthesize the development of RHNs 

from around the world based upon our collective national experiences; to assess the state of 

development and compare between networks; and to consider how to provide guidance for the 

future of these networks. 

 

 



Why Reference Hydrologic Networks are necessary 

Human dependence on water is fundamental and compelling, and hydrological data provide a 

necessary foundation for policy evolution and effective water management.  Gauging station 

networks, to meet these information needs, generally evolved during a period when 

hydrological variability was considered to be around a relatively stable long term mean.  This 

may no longer be true (Milly et al. 2008).  The impact of climate change, and the likelihood that 

runoff patterns are changing over time, has major economic, societal, political, and ecological 

implications. Correspondingly, the focus of hydrologic data acquisition and stewardship needs 

to change to better reflect the overriding strategic need to index hydrological change more 

effectively, regarding several issues:   

Hydrologic extremes.With water demand increasing, the equitable allocation of limited water 

resources, both within and between countries, will be essential if internal unrest and 

international conflict is to be avoided.  In relation to engineering design, the economic costs of 

over-design, and the social implications of under-design, underline the need for appropriate 

mechanisms to reassess the risk of hydrological extremes (both high and low flows) in a 

warming world. For example, extreme high flows of defined risk are used to size bridge 

openings to safely pass flood flows while extreme low flows affect water supply, agriculture, 

and ecosystems.  

Regional patterns. One of the main issues with climate change trend detection is that other, 

more direct, anthropogenic disturbances (such as water withdrawals, storage behind 

impoundments, and land-use change) may obscure the effects of climatic variability. Such 

anthropogenic impacts are prevalent in many parts of the world (Vörösmarty and Sahagian 

2000). Döll et al. (2009) calculate that average river discharge and statistical low flow - Q90 

(monthly river discharge that is exceeded in 9 out of 10 months) have decreased by more than 

10% on one sixth and one quarter, respectively, of the global land area. Stahl et al. (2010) 

suggest that clearly identifying regional patterns of hydrological change has become one of the 

most important challenges in contemporary hydrology. Reliable information on such patterns, 

beyond the river basin or national scale, enables the identification and attribution of changes in 

flow regimes influenced by large-scale processes such as climate change. However, 

anthropogenic disturbances (e.g. abstractions, discharges and reservoir releases) have 



modified river flow regimes across the globe (e.g. Döll et al. 2009), confounding the 

identification of climate-driven changes.  

Svensson et al. (2006) report that floods are of great concern in many areas of the world, with 

the last decade seeing major river flood events in, for example, Asia, Europe and North 

America. River flows calculated from outputs from global climate models often suggest that 

high river flows will increase in a warmer future climate. However, the future projections are 

not necessarily in tune with the records collected so far—the observational evidence is more 

ambiguous. A recent study of long time series of annual maximum river flows at 195 gauging 

stations worldwide suggests that the majority of these flow records (70%) do not exhibit any 

statistically significant trends (Svensson et al. 2006). Trends in the remaining records are 

almost evenly split between having a positive and a negative direction. Studies such as this 

suffer from not being focused on stations with the characteristics of RHNs, particularly with 

respect to climatic trends in the absence of other confounding human activities. 

Hydrologic change can come from climatic changes as well as direct human influence from, for 

example, major dams, water withdrawals, or land use change. Examining hydrologic change 

that comes from changes in air temperature and precipitation requires relatively natural basins 

or basins with stable land use. It is important to understand how changing temperature and 

precipitation has and will affect streamflows—no matter whether the underlying causes are 

natural multidecadal changes or manifestations of climatic changes triggered by increased 

greenhouse gases. In recognition of this need, gauging station networks have been 

designated in several countries using the RHN criteria described previously, and largely 

capitalizing upon existing stations that met, or almost met, these criteria. In each country, the 

intention also was to reflect the hydrological variability of the country by ensuring that the 

predominant hydrologic types were included.  

Much of the emphasis in RHNs to date has been focused on the monitoring aspects, and 

rather less on the analysis and interpretation. Many countries have been successful in 

developing these networks over the past decade, and scientists are increasingly becoming 

aware of the value of these networks for application in a variety of research activities. To this 

point in time, the development has been primarily focused on the collection and archiving of 

the data. While much remains to be done to address issues within existing networks the focus 



of these needs to broaden. We report here the results of a session, held in Quebec City, 

Canada in July 2010, to discuss the state and future of such networks; while the progress of 

developing and using these networks is commendable, we recommend changes in the next 

decade that will more fully capitalize on the large national investments in RHNs.  

 

Usefulness of Reference Hydrologic Networks  
Hydrologic networks generally serve several different objectives (Table 2). A companion paper 

(Burn et al. 2012) describes some case studies of RHN use in three countries. Data from 

RHNs have been used in many previous studies of trends in North America (e.g. Lins and 

Slack 1999 2005, Douglas et al. 2000, Zhang et al. 2001, Burn et al. 2010) and have recently 

found application in climate change attribution studies (Krakauer and Fung 2008). Stahl et al. 

