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Abstract: 

Second-generation anticoagulant rodenticides (SGARs) are widely used to control rodent pests 

but exposure and poisonings occur in non-target species, such as birds of prey.  Liver residues are 

often analyzed to detect exposure in birds found dead but their use to assess toxicity of SGARs is 

problematic. We analyzed published data on hepatic rodenticide residues and associated 

symptoms of anticoagulant poisoning from 270 birds of prey using logistic regression to estimate 

the probability of toxicosis associated with different liver SGAR residues.  We also evaluated 

exposure to SGARs on a national level in Canada by analyzing 196 livers from great horned owls 
(Bubo virginianus) and red-tailed hawks (Buteo jamaicensis) found dead at locations across the 

country.  Analysis of a broader sample of raptor species from Quebec also helped define the 

taxonomic breadth of contamination. Calculated probability curves suggest significant species 

differences in sensitivity to SGARs and significant likelihood of toxicosis below previously 

suggested concentrations of concern (<0.1 mg/kg).  Analysis of birds from Quebec showed that a 

broad range of raptor species are exposed to SGARs, indicating that generalized terrestrial food 

chains could be contaminated in the vicinity of the sampled areas. Of the two species for which 

we had samples from across Canada, great horned owls are exposed to SGARs to a greater extent 

than red-tailed hawks and liver residue levels were also higher. Using our probability estimates of 

effect, we estimate that a minimum of 11% of the sampled great horned owl population is at risk 

of being directly killed by SGARs.  This is the first time the potential mortality impact of SGARs 

on a raptor population has been estimated. 
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1 1. Introduction 
 

2 Introduced in the 1970s, second-generation anticoagulant rodenticides (SGARs) were 
 

3 developed to combat the reported development of rodent resistance to first-generation 
 

4 compounds (Buckle et al. 1994). These newer anticoagulant poisons differ from their 
 

5 first-generation counterparts in that they are more acutely toxic at lower doses (often 
 

6 allowing a lethal dose to be obtained in a single feeding), and are more persistent in 
 

7 vertebrate livers (Parmar et al. 1987, Stone et al. 1999, Newton et al. 1999, Erickson and 
 

8 Urban 2004). Greater acute toxicity increases the potential for primary poisoning 
 

9 amongst non-target species while the longer tissue half-lives of SGARs enhance the 
 

10 potential for bioaccumulation in non-target predators in particular, and so may increase 
 

11 the risk of secondary poisoning. Furthermore, rodents survive for several days after 
 

12 consuming a lethal dose of SGARs and often will continue feeding on the bait (Cox and 
 

13 Smith 1992). That increases the likelihood that the body burden in poisoned rodents may 
 

14 significantly exceed the LD50 or even LD100 dose, and poisoned animals may remain 
 

15 active and available for capture by predators for some period after ingestion of the 
 

16 rodenticide. Additionally, poisoned rodents exhibit an altered state of behaviour, such as 
 

17 spending more time in open areas in a lethargic state, and this may further predispose 
 

18 them to predation (Cox and Smith 1992). 
 

19 SGARs bind and inhibit vitamin K epoxide reductase and persist for at least six 
 

20 months in organs and tissues containing this enzyme such as the liver (Stone et al. 1999, 
 

21 Eason et al. 2002). In an attempt to monitor exposure in non-target wildlife, the presence 
 

22 of detectable SGAR residues as well as the magnitude of concentrations has been 
 

23 measured in the livers of some Canadian, American and European predatory birds and 
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24 scavengers (Albert et al. 2010, Newton et al. 1990, Shore et al. 1999, Shore et al. 2006). 
 

25 There was a common trend among those studies for most SGARs, namely brodifacoum, 
 

26 bromadiolone, difenacoum and difethialone being detected at an increasing frequency in 
 

27 numerous predators and scavengers. Species most commonly monitored in North 
 

28 America are great horned owls (Bubo virginianus) and red-tailed hawks (Buteo 
 

29 jamaicensis) (Albert et al. 2010, Erickson and Urban 2004). 
 

30 It is still uncertain what SGAR liver concentration is diagnostic of a potentially lethal 
 

31 dose and, indeed Erickson and Urban (2004) have questioned whether such a cause-effect 
 

32 relationship is appropriate. A sometimes cited ―toxicity threshold‖ is given as ―greater 
 

33 than 0.1 – 0.2 mg/kg wet weight‖ (Newton et al. 1998, Newton et al. 1999). This was, in 
 

34 fact, described as a ―potentially lethal range‖ and was derived for a single species, the 
 

35 barn owl (Tyto alba); it stems from two sets of observations (Shore et al. 2001). Firstly, 
 

36 barn owls diagnosed post-mortem as having died from rodenticides had liver 
 

37 concentrations > 0.1 mg/kg. Those owls exhibited classical toxicosis signs such as 
 

38 haemorrhaging from organs such as the heart, lungs, liver, brain and/or subcutaneous 
 

39 areas (Newton et al. 1998). Secondly, owls that were experimentally poisoned had liver 
 

