

GARAS BINTOW (STAGE 2B) WELLFIELD, MOGADISHU WATER SUPPLY, SOMALIA.

Review of Existing Groundwater Data

Contents

1. INTRODUCTION

1.1 Gencral

1.2 Background Information
1.2.1 General
1.2.2 Aquifer conditions
1.2.3 Groundwater development strategy
1.2.4 Present water supply situation

2. SUMMARY OF EXISTING DATA

2.1 Regional Data
2.2 Local Information

3. WELL DESIGN

3.1 General
3.2 Comments on Well Specifications
3.2.1 Construction
3.2.2 Development
3.2.3 Pumping Tests
4. DRAWDOWN PREDICTIONS
4.1 General
4.2 Updated Predictions
4.3 Short Term Abstraction

Annex A Regional Contour Maps
Appendix 1 Data for Borcholes MGQ 3T and MGQ $7 P$

Figure

1 Study Area
2 Boreholes in the Garas Bintow Area
3 Grain Size Distributions
4
5
Yield Drawdown Curves

Table
1 Water Supply Demands
2 Site Summary

GARAS BINTOW (STAGE 2B) WELLFIELD, MOGADISHU WATER SUPPLY. SOMALIA

Review of Existing Groundwater Data

1. INTRODUCTION

L. 1 GENERAL

The present water supply for Mogadishu is obtained from two wellfields: the Balad Road wellfield constructed in 1970 between 10 and 15 km north-east of Mogadishu, and the Afgoi Road wellfield constructed in 1983 some 17.5 km north-west of Mogadishu.

A new wellfield known as Stage 2B of the groundwater development strategy for the Mogadishu water supply is to be constructed with funding from the Italian Government at Garas Bintow about 7 km north of the Balad Road wellfield (Figure 1). The construction contract has been awarded to ASTALDI slp of Rome who are to undertake the work for the Mogadishu Water Agency.

The Garas Bintow wellfield will consist of 21 boreholes: 16 for continuous abstraction and 5 as standby for peak demands. The boreholes will be spaced at 300 m offset intervals along two parallel lines 300 m apart extending north-eastwards at N 73 E for some 3.5 km from the Balad Road at existing boreholes MGQ 3T/7P. Depths are expected to be 170 to 200 m and the pumping rates will average $60 \mathrm{~m} 3 / \mathrm{h}$ per borehole. The total output from the wellfield will be $8.1 \mathrm{Mm} 3 / y e a r$ with a peak output of $1260 \mathrm{~m} 3 / \mathrm{h}$.

The Institute of Hydrology (UK), who carried out the more recent water resources surveys of the Mogadishu region and advised on the design, construction and testing of the Afgoi wellfield, have been commisioned by ASTALDI slp to review the available data in the area of the Garas Bintow wellfield. The information may be used for further groundwater model studies to refine previous predictions of drawdowns on a more regional scale. The technical specifications for the new production wells have also been examined together with earlier predictions of pumping water levels.

1.2 BACKGROUND INFORMATION

General

Water resource studies in the Mogadishu area began in the early 1960's. The first major regional water resources study was carried out between 1977 and 1979 by Sir Alexander Gibb and Partners (Nairobi) with the Institute of Hydrology (UK). This included the area between Mogadishu and the River Shebelli bounded by the Afgoi and Balad roads. The study led to the construction of the Afgoi wellfield (Stages 1 and 2A) and identified Garas Bintow as a suitable site for a future wellfield (Stage 2B).

In order to locate additional resources required before 1990 , further investigations were undertaken over a wider area some 130 km by 80 km (10400 km 2) extending from Aw Dheegle to Jawhar and from the coast to Wanlewayne. This survey, which was reported on in July 1984, updated the earlier work and identified a location for a further wellfield (Stage 3) to the north-east of Garas Bintow.

1.22

Aquifer Conditions

The main features of the aquifer in the general area of the Garas Bintow wellfield can be summarized as follows:
a thick (150 m), relatively uniform and extensive sequence of fine sands having a d50 of about 0.2 mm and a uniformity coefficient of about 3. Although generally unconsolidated, these sands are cemented to a varying extent by calcareous material. Clays form the base of the aquifer.
the hydraulic conductivity is low, about 10 to $15 \mathrm{~m} / \mathrm{d}$, but due to the large aquifer thickness the transmissivity is relatively high, about 1000 to 2000 m 2 d . This may be reduced where cemented beds are more common. The specific yield is estimated to be about 2 to 4%.
the aquifer is recharged only by the River Shebelli, maindy where the river is in contact with the dune sands such as at Balad.
water levels are deep, about 105 to 110 m . Unconfined to semi-unconfined conditions are present, although water levels also respond to barometric pressure due to the thick unsaturated zone and the presence of cemented beds.
the water quality is acceptable. However, model predictions suggest a risk of contamination in the long term from poor quality water in the alluvial deposits along the Shebelli some 15 km to the north and from seawater intrusion from the coast some 15 km to the south. The water is slightly corrosive, although there is also a risk of incrustation due to the high total hardness.

