

GARAS BINTOW (STAGE 2B) WELLFIELD, MOGADISHU WATER SUPPLY, SOMALIA.

•

•

•

•

•

•

•

•

•

•

•

•

•

• • •

•.

•

lacksquare

•

•

Review of Existing Groundwater Data

Institute of Hydrology August 1990

Contents

0

•

•

0

•

•

•

•

•

•

•

•

1. INTRODUCTION

1.1 General

- 1.2 Background Information
 - 1.2.1 General
 - 1.2.2 Aquifer conditions
 - 1.2.3 Groundwater development strategy
 - 1.2.4 Present water supply situation

2. SUMMARY OF EXISTING DATA

- 2.1 Regional Data
- 2.2 Local Information

3. WELL DESIGN

- 3.1 General
- 3.2 Comments on Well Specifications
 - 3.2.1 Construction
 - 3.2.2 Development
 - 3.2.3 Pumping Tests

4. DRAWDOWN PREDICTIONS

- 4.1 General
- 4.2 Updated Predictions
- 4.3 Short Term Abstraction

Annex A Regional Contour Maps

Appendix 1 Data for Borcholes MGQ 3T and MGQ 7P

Fig	ure
1	Study Area
2	Boreholes in the Garas Bintow Area
3	Grain Size Distributions
4	
5	Yield Drawdown Curves
6,	

Table

(

6

•

•

0

- 1 Water Supply Demands
- 2 Site Summary

GARAS BINTOW (STAGE 2B) WELLFIELD, MOGADISHU WATER SUPPLY, SOMALIA

Review of Existing Groundwater Data

1. INTRODUCTION

L1 GENERAL

The present water supply for Mogadishu is obtained from two wellfields: the Balad Road wellfield constructed in 1970 between 10 and 15km north-east of Mogadishu, and the Afgoi Road wellfield constructed in 1983 some 17.5km north-west of Mogadishu.

A new wellfield known as Stage 2B of the groundwater development strategy for the Mogadishu water supply is to be constructed with funding from the Italian Government at Garas Bintow about 7km north of the Balad Road wellfield (Figure 1). The construction contract has been awarded to ASTALDI slp of Rome who are to undertake the work for the Mogadishu Water Agency.

The Garas Bintow wellfield will consist of 21 boreholes: 16 for continuous abstraction and 5 as standby for peak demands. The boreholes will be spaced at 300m offset intervals along two parallel lines 300m apart extending north-eastwards at N73E for some 3.5 km from the Balad Road at existing boreholes MGQ 3T/7P. Depths are expected to be 170 to 200m and the pumping rates will average 60 m3/h per borehole. The total output from the wellfield will be 8.1 Mm3/year with a peak output of 1260 m3/h.

The Institute of Hydrology (UK), who carried out the more recent water resources surveys of the Mogadishu region and advised on the design, construction and testing of the Afgoi wellfield, have been commissioned by ASTALDI slp to review the available data in the area of the Garas Bintow wellfield. The information may be used for further groundwater model studies to refine previous predictions of drawdowns on a more regional scale. The technical specifications for the new production wells have also been examined together with earlier predictions of pumping water levels.

1.2 BACKGROUND INFORMATION

1.2.1 General

Water resource studies in the Mogadishu area began in the early 1960's. The first major regional water resources study was carried out between 1977 and 1979 by Sir Alexander Gibb and Partners (Nairobi) with the Institute of Hydrology (UK). This included the area between Mogadishu and the River Shebelli bounded by the Afgoi and Balad roads. The study led to the construction of the Afgoi wellfield (Stages 1 and 2A) and identified Garas Bintow as a suitable site for a future wellfield (Stage 2B).

In order to locate additional resources required before 1990, further investigations were undertaken over a wider area some 130km by 80km (10 400 km2) extending from Aw Dheegle to Jawhar and from the coast to Wanlewayne. This survey, which was reported on in July 1984, updated the earlier work and identified a location for a further wellfield (Stage 3) to the north-east of Garas Bintow.

1.2.2 Aquifer Conditions

The main features of the aquifer in the general area of the Garas Bintow wellfield can be summarized as follows:

a thick (150m), relatively uniform and extensive sequence of fine sands having a d50 of about 0.2mm and a uniformity coefficient of about 3. Although generally unconsolidated, these sands are cemented to a varying extent by calcareous material. Clays form the base of the aquifer.

the hydraulic conductivity is low, about 10 to 15 m/d, but due to the large aquifer thickness the transmissivity is relatively high, about 1000 to 2000 m2d. This may be reduced where cemented beds are more common. The specific yield is estimated to be about 2 to 4%.

the aquifer is recharged only by the River Shebelli, mainly where the river is in contact with the dune sands such as at Balad.

water levels are deep, about 105 to 110m. Unconfined to semi-unconfined conditions are present, although water levels also respond to barometric pressure due to the thick unsaturated zone and the presence of cemented beds.

the water quality is acceptable. However, model predictions suggest a risk of contamination in the long term from poor quality water in the alluvial deposits along the Shebelli some 15km to the north and from seawater intrusion from the coast some 15km to the south. The water is slightly corrosive, although there is also a risk of incrustation due to the high total hardness.

1.2.3 Groundwater Development Strategy

A groundwater development strategy for the Mogadishu water supply was identified with the assistance of several numerical models of the aquifer system incorporating information from the regional drilling, testing and monitoring programmes. The models applied were as follows:

- a steady state, unconfined, inferred recharge model of (a) the region, using a coarse 10 km grid representing an area of 10400 km2, and (b) the Afgoi-Mogadishu-Balad area using a finer grid of 5 km squares representing an area of 2550 km2;
- (2) a time-varying version of the model 1b for water management purposes; and,
- (3) a well interference model to examine alternative well spacings and wellfield configurations.

Recharge along a 120km stretch of the River Shebelli from Afgoi to Jawhar was estimated by the recharge model to be about 70 Mm3/y, of which 40 Mm3/y takes place between 15km upstream and 25km downstream of Balad. A surface water study gave the following estimates of net recharge, in Mm3/y:

	Upper limit	Best estimate	Lower limit
River	117	64	35
Irrigation	44	18	7
Total	161	82	42

The amount of groundwater abstraction also has to take account of water quality constraints. It was considered that the water demands up to the year 2000 could be met entirely from groundwater if recharge through soakaways beneath Mogadishu causes a barrier to the inland movement of saline water. Without such recharge abstraction might have to be limited to 31 Mm3/y (1992 demand) to avoid a possible deterioration in water quality from saline intrusion after 2010. The presence of poorer quality water in the alluvial deposits to the north could also limit abstraction to about 46 Mm3/y (1997 demand) to avoid a deterioration in water

quality after 2020.

The River Shebelli was examined as a possible direct source of supply, in particular to provide 32 Mm3/y (1 m3/s) - the predicted shortfall between a supply of 25 Mm3/y from the Afgoi and Balad Road wellfields and the total demand in 2000. Whilst the River Shebelli could meet this demand seasonally (April/May and July to November), it is diverted for irrigation and future flows could be reduced significantly by new surface water schemes upstream. Consequently, as new groundwater sources would still be needed to maintain supplies throughout the year, any diversion of the River Shebelli would need to be incorporated in a conjunctive use scheme involving additional groundwater development. The Garas Bintow wellfield and the proposed Stage 3 wellfield are part of the groundwater development strategy.

1.2.4 Present Water Supply Situation

Table 1 gives the annual and peak water supply demands at source for Mogadishu and the timing of new supplies to meet these demands. The total annual water demands at source are expected to be 25 Mm3 in 1990, 40 Mm3 in 1995 and 57 Mm3 in 2000.

It was anticipated that the Afgoi and Balad Road sources would need to be supplemented by the new wellfield at Garas Bintow (Stage 2B) in 1987 and by a further wellfield (Stage 3) in 1990. However, it has not proved possible to meet the phasing requirements of this strategy and the city still currently depends on the Afgoi and Balad Road wellfield supplies.

The total output from these two wellfields had declined from their design yield of 20.9 Mm3/y to 12.4 Mm3/y by mid-1989, a reduction of 40%. The output from the Balad Road wellfield has decreased by 76% from 8.8 Mm3/y to only 2.1 Mm3/y. This has been caused by well failures despite rehabilitation attempts. The output from the Afgoi wellfield has dropped by 15% from 12.1 Mm3/y to 10.3 Mm3/y due to equipment problems.

The total output from the Afgoi and Balad Road wellfields in 1989 was sufficient to meet only 50% of the average water demand. Those areas of the city supplied from the Balad Road wellfield have been the worst affected by the reduced output and now receive only 25% of their water requirements. Areas served by the Afgoi wellfield receive about 64% of their water requirements. Supplementary supplies are now being obtained from boreholes within the city, although these are susceptible to contamination from septic tanks and sea water intrusion. Mogadishu Water Source Abstraction Requirements

Year	A11	Sources	Afgç Staye	i Road Land 11a	Bala	nd Road	Gara: Stac	: Bintow ne fib	Future Stag	e Sources e III
	Total	Kax 1mim	Total	Maximum	Total	Maximum	Total	Maximum	Total	Maximun
1990	26824	91860	12089	41760	4205	12960	8410	30240	2120	6900
1991	28995	99300	12089	41760	4205	12960	8410	30240	4291	14340
1992	31342	107340	12089	41760	4205	12960	8410	30240	6638	22380
1993	33879	116020	12089	41760	4205	12960	8410	30240	9175	31060
1994	36621	125410	12089	41760	4205	12960	8410	30240	11917	40450
1995	39585	135570	12089	41760	4205	12960	8410	30240	14881	50610
1996	42643	146040	12089	41760	4205	12960	8410	30240	17939	61080
1997	45937	157320	12089	41760	4205	12960	8410	30240	21223	72360
1998	49486	169470	12089	41760	4205	12960	8410	30240	24782	84510
1999	53308	182560	12089	41760	4205	12960	8410	30240	28604	97600
2000*	57426	196660	12089	41760	4205	12960	8410	30240	32722	111700

Total = total volume abstracted in the year (in thousands of cubic metres.)

Maximum = maximum volume abstracted in any day in the year (in cubic metres.)

* Beyond the year 2000 abstraction rates are maintained at the 2000 level.

TABLE 1

Pump maintenance at Afgoi could increase the total availability from 12.4 to 14.2 Mm3/y for the next few years, although this will still only be sufficient to meet 45% of the demand in 1992. There is a proposed programme of further well rehabilitation of the Balad Road wellfield, but those areas of the city served by this wellfield are still likely to suffer water shortages until the Garas Bintow wellfield is commissioned.

2. SUMMARY OF EXISTING DATA

2.1 REGIONAL INFORMATION

Contour maps showing the base of aquifer, water level elevations, chemistry and isotope concentrations to illustrate the broad regional hydrogeological setting of the wellfield location are shown in Annex A.

Test borehole MGQ 3T and an adjacent exploratory/observation borehole MGQ 7P were drilled adjacent to the Balad Road in the new wellfield area in 1978. Other boreholes in the general area of the wellfield are shown in Figure 2. Two exploratory boreholes (EO 4 and EO 11) were drilled in June and September 1983 north-east of the new wellfield. The nearest other boreholes include MGQ 8P, private boreholes 61, 62 and 63, and the Balad Road wellfield.

A site summary of the nearest boreholes is given in Table 2. No further boreholes appear to have been drilled in the area of the Balad Road since the 1983 survey, except for some replacement sites in the Balad Road wellfield.

The following additional information has been obtained mainly from the National Water Centre to extend the records held at IH, to establish the availability of new information, and to update the information available for the regional models prepared from the last resources survey in 1983:

• Monthly rainfall records for Afgoi (station 2518) for the period 1960 to 1989, Balad (station 2516) from May 1981 [some records missing, mainly in 1982 and 1984], and Mogadishu (station 2531) from 1960 to 1989. Daily rainfall has also been obtained from these stations for 1985' to 1989 together with climate summaries.

* Stage rating curves for the River Shebelli at Afgoi (station 14) and Balad (station 13), together with monthly flows at Afgoi from Jan 1963 to Apr 1990 and from Balad from Jan 1963 to Dec 1979.

* Average monthly abstraction rates for each of the Afgoi wells from June 1989 to May 1990 together with a more detailed abstraction record for May 1990.

MUQDISHD WATER SUPPLY SITE Summary All The Data

•

lacksquare

lacksquare

ullet

• • • •

•

.• • •

RID REF Well NUMBER	55092515 ED 11	55632583 E0 4	54442455 MGQ3T	54442456 MGQ7H	54462413 NO 62	54412508 61	543+2521 75	55022437 Mgubp
AREA AQUIFER GURCE	1 2 4	1	1 2 1	1 2 1	1 2 1			1 4 1
DINTRACTOR	PINL	PIHL	#0 A	4 G *	۲۹۵			
CHSTR. DATE	8 SEP 83	7 JUN 83	27 107 78	16 NOV 78	1 104 63			
DEPTH	257.200	205.300	155.000	277.000	104.000			
	131.000	155.000	127.000	136.400	96.000	148.200		
SING TYPE	PLASTIC	PLASTIC	۲VC	Pvc	HILD STREE	MILLI STEFA	MTUD STEEL	
DIAMETER	0.102	0.102	•200	.110		•152		
SCREEN TYPE	PLASTIC	PLASTIC	0.02IN PVC	0.021N PVC	PERFORATED			
DIAMETER	0.102	0.102	.150	.100				
CRESHS			1	1	1			
DEPTH 1	224.000	205.000	130.000	- 134.000	54.000			
LENGTH 1	12.000	12.000	24-1100	12.000	66.000			
DEPTH 2				127700				
ELENGTH 2								

TABLE 2

* An updated inventory of the Balad Road wellfield carried out in September 1988, including information on discharge rates.

No further information appears to be available on water level changes in response to large scale abstraction from the aquifer. Information on the monthly variation in wellfield abstractions is still rather limited.

2.2 LOCAL INFORMATION

Hydrogeological data for the Garas Bintow wellfield is limited to a test well (MGQ 3T) and its adjacent exploratory/observation well (MGQ 7P). Site MGQ 7P is now closed at a depth of 70m, which is above the water table. The status of MGQ 3T has not yet been established. Neither site would seem to be available as long-term observation wells to monitor the aquifer response to abstraction.

The information on these two wells is given in Appendix 1. This includes lithological, geophysical, penetration and lithological logs, grain size data, chemical analyses, water levels and pumping test results. Particular features to note are:

• MGQ 3T was drilled to a depth of 155m with 20m of PVC screen installed from 130 to 150m. The screen slot size was 0.5mm with a pack grain size distribution as shown in Figure 3. MGQ 7P is located 27.2m from MGQ 3T and was drilled to 277m penetrating the clays forming the base of the aquifer at 255m. It was also constructed from PVC materials, with a screen from 134 to 146m depth.

• The water level in the wellfield area occurs at a depth of about 107m bgl or 30m above sea level. It would be preferable to maintain long term pumping water levels above sea level.