40 residues in the range of 0.2 – 1.72 mg/kg (Newton et al. 1999). However, it is uncertain 
 

41 whether these barn owl criteria would apply to other species.  Liver residues associated 
 

42 with SGAR poisonings in various species typically range over two orders of magnitude 
 

43 and were reported to be as low as 0.01 mg/kg wet wt in one great horned owl that was 
 

44 examined (Stone et al. 1999).  Thus, liver SGAR concentrations associated with toxicity 
 

45 vary markedly among both individuals and species.  This suggests a probabilistic 
 

46 approach; which we adopt to review the evidence pertaining to how liver residues are 
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47 related to toxicity.  Our principal objectives are: i) to determine SGAR liver 
 

48 concentrations that may be associated with mortality in birds (ie- to quantify the ―toxicity 
 

49 threshold‖) and ii) using the threshold values, assess the extent and severity of exposure 
 

50 in Canadian birds of prey. 

 
51 

 

52 2. Methods 
 

53 2.1. Toxicity Threshold 
 

54 2.1.1. Literature Search 
 

55 Recently published (~ last 10 years) peer-reviewed publications as well as the United 
 

56 States Environmental Protection Agency (EPA)‘s Ecological Incident Information 
 

57 System (EIIS) were surveyed in order to locate liver residue data sets for birds of prey. 
 

58 The EIIS is the EPA‘s database managing information on incidents linked to the exposure 
 

59 of non target plants and animals to pesticides. It is currently managed by the Office of 
 

60 Pesticide Programs (Mastrota 2007). Data were retained for our assessment if they met a 
 

61 set of pre-determined conditions. These conditions included: 
 

62 i) SGAR detection limits in liver were under 0.02 mg/kg wet wt; 
 

63 ii) post-mortem evaluations were conducted prior to liver extraction and analysis; 
 

64 pathophysiological signs of rodenticide poisoning were included. 
 

65 iii) post-mortem evaluations were conducted by a reputable professional such as a 
 

66 doctor of veterinary medicine (DVM); and 
 

67 iv) adequate sample sizes were available (n>15) for any given species (in order to 
 

68 have greater statistical power). 
 

69 2.1.2. Data Analysis 



5  

70 Raptor necropsies with attending SGAR liver analyses were collected and compiled 
 

71 in database software, and each case was given a binary code as positive (1) or negative 
 

72 (0) for pathophysiological signs of poisoning. A positive coding meant that, after a 
 

73 detailed post-mortem evaluation, an anticoagulant was diagnosed as being the cause of 
 

74 death or a significant contributory factor (ie- when necropsies showed hemorrhage or 
 

75 anemia in the absence of traumatic injury or infectious or parasitic diseases and an 
 

76 anticoagulant residue was detected in the liver). A negative coding represented cases 
 

77 where the cause of death was deemed to be natural or accidental (for example incidental 
 

78 take, hunting, motor vehicle collisions, starvation). 
 

79 The binary dataset was imported into SAS/STAT (version 9.2 TS2M0). Residue 
 

80 concentrations of all SGAR compounds were summed for the logistic regression. 
 

81 Concentrations were log transformed to meet the assumption of normality and re-tested. 
 

82 The PROC LOGISTIC macro was invoked to determine how liver residues affected 
 

83 presence or absence of poisoning symptoms. An effects plot was generated to illustrate 
 

84 the relationship and equations were built for every species with sufficient data (n≥15). 
 

85 Using these equations, liver residue levels (in mg/kg wet weight (ww)) were determined 
 

86 for probabilities of 5%, 10%, 15% and 20% of exhibiting pathologies consistent with 
 

87 rodenticides exposure. Species comparisons were completed using analysis of variance 
 

88 (ANOVA) in conjunction with Tukey‘s Studentized Range test. Because all birds were 
 

89 found dead or moribund, there was a logical inference that those pathologies 
 

90 (haemorrhaging of the heart, lungs, liver, brain and/or subcutaneous areas) were 
 

91 responsible for, or strongly contributed to, the mortality of the individual. 
 

92 2.2. Exposure extent in Canada 
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93 2.2.1. Sample Collection 
 

94 To obtain a cross-Canada survey of residue levels, liver samples of birds were 
 

95 selected, irrespective of the cause of death, from British Columbia, the prairie provinces, 
 

96 Ontario and Quebec. The birds were collected near agricultural and urban areas of the 
 

97 country where SGAR use was thought to be common. They were typically submitted to 
 

98 rehabilitation or veterinary centres either dead or in a moribund state. Initial diagnosis 
 

99 frequently involved car strike or other obvious ‗mishap‘. They were not chosen because 
 

100 they showed signs of anticoagulant poisoning, but rather reflect the population of 
 

101 reported birds of prey dying from a multitude of causes. The subsequent liver samples 
 

102 were harvested initially as part of previous investigations of exposure to heavy metals or 
 

103 other toxicants, and then rodenticides residues were determined in later years. Three main 
 

104 collections were sampled. These included an Ontario/prairie sample of red-tailed hawks 
 

105 and great-horned owls, two common species known to scavenge; a broader phylogenetic 
 

106 collection from Quebec and a collection of three owl species from British Columbia (barn 
 

107 owl, barred owl [Strix varia] and great-horned owl). Those owl species are less mobile 
 

108 than most of the hawk species and were chosen to help identify geographical patterns of 
 

109 contamination and hence, potential sources of rodenticides residues. Results from the 
 

110 latter have already been reported (Albert et al. 2010). 
 