123 Groundwater Development Strategy

A groundwater development strategy for the Mogadishu water supply was identified with the assistance of several numerical models of the aquifer system incorporating information from the regional drilling, testing and monitoring programmes. The models applied were as follows:
(1) a steady state, unconfined, inferred recharge model of (a) the region, using a coarse 10 km grid representing an area of 10400 km 2 , and (b) the Afgoi-Mogadishu-Balad area using a finer grid of 5 km squares representing an area of 2550 km 2 ;
(2) a time-varying version of the model $\mathbf{l b}$ for water management purposes; and,
(3) a well interference model to examine alternative well spacings and wellfield configurations.

Recharge along a 120 km stretch of the River Shebelli from Afgoi to Jawhar was estimated by the recharge model to be about $70 \mathrm{Mm} 3 / \mathrm{y}$, of which $40 \mathrm{Mm} 3 / \mathrm{y}$ takes place between 15 km upstream and 25 km downstream of Balad. A surface water study gave the following estimates of net recharge, in $\mathrm{Mm} 3 / \mathrm{y}$:

	Upper limit	Best estimate	Lower limit
River	117	64	35
Irrigation	44	18	7
Total	161	82	42

The amount of groundwater abstraction also has to take account of water quality constraints. It was considered that the water demands up to the year 2000 could be met entirely from groundwater if recharge through soakaways beneath Mogadishu causes a barrier to the inland movement of saline water. Without such recharge abstraction might have to be limited to 31 Mm3/y (1992 demand) to avoid a possible deterioration in water quality from saline intrusion after 2010. The presence of poorer quality water in the alluvial deposits to the north could also limit abstraction to about $46 \mathrm{Mm} 3 / \mathrm{y}$ (1997 demand) to avoid a deterioration in water
quality after 2020.

The River Shebelli was examined as a possible direct source of supply, in particular to provide $32 \mathrm{Mm} 3 / \mathrm{y}$ ($1 \mathrm{~m} 3 / \mathrm{s}$) - the predicted shortfall between a supply of $25 \mathrm{Mm} 3 / \mathrm{y}$ from the Afgoi and Balad Road wellfields and the total demand in 2000. Whilst the River Shebelli could meet this demand seasonally (April/May and July to November), it is diverted for irrigation and future flows could be reduced significantly by new surface water schemes upstream. Consequently, as new groundwater sources would still be needed to maintain supplies throughout the year, any diversion of the River Shebelli would need to be incorporated in a conjunctive use scheme involving additional groundwater development. The Garas Bintow wellfield and the proposed Stage 3 wellfield are part of the groundwater development strategy.

124 Present Water Supply Situation

Table 1 gives the annual and peak water supply demands at source for Mogadishu and the timing of new supplies to meet these demands. The total annual water demands at source are expected to be 25 Mm 3 in 1990, 40 Mm 3 in 1995 and 57 Mm 3 in 2000.

It was anticipated that the Afgoi and Balad Road sources would need to be supplemented by the new wellfield at Garas Bintow (Stage 2B) in 1987 and by a further wellfield (Stage 3) in 1990. However, it has not proved possible to mect the phasing requirements of this strategy and the city still currently depends on the Afgoi and Balad Road wellfield supplies.

The total output from these two wellfields had declined from their design yield of 20.9 Mm3/y to $12.4 \mathrm{Mm} 3 / \mathrm{y}$ by mid-1989, a reduction of 40%. The output from the Balad Road wellfield has decreased by 76% from $8.8 \mathrm{Mm} 3 / \mathrm{y}$ to only $2.1 \mathrm{Mm} 3 / \mathrm{y}$. This has been caused by well failures despite rehabilitation attempts. The output from the Afgoi wellfield has dropped by 15% from $12.1 \mathrm{Mm} 3 / \mathrm{y}$ to $10.3 \mathrm{Mm} 3 / \mathrm{y}$ due to equipment problems.

The total output from the Afgoi and Balad Road wellfields in 1989 was sufficient to meet only 50% of the average water demand. Those areas of the city supplied from the Balad Road wellfield have been the worst affected by the reduced output and now receive only 25% of their water requirements. Areas served by the Afgoi wellfield receive about 64% of their water requirements. Supplementary supplies are now being obtained from boreholes within the city, although these are susceptible to contamination from septic tanks and sea water intrusion.