(2010) reported that in North America, accounts of hydrological change have capitalized on 

reference river basin networks such as the US Hydro-Climatic Data Network (HCDN) of >1600 

minimally disturbed catchments, or those that were considered to not have changed over time 

(Slack and Landwehr 1992), or the Canadian Reference Hydrometric Basin Network (RHBN) 

(Brimley et al. 1999, Harvey et al. 1999). Established RHNs have also seen extensive use for 

multiple types of hydrologic research. The streamflow data in RHNs are essential for 

calibration and validation of remote sensing data and climate models, as well as monitoring of 

trends and changes in the water system (Cihlar et al. 2000); in the calibration or validation of 

large- scale hydrological models (Lohmann et al. 2004, Troy et al. 2008); which can then be 

used to systematically study processes of change (e.g. Hamlet and Lettenmaier 2007).  

Stations within RHNs are also useful for other purposes including their use on a comparative 

basis for assessing the impacts of changes in landuse with non-RHN stations, hydraulic 

change, and climate verification. RHNs also find wide application in the development, 

refinement and application of regionalisation procedures (e.g. Gustard et al. 1997, Cunderlik 

and Ouarda 2006) where streamflow characteristics are transferred from gauged to ungauged 

watersheds based on basin characteristics such as area and slope. Yoshitani and Tianqi 

(2007) suggest that PUB (predictions in ungauged basins) studies require an accurate set of 

discharge data, and flow data are almost always affected by withdrawals and returns. Stöll and 

Weiler (2010) examined rainfall-runoff modelling of ungauged basins using a new approach to 



guide hydrological modelling based on explicit simulation of the spatial stream network; the 

method was tested in four different catchments in Germany. Reference stream networks were 

then used to assess the output of this process-based model and the degree of spatial 

agreement.  

The data have also been used for calculation of site ratios; the most basic method of infilling 

missing data starts with calculation of the long term ratio of each gauge catch to the mean 

catch of a reference network (Hudson et al. 1997).  Sauquet et al. (2000) used data from 212 

stations in the reference network HYDRO to model and validate monthly flow patterns in 

France. 

 

Canadian Reference Network 

The streamflow data from the Canadian RHBN have been used in more than 25 studies in the 

more than ten years that the network has been in existence.  The studies have had a variety of 

purposes with the common feature being a desire to analyze streamflow data that can be 

considered to reflect near pristine conditions.  The most common use of data from the RHBN 

has been for trend detection analysis (e.g., Zhang et al. 2001, Burn and Hag Elnur 2002, Yue 

et al. 2001, 2003, Cunderlik and Burn 2004, Hodgkins and Dudley 2006, Khaliq et al. 2008, 

Ehsanzadeh and Adamowski 2009, Burn et al. 2010).  The trend analysis studies have differed 

in: the variables examined; the approach used to identify trends; and the scope of the analysis, 

with some studies being national in scope while others have examined specific regions of 

Canada.  Several studies have used RHBN data to examine the variability of streamflow data 

or to investigate sensitivities to teleconnections (e.g., Coulibaly and Burn 2004 2005, Kingston 

et al. 2006, 2011, and Fleming et al. 2007).  Other studies have used RHBN data to explore 

regional frequency analysis of extreme events (Yue and Wang 2004a, Yue and Pilon 2005).  

Finally, there have been studies that have examined other issues such as the scaling 

properties of Canadian streamflow data (Yue and Gan 2004, Yue and Wang 2004b) and the 

evaluation of statistical downscaling techniques (Whitfield and Cannon 2000).   

 

United States Reference Network  



The usefulness of streamflow data from the United States HCDN is best described by its use 

in published studies; the data from the HCDN have been used in more than 100 published 

studies since the network was created in 1992.  Like the Canadian RHBN, the studies have 

had a variety of purposes.  Unlike the RHBN, the most common use of data from the HCDN 

(about 40% of studies) has been for the analysis of a variety of statistical (e.g. Vogel et al. 

1999, Reilly and Kroll 2003, Saunders et al. 2004, Watson et al. 2009) and deterministic (e.g. 

Gordon et al. 2004, Pagano and Garen 2004, Hamlet and Lettenmaier 2007, Wenger et al. 

2010) models for issues such as flood risk, water supply, and aquatic ecosystem health. 

Temporal trend analyses have also been common, comprising about 30% of published studies 

based on HCDN data; studies have been completed at national (e.g. Lins and Slack 1999, 

McCabe and Wolock 2002, Krakauer and Fung 2008) and regional (e.g. Regonda et al. 2004, 

Small et al. 2006, Brutsaert 2010) scales, as well as international ones (e.g. Stewart et al. 

2005, Hodgkins and Dudley 2006). Flow trends, like flow models, are important for various 

reasons, and the trend studies analyze various relevant flow metrics for annual or seasonal 

flows. HCDN data have also been used to analyze teleconnections between streamflows and 

various large scale atmospheric circulation and sea surface temperature indices such as 

ENSO, PDO, PNA, AMO, and/or NAO (e.g. Cayan et al. 1999, Rogers and Coleman 2003). 

Other uses of USGS HCDN data include analyzing the geographic variability of streamflows 

(e.g. Lins 1997, Peterson et al. 2000) and statistical properties of streamflows (e.g. Vogel and 

Wilson 1996). 