111 2.2.2. Chemical Analysis 
 

112 Chemical analysis was conducted at the National Wildlife Research Center in Ottawa, 
 

113 Ontario, Canada. Methods were similar to those reported by Albert et al. (2010). 50 mg of 
 

114 liver was ground in a mortar with about 5 g anhydrous sodium sulphate (Fisher no. S420- 
 

115 3). The resulting mixture was transferred to an amber glass septum bottle and acetonitrile 
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116 (EMD Omnisolv, AX0142-1, HPLC grade; 1 x 7 mL and 2 x 5 mL) was used for 
 

117 extraction. The extract was shaken for 2 minutes by hand and 15 minutes mechanically. 
 

118 After centrifuging for 15 minutes at 1000 rpm, the supernatant was removed and 
 

119 transferred into a 40 mL conical tube. The supernatant of the two subsequent extractions 
 

120 were combined with the first supernatant. The total product was evaporated to 10 mL 
 

121 under a stream of nitrogen in a water bath kept at 40°C. 
 

122 In order to clean up liver extract, a 2 mL portion was transferred into a test tube and 
 

123 heated to dryness. The sample was reconstituted in acetonitrile and cleaned by solid- 
 

124 phase extraction. After the introduction of the sample into the SPE cartridge, the tube 
 

125 containing the sample was rinsed with acetonitrile and added to the SPE cartridge 
 

126 solution. The eluate was then evaporated to dryness and reconstituted in MeOH and 
 

127 filtered through an Acrodisk® syringe filter with a polyvinylidene fluoride (PVDF) 
 

128 membrane. A volume of 10 μL of the diluted filtered extract was analyzed by liquid 
 

129 chromatography-mass spectrometry (LC-MSMS). Some of the owl samples analysed 
 

130 (mainly from British Columbia) were not cleaned using an SPE cartridge. However, 
 

131 limits of detection were calculated for the procedure with and without an SPE sample 
 

132 cleaning phase and were found to be identical. For this reason, both SPE-cleaned data and 
 

133 non-SPE data were pooled for our analysis. 
 

134 Brodifacoum, bromadiolone and difethialone were detected with a triple quadrupole 
 

135 mass Quatro-Ultima (Waters) with negative electrospray ionization (ESI) in multiple 
 

136 reaction monitoring scanning mode (MRM). LC-MSMS, MRM parameters and triple 
 

137 quadrupole settings were identical as the ones reported in Albert et al. 2010. 
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138 The method‘s detection limit was 0.005 mg/kg for difethialone and 0.002 mg/kg for 
 

139 brodifacoum and bromadiolone. The standards were all analytical grade (>98% purity). A 
 

140 
 
141 

calibration curve was built with five levels of concentrations ranging from 2.5 to 80 pg 
 

with an r
2
>0.99. Samples were diluted in order to fit within the limits of the calibration 

 

142 curve. Recoveries at low and high level were >70% for all compounds. Known amounts 
 

143 of coumatetralyl (5 pg/lL; transition 291.00>140.90) and flocoumafen (1 pg/lL; transition 
 

144 541.40>382.00) were added to each sample prior to the injection allowing ion 
 

145 suppression monitoring. Methanol was injected between each sample to monitor any 
 

146 possible contamination. 
 

147 2.2.3. Statistical Analysis 
 

148 Since great horned owls and red-tailed hawks represented the two species consistently 
 

149 found across Canada (no red-tailed hawk samples were submitted from British Columbia, 
 

150 however) and for which we had a large enough sample size to warrant a meaningful 
 

151 analysis, cumulative frequency distribution graphs were constructed for these species. 
 

152 The graphs were generated through a bootstrapping procedure (501 samples) using 
 

153 BurrliOZ (version 1.0.14, © Commonwealth Scientific and Industrial Research 
 

154 Organisation, Australia 2000). Using the values identified in our toxicity threshold 
 

155 analysis, it was possible to identify the percentage of the sampled population exposed to 
 

156 SGARs belonging to a certain risk category (5%, 10%, 15% and 20% risk of becoming 
 

157 
 
158 

symptomatic). 

 

159 3. Results 
 

160 3.1. Toxicity Threshold 
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161 Five sources of data matched our criteria and were used in the analysis. Data 
 

162 published by Newton et al. (1990, 1998, 2000; n=45), Albert et al. (2010; n=164) as well 
 

163 as data from the Ecological Incident Information System (EIIS; n=61). All but four of the 
 

164 EIIS cases were submitted by the State of New York and several of the values were 
 

165 published in Stone et al. (1999, 2003). Barn owl samples were collected from localized 
 

166 areas across Canada and the United Kingdom (UK) with a few individuals from the 
 

167 United States (USA). Barred owl samples were mostly collected in Canada with only one 
 

168 from the USA while red-tailed hawk samples were obtained from the USA only. Great 
 

169 horned owl samples were collected from across both Canada and the USA. Samples were 
 

170 often collected from relatively developed areas or areas where the public was likely to 
 

171 report and submit carcasses. 
 