• Red dune sands some 40 to 70m thick overlie the main aquifer which consists of buff, fine grained sand, variably cemented by calcareous material (perhaps as localised lenses). Greenish clays form the base of the aquifer at a depth of about 250m, giving a saturated aquifer thickness of about 150m. Ground elevations vary from about 140m to 150m. Access across the area is difficult.

• A step-drawdown (production) test was carried out on 15 February 1979 at MGQ 3T at rates of 27, 43, 69, and 80 m3/h:

Step	Time	Rate	Drawdown	Specific	Specific
	(mins)	(m ³ /d)	(m)	Drawdown	Capacity (m ² d)
	0-180	649	3.72	0.0057	174
2	180-360	1045	5.76	0.0055	181
3	360-540	1652	9.14	0.0055	181
4	540-720	1932	10.61	0.0055	182

* Site MGQ 3T has almost the best yield drawdown characteristics of the test wells drilled in 1978/9 and similar to the best sites of the Balad Road wellfield but only to the average of the Afgoi wellfield boreholes, as shown in Figures 4 to 6. The presence of cemented beds and possibly the effectiveness of the well development may largely account for the range in specific capacity.

* Some difficulty was encountered in completing the required aquifer test at a rate of 60 m3/h due to pump problems caused by a misaligned hole. Eventually three constant rate tests were carried out on MGQ 3T:

Date	Rate	Duration	Drawdown
	m3/h	mins	m
19/2/79	44	9135	5.76
27/2/79	44	1470	5.76
7/12/79	60	2490	9.10

The specific capacity after 2 days is about 160 m2d. The test data from MGQ 7P gave the following estimates of the aquifer characteristics:

	Jacob	Boulton
Transmissivity (m2d)	1380	840
Storage coefficient (%)	0.02	0.04 (early data)
		4.6 (late data)

MGQ 3T and 7P penetrate only the upper 30% of the aquifer and the screen length represents a partial completion of about 15%. Barometric pressure changes need to be taken into acount in the pumping test analysis.

• The Ryznar Stability Index (RSI) value for MGQ 3T is 7.6. RSI values of 6 to 8 would produce only mild corrosion or encrustation; mild corrosion being indicated in this case. An analysis of a water sample taken during the pumping test at MGQ 3T in February 1979 (see Appendix 1) indicated that the total dissolved solids (660 mg/l), total hardness (300 mg/l), magnesium (4.59 meq/l) and iron content (0.11 mg/l) exceed the WHO highest desirable level,

although not sufficiently high for concern or to increase the corrosion potential significantly. The water temperature is about 34C. The water from MGQ 3T has an unusual stable isotope composition (Deuterium +10, Oxygen 18 +1) compared to other samples from the region.

As a considerable amount of information will be produced during the construction of the new wellfield, it would be advisable to store this information on a data base system. The IH GRIPS groundwater data base system, which is IBM PC-based and used for both the Afgoi wellfield and the regional resources surveys, has also been adopted by the National Water Centre.

WELL DESIGN

3.1 GENERAL

A summary of the general designs adopted for the production and test boreholes drilled for the Mogadishu water supply is as follows:

	Slot size	Material	Casing/Screen	Screen
	mm		Diam. mm	Length m
Balad Road:				
Parsons	0.76 to 1.5 (s)	stainless	342/246	26 to 37
		and mild	and 273/168	
Hydrotechnic	0.5			6
MGQ 1 to 6 (test):	0.5 (s)	PVC	203/152	20
Afgoi wellfield:	0.38 (ca)	stainless	254/203	30
Proposed for 2B:	0.38 (ca)	-	254/203	30

(s = slotted; ca = continuous slot)

Some sand ingress problems have occured with the design used for the Balad Road wells. The technical specifications for the new production boreholes at Garas Bintow are based on the successful design and construction of the Afgoi wellfield boreholes, which can be summarised as follows:

the boreholes were drilled by the direct circulation rigs method using a biodegradable drilling fluid with a calcium hypochlorite breaker.

a pilot hole of 244mm was drilled and geophysically logged to identify any cemented beds and to choose the final screen position.

any overdrill was backfilled with sand and the hole reamed out to 444mm to the top of the screen and to 381mm from the top of the screen to the final depth.

sprung barrel centralisers were placed at 18m intervals down the casing.

a graded, rounded, quartz pack mainly ranging from 0.3 to 2.0mm grain size (see below) was placed around the screen to 10m above the top of the screen. A crushed coral backfill was used to separate the pack from the upper sand backfill.

a 32mm galvanised dipping pipe was installed with a welded elbow just above the casing-screen reducer.

32 COMMENTS ON WELL SPECIFICATIONS

The technical specifications for the proposed production wells of the Garas Bintow wellfield contain some modifications to the design used for the Afgoi boreholes. These are discussed below.

3.2.1 Construction

The depths will vary from 170 to 200m which will place the screens at about -20 to -50m elevation. The screen at MGQ 3T was placed at an elevation of about +10 to -10m.

Details of the organic polymer drilling fluid and breaker to be used are unspecified and are to be approved. Sodium hypochlorite, which is specified for disenfecting the completed well, should be used as a breaker in preference to calcium hypochlorite to avoid the risk of forming insoluble calcium chloride precipitates.

A pilot hole will not be drilled at each site. The interpretation of the geophysical logs may be more difficult if run in the full diameter of the proposed hole. As the proportion of cemented beds can be significant, it would be worthwhile drilling and logging a pilot hole during the first part of the drilling programme at, say, three to five sites spaced along the wellfield to provide information on the likely variation in the general aquifer conditions across the area. These would then be reamed out to the specified final diameter.

Gamma and caliper logs are to be included with SP and single point resistivity. These will be undertaken only in selected production wells (unspecified) and in the observation well rather than in every well. The caliper logs should help to identify cemented beds. As the range in specific capacity may be partly due to the variable occurence of cemented beds the geophysical logging of every borehole is advisable despite their close spacing.

The drilled diameter between the base of the top casing (at 6 m depth) and the top of the screen will be smaller than at Afgoi, only 381mm compared to 445mm. This will leave an annulus of only about 2.1 inches (54mm) around the casing compared to 3.4 inches (85mm) in the Afgoi wells. This smaller annulus could result in damage to the water level measuring pipe (nominal 1.5 inches diameter, but greater if coupled joints are used) during the installation of the casing besides increasing the risk of bridging of pack material during the

emplacement of the pack. If the diameter is increased to 445mm as used for the Afgoi wells then the drilled diameter and the surface casing diameter of the upper 6m would have to be increased accordingly.

The dipping pipe connection will be about 150mm above the top of the screen (the drawings suggest that this will be attached to the reducer). It would be preferable to attach this to the casing, say, about 1m to 5m above the reducer. A T- or elbow joint is specified but this type of joint can be damaged easily during installation (especially with the smaller annulus) allowing sand to enter the well. A narrow angle joint is advisable.

Crushed coral backfill, rather than sand, is to be placed from the top of the gravel pack to 6m bgl. It will be important to ensure that none of the backfill material is able to migrate down into and through the pack during development or pumping. The backfill material below the sump is unspecified but should be inert, sterilised material. The top casing is to be installed only to a depth of 6m. It may be better to seat this on a firmer foundation (eg first hard band) at a greater depth.

The contractor is required to use materials, methods etc that will reduce the effects of corrosion and incrustation and, if considered necessary, propose alternative materials for approval. The effects of corrosion will be reduced by the required use of stainless steel screen and the small slot size. PVC materials have proved difficult to store and handle.

The slot size used for the Afgoi boreholes and specified for Garas Bintow is based on a single, uncemented sample from exploration site MGQ 6T. Representative samples are often difficult to obtain with rotary drilling methods. Samples from the other test sites were also affected by cementation and considered less representative of the finer faction. Nonetheless, the grain size analysis from MGQ 3T shown in Figure 3 is similar to that from MGQ 6T (at least for the coarser faction).

The various gravel packs used in the Mogadishu production wells shown in Figure 3 have the following general characteristics:

	Uc	d30	d50	d10	d60	d30p/d30a	d50p/d50a
MGQ 6P Afgoi:	3.0	0.6	0.19	0.06	0.2		
Proposed	1.8	0.6	0.19	0.4	0.68	4	3.7
PW 1B,2,5,6A	0.98	0.5	0.55	0.37	0.59	3.3	2.9
PW 3A,4B,7,8	1.43	0.9	0.95	0.7	1.0	6	5
(p=pac	k, a= aquiler:	Uc= uniformity	coefficient)				

Given the apparent similarity of the sample from MGQ 3T (obtained from a depth of 140m) to that from MGQ 6T on which the Afgoi borehole design was based, then, in the abscence of further information, a pack and slot size based on the Afgoi wells should be suitable for Garas Bintow. However, the gravel pack as given in the specification document is completely unsuitable for the specified slot size and would not allow a sand free condition (see Figure 3).

The small slot size specified would not normally be used with a gravel pack [borehole development can be difficult with a pack and a slot size of < 1.25mm]. However, the fine grained nature of this aquifer precludes the development of a natural pack. In addition, because of the aquifer grading particular care should be taken to ensure that the pack completely surrounds the screen to produce a sand-free condition.

3.2.2 Development

The development methods are to be proposed by the contractor. Development is specified as being complete when the water contains less than 2 mg/l of fines at a rate of 75 m3/h [the time after starting the pump to which this specification applies has not been stated].

The development of each production borehole will be a key factor in meeting the required yield-drawdown relationship, a sand-free condition, and to minimize the operating costs. Experience with the Afgoi boreholes suggests that difficulties can be expected in developing at least some of the wells (in some cases a week or more was required for full development at some of the Afgoi boreholes). The time that may be required to develop each well satisfactorily should not be underestimated.

Due to the fine nature of the pack and aquifer there will be some difficulty in getting the breaker in contact with the drilling fluid and mud-cake. This can be overcome by introducing breaker with the gravel pack and then jetting in additional breaker as required.

Normal procedure would require the installation of an air-lift to clean the well and carry out the preliminary development by operating the air lift in pumping mode followed, as cleaning progresses, by backwashing. Generally about 24 hours is required for this initial cleaning. Surging with the air lift should be avoided as there is a risk of air-entrainment in these fine grained deposits. It is not necessary to install an air lift capable of meeting the planned yield; this can be achieved more effectively by overpumping. Experience suggests that the wells can be developed more effectively by a pump capable of producing 1.5 times the planned normal pumping rate and using pumping/backwashing cycles. The pump should not be fitted with a foot valve if backwashing is to be carried out (the recovery pumping test will need a foot valve). As this technique tends to concentrate development on the upper part of the screen, particularly if this part of the sequence is more permeable, an appropriately designed, high velocity jet (this can be made locally if required) was found to be reasonably effective for the development of the Afgoi boreholes in conjunction with the pumping provided a suitable water supply can be provided, such as pumping from an adjacent borehole.

Progress with development can be monitored by the procedure adopted for the Afgoi wellfield boreholes. This was as follows:

- a) when it is considered that the initial development is reasonably complete the pumping rate should be increased to 90 m3/h (1.5 times the required normal operating rate). The pump should then be operated at this rate in short on-off cycles of 5 minutes pumping and 5 minutes recovery for a set period.
- b) pumping should then cease for, say, 15 minutes
- the pump should then be operated at the same, pre-selected fixed rate for, say, 15 minutes and the drawdown (or pumping water level) measured after this period and a water sample collected for an estimate of the sand content
- d) continue to repeat (a) to (c)
- e) plot the measurements of (c) on arithmetic graph paper against real time. Provided the rate and duration in (c) are kept the same then the improvement in yield will show as a curve, with each successive period of development producing a smaller improvement in the yield-drawdown. It is then easier to establish whether further development would significantly improve the yield-drawdown characteristics.

The specifications require a check as to whether each well could produce 150 m3/h. Neither the development or step test will test this rate of abstraction and the water is unlikely to be sand free at this rate. A design check should be made in terms of aproach velocities or Reynold's number to ensure that the wells can actually sustain this high rate. The casing diameter would need to be about 12 to 14 inches for this pumping rate.

3.2.3 Pumping Tests

The step-drawdown (production) test will consist of 5 stages, each of 2 hours at rates of 40 to 75 m3/h. The constant rate (aquifer) test will be carried out for up to 10 days on production well number 11 situated in about the middle of the wellfield. An observation well will be drilled 30m away from this borehole to provide drawdown data for information on the aquifer characteristics. The test rate will be selected by the Engineer. This will be followed by a recovery test of unspecified duration ("until levels stabilise").

The test specifications generally conform to normal practice and no particular improvements are suggested. The recovery period of measurements needs to be more clearly stated.

The test site is situated about 1.5 km from MGQ 3T. Since some estimates of transmissivity can be obtained from the first step of the production test at each site, it may be preferable to consider the aquifer test on a more easterly site. More reliable estimates of storativity can be obtained from water level data after abstraction from the wellfield begins.

Partial penetration and partial completion effects will need to be allowed for in the analysis of the test data. Barometric pressure fluctuations also need to be taken into account to interpret the late drawdown data from the observation well.

1. DRAWDOWN PREDICTIONS

4.1 GENERAL

The specified borehole spacing and layout of the Garas Bintow wellfield was selected from several different wellfield configurations examined in 1980 using a drawdown interference program based on the Theis equation.

The model predicted a total drawdown of 10.6m in the central boreholes after 10 years, of which 8.7m was due to interference effects. After adjusting for a 70% well efficiency and 1/7 partial penetration the total drawdown was predicted to be about 14.3m. The conditions assumed for these predictions were as follows: two lines of 8 boreholes with the boreholes and lines spaced 300m apart; a continuous pumping rate of 60 m3/h (1440 m3/d) per well for 10 years without recharge; and values of 1400 m2/d for T and 2% for S derived from the areal and regional numerical models.

More reliable estimates of interference drawdowns, aquifer characteristics, and the response to large scale abstraction can be obtained by monitoring abstraction and water levels. However, this does not appear to have been undertaken for the Afgoi and Balad Road wellfields.

4.2 UPDATED DRAWDOWN PREDICTIONS

The same program used for the earlier studies has been applied to provide updated drawdown predictions for the specified wellfield configuration chosen from our earlier drawdown predictions.

Several alternative values of T and S were examined and compared to the observed drawdowns from the pumping test at MGQ 3T and 7P, which were 5.8m at MGQ 3T and 0.53m at MGQ 7P (Q=1057 m3/d, t=6.3 days). This produced the following estimates of drawdown at MGQ 3T, MGQ 7P (27m from the production well) and at 300m distance using the pumping test rate of 1057 m3/d for 6.3 days and the planned rate of 1440 m3/d continuously for 10 years:

	Ţ		Drawdown				
(m ² d)			(m)				
			MGQ t≖6.3d	3T t=10y	MGQ t=6.3d	7T t≖10y	r=300m t=10y
	1400	0.02	1.11	2.03	0.43	1.11	0.72
ii	1100	0.02	1.39	2.56	0.53	1.39	0.89
iii	1775	0.0007	1.04	1.83	0.51	1.11	0.80

i = regional model

ii = average of test results MGQ 3T

iii = Jacob solution MGQ 3T

These drawdowns represent aquifer losses for a fully penetrating borehole with isotropic aquifer conditions. The T and S combinations of 1100/0.02 and 1775/0.0007 both produce similar drawdowns to the uncorrected drawdown at the observation well.