 

United Kingdom Reference Network  

In the United Kingdom, the national Benchmark Network (around 90 well monitored 

catchments) provides the core capability for hydrological trend detection and appraisal.  It is a 

key component in the United Kingdom climate change detection programme (Cannell et al. 

2004) and has found wide application in related United Kingdom and European studies of 

changing runoff patterns (Hannaford and Marsh 2006, 2008, Stahl et al. 2010). The 

Benchmark Network has found wide national and international application in relation to trend 

detection and has been exploited in United Kingdom Climate Change Indicator programme 

and also other related research topic areas. 



Close collaboration between the United Kingdom National River Flow Archive personnel and 

their counterparts in the Measuring Authorities has resulted in the development of a series of 

network and data appraisal mechanisms over the last decade.  Their aim is to maximise the 

utility of the river flow series in the United Kingdom Benchmark Network and provide an 

information base which underpins a capability to identify and interpret hydrological trends.  

Many of these mechanisms have been formalised in Service Level Agreements; some form 

the basis of proposed changes in British and European hydrometric data processing 

standards. 

 

 

Operational Experience with National Reference Hydrologic Networks 

In the design and evolution of these networks, stakeholder involvement, national strategic 

objectives, impacts of artificial influences (landuse, storage, diversion etc), hydrologic network 

operational performance requirements, and synergistic or complementary benefits of co-

ordinated hydrometeorological monitoring all need to be considered.  In reality, many of these 

aspirations have had to be relaxed to attain a future objective, that being that the network 

should be representative of the hydrologic variation that exists in a particular country (Stahl et 

al. 2008). In addition, hydrologic data collection is inherently challenging (particularly in the 

extreme flow ranges), and data quality issues – such as inhomogeneities resulting from rating 

changes or underestimation of high flows due to bypassing of gauging stations – can induce 

spurious trends that bear little relation to climate variability. Each of the national RHNs has had 

a different development and operational experience.  The following section describes these 

different experiences in Canada, the United Kingdom, and the United States.  

 

Canada 

In Canada, a partial review carried out in 2010 (K.D. Harvey, personal communication) of the 

original stations identified as being part of the Reference Hydrometric Basins Network (RHBN) 

revealed that roughly 60% of them still met the first five of the above-mentioned criteria.  

Actually, 79% were in a pristine basin, 92% were not affected by control structures, 90% did 



not include poor or unacceptable quality data and 93% were still active. However, some of the 

stations were decommissioned at some point in their history, causing discontinuities in the 

records. Including stations that do not comply with all the criteria has sometimes been done on 

purpose, as long as the overall effect on the quality of the network was deemed minor.  While 

allowing some flexibility in the definition or application of criteria results in potentially increased 

spatial coverage, the extent to which data are then suitable for the intended purpose can be 

debated. As such, any derogation to the theory should be extensively documented and 

justified in the metadata, which has to be widely available to end users.  This has unfortunately 

not been done systematically in the original RHBN, but improvements are expected in this 

regard in the future. 

Another issue related to the application of the criteria for the RHBN is the lack of objective 

methods for the application of systematic, consistent criteria throughout the country.  The 

qualitative nature of some criteria (ex. data quality) and the wide hydrological variability in the 

many diverse systems of Canada requires local experts to judge whether a specific criterion is 

met or not. However, this results in decisions regarding stations that can be difficult to justify to 

decision-makers or RHBN users. This emphasizes furthermore the need to fully document the 

process of criteria assessment and make that documentation available to users, as well as the 

need to develop objective methods in collaboration with the operational people.  

Finally, there is a need for a systematic, periodic review of the network to keep records up to 

date, to add or remove stations relative to their compliance with all criteria and to inform users 

of any updates performed. Partial, annual reviews could be conducted to assure a general 

maintenance on the network, and a more comprehensive review could be conducted say every 

decade to identify major changes (such as basin development) and assess the effectiveness 

of the network.  These reviews would also be helpful in identifying gaps in the coverage, as 

well as new stations that have the potential to be part of the network in the future (i.e. not 20 

years of data yet, but other criteria met) to help justify keeping them active to sponsor 

organizations. 

While the Canadian RHBN has been used in a number of studies, there are limitations to the 

present network.  The spatial distribution of the stations is not uniform with fewer stations in 

the north than in the south.  In addition, many of the more northerly stations are for larger 



watersheds and have shorter record lengths. The predominance of larger watersheds in the 

north limits the capability of examining the hydrological response in small watersheds and the 

short data records makes trend detection a severe challenge in the north.  In the time that the 

RHBN has been in place, some of the stations have been discontinued, raising concerns 

regarding the commitment to the RHBN as a reference network.  Finally, metadata for RHBN 

stations are not readily available, which does not allow for the exploration of why unusual 

results may have occurred.  

 

United Kingdom 

A preliminary attempt to designate a United Kingdom representative basin network was 

undertaken in the 1980s (Lees 1987) but a strong focus on hydrological trend detection 

awaited the convening, in 1999, of a national symposium  to determine strategic hydrometric 

information needs for the 21st century (Marsh 2002).  This provided a blueprint, supported by 

all the primary stakeholders, to establish an enhanced capability to identify climate-driven 

changes in UK river flow regimes.  To this end, an initial Benchmark Network was established 

in 2002 (Bradford and Marsh 2003) and, after a review of time series quality and continuity, 

and the use of more advanced catchment descriptors to assess the representativeness of 

candidate catchments (Laize et al. 2008), a revised network of around 90 catchments was 

designated.  The average record length is approximately 35 years with many of the selected 

stations being commissioned in the 1970s.  The latter was a notably dry decade and to help 

assess the influence of climatic variability on long term trends, a complementary selection of 

long time series (>50 years) was made.  