172 There were significant differences between species in liver SGAR concentrations 
 

173 (F(4,535) =12.68, p<0.0001). Post hoc-tests (Tukey‘s Studentized Range test, α = 0.05) 
 

174 revealed that, on average, red-tailed hawks (n=32) were the species with the highest liver 
 

175 concentrations of SGARs (Figure 1). All three owl species (great horned owl [n=86], 
 

176 barred owl [n=26] and barn owl [n=126]) had SGAR liver residues that were comparable. 
 

177 Logistic regression plots were calculated to predict the probability of a bird being 
 

178 symptomatic as a function of SGAR liver residues (Figure 2). This was done for each 
 

179 species separately and for all species combined (total of 270 individuals). Only the 
 

180 predicted probability curve for the great horned owl (GHOW) was located inside the 95% 
 

181 confidence limits for the pooled data and the estimated probability of becoming 
 

182 symptomatic differed significantly between species (F(1,4) = 82.9, p<0.0001). The curve 
 

183 for the red-tailed hawk curve differed from those of the three owl species and the curves 
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184 for the great horned owl and the barn owl also differed from each other (Tukey‘s 
 

185 Studentized Range post-hoc test, P<0.05). 
 

186 Using the probability curves, we calculated the predicted SGAR liver residue levels 
 

187 for different probability risk thresholds for different species (Table 1), although this was 
 

188 not possible for red-tailed hawks, as the data for this species could not be significantly 
 

189 modeled by a logistic regression.  The majority of the calculated values are under the 
 

190 >0.1-0.2 mg/kg threshold suggested by Newton et al. (1999) and all are below 0.2 mg/kg. 
 

191 If the lower range of 0.1 mg/kg and 0.2 mg/kg from the potentially lethal range suggested 
 

192 for barn owls is applied to the barn owl probability curve, they correspond to toxicity 
 

193 probabilities of 11% and 22%, respectively. The higher 0.7 mg/kg level proposed by the 
 

194 Rodenticide Registrants Task Force (Erickson and Urban 2004) corresponds to a 54% 
 

195 probability of effect in barn owls. 
 

196 Although the differences among the species curves indicate that probabilities of 
 

197 toxicity should be considered on a species-by-species basis, that is not possible where 
 

198 data for species are lacking.  In such cases, it may be necessary to estimate toxicity 
 

199 probabilities on the basis of pooled data for other species.  The probability curve for the 
 

200 pooled data in our study predicts that one in 20 birds with detectable residues would 
 

201 become symptomatic with SGAR liver residues of 0.02 mg/kg and one in five when 
 

202 residue levels reach 0.08mg/kg. 
 

203 3.2. The extent of SGAR exposure in Canada 
 

204 Of the two  species sampled over a relatively broad area of Canada (great horned owl, 
 

205 red-tailed hawk), great horned owls were most consistently exposed to SGARs (Figure 
 

206 3). Roughly 65% of great horned owls across Canada had detectable levels of SGARs in 
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207 their liver (detection limit of 0.005 mg/kg ww). Frequency of exposure in red-tailed 
 

208 hawks seemed to increase eastward from the Prairie Provinces to Ontario and Quebec. 
 

209 The frequency of exposed birds was the lowest (~20%) in the Prairie and Northern 
 

210 provinces (and territories), increased to ~70% in Ontario and reached the highest in 
 

211 Quebec (~90% of red-tailed hawks found with detectable SGAR liver residues), although 
 

212 the sample size in Quebec was smaller than in the other regions. However, as sampling 
 

213 was fortuitous and sampling effort was not uniform, these spatial comparisons must be 
 

214 considered preliminary. 
 

215 Great horned owls and red-tailed hawks were exposed to a number of SGARs (Figure 
 

216 4). The majority of great-horned owls had multiple compounds in the liver; it was the 
 

217 only species with detectable levels of all three registered compounds. Sixty percent of 
 

218 red-tailed hawks had detectable liver residues of one or two compounds (Figure 4). 
 

219 Although the proportion of great horned owls with detectable residues was greater than 
 

220 for red-tailed hawks, this difference was not significant when data were compared for 
 

221 those provinces from which carcasses of both species were collected  (Prairie Provinces, 
 

222 Ontario and Quebec; (paired t-test, t(2)= - 0.78, p = 0.26; Figure 4).  Brodifacoum and 
 

223 bromadiolone were both detected in great horned owls and red-tailed hawks. 
 

224 Difethialone was only ever detected in great horned owls (Table 2) but has only been 
 

225 registered in Canada relatively recently. 
 