The observed drawdown at MGQ 3T after 6.3 days at $1057 \text{ m}^3/\text{d}$ was about 5.8m compared to the drawdown of 1.0 to 1.4m due to aquifer losses predicted with the above range of aquifer parameters. The difference of 4.8 to 4.4m would be due to the combined effects of partial penetration, partial completion and well losses.

Whilst screened boreholes tend to have relatively low well efficiencies (70 to 80%), the step test results at MGQ 3T indicate an efficiency of 98%. This is similar to the Afgoi production boreholes which typically have well efficiencies of about 95% to 98%. The yield drawdown characteristics of this site are also equal to about the average of the Afgoi boreholes (Figure 6). With such a high efficiency well losses are not a significant component of the difference in drawdown predicted by the model and that observed.

The top of the screen at MGQ 3T is about 23m below the water table. Using the Hantush correction for partial penetration only about 0.75 m of the observed drawdown would be due to partial penetration effects. Hence partial penetration only accounts for a small proportion of the total drawdown observed. Partial penetration increases the drawdown by only a few millimetres at MGQ 7P for the duration of the test and by only a few centimetres for longer pumping times.

Partial completion has a more significant effect on the drawdown. For thick isotropic aquifers with intergranular flow there is a linear relationship between aquifer thickness and productivity factor (Pf), a dimensionless term relating well yield expressed as specific capacity for different screened percentages of aquifer thickness. For the Garas Bintow wellfield boreholes, which will have 30m of screen, the ratio of screen length to aquifer thickness is 0.2 (ie 20% partial completion) and Pf= 2 (based on Turcan, 1963). The specific capacity of a fully screened well with a 100% well efficiency would therefore be twice that of the planned

design under steady state conditions. Conversely, after allowing for partial penetration, the theoretical drawdown for a well fully screened throughout the aquifer thickness would only be 50% of a borehole with 30m of screen.

The model predicted drawdown of about 1m for the pumping test rate and duration should be doubled to include the effect of partial completion, although this still does not account for some 3m of drawdown in the test well during the pumping test. This discrepancy is probably related to the model itself which predicts the drawdown due to aquifer loss at a unit distance from the pumped well rather than at the nominal radius.

The new production wells will have a screen length of 30m compared to 20m at MGQ 3T and, assuming a depth of 170m to the top of the screen, the aquifer penetration will be about 60m compared to 23m at MGQ 3T. Development is likely to be more thorough at the new production wells than for MGQ 3T test well, although the well efficiency will decline to some extent with prolonged pumping. These factors will reduce head losses caused by partial penetration and partial completion effects and well losses such that somewhat smaller drawdowns can be expected in the new production boreholes compared to MGQ 3T for the same pumping rate.

The step test on MGQ 3T indicates an initial specific capacity of about 180 m2d. The aquifer tests suggest that this declines to about 160 m2d at 60 m3/h after 2 days, or about 9m drawdown. At a pumping rate of 150 m3/h the specific capacity could decline to about 70 m2/d, or a drawdown of 50m. This is greater than the maximum available drawdown (base of the casing less pump length and safety margin).

The additional drawdown caused by interference effects and longer term pumping has been predicted using a T of 1400 m2d and an S of 2% based on the regional model. In the table below the first column gives the maximum drawdown which occurs in the central part of the wellfield whilst the second column includes an initial drawdown of 9.0m at a rate of 60 m3/h. This should be more representative of the likely total drawdown as this would include partial penetration, partial completion and well losses which are not included in the model. Increased drawdown due to well deterioration and reduced aquifer thickness with longer term pumping are not included.

Run	Conditions	Drawd	own (m)
		Model	Adjusted
	T 1400 m2d, S 2%, t 10 years		
	Q 60 m3/h 16 wells	11.0	20
	As a but with 23 wells	14.2	23

These drawdown predictions should be reviewed when more information becomes available from the wellfield construction and should only be considered as preliminary at this stage.

4.3 SHORT TERM ABSTRACTION

0

The available drawdown will be controlled by the maximum pump depth (base of the casing) in the short term and to maintain the pumping water level elevation above sea level to safeguard against saline intrusion in the long term. These drawdowns are about 50m and 30m, respectively.

By 1991 the the total water requirements will have increased to 29 Mm3/y compared to an existing availability of 12.4 Mm3 from Afgoi and Balad Road wellfields. Even if all three wellfields were operating at their design capacities there would still be a shortfall of 4.3 Mm3/y as Stage 3 wellfield would not be available as planned. If Garas Bintow is brought in at 8.4 Mm3/y this shortfall could be as much as 8.2 Mm3/y.

Hence, the Garas Bintow wellfield may need to be operated at a high total abstraction rate during the first years of operation to meet shortfalls in supply. Model run (b) suggests that all 23 wells could be operated continuously for several years at 60 m3/h per well without exceeding the above drawdown constraints. This would provide an additional supply of 3.6 Mm3/y, or a total wellfield output of 12.1 Mm3/y. The total availability from all three wellfields would then be 24.5 Mm3/y (Afgoi 10.3, Balad Road 2.1, Garas Bintow 12.1 Mm3/y), increasing to 26.6 Mm3/y if the Afgoi wellfield can meet its design yield of 12.1 Mm3/y.

The shortfall in 1991 would then be reduced to about 2.7 Mm3/y but this would increase each year by about 2 to 3 Mm3/y until additional supplies become available. The shortfall is an average of nearly 300 m3/h which could perhaps be supplied from Afgoi and/or Garas Bintow by only a small increase in the average pumping rate of each borehole.

However, as the planned maximum daily output from Garas Bintow is 30240 m3/d (11.0 Mm3/y), there may be engineering constraints which would not allow the whole wellfield to operate at 33120 m3/d (12.1 Mm3/y, assuming 23 boreholes each operating continuously at 60 m3/h), which would increase the shortfall to about 3.5 Mm3/y in 1991. At maximum rates the total availability may be limited to 78480 m3/d (Afgoi 41760, Balad Road 6480, Garas Bintow 30240 m3/d) which would cause a shortfall of 20820 m3/d or 865 m3/h at peak demand.

The interference model cannot examine other more regional considerations concerning abstraction. It is recommended that in view of the water shortages in Mogadishu that the

water supply strategy is updated taking into account engineering and hydrogeological considerations. The regional models should be run to examine alternative, revised operating strategies to meet future demands.

0

•

•

0

FIGURE1

Grain Size Analysis

0

0

0

0

0

0

•

0

- A. Gravel Pack specified for 2A Afgoi wellfield
- B. Gravel Pack given in Garas Bintow wellfield well specification document (Page 11)

FIGURE 5

FIGURE 6

(

lacksquare

•

•

ullet

• • • • •

•

•

• • •

•

lacksquare

ullet

lacksquare

•

• • •

•

•

•

•

• • •

•

•

Shebelle low flow

MCO3T

15-0 HESGUACE STUUR

ALL THE DATA

STEP URANINGRA (EST - PUMPED WELL

MUSP 140 NO. 3T GRID REF. 54442455

412 UF TEST 15 2 79

PUMPING	RATES	(લેક્સ્ટ્રેટ)	: ניאנ	:		
048.7	FRUM	0.0	MINS	ïυ	180.0	m1.15
1045.U	FRUM	150.0	MINS	ើម	360.0	-1115
1652.0	FRÚM	300.0	HINS	ΤŪ	ジャリ・リ	14.5
1932.u	FROM	540.0	MINS	īυ	720.0	111.45

REST WATER LEVEL NUT RECORDED

TIME (MINS)	DRAWDOWN (M)	TIME (MINS)	DRAWDOWN (M)
• 5	ອີ. ປີຕິບັ	182.0	5.690
1.0	5.270	132.5	5.690
1.5	3.450	1:33.0	5.760
2.0	3.76U	183.5	5.690
2.5	3.760	1日午 - 1	5.040
3.0	3.700	[0 4•5	5.760
3.5	3 - 750	105.0	5.760
4 • Ü	3.760	105.0	5.760
4.5	3-30Ú	187.0	5.760
5.0	3 • Tou	100.0	5.760
6.0	3.700	193•0	5.760
7.0	3.76v	190.9	5.760
ð.0	3.100	. 75 • 0	5.590
9.0	3.160	200.0	5.090
T O • O	3-100	502.0	5./60
15.0	doc.£	510.)	5.690
20.0	3.300	215+0	5.160
25 • Ú	3.000	559 - U	5./60
30.0	3.000	225+1	5.760
35.0	3.860	230.0	5./50
40.0	3.000	552+0	5.760
45.0	3.000	240.0	5.150
50.0	3.940	255.0	5.750
55.0	3.940	270.0	5.700
60.0	3.750	245.0	5.760
75.0	ن 10 U	3-10-0	5.100
90.0	3.366	310.0	5.700
105.0	3.709	330.0	5.700
150.0	3.760	3+5+)	3.150
135.0	.3 • 7 HU	30).)	5.700
150.0	3.766	300.5	4.070
165.0	3.700	301+0	÷.140
180.0	J.720	361-5	4.140
180.5	4.57u	302.)	9.210
181.0	5+620	302.5	7.210
181.5	5-690	363.0	9.210

	/015/JU -523	NUPCE STUDY
	-	ας της θατά
STER U	MANUJAN IST	PUMPED NELL
PUPPLAS AF	MOUSE (REL) RE	r. 54442455
	UNTE OF TEST	15 2 74
00 un (11)	FIRE (RINS)	LAADUWIN(M)
9+210	54 6 4	10.510
Y-210	542.5	10.010
9-210	543+0	10.610
9-210	543.5	10.610
4.210	5+++0	10.610
Y-210	544.5	10.610
9.cl0	545.0	10.010
9.210	543.0	10.610
9.510	547.0	10.610
9-140	540.0	10,610
¥•140	549•Ú	10.610
9.14V	550.0	10.540
9.140	0.555	10.610
9.140	560.0	10.619
7.140	55 5 .0	10.510
9.140	579.0	10.610
9+210	515.0	10.010

530.0

585.0

550.0

570.0

600.0

515.0

533.)

745.0

009.0

6/5.0

690.0

705.0

720.0

10.010

10.690

10.090

10.690

10.040

10.690

10.090

10.040

10.090

10.760

10.010

10.010

10.610

stinuer

TEAE (HENS) 104.5.8 303.5 364.0 354.5

305.0	9-210
366.0	4.210
307.0	7.210
Jan. U	9.clu
90400	9+210
370.0	9.210
315.0	9-140
380.0	4.140
345.0	9.140
390.0	9.140
395.0	7.140
400.0	7.140
+05.0	9.140
410.0	9.210
415+0	9.140
420.0	9-140
435.0	9.140
450.0	7.140
465.0	9.140
400.0	9.140
4-35.0	7.140
510.0	9+140
525.0	÷.140
540.0	7.140
540.5	10.340
541.0	10.010
541.5	10.610

ISH PESUACE STUDE

ALL THE OKIA

CONSTANT AST POMPED ALL

PU-P130 - 3,31 5-10 Her. 5+442455

19 2 79 19 2 79

PUMPING RATES (H**3/04Y) : 1057.0 FRUM 0.0 MINS TO 9135.0 MINS

REST WATER LEVEL NUT RECORDED

TIME (MINS)	URAAL (JAN (M)	Fire (AINS)	URANDOWN (M)
• 5	9.280	150.0	5.410
l.U	0.470	155.0	5.410
1.5	5.200	180.0	5.410
5+0	5.130	195.0	5.410
2.5	5.130	210.0	5.410
3.0	5.200	225.0	5.410
3.5	5.200	24 U . ()	5.410
4 • V	5.20u	255.0	5.410
4.5	5.200	270.0	5.410
5.0	5.200	285.0	5.4lü
6 • U	5.200	300.0	5.480
7.0	062.c	315.0	5.480
5.U	5.200	0.0EE	5.480
9.0	5+200	345.:)	5.480
1 0 .0	⇒ •200	30.4.0	5.400
11+0	5.200	3/5.0	⊃.480
12+0	5.200	340.0	5.480
13.0	⊃+ <i>2</i> ∪0	~ () - ')	5.480
14.0	5.200	~20.U	5.440
15+0	5.20u	()· čt -	5.550
16.0	5.200	4 5 d • D	ວ່າກົວປ
17.U	5.200	4(1).	5.550
18.0	5•20U	40) •0	5.550
19.0	5.200	• 5 • 0	5.550
20.0	5.270	510.0	5.550
25.0	5.270	525.0	5.550
30.0	5.270	540.0	5.550
35.0	5.270	500.0	5,550
40+0	5+27u	≘70•0	5.550
45.0	5.270	-02.0	5.550
59.0	5-340	n.J.J.a.J.	5.550
55.0	5-340	515.0	5.550
60. 0	5-34U	U • U C =	5.550
75.0	5+34U	545.)	5.55ú
90.0	5 - 34 0	5	ວ.ວວບ
105.0	5.34U	575.0	5.550
150.0	5+344	57 0- 0	5.550
135.0	5 • 3 4 v	705.0	5.550

UNDESHU RESOURCE STUDE

ALL THE DATA

CONSTANT ANTE LEST PUMPED WELL

2415.0

2445.0

2475.0

5.030

5.830

5.760

PURPING AT HUNDER BRITHER. 54442455

	UALE OF FEST	19 2 79
ORAJOUAN (N)	(146 (A145)	्रस्य करी। <u>विक्र</u> ास्त
5.550	1350.)	יירל גל וירל גל
5.550	1365.0	5.620
5.550	1360.0	5.620
5.550	1395.0	5.620
2.070	1.1.3.3	

735 0		1320+0	こう しょうちょう ジョン
7.50.0	2 • 55V	1365.0	5.620
7.5.4	2.550	1360.0	5.620
	2.550	1395.0	5.620
745 3	5.620	1410+0	5.620
1704U Alb a	5.020	1425.0	5.620
LIN LIN	5.020	1440-0	5.620
02:9∎0 8×0 ú	5.620	1455.0	5.620
04040 966 A	5.620	1405.0	5.020
870 0	5.550	1515.0	5.620
	5.090	1545.0	5.690
000•U 300 h	5.020	1575.0	5.760
909+0 214 n	5.020	1605.0	5.760
0+014	5-620	1635.0	5./50
230+0 2:5 0	5.760	1505+0	5.760
940+U Cia a	5.620	1595.0	5.760
500+0 575 0	5+820	1725.0	5.700
973+0	5.620	1755.0	5.760
999.U	5.550	1755+0	5.760
1005+0	9.920	1515+0	5.760
	5.250	1945.0	5.760
1033.0	D•200	1-75+0	5.150
1000+0	D•250	1905.0	5.030
	2.500	1+35+0	5.630
1950-9	D • 550	1905.0	5.760
	5.260	1990.0	5.750
	>•550	2025.0	5.760
125.0	5.430	2055.0	5.760
1140+0	ン・4や0	<002.0	5.030
	5-480	2115.0	5.630
	5.480	2145.0	5.750
1105+0	5-480	2175.0	5.760
1200.0	5.550	2205.0	5.760
1215+0	5.550	2235.0	5.830
	5.550	2205.0	5.700
1245.0	5+550	6.6455	5.990
1650+0	5.550	0.2325	5.034
12/5.0	5.55V	2355.0	5.830
1240.0	D • 550	0.2565	5.030