In parallel with the designation of the Benchmark Network, a review of the data acquisition and 

archiving procedures was undertaken and enhanced validation procedures were agreed with 

the UK Measuring Authorities: the Environment Agency in England and Wales, the Scottish 

Environment Protection agency in Scotland and the Rivers Agency in Northern Ireland.  

Support of the latter has been critical to the success of the Benchmark Network and despite 

continuing pressures caused by a burgeoning operational need for hydrometric data (e.g.  

relating to additional flood warning provision), the MAs have agreed that no Benchmark station 

will be decommissioned without consultation with the Centre for Ecology & Hydrology. 



The impact of artificial influences on natural flow regimes is pervasive across much of the UK.  

This is particularly true of eastern, central and southern England where concentrations of 

population, intensive agriculture, and commercial activity make for the greatest water demand.  

Thus some degree of regime disturbance is inevitable and comprehensive metadata are 

essential to help index and understand the net impact on the flow regime.  In hydrologic terms, 

considerable effort is devoted to maximizing the homogeneity and continuity of the river flow 

time series incorporated in the Benchmark Network (Harvey et al. 2012), particular attention 

being directed to flows in the extreme flow range.  Successful data stewardship requires 

continuing vigilance and productive liaison with the MAs.  

Rigorous validation and data review procedures have demonstrated that only a proportion of 

the Benchmark Stations have high quality (and homogenous) time series for both the highest 

and lowest flow ranges.  Consideration is therefore being given to the designation of 

complementary low and high flow benchmark networks. 

 

United States  

A subset of USGS streamflow gauging stations was identified in 1992 (Slack and Landwehr 

1992) that had historical streamflow data responsive to climatic variations (relatively free of 

confounding anthropogenic influences such as dam storage, regulation and urbanization). All 

of the data in the HCDN have been collected and quality assured by a single Federal 

agency—the USGS—since the start of data collection; consistent and well documented 

procedures have been used (e.g. Corbett et al. 1943, Rantz et al. 1982).  

The HCDN was designed to meet the criteria, specified earlier in the current article, of low 

basin development, absence of significant regulations or diversions, minimum record length 

criteria, and data accuracy—with the following caveats (Slack and Landwehr 1992). The 

appropriateness of stations for the HCDN was primarily determined by USGS State offices 

who have been responsible for the historic collection of streamflow data in their state and have 

extensive local knowledge of the quality of data from gauging stations and of the basins they 

drain. The degree of basin development was based on local knowledge rather than 

quantitative basin land cover percentages. Significant regulation and diversions have been 

historically documented, quantified, and published for stations; these stations were not used 



for the HCDN. Some stations with unchanging diversions over the period of record and some 

stations with low head dams that have only a transient effect on streamflow were included in 

the HCDN. The minimum record length for stations was generally 20 years through 1988, but 

some stations with less than 20 years were allowed in under represented areas. Station 

density is lower in some parts of the western United States than in other parts of the United 

States. Stations were included in the HCDN if they were not active, but had at least 20 years of 

data that met the various criteria for inclusion. The predominant accuracy of streamflow 

records had to be “good” quality. Data quality at all USGS stations is rated and published 

annually. This rating reflects the professional judgment of the office that collects the data and 

depends on the accuracy of stage measurements, the stage/flow relationship, and the 

accuracy and frequency of flow measurements. A quality rating of “good” implies that 95% of 

daily mean flows are assessed to be within 10% of true values. 

The HCDN has not been systematically updated since its inception and data collection at 

some stations has been discontinued. Some stations may have experienced increased 

development in that time or may have become inappropriate for the study of climatic variations 

for other reasons. More than 20 years of data have been collected at existing and new gauging 

stations in the U.S. since the HCDN was created and additional stations appropriate for the 

study of streamflows that are responsive to climatic changes exist that are not in the HCDN. 

In a related development, however, the USGS has recently completed a quantitative analysis 

of gauged drainage basins to establish reference basins in the conterminous United States 

(Falcone et al. 2010), primarily for determining natural streamflows relevant to aquatic 

ecosystems and for evaluating natural versus altered flow conditions. The resulting database, 

referred to as GAGES (Geospatial Attributes of Gages for Evaluating Streamflow), 

incorporates basin attributes for 9324 USGS streamflow gauges, and their upstream drainage 

basins, that have complete-year flow record from 1950-2009. These basin data include the 

percentage of basin area that is urban, agriculture, forest, open water and wetland, and 

impervious surface; historic and recent population density; soil types; dam storage; and 

freshwater withdrawals in the basins. Some 2061 gauges were identified as reference stations 

least affected by direct human activities. For a gauged basin to receive a reference 

designation, it had to meet three primary criteria: (1) There had to be less hydrologic 

disturbance in its watershed than at least 75 percent of all other gauged watersheds in its 