226 When the liver SGAR concentrations in great horned owls measured in the present 
 

227 study were plotted as a cumulative frequency graph (Figure 5; birds with detectable 
 

228 residues only), it was apparent that approximately 25% had liver SGARs that exceeded 
 

229 the 20% probability level for effect (0.07mg/kg; Table 1).  The lack of a probability curve 
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230 for red-tailed hawks precludes making a similar calculation for that species, but it is 
 

231 evident that liver residue levels were much lower than for great-horned owls (Figure 5 
 

232 and 6). For-example, 50% of great horned owls with detectable residues had liver 
 

233 concentrations greater than 0.05 mg/kg ww compared with only 10% of red-tailed hawks. 
 

234 Comparison of liver concentrations in the two species in which birds were matched by 
 

235 province confirmed that liver residues were significantly higher in the owls than in the 
 

236 hawks (paired t-test; t(2)= - 4.0, p=0.03).  This finding is in contrast to the previously 
 

237 published literature (Figure 1) where liver residues were higher in red-tailed hawks than 
 

238 in great-horned owls. 
 

239 Of the small number of individuals from 13 other species analyzed from Quebec, 
 

240 eight of those had at least one individual with detectable liver SGAR residues (Figure 7). 
 

241 That indicates that a wide breadth of species is probably also exposed to these 
 

242 
 
243 

compounds elsewhere in Canada. 

 

244 4. Discussion 
 

245 4.1. Toxicity Threshold 
 

246 Critical SGAR liver concentrations associated with adverse effects and/or mortality 
 

247 have not been defined for most raptor species (Walker et al. 2008a), and establishing liver 
 

248 ―toxicity thresholds‖ for SGARs is problematic (Stone et al. 2003).  This is partly 
 

249 because there are a number of factors that contribute uncertainty. For instance, the limit 
 

250 of quantification used to measure the liver SGAR residues can vary widely with the 
 

251 analytical method.  That can lead to underestimates of the extent of contamination but, 
 

252 conversely, inflation of residue magnitude if residues which were detected but were 
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253 below the level of quantification using older analytical methodology were assigned an 
 

254 inflated limit value (Taylor et al. 2009). Species also vary markedly in their sensitivity to 
 

255 SGARs.  This is known for laboratory mammals (World Health Organisation 1995) but 
 

256 almost nothing is known about the relative sensitivity of different avian species (Walker 
 

257 et al. 2008a).  Our risk probability curves strongly suggest significant differences exist 
 

258 among raptor species. 
 

259 To date, the only residue toxicity threshold for SGARs in raptors that has been 
 

260 suggested is the >0.1-0.2 mg/kg ―potentially lethal range‖ for barn owls (Newton et al. 
 

261 1998, 1999).  At best, that provides a range of concern for potential toxicity, and gives no 
 

262 indication of likelihood of effects. The approach described in the current study offers a 
 

263 major advance in our ability to assess risk from SGAR residues in that it proposes 
 

264 quantitative toxicity thresholds for different probability levels of dying from SGAR 
 

265 intoxication for three species, including the barn owl.  If sufficient data were available, it 
 

266 should be possible to extend this approach to other species.  That, in turn, would help to 
 

267 identify raptor species that may be more sensitive to SGAR toxicity. Overall, on the basis 
 

268 of the probability curves defined so far, it would seem that the >0.1-0.2 mg/kg level for 
 

269 barn owls already carries considerable risk of acute intoxication (> 10-20% of barn owls 
 

270 with this residue being likely to suffer mortality).  Clearly, the probability of acute 
 

271 poisoning associated with the 0.7 mg/kg residue level proposed by the Rodenticide 
 

272 Registrants Task Force (Erickson and Urban 2004) is worse still. 
 

273 The probabilistic methods described here are, as with all predictive methods, subject 
 

274 to biases and uncertainties.  Of these, perhaps two of the most important are likely to be 
 

275 underestimation of non-lethal residues, because birds characterised as ―zeros‖ in the 
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276 probabilistic plot may have metabolised some of their non-lethal SGAR residues before 
 

277 dying [from non-SGAR related causes], and over-estimation of residues associated with 
 

278 mortality because birds ingest more than a lethal dose before they die; animals typically 
 

279 die some 5-7 days after ingestion of a lethal dose (Meehan 1984).  Both biases would 
 

280 have the effect of flattening the probability curve. 
 

281 4.2. Exposure extent in Canada 
 

282 4.2.1. Spatial extent 
 

283 Stone et al. (2003) stated that, at the time, SGARs appeared to be present in the 
 

284 majority of great horned owls and in roughly half of the red-tailed hawks from the 
 

285 sampled areas of the State of New York. That conclusion can be directly applied to our 
 

286 situation in Canada. Furthermore, a substantial fraction of a number of other raptors in 
 

287 Quebec (from the western half of the province including areas surrounding Gatineau, 
 

288 Montreal, Sherbrooke, Quebec and as far north as Obedjiwan) were also exposed to 
 

289 SGARs (43% – or 13 of 30 birds tested), supporting the notion that other avian species 
 

290 are also being impacted by SGAR use.  This wider exposure in Quebec suggests a broad 
 

291 contamination of terrestrial food chains as Accipiters, such as the Cooper‘s hawk, as well 
 

292 as other species such as the merlin and the American kestrel, feed predominantly on small 
 

293 birds and occasionally on insects (Ehrlich et al. 1988). Small birds, if the source of 
 

294 rodenticides, are most likely being exposed to SGARs from insects or other invertebrates, 
 

295 and possibly through direct uptake of grain-based baits. 
 