(CONTINUED)

FIRE (NURS)

1305.0

1320.0

1335.0

5.620

5.550

5.550

120.0

(CUNTINUED) HESUDACE STUDY ALL INE UATA CURSTANT HUTE TEST PUMPED WELL - 2056 1 NG - 4 J.Ji Unic - cr. 54442455 ale of Test 19 2 79 TIME (HINS) URANUOAN(M) 12 (1615) URANDUNN (M) 2505.0 5.030 4055.0 5.090 2535.0 5.996 4125.0 5.090 2895.0 5-620 4155.0 5.090 2925.0 5.620 4155.0 5.690 2955.0 5.620 4215.0 5.690 2985.0. 5.620 4245.0 5.690 3015.0 5.62U 5.760 4275.0 3045.0 5.620 4305.0 5.760 3075.0 5.550 +335.0 5.760 3105.0 5.760 +355.0 5.760 3135.0 5.760 5.760 4395.0 3165+0 5.760 4425.0 5.760 3195.0 5.620 4455.0 5.750 3552-0 5.750 4405.0 5.760 3255.0 5.760 4515.0 5.160 3285.0 5.760 4545.0 5.100 3315.0 5.760 4575.0 5.760 3345.0 5.760 4505.0 5.760 3375+0 5.750 4535.0 5.760 3405.0 5.750 4505.0 5.160 3435.0 5.620 4595.0 5.030 3465.0 5-520 4725+0 5.030 3495.0 5.750 4755.0 5.150 3525 · U 5.756 4105.0 5.760 3555.0 5.760 4915.0 5.750 3585.0 5.760 5./50 4445.0 3615.0 5.760 4-175.0 5.100 5.750 3645.0 4905.0 5.100 3675.0 5.760 4935.0 5.150 3705.0 5.160 -955.0 5.530 3735.0 5.620 4995.0 5.030 3765.0 5.760 5025.0 5.030 3795.0 5.160 5055.0 5.750 3825.0 5.760 5085.0 5./00 3855.0 5.750 5115.0 5.530 3885.0 5.520 5145.0 5.030 3915.0 5.090 5175.0 5.030 3945.0 5.590 =205.0 5.900 3975.0 5-040 5235.0 5.900 4005.0 5.690 5205.0 5.030 4035.0 5.440 5295.0 5.700 4065.0 5.090 5325.0 5.900

Maplend Resub-Cr. Study

ALL ITE DATA

CONSTRAT RATE LEST PORPED RELE

PUNPING AT - HOUSE GRID HER. 54442455

DATE OF TEST 19 2 74

LINE (MINS)	DRAWEGSN(M)	(196 (314S)	URA%00₩N(M)
5355.0	5.030	6615.0	5.83U
ວ່ 3ສວິ 🗤 ປ	5•7oü	6645+0	5.900
5415.0	5.970	0675.0	5.900
5445.0	5•8.30	6705.0	5.900
5475.0	5.430	6735+0	5.900
5505.0	5.760	6765.0	5.900
5535+0	5.830	6795.0	5.900
>> 05.0	5-830	6825-0	5.700
5595.0	5.830	0055•J	5.900
5625.0	5.830	0885.0	5.400
5655.0	5.900	6915.0	5.760
5685.0	5+830	6945+0	5.760
5715.0	068.6	6975.0	5.760
5745.0	5+760	7005.0	5.760
5715.0	5.760	7.135.0	5.030
5305.0	5.030	7065.0	5.760
2932.0	5.400	7095•J	5.760
5565.0	5-900	7125.0	5.760
5895.0	5-330	7 <u>1</u> 55.0	5.760
5925.0	5.760	7185.0	5.030
5955.0	5.900	7215+0	5.030
5485.0	5+760	7245.0	5.030
0015.0	5.760	1275.0	5.030
50+h•0	5.750	7345.4	5.030
0315.0	5.760	1:33:0	5.760
0105.0	5-830	7365+0	5.760
0135.0	5-160	7345.0	5./50
0105.0	5.700	7423.0	5.760
6195+U	5+83U	7455+0	5.760
02250	3 +900	7485.0	5.760
6255+0	5+900	7515+0	5.830
62d5+0	5.430	1545.0	5.700
o312•0	5•83V	7575+0	5.760
6345.0	5-830	7505.0	5.760
0375+0	5.330	7635+0	5.760
5405.0	い きょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ	7605.0	5.760
0 + 5 - V	つ・うくび	7693+0	5.030
0400.0	5+d30	7725+0	5.830
0497+0	5+n30	7755+0	5.030
6525-0	5.900	7735+0	5.760
0555+0	5-900	7315.0	5.160
ວ505.0	5.700	7345+0	5.760

(CONTINUED)

ISHD RESCURCE STUDY

ALL INE VAIA

CONSTANT FLIE FEST POMPED WELL

PUMP 196 4 96221 GR10 427. 54442455

LTE OF TEST 19 2 79

FIME (MINS)	DRANUCAN (M)	FIYE(9145)	OKANDÛNN (M)
7875.0	5.760	6535.0	5.900
7905.0	5-830	8505.0	5.630
7935.0	5.830	0.000	5.900
7965.0	5.430	0525.0	5.900
7995.0	5.900	3-55-0	5.900
8025.0 .	5.830	8685+0	5.900
8055.0	5.400	3715.0	5.900
8085.0	5.760	8745.0	5.830
8115.0	5.760	8775.0	5.760
8145.0	5.760	9505.0	5.760
8175.0	5.760	8835.0	5.760
8205.0	5.030	6365+0	5.760
b235.0	5.830	8895+0	5.430
8265.0	5.900	8922.0	5./60
0295.0	5.900	8955+0	5.760
8325.0	5.900	8335・0	5.760
8355 . 0	5.830	9015.0	5.750
8385.0	5+900	9045.0	5.760
8415+0	5.900	4475.0	5.760
8445.0	5.400	5105.0	5./50
8475.V	5.830	9135+0	5.750
8505.0	5.900		

(CONTINUED)

ILUDIANU KESUUKCE STUUR

ALL INC UNTA

CONSTANT HASE TEST PUMPED WELL

JALE OF IEST 27 2 79

PUMPING RATES (MARGINAR) : 1050.0 FROM 0.0 MINS TO 1470.0 MINS

REST WATER LEVEL NOT RECORDED.

•

(IME(MINS)	URAWUUWN (M)	TIME (MINS)	URANDUWN (M)
•5	9.490	150-0	5.690
1 . Ú	0+040	165.0	5.690
1.5	5.620	180.0	5.090
2.0	5.620	195+0	5.090
2.5	5.620	210.0	5.690
3.0	5•650	225.0	5.690
3.5	5.620	240.0	5.690
4 • 0	5.620	255.0	5.760
4.5	5.090	510.0	5.760
5.0	5.690	292•0	5.690
6 ↓ Û	5.690	300.0	5.690
i.0	2-630	315.0	5.090
8.0	5.760	330.0	5.020
9•U	5.760	345•0	5.090
10.0	5.750	350+1	5.090
£1.0	5.690	375+0	5.090
12.0	5-690	390-9	2.040
13.0	2.230	405.0	5.090
1++0	5.700	42J+0	5.690
15.0	5.700	435•J	5.090
10.0	5.760	450.0	5./60
17.0	5.760	465+9	5.150
13.0	5./60	480 . 0	5.760
19+0	5./00	495+0	5.760
20-0	5.760	510.0	5.750
25.0	5.690	525.0	5.760
39.0	5.690	540.0	5.760
35.0	5.690	555-0	5.760
46.0	5.690	57 0 .0	5.750
45.0	5.690	505.0	5.750
50.0	5.690	ភ័មិមិ• 0	5.760
55.0	5.690	515+0	5.760
c:U - U	5.690	630.0	5.750
/S.U	5.090	645•Û	5.750
90+0	5.640	ちゃり・り	5./00
105.0	5.690	615+0	5.760
120.0	5.690	690 <u>+</u> 0	5.760
135.0	5.690	705.1	5.760

(CONTINUED)

ALL THE DATA

CONSTAN = TEST - PUMPED WELL

א טאדקאטיק

JATE OF TEST 27 2 79

0.31 GRID REF. 54442455

FIME (MENS)	DRAWDOWN (M)	THE PRIME	
720.0	5-30	11.5 (MINS)	UKAWDÜWH(M)
735.0	5-760	1110.0	5.760
750.0	5-760	1125-0	5.760
765.0	5-100	1140.0	5.760
780.0	5.760	1155+0	5.760
795.0	5-760	1170.0	5.830
810.0	5-760	1185.0	5.160
825.0	2.760	1200.0	5.760
840.0	5.760	1215.0	5.830
855.0	5.760	1230.0	5.760
870.0	5 760	1245.0	5.760
885.0	5 740	1260.0	5.760
900.0	5 760	1275.0	5.760
915.0	5 74 3	1290.0	5.760
930.0	5 760	1305.0	5.760
945.1	5.76.4	1320.0	5.760
960.0	5 74.0	±335•9	5.760
975.0		1350.0	5.760
990.0		1365.0	5.160
1005.0		i 300.0	5.760
1020.0		1395.0	ΰ£5₊ċ
1035.0		2410.0	5.900
1050.0		1425.0	5.900
1065.0	D+0.30 E 97.5	2441) · J	5.200
1080-0		1455.)	5.760
1095.0	5./60 5./60	1470.0	5./60

RUGDISHC RESOURCE STUDY

ALL THE DATA

CONSTANT RATE FEST - PORPED RELL

FUMPING AL MOUSE GRID REF. 54442455

UATE OF TEST 7 12 79

PUMPING RATES (MPP2/URY) : 1440.0 FROM U.U MINS (U 2490.0 MINS)

REST WATER LEVEL NOT RECORDED.

•

TIME (MINS)	DRANDUNN (M)	TIME (MINS)	UKAWUUWN (M)
• 5	H3 + H Q Ú	225.0	8.900
1+0	6.700	240.0	8.900
1.5	5-000	255.0	8.900
2.0	ម.400	270.0	8.900
2.5	8.500	205.0	8.400
3.0	7.900	300.0	8,900
3+5	ち・200	315.0	8.900
4 • U	3-600	330.0	8.900
4.5	000+6	345.0	8.900
5.0	8+600	360.0	8.900
5.0	13 . 700	375.0	8.900
7.0	8.700	390.0	6.900
5.0	8 • 7 00	405.0	8.900
9 . 0	3.700	420.0	8.900
10.0	8.700	435.0	8.900
±2•0	n.700	450.0	8.900
14.0	8.700	465.0	3.900
16+0	8.700	480.0	5.000
14.0	3.700	495.0	9.000
20.0	es • 700	510.0	9.000
25.0	8.700	525.0	9.000
30.0	o.000	540.0	9.000
35.0	8+900	555.0	9.000
4 ·) • Û	8.800	570.0	9.000
45+0	a•900	585.0	9.000
50.0	N • 90 0	600.0	9.000
55+0	0 0 S + 8	615.0	9.000
60.0	ថ . 800	630.0	9.000
15+0	분 • 영 0 û	645.0	9.000
ラリ・0	d+900	660.0	9.000
105+0	8.800	675.0	9.000
120.0	0.06+8	690.0	9.000
135+0	8.800	795+0	9.000
150-0	d - d 0 0	729.0	9.000
165.0	3.300	735+0	9.000
150.0	8.900	759.0	9.000
195.0	3+400	765.0	9.000
210•∪	8.900	780.0	9.000

C.SHU RESOURCE STUUT

ALL THE DATA

CURSTERN REFERENCEST PUMPED RELL

PUMP145 47 - Howell GRID ACK. 54442455

UATE OF TEST 7 12 74

UPPE (BINS)	ÚMANUU IR (M)	F175(M145)	υκΑωθυμία (Νι)
795+0	9.000	1395.0	9.100
810.0	A•000	1410.0	9.100
825.0	9.900	1425.0	9.100
840.0	9.000	1440.0	9.000
855.0	4.000	14/0.1	100
870.0	9.000	1500.0	A-000
885.0	9.000	1530-0	9.000
900.0	Ƴ+UÜÜ	1560.0	9,100
915.U	֥000	1590.)	9,100
930.0	9 + 00ú	1620.0	9.000
945.0	9-000	1550.0	9,100
960.0	7.000	1530.0	9.100
975.0	֥000-	1710.0	9.100
990.0	ジェクロロ	1740.0	9.100
1005.0	4.000	1779.0	9.100
1020.0	チャリクリ	1300.0	9.100
1035.0	9.000	1330.0	9.100
1050.0	9.000	lool.J	9.100
1065.0	9-000	1350.0	9.100
1080.0	3.030	1920.0	9.100
1095.0	5.000	1.50.0	9.100
1110.0	9.000	1-01.1	3 100 3 100
1125.0	9 • Q Q Q	6110.0	9.100 9.100
1140.0	₩•00u	6.14.1.1	5.300 5.300
1155+0	9.000	2.110.0	9.100
1170.0	4.000	2 j 0 1 . 0	4.190 4.100
1185.0	9.00U	2131.1	V 100
1200.0	み・600	2151.0	9.190
1215.0	··· 000	2190.0	2.100
1230.0	9.000	2220	001•C
1245.0	9.000	2250-0	9•100 Si 160
1260.0	5.000	2230-0	9.100
1275.0	9.000	2310.0	9.100
1290.0	\$•000	23+0-0	9.100 9.100
1305.0	9.000	277.0	9+100 0 100
1320.0	9.000	2400.0	2 ING
1335.0	¥•000	2-30-0	2 100
1350.0	5.000	2464.0	2.100 2.100
1305+0	÷.100	243040	2 TUN
1300.0	~· ±00		F • 1 0 ()

(CONTINUED)

PUDDISHO RESCURCE STUDY

ALL THE UATA

CONSTANT RATE LEST - OBSERVATION WELL

UBSERVED AT MOUTH OKID REF. 54442455 PUMPING AT MOUST ORID REF. 54442455

GATE OF TEST 19 2 79

PUMPING RATES (APP3/UAY) : 1057.0 FROM 0.0 MINS 10 9135.0 MINS

REST WATER LEVEL NOT RECORDED.