ecoregion.  Watershed hydrologic disturbance was quantified with an aggregate index that 

included geospatial measures of reservoir storage, dam locations and density, freshwater 

withdrawal, road density, and National Pollutant Discharge Elimination System (NPDES) 

discharges. The disturbance index was calculated for all gauged watersheds and ranked within 

each of nine major ecoregions.  Gauged sites whose watersheds were in the lowest quartile of 

the disturbance index were given priority consideration as potential reference quality.  (2) It 

was not identified as having "regulated" streamflows in the Remarks sections of the most 

recent USGS Annual Data Reports.  Some sites considered to have "minor" modifications 

were retained. (3) It passed a visual screen using satellite imagery (typically Google Earth), 

which scanned the entire watershed for the presence of human activities that suggested flow 

diversions, groundwater withdrawal, and other factors known to influence natural streamflows. 

 
In addition, the selection of reference sites was not limited to a specific attribute of the flow 

regime.  For example, human activities in a basin may have no net impact on mean annual 

flow but, nevertheless, influence the timing and duration of specific flow magnitudes.  Under 

such conditions, the site would be excluded.  The intent was to identify gauged sites with all 

attributes of the streamflow regime in natural or least-disturbed condition.  Also, for gauges 

with some amount of irrigated agriculture in the watershed, USGS determined whether the 

irrigation withdrawals were sufficient to alter streamflows by examining observed monthly flows 

(over the last 10 years of record) relative to monthly flows expected using a water-balance 

model.  If observed monthly flows during the irrigation season (May-September) were 

substantially less than the expectation of the water-balance model, the gauge site was 

excluded from consideration as reference. 

 
Of the 2061 stations receiving a reference designation, 1637 had at least 20 years of 

continuous record ending in 2009.  Given the close correspondence between HCDN and 

GAGES Reference criteria, with the latter being generally more stringent than those originally 

established for the HCDN, USGS decided in 2011 to use the 1637 Reference stations having 

20+ years of record as the updated HCDN.  Those stations are now designated as "climate 

sensitive" in the GAGES database.  In so doing, the USGS avoided potential conflicts arising 

from publishing competing reference quality station listings.   



 

Common Network Issues 

When comparing existing RHNs a series of issues were identified that are common to most 

existing networks.  Solutions to these common issues are perceived to be broadly beneficial. 

The common network issues include: (a) Adequacy of networks for change detection; (b) 

Access to data, metadata, and watershed information; (c) Harmonization within and between 

networks including policies, quality control, data formats, coding and transmission; (d) Data 

integration including both data from different networks [e.g. hydrologic, climatic] as well as 

multiple platform observations [e.g. ground-based and remote sensing]; (e) Generation of 

research and applications-oriented products; and (f) Lack of metadata on landuse and landuse 

change. 

Harvey and Grabs (2003) argue that data collection and management activities are typically 

undertaken at the national level, but there is a need for internationally-coordinated regional 

[spanning neighbouring countries] systems.  Smaller countries in particular benefit from 

supplemental information from these types of regional sources, especially neighbouring 

countries. Regional projects are driven by region-specific requirements for data and 

information. The river basin, rather than political boundaries, needs to be considered as the 

appropriate geographical unit for regional-scale hydrologic monitoring activities. The 

challenges common to most regions include inadequate monitoring networks; gaps in the 

records; a general decline in the number of stations; chronic under-funding; differences in 

processing and quality control; and differences in data policies. Political and technical 

challenges differ from region to region. Major problems in the poorer regions of the world 

include poor status or outright lack of monitoring networks and support infrastructure, 

especially in Africa, and data quality problems.  

One issue relevant to many countries and regions is whether similar sized catchments should 

be used for trend studies. Some researchers advocate selecting only those gauging stations 

with a drainage area within a defined size range to avoid unique responses being masked by 

larger catchment areas or for other reasons (Stahl et al. 2010, Woo et al. 2008). However, 

applying restrictions on the acceptable catchment size can result in a considerable reduction in 

the number of available gauging stations for an RHN. While standardizing based on catchment 



area is not always beneficial, it is clearly important that scale issues are addressed for trend 

studies, particularly those relevant to water management.  In many countries, RHN catchments 

are necessarily small, by virtue of the fact that small, headwater catchments are those least 

likely to be disturbed. RHN studies therefore contrast with many other trend studies carried out 

on large, disturbed basins (typically those held on the GRDC; e.g. Milly et al. 2005, Dai et al. 

2009).  Stahl et al. (2010) note differences between headwater catchments used in their study 

and results from other studies which use stations at the catchment outlet (e.g. the Danube, cf. 

Stahl et al. 2010 and Dai et al. 2009). The reason for this may be due to human disturbances, 

but it is also important to note that different hydrological processes operate across a range of 

scales (Blöschl and Sivapalan 1995) and climate change may cause differing responses at 

different time and space scales. Given that RHN stations in many countries will necessarily be 

small headwater catchments, it is important to also consider scalability of results; headwater 

catchments, while perhaps more sensitive to climatic variability, may not be representative of 

larger scales relevant for water management, so there is some argument for considering 

results from RHNs in the context of results from large catchment studies or using runoff from 

large regions, as carried out in the UK studies (Hannaford and Marsh 2006, Hannaford and 

Harvey 2010), and other studies which compare small, unregulated catchments with larger, but 

more disturbed, catchments; e.g. Lindström and Bergström 2004). 