296 In our study, great horned owls were consistently exposed to SGARs across the 
 

297 country.  In apparent contrast, their daytime ecological counterpart, the red-tailed hawk, 
 

298 showed an increasing frequency of exposure eastward from the Prairie Provinces. This 
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299 difference could be explained by the lower dietary diversity of owls than hawks.  Marti 
 

300 and Kochert (1995) showed that, on a finer scale, food-niche breadth became narrower 
 

301 along an eastward transect from the west coast of North America. This may reflect 
 

302 greater diversity of available prey in the west that could permit local populations of those 
 

303 two raptors to increase their diet segregation in western regions (Marti and Kochert 
 

304 1995). Houston et al. (1998) lists the main prey of great horned owls as including rabbits 
 

305 and hares, coots and other waterfowl and mice.  While snowshoe hares (Lepus 
 

306 americanus), black-tailed jackrabbits (Lepus californicus), and ground squirrels 
 

307 (Spermophilus spp.) dominate the hawk‘s diet in western and northern parts of North 
 

308 America (Preston and Beane 2009). The bulk of their diet in eastern and midwestern 
 

309 North America includes voles (Microtus), mice (Peromyscus spp., Reithrodontomys spp., 
 

310 Mus musculus), rats (Sigmodon hispidus, Oryzomys palustris), and cottontails (Sylvilagus 
 

311 spp.) (Preston and Beane, 2009). Thus, it may be that in eastern areas that are more 
 

312 agricultural and urban (and subject to a higher degree of SGAR use), red-tailed hawks are 
 

313 exposed more frequently to SGARs through their increased feeding on rodents and 
 

314 reduced predation on other prey. 
 

315 To obtain a more reliable estimate on actual exposure in Canada, we examined the 
 

316 livers of birds found dead from all causes. Our data indicate that, despite a smaller human 
 

317 population and the harsher climate in Canada (albeit some south-western regions of the 
 

318 country are characterised by milder weather), both of which should limit the need for 
 

319 rodenticides, the scale of exposure reported in our study are comparable to those in 
 

320 Europe. In the French Department of Loire Atlantique, 73% of a sample consisting of 
 

321 common kestrels (Falco tinnunculus), common buzzards (Buteo buteo), barn owls and 
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322 tawny owls (Strix aluco) had detectable SGAR liver residues (Lambert et al. 2007). In the 
 

323 UK, between 40% and 74% of barn owls, kestrels, and avian scavengers such as buzzards 
 

324 and red kites (Milvus milvus) found dead from various causes had detectable liver SGAR 
 

325 residues (Newton et al. 1999; Shore et al., 1999, 2006; Walker 2008b).  However, it 
 

326 should be noted that the sampled areas of Canada were those with higher population 
 

327 densities and where landscape features are not greatly dissimilar from Europe. That may 
 

328 at least in part account for the apparent similarity in the frequency of contamination. 
 

329 The widespread exposure in Canada in part most likely reflects the increase in sales 
 

330 and use of SGARs in the last few decades (Albert et al. 2010), and the use of persistent 
 

331 compounds that remain detectable in the liver long after the exposure event (Laas et al. 
 

332 1985).  However, it is also clear from our data that multiple exposures, as detected by the 
 

333 presence of multiple compounds in the liver, are common.  Although SGARs cannot be 
 

334 used legally on crops or orchards in Canada and are labelled for ‗indoor uses‘ only, 
 

335 ‗indoor‘ is defined to include use of baits outside farms and food establishments.  This is 
 

336 likely to increase the exposure of non-target organisms.  SGARs in Canada are currently 
 

337 labelled for domestic use although this is likely to change soon.  Proposed regulatory 
 

338 actions relating to exposure risks for wildlife includes (amongst others), prohibiting use 
 

339 of SGAR compounds in residential settings or outdoor areas where wildlife may be 
 

340 exposed. In the case of commercial applications, bait stations would be required where 
 

341 wildlife could be exposed. Furthermore, labels of commercial class products would be 
 

342 amended to state that those products could be used only by certified operators, farmers 
 

343 and persons authorized in government-approved pest control programs (Pest Management 
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344 Regulatory Agency 2009). Those risk mitigation measures should have an overall 
 

345 positive impact on reducing unnecessary exposure risks to wildlife. 
 