(IME (MINS)	URAWUUWN (M)	FIME (MINS)	ÚRAWDÚWN (M)
· č	-019	90.0	.361
• 3	• 099	105.0	.324
•7	• 223	120.0	• 328
1.0	•279	135.0	.335
1.3	• 269	150.0	.339
1.7	• 252	165.0	.345
2.0	• 246	100.0	.349
2.5	•245	195.)	.354
3.0	• 24 5	210.0	.357
3+5	•247	225.0	.362
4 • U	• 251	249.0	.366
4 • Š	• 252	255.0	.367
S.U	• 254	276.0	.370
5.0	· 257	205.0	.372
7.0	-26u	300.0	.375
6 • V	• 263	315.0	.378
9•Ŭ	- 265	33(1+1)	.382
10.0	- 266	345.0	.383
11.0	• 265	350.0	.384
15•0	• 269	315.0	.386
13.0	•270	390.0	•388
į4.U	•571	405+0	.386
15.0	-272	420.0	.386
16.0	• 274	435.0	. 386
17.0	• 275	450.0	.387
18.0	•276	465.0	.387
14•Ŭ	• 277	4H0.0	•389
20.0	• 278	495.0	•389
25.0	• 2 8 1	510.0	.340
30+0	• 285	525+0	.392
35+0	• 286	540.0	. 344
4().0	• 292	555.0	.396
+5+0	• 296	5/0.0	•399
50.0	- 2 - 7 - 7	585+0	.401
55.0	• 301	nuu•0	.403
60.0	- 302	015.0	.406
75.0	• 312	630.0	.406

(CONTINULU)

11540 RESCURCE STUDY

ALL INC VALA

CONSTANT HATE LEST - UBSCHWATION WELL

Unserved Sile Grip act. 54442455

2002116 - YU.3: URID REF. 54442455

	А	i	ċ	0F	ſċsI	19	2	79
--	---	---	---	----	------	----	---	----

TIME (MINS)	URAWLIUWN (M)	1.42 (41NS)	URAXEO WIN (M)
645.0	• 4 0 9	1200.0	996
660.0	• 4 1 1	1275.0	. 397
675.0	• 4] 4	1290.0	100
690.0.	• 415	1305.0	• J 7 7 . 4 N N
705.0	•4ló	1320.0	400
720.0	+ 4 1 9	1335.0	1400
735.0	.420	1350.0	4 D D
750.0	• 422	1365.0	00++ 200
765.U	• 4 25	1340.0	• • • • • • •
780.0	• 4 2 7	1395.0	• 4 0 4
795.0	• 4 2 0	1410.0	+ 4 () 4 A () A
810.0	• 4 2성	1425.0	• 404 4 00
952.0	• 4 3 7	1440.0	• • • • •
840.0	• 4 4 2	1455.0	.407
855.0	• 4.33	1405.0	.409
870.0	د ز 4 .	1545-1	• 4 3 4
985.0	• 4 4 ÿ	1575-0	• 4 C D
900.0	• 4 i Y	1645-0	• 4 6 7
915.0	• 4 5 0	1635.0	• 4 2 4
930.0	• 451	1695.0	• 4 4 [
945.0	• 452	1725.0	• 4 4 9 // L 1
900.0	.454	1755.0	•*DI
975.0	. 45	1/15-0	•+55
990.0	• 4 5 2	15:5-0	•401 360
1005.0	• 4 5 U	104040	- C C + + - C C - 2
1020.0	• 452	1975-0	•4JJ
1035.0	40	10/200	•400
1050.0	• 440	1 4 3 5 . 0	451 451
1055.0	• + 4 Č	1965.0	•*21 /52
1080.0	•438	1995.0	• 4 3 2
1095.0	. 4 3 4	2125.0	•404
1110.0	• 4 3 2	2055.0	رر+. مکن
1125.0	• 4 2 6	202000	• 4) 4
1140.0	•427	2115.0	-+ J1 162
1155.0	•419	2) + 5.4	
1170.0	•410	2175-0	• 4 () 4
1165.0	· • 417	2205-0	● # O つ しん 7
1200.0	• 4] 4	2235-0	• • • • • • •
1215.0	• 4 <u> </u> 4	2265-4	• やつグ - ロビ
1230.0	. + 07	2245-0	•*• > >
1245.0	•4Ú3	フロンス い	• • 6 8
	- ··· -	とうとうもい	• 4 7 6