 

 

Future Directions 

RHNs have made a major contribution to hydrological trend detection and interpretation over 

the last 15 years and have also served to emphasize the complexities in the association 

between climate change and the impacts on river flow regimes.  However, operational 

experience has demonstrated that issues remain to be addressed if RHNs, individually and 

collectively, are to effectively meet the strategic needs of policy makers. At the Quebec City 

workshop a group met to discuss where we presently are with the development of RHNs and 

to ask the question of “where do we need to be in 10 years?” The urgent need to quantify and 

understand hydrological change underpins the need for the designation and maintenance of 



RHNs. The results of those discussions are reported herein; discussions of each category 

follow the list of categories. In general terms:  

1. RHNs should clearly demonstrate "fitness for purpose". 

2. Users need to have access to tools and documentation to support proper use of these 

time series. Users should have better access to both the technical documentation of 

individual countries and WMO, but also to the collection of scientific literature that deals 

specifically with trend detection using national and international reference networks.  

3. More specific guidance on how to best use reference stations and networks should be 

commonly available and used. Guidance that is available is often too general and lacks 

applicability. 

4. Development and promotion of enhanced network review mechanisms and data 

validation/stewardship protocols for the time series associated with RHNs should be 

completed. 

5. The particular importance of long river flow series from non-RHN gauges in providing a 

broader temporal context within which to assess the trend evidence deriving from RHN 

analyses should be recognized. 

6. Hydrologists from a variety of countries should work together to develop a subset of the 

international networks that are representative of the hydrologic variation of the Earth and 

to develop a consistent way of analyzing and presenting them. 

7. A range of dissemination mechanisms should be exploited to ensure that the data and 

analytical outcomes of RHN programmes are accessible to all stakeholders. 

8. Monitoring and analysis communities need to work together. 

 

Reference Hydrologic Networks demonstrate "fitness for purpose" 

Harvey and Grabs (2003) suggest that the technical challenges related to collecting, managing 

and accessing global datasets – and ensuring proper quality control – can be met by 

employing current and emerging technology and standards, best practices and available 

infrastructure. Metadata are a very important component not only to describe the data, but to 



provide a useful contribution to the data quality assurance procedures (Harvey and Grabs 

2003). Steps need to be taken to support the credibility of data being collected in reference 

networks to ensure that users can be confident that the data are indeed suitable for the 

intended purposes (Whitfield 2012):  

• A clear statement of the reason the data were collected. Were the data collected with 

any thought of long-term requirements? 

• Proper documentation of the complete location and operation history. When did 

instruments, observing practice, locations, sampling frequency change during the 

collection of this record?  

• Proper documentation of changes in the data workup that have taken place during the 

collection of this record. 

• Access to support data: rating curves, meter calibrations, measurement validations and 

maintenance records sufficient to support confidence in the data. 

• Ability to “verify” observations in the record; perhaps by having access to stage 

observations and stage discharge relationships. 

• Ability to “verify” the record against process similar records, for example compare with 

similar records in the vicinity. 

• Documentation of watershed change, including landuse. 

• Creation of data management systems which are sufficient to protect the integrity of the 

data. 

• Creation of common interchange access format that supports sharing. Web services are 

becoming increasingly available to facilitate access to data from distributed and 

disparate sources. 

Stahl et al. (2010) suggest that the update and data collection require the help of many 

national or regional agencies responsible for collecting streamflow data in individual countries, 

as further described in Stahl et al. (2008) and Hannah et al. (2011). Their criteria were: 

• Homogeneous, quality controlled records of daily mean flow; 



• Suitability for low flow analysis, including no appreciable direct human influence on river 

flow during low flow (e.g. through abstractions, reservoir storage); 

• Small catchments with areas generally not exceeding 1000 km2 were the main focus; 

however, some slightly larger basins were included, where there was a significant 

justification for improving spatial coverage; 

• Time series should cover 40 years or longer and include recent data. 

 

Tools and documentation support proper use of RHN time series 

There is general agreement that users need better tools and documentation that supports 

assessment of integrity, homogeneity, and coherence of these time series: 

• Better access to support data. Software that links to changes in methods, station 

metadata, that clearly identifies possible non-homogeneities including common flags 

associated with these data (backwater, estimated, infilled). 

• Information from rating curves supporting assessments of uncertainty at all water levels. 

• Documentation of measurement technologies such as meter calibrations allowing for 

retrospective assessments of methodologies. 

• Development of methods for measurement validations including estimation methods 

and infilling methods. 

The clear intention here is to have information available that is sufficient to support confidence 

in the data, at present and in the future.  There is great potential for adopting the use of 

common diagnostic software.  

 

Guidance on how to best use reference stations and networks  

Users of reference network time series and tools need to know more about how to use these 

materials. It is important to provide guidance on how reference stations can/should be used in 

developing a broader study. There is a need for specific guidance on how reference stations 

can be used in comparison with other stations, such as how to build a hypothesis on results 



from analysis of RHN data, or how to compare with results from other non-RHN datasets to 

assess a climate signal in relation to other change signals. 