346 Regarding the impact of SGARs, we must be cautious in extrapolating from our data 
 

347 to predict likely mortality. However, if the probability of mortality is applied to each 
 

348 residue value in our dataset for great horned owls, this equates to an estimated predicted 
 

349 mortality of 11% (calculated by multiplying the probability of being exposed to SGARs 
 

350 [65% in GHOW] by the mean probability of exhibiting signs of intoxication [17% in 
 

351 GHOW]). This is the first time that the scale of potential mortality from SGARs has been 
 

352 estimated for any wild raptor population.  That estimate may well be too low, as some 
 

353 proportion of poisoned birds likely die out of sight (Shore et al. 2005) and so be under- 
 

354 represented in our sample. Furthermore, our estimates of the scale of mortality do not 
 

355 account for any indirect effects that SGARs may have. Sub-lethal exposures may 
 

356 indirectly increase mortality associated with natural or accidental events. For instance, 
 

357 SGARs may hinder the recovery of birds from non-fatal collisions or accidents.  They 
 

358 may also impair hunting ability through behavioural changes such as lethargy, thus 
 

359 increasing the probability of starvation. Intoxication with rodenticides has been shown to 
 

360 alter behaviour in rodents (Cox and Smith 1992) but there is no evidence to date of 
 

361 indirect effects in free-ranging raptors (Shore et al. 2005). 
 

362 The lack of a probability plot for red-tailed hawks means that a comparable estimate 
 

363 for SGAR-induced mortality in Canada cannot be made for this species.  The available 
 

364 data suggest that red-tailed hawks may be more sensitive to SGARs than great horned 
 

365 owls (Figure 2) but red-tailed hawks generally had lower liver SGAR concentrations in 
 

366 Canada, and, it is notable that in New York, great horned owls are poisoned more 
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367 frequently than red-tailed hawks (Stone et al. 1999, 2003).  Additional studies and 
 

368 monitoring of red-tailed hawk SGAR residues would strengthen our ability to estimate 
 

369 the risk of toxicosis following exposure to SGARs. 
 

370 4.2.2. Future directions 
 

371 Most studies that investigate exposure of non-target species to SGARs have focused 
 

372 on the uptake of poisoned rodents by various predators (Newton et al.1990, 1999; Berny 
 

373 et al.1997; McDonald et al.1998; Howald et al. 1999; Shore et al. 1999, 2003). The 
 

374 finding that falcons and accipiters were also exposed in Quebec suggests that terrestrial 
 

375 food chains are broadly contaminated by SGARs despite their very restricted use. 
 

376 Invertebrates represent another route of exposure, especially in insectivorous avian 
 

377 species (Dowding et al. 2006). Some potential routes of exposure to aerial insectivores 
 

378 include the consumption of invertebrates that previously fed on rodent faeces or carcasses 
 

379 and even the consumption of ground-dwelling earthworms and beetles that ingested 
 

380 residues or actual rodent bait (Spurr and Drew 1999; Dunlevy et al. 2000). Clearly, given 
 

381 the fact that many ecosystems contain a larger proportion of insectivorous vertebrates 
 

382 relative to higher trophic predators, exposure could even be greater in those taxa 
 

383 (Dowding et al. 2010). Developing probability curves or even metabolism studies for a 
 

384 wider range of species would provide us with insight into the relative sensitivities and 
 

385 risks to other species (Watanabe et al 2010). Finally, researching further indirect effects 
 

386 of SGARs on survival would refine current risk assessments of direct and indirect 
 

387 mortalities in wildlife. 
 

388 4.3. Conclusion 
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389 Our results continue to support recommendations that persistent SGARs such as 
 

390 brodifacoum, bromadiolone and difethialone should be used with caution (or not at all in 
 

391 some circumstances) given that it appears difficult to eliminate the risk of exposure to 
 

392 non-target wildlife. The results presented will hopefully aid policy-makers in refining 
 

393 risk-assessments of SGARs on non-target wildlife. 
 

394 Our results can also help regulatory agencies worldwide provide guidance on both 
 

395 commercial and residential use of SGARs and enforce appropriate risk mitigation as 
 

396 needed.  In this context, the extent of non-target exposure to SGARs may not always 
 

397 depend on the amount of bait used, but also on the way it is used (Shore et al. 2006). 
 

398 Focusing on improving application methods, such as baiting in areas of high rat activity 
 

399 only, conducting periodic and frequent searches for dead or dying rodents, enclosing the 
 

400 bait in a fashion that reduces invertebrate uptake may help reduce exposure of SGARs to 
 

401 predatory birds and other non-target species. Whether or not rodenticide resistance is 
 

402 common, an Integrated Pest Management (IPM) approach, that seeks to combine 
 

403 mechanical, biological and chemical controls, should be favoured as opposed to relying 
 

404 
 
405 

 
406 

 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 

on a purely chemical mode of control. 
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Figure captions: 
 
Figure 1:  Published liver SGAR residues (combined concentrations of bromadiolone, 

brodifacoum and difethialone) in barred owl (BAOW), barn owl (BNOW), great horned 

owl (GHOW) and red-tailed hawk (RTHA).  Total number of birds = 270 and do not 

include birds with non-detected residues. Diamond in the center of the box represents 

average, line is the median, box is the upper and lower quartiles and the whiskers are the 

standard deviation. Sources of the data are:  Newton et al. 1990, 1998, 2000; Stone et al. 

1999, 2003; Albert et al. 2010; EIIS 2010 download. 