- UUUDISHU RESUURCE STUDY

ALE THE DATA

CONSTANT MATE TEST - OBSERVATION WELL

DESERVED AT NOWLY GRID REF. 54442456 PUMPING AT NOUST GRID REF. 54442455

UNTE OF TEST 19 2 79

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(IME (MINS)	URANUUNN (M)	TIME (HINS)	URAWDOWN (M)
2305.0.496 3015.0 .489 2415.0 .499 3745.0 .493 2445.0 .497 375.0 .502 2505.0 .496 3705.0 .502 2505.0 .495 3765.0 .512 2565.0 .441 3795.0 .513 2595.0 .462 3425.0 .513 2625.0 .466 3365.0 .513 2625.0 .446 3365.0 .513 2625.0 .446 3365.0 .514 2625.0 .446 3365.0 .514 2675.0 .446 3915.0 .517 2625.0 .446 3915.0 .512 2715.0 .426 492.0 .517 2775.0 .427 4035.0 .447 2605.0 .427 4035.0 .448 2615.0 .427 4035.0 .446 2645.0 .427 4035.0 .446 2645.0 .459 4125.0 .469 2645.0 .459 4125.0 .463 2645.0 .467 4125.0 .463 2795.0 .477 4255.0 .463 2495.0 .477 425.0 .466 3105.0 .499 4395.0 .474 4135.0 .465 4305.0 .466 3105.0 .477 4255.0 .499 2255.0 .478 433.0 .503 3245.0 .477 4035.0 .513 3245.0 .478 4555.0 .514 3405.0 .478 4	2355+0	.497	3505.0	.4BU
2415.0 $.493$ 365.0 $.497$ 2445.0 $.497$ 3675.0 $.502$ 2475.0 $.496$ 3735.0 $.502$ 2505.0 $.496$ 3735.0 $.502$ 2505.0 $.495$ 3765.0 $.513$ 2565.0 $.441$ 3775.0 $.513$ 2625.0 $.462$ 3425.0 $.513$ 2625.0 $.462$ 3425.0 $.513$ 2625.0 $.446$ 3365.0 $.514$ 2625.0 $.446$ 3365.0 $.514$ 2625.0 $.430$ 3975.0 $.514$ 2715.0 $.429$ 3975.0 $.497$ 2715.0 $.429$ 3975.0 $.492$ 2805.0 $.427$ 4935.0 $.492$ 2805.0 $.427$ 4935.0 $.492$ 2805.0 $.427$ 4935.0 $.492$ 2805.0 $.427$ 495.0 $.464$ 265.0 $.430$ 4095.0 $.474$ 265.0 $.435$ 4095.0 $.465$ 275.0 $.472$ 4135.0 $.463$ 245.0 $.472$ 4135.0 $.464$ 3015.0 $.477$ 4275.0 $.466$ 3105.0 $.492$ 435.0 $.492$ 2455.0 $.492$ 4455.0 $.492$ 2455.0 $.492$ 4455.0 $.492$ 3155.0 $.492$ 4455.0 $.492$ 3225.0 $.478$ 4655.0 $.503$ 3145.0 $.477$ 4725.0 $.503$	2305.0	• + 96	3615.9	489
2445.0 $.497$ 3675.0 $.502$ 2475.0 $.496$ 3765.0 $.502$ 2505.0 $.496$ 3745.0 $.509$ 2555.0 $.495$ 3765.0 $.512$ 2565.0 $.461$ 3755.0 $.513$ 2625.0 $.462$ 3425.0 $.513$ 2625.0 $.466$ 3365.0 $.513$ 2625.0 $.466$ 3365.0 $.513$ 2625.0 $.446$ 3365.0 $.513$ 2625.0 $.446$ 3365.0 $.513$ 2625.0 $.426$ $.405.0$ $.514$ 2715.0 $.426$ 4035.0 $.497$ 2775.0 $.427$ 4035.0 $.497$ 2775.0 $.427$ 4035.0 $.486$ 2635.0 $.433$ 4095.0 $.446$ 2635.0 $.433$ 4095.0 $.474$ 2695.0 $.457$ $.4125.0$ $.469$ 2695.0 $.467$ $.4125.0$ $.469$ 2695.0 $.472$ $.4135.0$ $.464$ 2695.0 $.472$ $.4135.0$ $.464$ 3015.0 $.474$ $.425.0$ $.465$ 3105.0 $.490$ $.435.0$ $.474$ 3105.0 $.490$ $.435.0$ $.474$ 3105.0 $.491$ $.425.0$ $.492$ 3255.0 $.492$ $.465.0$ $.503$ 3125.0 $.466$ $.4515.0$ $.503$ 3245.0 $.466$ $.465.0$ $.514$ 31495.0 $.476$ $.465.0$ $.5$	2415.0	• 4 9 9	3645.0	.493
2475.0 496 3705.0 502 2505.0 496 3735.0 509 2505.0 4461 3795.0 512 2565.0 4461 3795.0 513 2595.0 4462 3425.0 513 2655.0 4466 3365.0 513 2655.0 4466 3365.0 513 2655.0 4466 3365.0 514 2665.0 4466 3365.0 514 2665.0 4466 3975.0 513 2657.0 4466 3975.0 497 2775.0 427 405.0 492 2805.0 4427 405.0 492 2805.0 4430 405.0 4466 2655.0 4430 405.0 466 2655.0 4430 405.0 466 2655.0 4472 4135.0 463 2695.0 4772 4135.0 463 2675.0 477 4275.0 463 3015.0 490 435.0 466 3105.0 490 435.0 476 3105.0 490 4395.0 476 3105.0 492 4455.0 492 2255.0 493 4465.0 503 3145.0 467 455.0 503 3245.0 467 455.0 514 3145.0 477 4635.0 514 3495.0 477 4635.0 514 3495.0 477 46	2445.0	• 4 9 7	3675.0	.502
2505.0 496 3735.0 509 2535.0 495 3765.0 512 2565.0 461 3795.0 513 2525.0 456 3425.0 513 2625.0 456 3365.0 514 2635.0 446 3365.0 514 2635.0 446 3365.0 514 2635.0 446 3365.0 514 2635.0 446 3365.0 514 2635.0 446 3945.0 514 2635.0 4420 3975.0 497 2175.0 4220 4005.0 492 2805.0 427 4035.0 492 2805.0 427 4035.0 486 265.0 4430 405.0 472 2805.0 4430 405.0 474 2695.0 459 4125.0 463 2695.0 472 4195.0 463 2695.0 472 4195.0 463 2795.0 472 4195.0 463 2795.0 477 4275.0 463 2795.0 497 425.0 496 3105.0 497 4395.0 474 4135.0 469 4305.0 497 3105.0 499 4355.0 497 3105.0 499 4355.0 497 3105.0 492 4455.0 497 3145.0 493 4465.0 503 3245.0 486 4515.0 </td <td>2475.0</td> <td>• 4 96</td> <td>3705.0</td> <td>.502</td>	2475.0	• 4 96	3705.0	.502
2535.0 $.495$ 3765.0 $.512$ 2565.0 $.461$ 3795.3 $.513$ 2595.0 $.462$ 3425.0 $.513$ 2625.0 $.4466$ 3365.0 $.513$ 2655.0 $.4466$ 3365.0 $.514$ 2665.0 $.4466$ 3365.0 $.514$ 2665.0 $.4466$ 3365.0 $.514$ 2665.0 $.4466$ 3365.0 $.514$ 2765.0 $.426$ 4035.0 $.497$ 2775.0 $.427$ 4035.0 $.492$ 2805.0 $.427$ 4035.0 $.492$ 2805.0 $.427$ 4035.0 $.466$ 2635.0 $.433$ 4055.0 $.466$ 2635.0 $.435$ 4945.0 $.474$ 2695.0 $.4672$ 4135.0 $.463$ 2455.0 $.472$ 4135.0 $.463$ 2457.0 $.472$ 4135.0 $.463$ 3075.0 $.472$ 4135.0 $.463$ 3075.0 $.472$ 4135.0 $.464$ 3075.0 $.477$ 4275.1 $.466$ 3105.0 $.490$ 4395.0 $.474$ 4135.0 $.4867$ 4305.0 $.492$ 3255.0 $.492$ 4425.0 $.492$ 3255.0 $.492$ 4425.0 $.909$ 3245.0 $.492$ 4425.0 $.503$ 3245.0 $.476$ $.477$ $.635.0$ $.514$ 3405.0 $.477$ $.476$ $.503$ 3245.0 $.476$ $.477$	2505.0	• 4 9 6	3735.0	509
2665.0.4d1 3795.0 .513 2595.0 .462 3225.0 .513 2625.0 .456 3365.0 .514 2655.0 .446 3365.0 .514 2665.0 .436.345.0.514 2775.0 .436.345.0.497 2775.0 .426.405.0.492 2805.0 .427.405.0.492 2805.0 .425.405.0.492 2805.0 .425.405.0.463 2655.0 .435.495.0.474 2695.0 .459.4125.0.469 2465.0 .459.425.0.469 2465.0 .472.4135.0.463 2495.0 .472.4135.0.463 2495.0 .472.4135.0.464 3015.0 .473.425.0.464 3075.0 .474.435.0.466 3075.0 .477.4275.0.466 3075.0 .490.435.0.446 3105.0 .491.425.0.492 3255.0 .492.465.0.503 3245.0 .492.465.0.504 315.0 .477.465.0.504 3145.0 .466.505.0.504 3255.0 .478.465.0.504 3255.0 .478.465.0.504 3495.0 .477.465.0.504 3495.0 .470.500.514 3495.0 .470.500.514 3495.0 <td>2535.0</td> <td>• 4 9 5</td> <td>3765.0</td> <td>.512</td>	2535.0	• 4 9 5	3765.0	.512
2595.0 $.462$ 3425.0 $.513$ 2625.0 $.456$ 3355.0 $.513$ 2655.0 $.446$ 3365.0 $.514$ 2655.0 $.446$ 3365.0 $.514$ 2655.0 $.436$ $.3415.0$ $.514$ 2715.0 $.436$ $.3945.0$ $.497$ 2775.0 $.427$ 4050.0 $.497$ 2775.0 $.427$ 405.0 $.497$ 2805.0 $.427$ 4015.0 $.492$ 2805.0 $.427$ 4015.0 $.486$ 2635.0 $.435$ 4995.0 $.474$ 2645.0 $.459$ $.4125.0$ $.464$ 2655.0 $.472$ 4105.0 $.463$ 2755.0 $.472$ 4105.0 $.463$ 2755.0 $.477$ $.4275.0$ $.464$ 3015.0 $.477$ $.4275.0$ $.464$ 3075.0 $.477$ $.4275.0$ $.466$ 3075.0 $.477$ $.4275.0$ $.466$ 3105.0 $.490$ $.335.0$ $.474$ 4135.0 $.489$ $.465.0$ $.466$ 3105.0 $.491$ $.425.0$ $.492$ 225.0 $.493$ $.465.0$ $.503$ 225.0 $.493$ $.465.0$ $.503$ 225.0 $.474$ $.476$ $.507$ 3145.0 $.474$ $.475.0$ $.514$ 3175.0 $.476$ $.465.0$ $.514$ 345.0 $.474$ $.476$ $.503$ $.499.0$ $.477$ $.425.0$ $.503$	2565.0	•481	1795.0	.513
2625.0.456 3355.0 .513 2655.0 .4466 3365.0 .514 2655.0 .4466 3945.0 .514 2715.0 .436.3945.0.505 2745.0 .427.405.0.497 2175.0 .426.4005.0.497 2175.0 .426.4035.0.497 2175.0 .426.4035.0.497 2175.0 .426.4035.0.492 2895.0 .435.4045.0.469 2655.0 .435.4045.0.469 2425.0 .459.4125.0.465 2495.0 .457.4135.0.463 2495.0 .472.4135.0.463 2495.0 .472.4135.0.463 2495.0 .472.4135.0.463 3075.0 .474.425.0.464 3075.0 .477.4275.0.466 3075.0 .490.4395.0.446 3105.0 .491.425.0.446 3105.0 .491.425.0.497 3255.0 .493.4485.0.503 3245.0 .466.503.503 3245.0 .462.4575.0.514 3375.0 .470.460.503 3245.0 .470.470.503 3245.0 .470.503.503 3245.0 .470.503.503 3245.0 .470.503.503 3245.0 .470.503.503 3445.0 <	2595.0	• 462	3425.0	.513
2055.0.4466 3365.0 .514 2065.0 .4300.4915.0.514 2715.0 .420.420 2775.0 .420.4005.0 2775.0 .420 2605.0 .420 2775.0 .420 4005.0 .492 2805.0 .420 4005.0 .492 2805.0 .420 4005.0 .492 2805.0 .420 4005.0 .492 2805.0 .435 4005.0 .469 2425.0 .459 4125.0 .469 2425.0 .457 4125.0 .463 2475.0 .472 4155.0 .463 2475.0 .472 4155.0 .463 3015.0 .474 3105.0 .490 435.0 .466 3105.0 .490 435.0 .466 3105.0 .491 425.0 .492 3255.0 .493 4465.0 .499 3255.0 .493 4465.0 .503 3285.0 .466 4515.0 .503 3285.0 .466 4515.0 .503 3285.0 .477 465.0 .503 3285.0 .470 470 .514 3405.0 .477 475.0 .514 345.0 .470 470 .470 470 .503 3285.0 .470 470 .503 3450.0	2625.0	• 4 5 ô	3355.0	.513
2665.0.436 3915.0 .514 2715.0 .436 3945.0 .505 2745.0 .429 3975.0 .497 2775.0 .42640.50.492 2805.0 .42740.35.0.486 2635.0 .43040.50.480 2665.0 .43540.450.461 265.0 .4594125.0.469 2425.0 .4594125.0.463 2455.0 .47241.05.0.463 2455.0 .47241.05.0.463 2475.0 .4734245.0.464 3015.0 .474435.0.466 3075.0 .4774275.0.466 3075.0 .474435.0.474 4135.0 .4864305.0.476 3105.0 .4904395.0.476 3105.0 .4914425.0.499 3255.0 .4934465.0.699 3255.0 .4934465.0.699 3255.0 .4934465.0.699 3255.0 .4934465.0.503 3255.0 .4624575.0.514 3315.0 .4624575.0.514 345.0 .4774635.0.514 345.0 .4774635.0.514 345.0 .4774635.0.514 345.0 .4774635.0.514 345.0 .4774635.0.514 345.0 .476.470.503 345.0 .476 <td>2055.0</td> <td>• 4 4 67</td> <td>3865.0</td> <td>.514</td>	2055.0	• 4 4 67	3865.0	.514
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2005.0	• 436	3915.0	.514
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2715+0	• 4 3 0	3945.0	-505
2775.0 426 4035.0 4492 2305.0 427 4035.0 4492 2305.0 433 4035.0 4485 2635.0 435 4095.0 4461 2665.0 435 4095.0 474 2695.0 4459 4125.0 469 2925.0 467 4125.0 463 2975.0 472 4135.0 463 2975.0 472 4135.0 463 2975.0 472 4135.0 463 3015.0 472 4135.0 463 3015.0 477 425.0 466 3075.0 477 425.0 446 3105.0 490 4335.0 474 3195.0 4490 4335.0 446 3105.0 490 4395.0 492 3225.0 4492 4455.0 492 3225.0 493 4485.0 503 3255.0 466 4515.0 503 3245.0 466 4515.0 509 3315.0 477 4635.0 514 3405.0 477 4635.0 514 3405.0 477 4635.0 514 3405.0 477 4635.0 513 3495.0 477 4635.0 513 3495.0 477 4635.0 514 3405.0 477 4635.0 513 3495.0 477 4635.0 513 3495.0 477 4635	2745.0	• 429	3975.4	- 497
2805.0 $.427$ 4035.0 486 2635.0 $.430$ 4055.0 $.480$ 265.0 $.435$ 4095.0 $.474$ 2695.0 $.459$ 4125.0 $.469$ 2425.0 $.467$ 4125.0 $.462$ 2455.0 $.472$ 4135.0 $.463$ 2455.0 $.472$ 4135.0 $.463$ 2455.0 $.472$ 4215.0 $.463$ 2455.0 $.472$ 4215.0 $.463$ 3015.0 $.472$ 4215.0 $.464$ 3045.0 $.474$ 4275.0 $.466$ 3075.0 $.474$ 4305.0 $.468$ 3105.0 $.490$ 4395.0 $.474$ 3135.0 $.490$ 4395.0 $.463$ 3105.0 $.490$ 4395.0 $.492$ 3225.0 $.492$ 4425.0 $.492$ 3225.0 $.492$ 4435.0 $.503$ 3245.0 $.463$ $.550$ $.503$ 3245.0 $.477$ 4635.0 $.514$ 3405.0 $.477$ 4635.0 $.514$ 3405.0 $.477$ 4635.0 $.514$ 3405.0 $.477$ 4635.0 $.514$ 3405.0 $.476$ 4695.0 $.513$ 3495.0 $.476$ 4695.0 $.503$ 3245.0 $.477$ 4635.0 $.514$ 3405.0 $.476$ $.476$ $.4785.0$ 3495.0 $.476$ $.476$ $.4785.0$ 3555.0 $.478$ $.478$ $.4785.0$ <td>2775.0</td> <td>. 425</td> <td>4005.0</td> <td>. 492</td>	2775.0	. 425	4005.0	. 492
2635.0 430 405.0 460 265.0 435 4045.0 474 2695.0 459 4125.0 469 2425.0 467 4155.0 469 2425.0 472 4135.0 463 245.0 472 4135.0 463 245.0 472 4135.0 463 245.0 472 4135.0 463 245.0 477 4275.0 463 3015.0 477 4275.0 466 3075.0 489 4305.0 474 3135.0 489 4305.0 474 3135.0 490 4395.0 437 3165.0 490 4395.0 437 315.0 492 4455.0 492 3255.0 492 4455.0 503 3285.0 466 4515.0 509 315.0 4462 4575.0 514 3375.0 477 4635.0 514 3495.0 477 4635.0 514 3495.0 477 4635.0 514 3495.0 477 4635.0 514 3495.0 477 4635.0 503 3495.0 476 4695.0 503 3495.0 476 4695.0 503 3495.0 476 4795.0 500 3525.0 478 4785.0 500 3555.0 478 4785.0 500 3555.0 478 4785.0	2305.0	. 427	4035.0	. 485
2685.0 435 4045.0 474 2695.0 459 4125.0 469 2425.0 4672 4155.0 463 2425.0 472 4155.0 463 2455.0 472 415.0 463 2455.0 472 415.0 463 2455.0 472 425.0 464 3015.0 473 425.0 466 3075.0 477 4275.0 466 3075.0 490 435.0 474 3105.0 490 435.0 474 315.0 490 435.0 474 315.0 492 425.0 492 3225.0 492 455.0 499 3255.0 466 515.0 503 3245.0 467 465.0 514 345.0 477 4635.0 514 345.0 477 4635.0 514 345.0 477 4635.0 514 345.0 477 4635.0 514 3495.0 477 4635.0 514 3495.0 477 4635.0 514 3495.0 477 4725.0 503 3495.0 477 4725.0 503 3495.0 478 4795.0 500 3525.0 478 4785.0 500 3555.0 478 4785.0 500	2035.0	•430	4055.0	- 4 A U
2695.0 $.459$ 4125.0 $.469$ 2925.0 $.457$ 4195.0 $.463$ 2955.0 $.472$ 4195.0 $.463$ 2955.0 $.472$ 4195.0 $.463$ 2955.0 $.472$ 4215.0 $.463$ 3015.0 $.473$ 4245.0 $.464$ 3075.0 $.474$ 4305.0 $.464$ 3105.0 $.474$ 4305.0 $.474$ 4135.0 $.485$ 4305.0 $.474$ 4135.0 $.486$ 4305.0 $.474$ 4135.0 $.486$ 4305.0 $.474$ 3165.0 $.490$ 4395.0 $.437$ 3195.0 $.491$ 4425.0 $.492$ 3225.0 $.492$ 4455.0 $.503$ 3245.0 $.466$ 4515.0 $.504$ 3345.0 $.477$ 4635.0 $.514$ 3405.0 $.477$ 4635.0 $.514$ 345.0 $.477$ 4635.0 $.514$ 345.0 $.477$ 4635.0 $.514$ 3495.0 $.477$ 4635.0 $.514$ 3495.0 $.477$ 4635.0 $.503$ 3495.0 $.476$ $.495.0$ $.503$ 3495.0 $.478$ $.478$ $.502$ 3525.0 $.478$ $.478$ $.4795.0$ $.478$ $.478$ $.4785.0$ $.500$ $.3525.0$ $.478$ $.478$ $.4795.0$ $.478$ $.478$ $.4785.0$ $.498$	くらかり・1)	• 4 35	4945.0	. 474
2425.0 $.467/$ 4155.0 $.465$ 2455.0 $.472$ 4135.0 $.463$ 245.0 $.472$ 425.0 $.463$ 3015.0 $.473$ 4245.0 $.464$ 3045.0 $.477$ 4275.0 $.466$ 3075.0 $.484$ 4305.0 $.458$ 3105.0 $.490$ 4335.0 $.474$ 4135.0 $.489$ 4305.0 $.474$ 4135.0 $.490$ 4335.0 $.474$ 3105.0 $.490$ 4395.0 $.474$ 315.0 $.490$ 4395.0 $.492$ 3255.0 $.492$ 4455.0 $.499$ 3255.0 $.493$ 4485.0 $.503$ 3245.0 $.466$ $.515.0$ $.504$ 315.0 $.462$ 4575.0 $.514$ 3375.0 $.476$ 4605.0 $.514$ 345.0 $.477$ $.635.0$ $.514$ 345.0 $.477$ $.635.0$ $.514$ 3495.0 $.477$ $.502$ $.503$ 3495.0 $.477$ $.502$ $.503$ 3495.0 $.476$ $.695.0$ $.513$ 3495.0 $.476$ $.695.0$ $.503$ 3495.0 $.476$ $.503$ $.500$ 3495.0 $.476$ $.503$ $.500$ 3525.0 $.478$ $.4785.0$ $.500$ 3525.0 $.478$ $.4785.0$ $.500$ 3525.0 $.478$ $.4785.0$ $.500$ 3555.0 $.478$ $.4785.0$ $.500$ </td <td>2045.0</td> <td>. 459</td> <td>4125.0</td> <td>469</td>	2045.0	. 459	4125.0	469
2955.0 472 4135.0 463 2955.0 $+72$ 4215.0 $+64$ 3015.0 $+73$ 4245.0 $+64$ 3045.0 $+473$ 4245.0 $+464$ 3045.0 $+477$ 4275.0 $+466$ 3075.0 $+854$ 4305.0 $+466$ 3105.0 $+490$ $+335.0$ $+474$ 3135.0 $+489$ 4305.0 $+436$ 3105.0 $+490$ 4395.0 $+437$ 3145.0 $+492$ 4455.0 $+492$ 3225.0 $+492$ 4455.0 -503 3285.0 $+66$ $+515.0$ 503 3285.0 $+463$ $+545.0$ -504 3345.0 $+478$ 4575.0 -514 345.0 -477 4635.0 -514 345.0 -477 4635.0 -514 3495.0 -477 4635.0 -513 3495.0 -477 4635.0 -513 3495.0 -477 4725.0 -502 3525.0 -478 4795.0 -500 3495.0 -478 4795.0 -502 3525.0 -478 4795.0 -502 3525.0 -478 4795.0 -502 3525.0 -478 4795.0 -502 3525.0 -478 4795.0 -502 3525.0 -478 4795.0 -502 3525.0 -478 4795.0 -502 3525.0 -478 4795.0 -502 <tr< td=""><td>2525.0</td><td>. 45/</td><td>4155.0</td><td>. 465</td></tr<>	2525.0	. 45/	4155.0	. 465
295.0 $+72$ 4215.0 $+64$ 3015.0 $+73$ 4245.0 $+64$ 3045.0 $+473$ 4245.0 $+64$ 3045.0 $+477$ 4275.0 $+66$ 3075.0 $+484$ 4305.0 $+468$ 3105.0 -490 4335.0 $+474$ 4135.0 $+489$ 4305.0 $+436$ 3105.0 -490 4395.0 $+437$ 3195.0 -490 4395.0 $+437$ 3195.0 -492 4455.0 -499 3255.0 -492 4455.0 503 3285.0 -466 4515.0 509 3315.0 -466 4575.0 514 3375.0 -478 4635.0 514 3495.0 -477 4635.0 514 3495.0 -478 4095.0 503 3495.0 -478 4095.0 503 3495.0 -478 4575.0 514 3495.0 -478 4575.0 503 3495.0 -478 4575.0 503 3495.0 -478 4575.0 503 3495.0 -478 4595.0 503 3495.0 -478 4795.0 500 3525.0 -478 4795.0 500 3555.0 -478 4795.0 500	2755.0	. 472	41.45.0	.463
3015.0 473 425.0 464 3045.0 477 4275.0 466 3075.0 484 4305.0 458 3105.0 490 4335.0 474 4135.0 4859 4305.0 474 3135.0 4869 4305.0 474 315.0 490 4395.0 436 3105.0 490 4395.0 437 315.0 491 4425.0 492 3255.0 492 4455.0 503 3285.0 486 4515.0 509 3315.0 486 4515.0 509 3315.0 482 455.0 504 3375.0 477 4635.0 514 3405.0 477 4635.0 514 3495.0 477 4635.0 503 3495.0 477 4635.0 503 3495.0 477 4635.0 503 3495.0 477 4635.0 503 3495.0 477 475.0 502 3525.0 478 4795.0 500 3525.0 478 4795.0 500 3555.0 478 4785.0 500	2505+0	• + 12	4215.0	
3045.0 477 4275.0 466 3075.0 484 4305.0 468 3105.0 490 4335.0 474 4135.0 489 4305.0 474 315.0 489 4305.0 446 3105.0 490 4395.0 446 3105.0 490 4395.0 446 3105.0 491 4425.0 492 3225.0 492 4455.0 503 3255.0 466 4515.0 509 3315.0 466 4575.0 509 3345.0 478 4605.0 514 3405.0 477 4635.0 514 3405.0 477 4635.0 514 3405.0 476 4695.0 503 3495.0 476 4695.0 503 3495.0 477 4635.0 503 3495.0 477 4725.0 503 3495.0 477 4725.0 503 3495.0 478 4795.0 500 3525.0 478 4795.0 500 3525.0 478 4795.0 500 3555.0 478 4795.0 500 3555.0 478 4795.0 498	3015.0	.473	4245.0	454
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3045.0	• 477	4275.0	466
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3075.0	- 4 3 4	4305.0	458
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3105.0	• 490	4335.0	. 474
3105.0 $.490$ 4395.0 $.487$ 3195.0 $.491$ 4425.0 $.492$ 3225.0 $.492$ 4455.0 $.499$ 3255.0 $.493$ 4485.0 $.503$ 3255.0 $.493$ 4485.0 $.503$ 3255.0 $.466$ $.515.0$ $.503$ 3255.0 $.466$ $.515.0$ $.509$ 3315.0 $.466$ $.515.0$ $.509$ 3345.0 $.482$ 4575.0 $.514$ 3375.0 $.476$ 4605.0 $.514$ 3405.0 $.477$ 4635.0 $.514$ 3405.0 $.476$ 4695.0 $.503$ 3495.0 $.476$ 4695.0 $.503$ 3495.0 $.476$ $.478.0$ $.500$ 3525.0 $.478$ 4795.0 $.500$ 3555.0 $.478$ 4795.0 $.498$	3135+0	• 4 8 9	4365.0	436
3195.0 $.491$ 4425.0 $.492$ 3225.0 $.493$ 4435.0 $.499$ 3255.0 $.493$ 4435.0 $.503$ 3255.0 $.466$ 4515.0 $.509$ 3315.0 $.466$ 4515.0 $.509$ 3345.0 $.462$ 4575.0 $.514$ 3375.0 $.482$ 4575.0 $.514$ 3375.0 $.470$ $.4635.0$ $.514$ 3405.0 $.477$ 4635.0 $.513$ 3405.0 $.476$ $.4695.0$ $.513$ 3495.0 $.477$ $.4725.0$ $.503$ 3495.0 $.477$ $.4725.0$ $.502$ 3525.0 $.478$ $.4795.0$ $.500$ 3555.0 $.478$ $.4785.0$ $.500$	3105+0	• → 9 U	4395.0	.457
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3195.0	• 4 9 1	4425.0	.492
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3225+0	• 492	4455-0	499
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3255.U	. 4 9 3	4485.0	.503
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3285.0	• 486	4515.0	.509
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3315.0	. 4133	4545.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3345.Ú	• 4 H 2	4575.0	.514
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3375.0	.410	4605:0	- 5) 4
3435.0 .478 4605.0 .513 3405.0 .476 4605.0 .503 3495.0 .476 4725.0 .502 3525.0 .478 4795.0 .500 3555.0 .478 4785.0 .498	3405.0	. 477	4635.0	.514
3405.0 .476 4695.0 .503 3495.0 .477 4725.0 .502 3525.0 .478 4795.0 .500 3555.0 .478 4785.0 .498	3435.0	- 478	4603.0	.514
3495.0 .477 4725.0 .502 3525.0 .478 4795.0 .500 3555.0 .478 4785.0 .498	3405.0	• 476	4695.0	-503
3525.0 .478 4795.0 .500 3555.0 .478 4795.0 .498	3445.0	• 4 7 7	4725.0	.502
3555.0 .478 4785.0 .498	3525.0	- 478	4795.0	.500
	j <u>5</u> 55.0	- 4703	4785.0	.498