In some circumstances flows from pristine areas will not be available.  Alternatives that might 

be considered include a requirement that flows be naturalized. Because not all watersheds are 

‘pristine’ can we develop a method to describe ‘naturalness’?  Such an indicator might be used 

to weight assessments; perhaps weighing ‘pristine parkland’ with more weight than lands in 

other states of development. 

For some catchments, particularly where there is a predominant, and measurable, artificial 

influence on the natural flow regime, daily or monthly naturalized series can be of considerable 

strategic value.  The River Thames provides a revealing example: annual mean gauged flows 

have reduced considerably over the 128-yr record but (non-returning) abstractions from the 

Thames have increased by an order of magnitude since the 1880s and, once allowed for, the 

naturalised series exhibits a significant positive trend (Marsh and Harvey in press).   

Generally, the quality of reconstructions particularly of natural processes is difficult to achieve.  

A method to indicate the degree of naturalness, or the success of reconstruction, should be 

developed to allow better comparisons between various types of data series – pristine, near 

natural, agricultural etc. 

There should be a common interchange access format that supports sharing, or conversely 

assessment software needs to be able to access multiple sources.  The simplest route forward 

would be for each contributor to exchange data in a common format, which would support 

metadata and information, and this would allow each country to have tools to interact with their 

national data and international data without translation. 

 

Develop and promote enhanced network review mechanisms and data 

validation/stewardship protocols for the time series associated with RHNs 

There are currently few if any rigorous guidelines for network review and evaluations. Rigorous 

application of validation procedures and professional data stewardship and analysis are 

essential if the considerable investment in the networks is to be properly reflected in improved 

water management and policy frameworks (Marsh 2002).  In turn, this implies a continuing 



dialogue with stakeholders to ensure: priority strategic needs are being addressed; and 

relevant datasets, reports and scientific papers are widely disseminated.  

 

Recognize the particular importance of long river flow series from non-RHN gauges  

There is a consistent need for long records to support detection of change and for assessing 

the linkages between climate and streamflow. The long-term climate signal is complex and 

regionally contains not only the signal of anthropogenic climate change, but also many 

features of the climate signal including but not limited to NAO, PDO, and ENSO. Separation of 

these signals and their effects on hydrology depends upon the availability of long time series of 

observations.  There are long records (> 50 years) available for many catchments in North 

America with little direct human influence, but few in some developed parts of the world. It is 

important to maintain long records in these developed areas, even if they are directly 

influenced by human activity. While separation of the climate signal and the direct human 

signal is not always easy, these data are valuable. 

 

Hydrologists from a variety of countries should work together to develop a subset of 

the international networks that are representative of the hydrologic variation of the 

Earth and to develop a consistent way of analyzing and presenting them. 

 

Cihlar et al. (2000) suggest utilizing hydrologic observations that are particularly important for 

global change impact studies. This would include daily runoff series for a few hundred small 

natural catchments (~1000 km2 in size) distributed over the globe from a wide variety of 

climatic, topographic, and ecological regions, together with precipitation and other data 

permitting the study of hydrological processes in specific regions. Multiyear groundwater, 

surface water and water use time series would help characterize water availability in these 

catchments and surface water flux values would be computed to anticipate change in storage 

in natural reservoirs. While RHN data from similar sized catchments are needed for 

comparative studies, there is also a need to have a variety of size basins to address scaling 

issues. Because climate influences on streams occur at the landscape level, assembling a 



variety of case studies with different periods of data, with different methods, in different 

landscapes is neither simple nor does it provide the needed clarity.  

There is a need to use consistent data, analyses, and presentation of results to overcome the 

apparent confusion of the collected past studies from different regions that are not consistent. 

The suggestion is that we support a collaborative effort that routinely updates analyses of how 

the hydrology of catchments in the proposed international network respond to the climate 

system. We are seeking to best understand how these rivers respond to important regional 

climate signals and to separate effects of natural climate variability from climate trends related 

to increased greenhouse gases, to support correct attribution. We also seek to separate 

landscape and landuse signals from those of climate by comparing reference stations to non-

reference ones, recognizing the opportunity for interactions to exist between climate and 

landuse signals. 

 

Develop dissemination mechanisms to ensure that the data and analytical outcomes of 

RHN programmes are accessible to all stakeholders. 

One of the issues with RHN programs is that the data suitable for analysis and interpretation 

are not readily available.  Each country distributes data in a format that suits its needs.  While 

GRDC does distribute data that are shared with them, much of what might potentially be 

available is not in their databases (Table 1). There are several possible solutions to the current 

situation, but having a standard format for distributing the data and metadata would be a first 

step.  Many of the existing formats provide backward compatibility for each country, and 

continue formats that were more a product of efficient storage than ease of use.  Development 

of this format should also consider the existing initiatives for internet access such as WaterML 

2.0. These initiatives seek to standardize water information and help with the difficulty of 

exchanging or collating water information and data; they also offer the potential for exchanging 

surface water, groundwater and climate data more effectively.  Similarly, analysis and 

interpretation software that could be shared amongst researchers, and reading data from that 

common format, would greatly enhance the analysis of data on an international scope as much 

less time could be devoted to data acquisition and preparation and more time invested in 

analysis and interpretation. 