 
Figure 2: Effect plot of the probability of becoming symptomatic (0,1) as a function of 

log10 [mg/kg]. ALL represents pooled data (n=270), BAOW represents barred owls 

(n=26), BNOW represents barn owls (n=126), GHOW represents great horned owls 
(n=86) and RTHA represents red-tailed hawks (n=32). Shading represents 95% 

confidence limits for ALL birds. Curves were drawn using the formula y(probability)= 

1/(1+exp(-(int + b*x)) where int is the intercept and b is the parameter estimate for X 

(concentration). 

 
Figure 3: Percentage of great horned owls (GHOW) and red-tailed hawks (RTHA) 

across Canada sampled in our study that had detectable (≥ 0.005 mg/kg ww) liver SGAR 

residues. No RTHA samples were collected from PYR. PYR stands for the Pacific and 

Yukon region of Canada and PNR is the Prairie and Northern Region. 

 
Figure 4:  Percentage of great horned owls (GHOW) and red-tailed hawks (RTHA) with 

0, 1, 2 and 3 different SGARs detected in the liver. Tested compounds were brodifacoum, 

bromadiolone and difethialone. 

 
Figure 5: Cumulative frequency graph for liver SGAR residues in 79 great horned owls. 

Red line represents the 20% probability level for effect (0.07 mg/kg; Table 1). 

 
Figure 6: Cumulative frequency graph for liver SGAR residues in 42 red-tailed hawks. 

 
Figure 7: Numbers of birds of prey from Québec that contained detectable and non- 

detectable liver SGAR residues (13/30 samples tested positive or 43%). 
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Probability BAOW 
n=26 

0=22 

1=4 

p=0.008 

BNOW 
n=126 

0=114 

1=12 

p=<0.0001 

GHOW 
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0=62 

1=24 

p=<0.0001 

RTHA 
n=32 
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p=0.37 

ALL 
n=270 

0=201 

1=69 

p=<0.000 

0.05 0.06 0.05 0.02 --- 0.02 
0.10 0.09 0.09 0.03 --- 0.04 

0.15 0.13 0.13 0.05 --- 0.06 

0.20 0.16 0.18 0.07 --- 0.08 
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Table 1: Toxicity threshold values (mg/kg ww) for 5%, 10%, 15% and 20% probability 

risk levels. For-example, in barred owls (BAOW), an owl with 0.06mg/kg SGAR 

residues in the liver would have a 5% chance of showing signs of toxicosis. Sample sizes 

(n) as well as the number of positive (1) and negative (0) cases are presented. P value 

representing binary logit model fit is also showed. BNOW stands for barn owl, GHOW is 

the great horned owl, RTHA the red-tailed hawk and ALL represents the pooled data for 

all birds. 
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Table 2: Geometric mean (range) liver SGAR concentrations [mg/kg ww] for great 

horned owls (GHOW) and red-tailed hawks (RTHA) from the Pacific and Yukon region 

of Canada (PYR), the prairie and northern region (PNR), Ontario and Quebec. 
 

 
PYR PNR Ontario Quebec Pooled – all 

provinces 

 GHOW RTHA GHOW RTHA GHOW RTHA GHOW RTHA GHOW RTHA 

Brodifacoum 0.04 N/A 0.008 0.004 0.007 0.006 0.013 0.01 0.017 0.006 
 (0.003-  (0.001- (0.001- (0.001- (0.001- (0.003- (0.008- (0.001- (0.001- 

 0.61)  0.016) 0.02) 0.05) 0.17) 0.08) 0.04) 0.61) 0.17) 

 n=28  n=6 n=3 n=17 n=18 n=7 n=5 n=58 n=26 
 

Bromadiolone 0.03 N/A 0.007 0.004 0.01 0.004 0.01 0.003 0.018 0.004 

 (0.005-  (0.001- (0.001- (0.001- (0.001- (0.003- (0.002- (0.001- (0.001- 

 0.57)  0.07) 0.008) 0.07) 0.06) 0.14) 0.006) 0.57) 0.064) 

 n=33  n=7 n=3 n=15 n=25 n=6 n=4 n=61 n=32 
 

Difethialone 0.02 
(0.013- 
0.03) 

n=3 

 

N/A ND ND 0.003 

(0.003- 

0.003) 

n=1 

 

ND ND ND 0.013 0 

(0.003- 

0.03) 

n=4 

Pooled - all 

compounds 

0.03 

(0.003- 

0.609) 

n=64 

N/A 0.007 

(0.001- 

0.07) 

n=13 

0.004 

(0.001- 

0.017) 

n=6 

0.008 

(0.001- 

0.07) 

n=33 

0.005 

(0.001- 

0.17) 

n=43 

0.012 

(0.003- 

0.14) 

n=13 

0.006 

(0.002- 

0.04) 

n=9 

0.016 

(0.001 - 

0.61) 

n=123 

0.005 

(0.001 - 

0.064) 

n=58 

674 
675 
676 
677 
678 
679 

N/A = no samples obtained; ND = no detectable residue in any livers; n= number of birds with detectable 

residues. 
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