(COMILANED)

UISHO RESOURCE STUDY

ALL INE UATA

CONSTANT RATE JEST - DOSERVATION WELL

PUMP106 - Noull ORID MER. 54442455

- E OF 1251 19 2 79

TIME (MINS)	URANUUNN (M)	TIME (MINS)	URAWDUWN(M)
4815.0	-501	6045.0	.519
4845.0	•501	075.0	-521
4875.0	• 4 7 9	6105.0	.521
4905+0	•50v	0135.0	.519
4935.0	•503	6165.0	519
4965+0	•506	6195.0	.520
4995+0	•509	6225.0	.522
5025.0	•508	6255.0	-516
5055.0	•51v	6285.0	.516
5085.0	•516	0315.0	.516
5115.0	•529	6345•0	.513
5145.0	• 5 34	63/5-0	.514
5175.0	•536	5465.0	.511
5205.0	•539	6435.0	
5235.0	• 5 4 4	6405.0	.526
5265.0	•549	5495.0	. 523
5295.0	• <u>5</u> 4 4	525.0	.534
5325.0	• 54 b	3555 . 0	•⊃∪+ Sait
5355.0	· 542	2705.0	• J = J
5385.0	•534	<u> </u>	544 544
5415.0	• 529	0 • 6 + 6 -	- 552 - 552
5445.0	• 524	4.47.04	• 5 5 £
5475.0	•519	5705.0	.554
5505.0	•511	57.15.0	•
5535.0	•507	5765.0	• • • • •
5565.0	•501	6795.0	- 549
5595.0	. 494	6725.0	. 744
5625.0	• 491	5355.0	• . 5 3 4
5655.0	.491	5485-0	.534
5635.0	• 4 9 6	6915.0	.527
5715.0	.496	0945.0	.522
5745.0	• 4 9 7	5775.0	.520
5775.0	•501	7 0 0 5 . 0	-514
5805.0	.502	7, 35, 3	-512
5035.0	.507	1005.0	
5865.0	•503	7:95.0	
5895.0	•513	7:25.0	
5925.0	• 514	7155.0	.512
5955.0	•519	7135.3	• • • • • • •
5985.0	•514	7215.0	-524
5015.0	•519	7245.0	
			• 26 2

(CONTINUED)

WUISHU RESOUNCE STUDY

ALE THE DATA

CONSTANT MALE TEST - OBSEMVATION WELL

UDSERVED AT MULTE SHID FER. 54442450

нин ийнэ окир нёг. 54442455

UPIE	υF	TEST	19	2 79
				- · ·

FINE (MINS)	URANUUNITAN	There has the total	
1213.0	-527		URAWDOWN (M)
7305.0	-521 -520	8235-0	•555
7335.0	• J Z 3 5 3 3	d265•0	•557
7365.0	- J J J J 	95420	•553
7325.0	• J 3 7 6 7 1	6.425£6	•544
7425.0	• J 4 1 • A	8355•0	• 543
7455.0	•] 4 4 C , /	8382•0	•553
1405-0	•] 4 4	3-15-0	•532
7515-0	• D 4 0	と 45・0	.534
/545.0	• D4 0 6 4 7	3475.0	•533
7575 0	• 54 /	8505.0	• 524
757540 7605 0	• 54 4	4535.0	.519
1000-0	• 539	3555.0	.522
7645 0	• 542	8595 . 0	.524
	• 526	6525.0	.529
7715	• 529	8 55.0	-532
11-5-0	• 530	d605.0	.534
「インウォリー	- 528	8715.0	.540
「「ひつ+U ノス・C	• 529	d745.0	.544
1012-0	- 520	3775.0	. 5 3 4
1040.0	•532	8705.0	. 524
10/5.0	• 5 3 2	4:35.1	.524
	•520	3-05.0	.534
7935.0	-530	3-75.0	.550
(435.0	• 549	3925.1	
7945.0	• 55 4	0.75.0	-557
5025.0	• 556	3985.0	
rv55+0	• 557	9015.0	• J J I 55/
8035 . 0	•561	5045.0	•JJ4 554
6115-0	• 562	5075-0	•J04 €04
3145.0	• 559	9105-0	+320 635
3175.0	• 562	9135-0	-032
0205.0	• 556	×100+0	• 7 6 0

UN (INCED)

PUMPING RAIES (M**3/DAY) : 1056.0 FRUM 0.0 MINS TO 1470.0 MINS

REST WATER LEVEL NOT RECORDED

TIME (MINS)	URAWDUWN (M)	FIME (MINS)	URAWDÜWN (M)
•2	.027	90.0	.286
• 3	•120	105.0	.287
•7	•221	120.0	.289
1.0	•274	135.0	.289
1.3	• 267	150.0	.290
1.7	-251	165.0	ن ڊ خ
5.0	.244	100.0	.290
2.5	.244	195.0	.290
3.0	• 246	210.0	• ਟ ਤੇ ਤ
3.5	. 249	225.0	.288
4 • U	•251	24(1.)	.237
4.5	•252	255+0	-288
5 •0	• 255	270.0	•539
6.0	•258	285.0	.289
70	+20V	300.0	.287
રો . ∪	• 5 9 5	315+0	.289
9.0	• 565	330.0	.294
10.0	•260	345.0	.295
11.0	.267	360.0	.296
12.0	•268	375+0	.298
13.0	•269	390.0	.299
14.0	•269	405.0	.300
15.0	.270	420.0	• <u>30</u> 4
16.0	.270	435.0	.308
17.0	.271	450.0	.312
18.0	+271	465.0	.315
19.ປ	+271	-80.0	.319
20.0	•272	495.0	.321
25.Ŭ	+272	510.0	.321
30.0	• 275	525.0	• 255 •
35+0	•217	54.1.0	.326
40.Ŭ	•278	555+0	.327
45.0	-279	570.0	.324
50.0	-28U	532.0	.321
55.0	•281	600 · U	.325
50.0	-281	615.0	•330
75.0	•283	630.0	•339

(CONTINUED)

WUISHO RESCONCE STOOR

ALL FAL DATA

CONSTANT RELÉ LEST OBSÉRVATION WELL

	ΥΡΡΕΥΧΕ Ω ΑΙ	いしょうり うくいう そん	F. 54442456
	PURPLAG A1	MOVET ORID RE	F. 54442455
		wale or test	21 2 74
FIME (MIDS)	URANDUWN (M)	funt (ntas)	1100.0000000000000000000000000000000000
6+5+U	• 34 0	1060-0	
660.0	• 342	1000.0	0/5. 375
675+0	• 346	1.195.0	• J () 276
ちろ0・0	• 347	1110 0	• 370
705.0	• 348	1124 0	516.
720.0	• 354	1140 0	•377
735+0	• 359	1140.0	• 384
750.0	• 359	1155+0	-382
705.0	• 363	1142 0	• 303
780.0	• 364	1107+0	186.
795.0	• 363		• 380
910°0	• 367	1213+0	.387
325.U	• 357	1230.0	• 388
840.0	. 371	1240.0	• 394
455.0	. 371		. 597
d70.0	.372	1275.0	• 399
d35.0	- 359	1290.0	•404
900.0	. 371	1,100.0	.405
915.0	. 370	1363-1	• • Û 8
930.0	- 369	1310+9	•409
745.0		1350.3	•413
5cu.v	- 101	1305.0	• 4] 4
975.0	• 3(1)	1300.0	• • 1 4
940.0	• 37 L	1345.0	•4l7
1005.0	- 375	1+10.0	+416
1020.0	د، د. د ۲ ډ	1423.0	.417
1030.0	+ J / J 17 D	1440.0	•416
1050.0	+ J F C 3 7 1	1455.0	.416
	• 2 / 1	14/J•()	.416

PUMPING RATES (#**3/05Y) : 1440.0 FRUM 0.0 MINS TO 2490.0 MIRS

REST WATER LEVEL NUT RECORDED

TIME (MINS)	DRAWD(IWN (M)	TIME (MINS)	URAWDOWIT(M)
• 5	• <u>1</u> 4 4	210.0	. 4 9 3
1.0	•218	225.0	.497
1.5	•214	240.0	.499
2.0	•237	255.0	.505
2.5	- 302	270.0	.506
3.0	- 337	285.0	•510
3.5	.347	300+0	.516
4.0	• 360	315.0	.523
4.5	.370	330.0	.525
5.0	•387	345.)	.529
6.0	• 3 7 8	350.0	.535
7.0	• 4 UO	375.0	• 5 4 2
9.D	- 4 U S	370.0	.535
9.0	• 4] 4	40 5 +0	• <u>5</u> 4 4
10.0	.410	4 Z U . ()	.553
15.0	• 4 2 1	a 35. ŭ	
14.0	• 4 2 5	ふうの。 り	£0¢.
10.0	•428	+c⊃•0	• 50č
18.0	+ 4 <u>3</u> U	ન ૯ છે - છે	.571
51.0	• 4 3 4	・・ うつ・ り	.516
25.0	• 4 36	510.0	.575
30.0	• 4 3 9	525+0	- 544
35.0	• 4 4 3	540+0	.546
40.0	• 4 4 5	55 5 •0	•245 •
45.0	• 4 4 7	570.0	595.
50.0	• 4 4 d	505.0	.594
55+0	ۍ مه لو ^ر با	500·0	•246
60.U	• 472	515+1	.597
75.0	•÷50	530. 0	• 0 ·) i
90.0	• 4 0 D	(· • C • r	•095
105.0	· + / 12	5 U • U	.005
120.0	•+75	÷/5.1	.506
135.0	•47ó	594.3	.005
150.0	-48U	705.0	.oüd
105.0	• 4 8 5	72 0 .0	• ចង់ខ្
180.0	• 437	735.0	.p]]
195.0	- 4 -) ij	750.)	.010