 

 

Summary 

We are suggesting an informal International reference hydrologic network that is 

representative of the hydrologic variation of the earth, seeking to have high quality, well 

documented data from similar sized natural catchments from a wide variety of climatic, 

topographic, and ecological regions. This would involve  the monitoring and analysis 

communities working together more closely and would allow scientists to get a global picture of 

climate related hydrologic changes, while respecting that water is a local issue for decision 

makers.  This larger scale can help identify ‘clusters’ of similar response to climate and then 

help us focus on regions to explain at that scale. This is expected to lead to a more organized 

‘drilling’ into the details. At the same time, many small countries depend on the global 

community for techniques, training and shared experience. One identified opportunity was to 

support the development of a specific global hydrologic reference network data set that could 

be used for assessments based on common data.  There is a clear need for a reference 

hydrologic dataset appropriate for global climate studies. Subseries of that dataset could be 

used for local reference; for example it would be useful to compare reference network series to 

non-reference ones to detect land use change. The dataset should contain catchments both a 

diversity and commonality of scales. Countries would be encouraged to contribute a limited 

number of stations with appropriate metadata, instead all of a nation’s data. We recognize that 

we need to look to the original sources where possible as the National authority is always most 

relevant. There is a need and an opportunity for one international agency to take on the role of 

contributing support and facilitation for the above. 
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Table 1. Attributes of the existing reference hydrologic networks from 22 countries. 

Country  Number of 
stations 

Climate 
specificity

Minimum record 
length reported 
to WMO/GRDC 

(Years) 

Data available 
at GRDC 

Comments Reference  

Australia  31 Yes >38  Daily 
All data  

Good quality recent records 
from Benchmark Sites 
(BMS) and “Wild River” (WR) 
stations 

 

Azerbaijan  14  10 Daily  
1 Station 

Data  for 1 station from 1978 
-1987  

 

Belarus  10  >30 No   

Brazil  238 Yes >23 Daily 
All data 

Recent data from identified 
stations 

 

Brunei  None   No No stations meeting criteria  

Canada RHBN 229 Yes (>30) 20 Daily 
150 Stations  

Good quality recent data 
from 150 of 229 RHBN 
stations 

Harvey et al. 

China  15  20 Daily 
All data 

Data only up to 2000 
submitted to GRDC 

 

Cyprus  4  >22 No No discharge data for 
identified stations submitted 
to GRDC 

 

Czech 
Republic 

 6  >40 Daily  
1 Station 

Recent data for 1 station   

Ecuador  6  >23 Daily 
1 Station 

Data for 1 station up to 2005  

Finland  12  >25 No No discharge data for 
identified stations submitted 
to GRDC 

 

France HYDRO 212   No Some data are Sauquet et al



reconstructed, no stations 
reported to GRDC 

2000 

Georgia  8  >30 Daily  
1 Station 

Data for 1 station up to 1987  

Japan      Reconstructed data,     no 
stations reported to GRDC 

 

Kenya  60  >26 Daily  
1 Station 

Data for 1 station up to 1980  

Kyrgyzstan  7   No No discharge data for 
identified stations submitted 
to GRDC 

 

Lithuania  7  >20 No No discharge data for 
identified stations submitted 
to GRDC 

 

Mauritius  2  >30 No No discharge data for 
identified stations submitted 
to GRDC 

 

Morocco  12  >30 Daily 
1 Station 

Data for 1 station up to 1987  

Pakistan  6  >25 Monthly 
1 Station 

Data for 1 station up to 1979  

Romania  23  >35 Daily 
4 Stations 

Recent data for 4 stations  

Slovakia  20  >70 Daily 
2 Stations 

Data for 2 stations up to 
2001 

 

Sweden  7 Yes >30 Daily 
7 Stations 

  



 

Switzerland  8   No No discharge data for 
identified stations submitted 
to GRDC 

 

Switzerland SRHN 231 (6)  >30  No reference to this network 
at GRDC 

 

Tajikistan  23   Daily 
4 Stations 
Monthly 
8 Stations 

Data for 12 stations up to 
1990 

 

Ukraine  3  >45 No No discharge data for 
identified stations submitted 
to GRDC 

 

United 
Kingdom 

 20   Daily 
16 Stations 

Recent data from identified 
stations 

 

United 
States 

HCDN 1703   Daily 
410 Stations 

Good quality recent data 
from 410 of 1703 HCDN 
stations 

 

Uzbekistan  6  >35 Monthly 
1 Station 

Data for 1 station up to 1995  

Western 
Samoa 

 2  >30 No No discharge data for 
identified stations submitted 
to GRDC 

 

        



Table 2. Network Monitoring Objectives 

Category Main objectives 
Reference Identify and interpret hydrological trends 

principally climate-driven 
 

Environmental Impacts Monitor heavily impacted catchments to 
establish the degree of disturbance  (and
monitor remedial measures)   
 

Regionalisation Underpin the development of regionalisat
techniques and modelling procedures 
 

Integrated Monitoring Provide a focus for the improved 
understanding of hydrological processes
from the sub-catchment to the basin scal
 

Transboundary  Monitor flow that cross between political 
jurisdictions [National, International] 
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