11540 RESOURCE STUDY

ALL INE DATA

CONSTANT RATE TEST - OBSERVATION WELL

	UBSERVED	4 I	10.1-	ari (⊬Ēr.	54442450
	P (1) (2 - 1) (3	<i>i</i>)	115-20 i	ᠳ᠋ᠵᠣ	rtř.	54442455
			va E č	ur (c	ST	7 12 15
FINE (MINS)	DRAJOUNIN (M)		Ti∀c(414S)		
705.0	.519		1	380.0		.671
180.0	- 3 (1 - 2		1	145.0		.679
745.0	• b () b		-	410.0		.075
810.0	- 596		1	425.0		.076
おくちょり	- 505		1	44.1.1)		.676
840.0	. 606		-	4/U.0		.070
855.0	- 506		1	500.0		.669
870.0	- 506			534.4		- 66B
885.0			1	554.0 		. 664
900.0	- BILY			590.0		.663
915 0	- 649		1	624 0		. 661
91.0-0	-007		1	534.3		.001
945 N	-011		4 	50000 650 0		- 65 J
949.0 960 D	•011 515		1	71 - 3		.000
900+0 175 h	• 0 1 0 6 2 1		1	76 - 3		+005 665
0.000 1000	• 521		1	770 0		-005 672
1945 0	602J		1	20.1 0		•07E
1050.0	- 625		1	590+9 433-3		- C I C - D H 4
1020.0	• 020		1	20040 25120		
1050.0	• <u>* * <</u> +		1	50 0•0 _0 0		-099
1055.0	+ U 2 1 6 3 6		:	57000 1271 - A		704
	• 0 0 4 k 3 h		1			.134 /De
1000.0	لوريني . نبر (م		1	939•9 633-0		• 7 0 ½
0+C601	- 0 30 64 D		ן ני			713
1125 0	• 0 • 0		ے ر	110+0 540-0		-115
	• 6 4 3		<u>د</u>	1949 9 49 177 - 18		./14
114040	+040 47.7		د در	1:5 0		+/15 71C
1120 0	• U 4 7 5 / D		د رو	. 10 A		715
	* () 4 7 		C	101.0		721
1100+0	+ U J J 4 E /		2	100.0		+۲۵۱ ۱۱۱۰
	• 054		C	190.0		+110
1213+9	۲ <u>۲</u>		2	220.0		•/17
	• 001		2	200.0		+/1/
	• 204		2	200.0		- / 1 / 7 1 ~
	• 000		<i>c</i>	3:0.0		. / 10
12/0+0	• C D D		2	24040		+ f I I 7 1 A
エイソリ・リ	• O / V		2	319•0 		+/1U Zas
130.0 130.0	• 007 • 7 0		<u>د</u>	490.00 39.0		• / UC 7 nc
1774-0	• D (J		<u>د</u>			- 1 UD 7 A I
1.357 + V 1.1	• 77 / 4		<i>د</i>	·• D · J • · J		• LA 1 •
13°° 0 1320•0	• 0 / 4		۷	·•∀J•iJ		1097
1702+0	• C ở V					

(CONTINUED)

LITHOLOGICAL AND PENETRATION RATE L	.0GS		RESOURCE FIGUR	STUDY E	1 OF	2
DRILLERS	LITHOLOGIC	GRIU AL LOGS SECONDARY	COMPT.	442455 DRILLINI (SM081 MIN/ 100 60	G TIME G TIME (M. (M. 60 40 2	/
محمد محمد محمد محمد محمد محمد محمد محم						•••
GRADE CL CLAY CH CLAFESTONE IN INFESTONE IN INFESTONE CA CRASSMATE IS INCH SXLDE CA CRASSMATE IS INCH SXLDE CA CRASSMATE IS INCH SXLDE	BLALA GA BRADN GH FINK FI BRRHOE OR BRRHOE OR OREY OF VMITE H BUFT CU RED BRSWM RB	PROPORTIO TRACE A RODINATI D LARGE GAUSSIAN S BY 11-TERM	E E SMBOTHING 1 EQUATION	HATER LEV	/EL DATA 7 8# 7 DEC 78 7 8# 16 JUL 78	

•

•

•

•

•

0

•

•

•

۲

۲

•

•

•

•

•

•

•

•

LITHOLOGICAL AND PENETRATION RATE LOGS WELL NO. MGQ3T ORILLERS PRIMARY COMPT.		MUQDISHO RESOURCE STUDY FIGURE GRID REF. 54442455 27 NOV 7E CAL LOGS DRILLING TIME (SMOOTHED)
GR SAND CL CLAY CL CLAY IN LINESTENCE IN ANAL GR CHRESTENCE IN CARESTINE CA CHRESTENCE CA CHRESTENCE C	N BH PI BR TZ OH BU RE RE	PROPORTIONS HHTER LEVEL DRTH TRACE

•

•

0

•

•

•

0

•

•

•

•

•

•

0

LITHOLOG PENETRAT WELL NO. ORILLERS LOG	ICAL AND ION RATE MGQ7P PRIMARY C PRIMARY C	LOGS LITHOLOG OHPT.		GRI GRI L LOGS SECONDR	D RES	OURC FIGL F. 5	E JRE 544	STUDY 442456 DRILLIN (SHOOT HIN/ 190 E0	16 G TINI HED) M.	0F N0V	3 78
											100 80 80 70 80 05774 14 A. 40 30 20 1 10 1
SA SANO CL. CLAY LI LINESTONE NR NARL SI SILI CA CRESSNATE IS IRSN SXLDE	GRADE	BRUHH PIRH PIRHOE VELLEH OREEN DREEN HITE BUFF RED RED-BREWH	DAN PIER DE DE D	PROPERT TRACE A HEOLA COLLARGE GAUSSIAN BY 11-TE	LUNS ATE SMOOTH			WATER LEV V MAX. REB	'EL DA 7 64 21 7 84 25	Г <u>Р</u> нач 79 нач 79	

•

0

•

•

۲

٠

۲

•

۲

•

•

۲

•

•

•

•

•

•

۲

•

LITHOLOGICAL AND PENETRATION RATE WELL NO. MGQ7P DRILLERS DRILLERS CORE PRIMARY LOG	LOGS	MUQDISHO RESOURCE STUDY FIGURE GRID REF. 54442456 16 NOV GRID REF. 54442456 16 NOV MIN/M. 100 E0 69 40 23	3 78
			280 270 280 DEFTH IN N. 240 250 210 210
CL CLAY LI LIRESTONE IN NORL SI SILT CA CARDOMATE IS IRON SXIDE THE	OKOWN PINA PINA PRIJEW OREFW ORET WHITE BUFF ACD RED-BROWN	And	

Ø

WATER LEVEL RECORDS

This section lists all available depth to water data for each borehole in the area. Water level measurements were taken routinely two or three times a month for the network of 29 boreholes shown in Figure A.4. The measurements were taken using electric contact water dippers to an accuracy of ± 0.002 m.

A selection of borehole hydrographs are interleaved within the data and demonstrate three trends.

- 1. Those for boreholes MOQ 1P, 2P, 5P and 8P show very little long term water level changes and are typical of the majority inland and coastal observation boreholes.
- Boreholes 12H, B14P2 and 15H No.4 exhibit the declining water levels encountered in the Balcad Road wellfield observation boreholes. The hydrograph for B14P2 shows rising water levels from August to October 1979 because the adjacent pumped well was not in production.
- 3. The hydrographs for boreholes 1, 14, MGQ3P and 12P show changes in response to river stage in boreholes close to the Shabeelle.

In addition to long term water level changes daily water level fluctuations were also monitored. Water level readings were taken at 15 minute intervals for periods between 8 and 24 hours at 18 boreholes. These included all observation boreholes drilled during the investigation plus numbers 14BP and 55. The readings were taken in conjunction with barometric pressure determined with either a barometer or aneroid altimeter. With these data it was established that water levels fall with increasing atmospheric pressure with the exception of MGQICP. The daily pattern of change for each borehole is similar although the scale of movement ranges between 20 to 60 millimetres. A typical example of a 24 hour water level fluctuation cycle is shown in Figure A.5 for MGQ 6P(A). This pattern is repeated daily as is shown by the monthly chart recordings in Figure A.6.

Figure A.4

1

ź

MOGADISHU RESOURCE STUDY DEPTH TO WATER SUMMARY

		ALE GAIN HER. SITE NAME	THÉ DATA 54442455 MGQ3T
TU WATER (METRES)	UAIL	DEHTH	TU WATER (METRES)
107.325	20 APA	79	107.342
107.320	A WAY	19	107.353
107.370	24 JUN	79	107.341
107.343	3 JUL	79	107.335
107.322	10 JUL	79	107.33a
107.328	16 JUL	79	107.346
		GAIC REF. Sité namé	54442450 40072
TU NATER (METRES)	0-1Ē	UÉPTH	TÚ HATER (METRES)
107.572	IC APR	15	107.584
107.600	2e APR	79	107.599
107.575	e MAY	74	107.611
107.596	20 MAY	79	107.611
107.602	6 JUN	15	107.547
107.580	16 JUN	79	107.601
107.612	24 JUN	79	107.570
107.560	3 JUL	15	107.603

UEPTH TU

DATE

7 DEC 78

3 JAN 79

9 JAN 79

26 MAR 79

3 APR 79

18 APR 79

S JAN 75 27 JAN 79 31 JAN 79 107.613 22 AUG 79 5 FEB 79 107.582 20 405 79 7 FEB 19 107.582 15 SEP 79 15 FEB 79 107.555 23 SEP 14 10 MAR 74 107.592 27 SEP 74 17 MAR 79 107.600 3 UCT 79 26 MAR 79 107.604 31 UCT 75 3 APR 75 107.584 21 NUV 79

> > 107.595

107.586

107.560

107.577

107.569

107.565

107.509

107.561

Mogadishu Water Supply

CHEMISTRY SUMMARY

GRID REF WELL NUMBER DATE	54412508 61 23 FEB 79	54442455 MGQ3T 28 NOV 78	54442455 MGQ31 24 FEB 79	54462413 62 9 OCT 78	5446243 62 3 MAY 79	55022437 MGQ8P 12 DEC 78
BASIN AQUIFER SOURCE						
TOTAL SOLIDS	520.*	650.*	660.•	620.*	975.*	970.*
PLEC. COND. pH	550. 8.40	780. 8.5	940. 7.70	900. 7.80	1340. 7.80	1180. 8.70*
HARDNESS: TOT	210.*	400.•	300.*	100.	450.*	4 40.•
CO3	85.	160.	40.		145.	180.
Alkalinity as CACO3	125.	240.	260.	120.	305.	260.
FREE CO2			10.00	3.	8.	
CATIONS Ca	1.37	3.90*	1.41	5.21*	6.21*	5.11*
(mcq/l) Mg	2.83	4.10	4.59*	2.79	2.79	3.69
Na	3.38	2.54	3.56	2.17	6.74	6.76
К	.13	.15	.44	.33	.11	.15
ANIONS HCO3	2.50	4.80	5.20	2.40	6.10	5.20
(mcq/2) SO4	4.00	3.91	2.08	3.71	3.44	5.71*
CI	1.13	1.92	2.70	4.39	6.20*	4.80
NO3	.08	.06	.2		.11	
MINORS Fe	.12*	.26*	.11*	1.76••	.03	.07
(mg/f) Zn	.03	.07	.13	.12	.25	.08
Cu	< .03	<.03	< .03	.94**	<.03	<.03
РБ	< .03	.12**	< .03	<.03	<.03	<.03
Mn	< .03	.23*	< .03	•80.	<.03	<.03
DOMESTIC CLASS	2	3	2	3	2	2
AGRICULTURAL CLASS	- C2S1	C3S1	- C3S1	C3S1	 C3S1	 C3S1
			-		-	

* CONCENTRATION EXCEEDS W.H.O. HIGHEST DESIRABLE LEVEL CONCENTRATION EXCEEDS W.H.O. HIGHEST PERMISSIBLE LEVEL

MUUDISHU RESUDACE STUDY CONDUCTIVITY SUMMARY ALL THE UNTA

GRID REF	SITE G	DATE	CONDUCTIVITY (MICROMHOSZCM)
54442455	(464.31	18 MOV 78 29 NUV 73 23 FES 79	1250.0 1040.0
54442450	M(51.1+	10 VUV 73	10-0-0

lacksquare

lacksquare

•

•

•

۲

 \bullet

•

•

•

lacksquare

•

•

lacksquare

lacksquare

 ${\color{black}\bullet}$

MUQUISHO RESOURCE STUDY CONDUCTIVITY LOG ALL THE DATA GRID REF. 54442455 SITE NAME MGQ3T 3 JUL 79

CUNDUCTIVITY (MICRO-MHUS)	DEPTH (METRES)	CUNDUCTIVITY (MICRU-MHOS)	UEPTH (METRES)
1000.0	141.00	1020.0	107.30
1000.0	142.00	1020.0	110.00
1000.0	143.00	1020.0	115.00
1020.0	144.00	1020.0	120.00
1000.0	145+00	1020.0	125.00
1000.0	146.00	1020.0	130.00
1000.0	148.00	1010.0	135.00
		1000.0	140.00

۲

lacksquare

•

•

•

●

•

•

•

GRID REF.	54442450
SITE NAME	M607P
	3 JUL 79

CUNDUCTIVITY	0EP14	CONDUCTIVITY	DEPTH
(MICRO-MHOS)	(METRES)	(MICRO-MHOS)	(METRES)
910.0	135.00	91.0	107.60
910.0	136.00	910.0	109.00
910.0	137.00	910.0	110.00
910.0	138.00	910.0	115.00
910.0	139.00	900.0	120.00
910.0	140.00	900.0	125.00
910.0	142.00	910.0	130.00
0.020	144.00	910.0	134.00

MUUDISHU RESUURCE STUDY TEMMERATURE LOU ALL THE DATA GRIU REF. 54442455 SITE NAME MOUST 3 JUL 79

TEMPERATURE (DEGREES C)	DEPTH (METRES)	TEMPERATURE (DEGREES C)	DEPIN (METRES)
32.9	141.00	31.3	107.30
33.0	142.00	32 . ú	110.00
33.0	143.00	32.1	115.00
33.1	144.00	32.2	120.00
33.1	145.00	32.4	125.00
33.1	146.00	32.6	130.00
33.1	148.00	32.7	135.00
		32.8	140.00

۲

lacksquare

• • • •

•

•

۲

•

ALL THE DATA GRIU HEF. 54442456 SITE NAME HG07P 3 JUL 79

UEPTH (METRES)	TEMPERATURE (DEGREES C)	DEPTH (METRES)	TEMPERATURE (DEGREES C)
107.60	31.3	135.00	32.4
109.00	31.7	136.00	32.4
110.00	31.8	137.00	32.4
115.00	31.9	138.00	32.5
120.00	32.0	139.00	32.7
125.00	32.1	140.00	32.8
130.00	32.2	142.00	32.8
134.00	32.3	144.00	32.8

WELL MOQ 3T DEPTH OF SAMPLE 140 m WEIGIT OF SAMPLE 1000 g

•

•

•

•

•

•

lacksquare

•

•

•

•

•

B.S.Sieve Size	Opening in mms	Weight Retained Grammes	8 Retained	Cumilative § Retained
No 14	1.3	2	0.20	0.20
No 25	0.59	4	0.40	0.60
No 36	0.41	18	1.80	2.40
No 52	0.18	68	6.80	9.20
No 72	0.11	225	22.50	31.7
No 100	0.106	266	26.60	58.3
No 200	0.073	164	16.40	74.7
Passing 200		253	25.30	100

WELL MOQ 7P DEPTH OF SAMPLE 138-144 m WEIGHT OF SAMPLE 500 g

1 8	in	3.1	4	0.80	0.80
No	7	2.3	2	0.40	1.20
No	14	1.3	2	0.40	1.60
No	25	0.59	15	3.00	4.60
No	36	0.41	37	7.40	12.0
No	52	0.18	52	10.40	22.4
No	72	0.11	91	18.20	40.6
No	100	0.106	110	22.00	62.6
No	200	0.073	59	11.80	74.4
Passin	g 200		128	25.6	100