Mogadishu Water Source Abstraction Requirements

year	A11 Sources		$\begin{aligned} & \text { Afgol Roand } \\ & \text { stajel and ild } \end{aligned}$		Balad Moad		Caras Bintow Stage I 1 b		Future Sources stage III	
	Total	Max 1 mum	Total	Max 1 mum	Total	Max 1 mum	rotal	Maximum	Total	Max 1 mum
1990	26824	91860	12089	41760	4205	12960	8410	30240	2120	6900
1991	28995	99300	12089	41760	4205	12960	8410	30240	4291	14340
1992	31342	107340	12089	41760	4205	12960	8410	30240	6638	22380
1993	33879	116020	12089	41760	4205	12960	8410	30240	9175	31060
1994	36621	125410	12089	41760	4205	12960	8410	30240	11917	40450
1995	39585	135570	12089	41760	4205	12960	8410	30240	14881	50610
1996	42643	146040	12089	41760	4205	12960	8410	30240	17939	61080
1997	45937	157320	12089	41760	4205	12960	8410	30240	21223	72360
1998	49486	169470	12089	41760	4205	12960	8410	30240	24782	84510
1999	53308	182560	12089	41760	4205	12960	8410	30240	28604	97600
2000^{*}	57426	196660	12089	41760	4205	12960	8410	30240	32722	111700

Total $=$ cotal volume abstracted in the year (in thousands of cublc metres.)
raximum = maximum volume abstractid in any day in the year (in cubic metres.)

- Beyond the year 2000 abscraction rates are maintainec at the 2000 level.

TABLE 1

Pump maintenance at Afgoi could increase the total availability from 12.4 to $14.2 \mathrm{Mm} 3 / \mathrm{y}$ for the next few years, although this will still only be sufficient to mect 45% of the demand in 1992. There is a proposed programme of further well rehabilitation of the Balad Road wellfield, but those areas of the city served by this wellfield are still likely to suffer water shortages until the Garas Bintow wellfield is commissioned.

2 SUMMARY OF EXISTING DATA

21 REGIONAL INFORMATION

Contour maps showing the base of aquifer, water level elevations, chemistry and isotope concentrations to illustrate the broad regional hydrogeological setting of the wellfield location are shown in Annex A.

Test borehole MGQ 3T and an adjacent exploratory/observation borehole MGQ 7P were drilled adjacent to the Balad Road in the new wellfield area in 1978. Other boreholes in the general area of the wellfield are shown in Figure 2. Two exploratory borcholes (EO 4 and EO 11) were drilled in June and September 1983 north-east of the new wellfield. The nearest other boreholes include MGQ 8P, private boreholes 61,62 and 63 , and the Balad Road wellfield.

A site summary of the nearest boreholes is given in Table 2. No further boreholes appear to have been drilled in the area of the Balad Road since the 1983 survey, except for some replacement sites in the Balad Road wellfield.

The following additional information has been obtained mainly from the National Water Centre to extend the records held at IH , to establish the availability of new information, and to update the information available for the regional models prepared from the last resources survey in 1983:

- Monthly rainfall records for Afgoi (station 2518) for the period 1960 to 1989, Balad (station 2516) from May 1981 [some records missing, mainly in 1982 and 1984], and Mogadishu (station 2531) from 1960 to 1989. Daily rainfall has also been obtained from these stations for 1985° to 1989 together with climate summaries.

[^0]* Average monthly abstraction rates for each of the Afgoi wells from June 1989 to May 1990 together with a more detailed abstraction record for May 1990.

SITE SUMMARY all the data

- An updated inventory of the Balad Road wellfield carried out in September 1988. including information on discharge rates.

No further information appears to be available on water level changes in response to large scale abstraction from the aquifer. Information on the monthly variation in wellfield abstractions is still rather limited.

2.2 LOCAL INFORMATION

Hydrogeological data for the Garas Bintow wellfield is limited to a test well (MGQ 3T) and its adjacent exploratory/observation well (MGQ 7P). Site MGQ 7P is now closed at a depth of 70 m , which is above the water table. The status of MGQ 3T has not yet been established. Neither site would seem to be available as long-term observation wells to monitor the aquifer response to abstraction.

The information on these two wells is given in Appendix 1. This includes lithological, geophysical, penetration and lithological logs, grain size data, chemical analyses, water levels and pumping test results. Particular features to note are:

- MGQ 3T was drilled to a depth of 155 m with 20 m of PVC screen installed from 130 to 150 m . The screen slot size was 0.5 mm with a pack grain size distribution as shown in Figure 3. MGQ 7P is located 27.2 m from MGQ 3T and was drilled to 277 m penetrating the clays forming the base of the aquifer at 255 m . It was also constructed from PVC materials, with a screen from 134 to 146 m depth
- The water level in the wellfield area occurs at a depth of about 107 m bgl or 30 m above sea level. It would be preferable to maintain long term pumping water levels above sea level.
- Red dune sands some 40 to 70 m thick overlie the main aquifer which consists of buff, fine grained sand, variably cemented by calcareous material (perhaps as localised lenses). Greenish clays form the base of the aquifer at a depth of about 250 m , giving a saturated aquifer thickness of about 150 m . Ground elevations vary from about 140 m to 150 m . Access across the area is difficult.

[^1]| Step | Time
 (mins) | Rate
 $\left(\mathrm{m}^{3} / \mathrm{d}\right)$ | Drawdown
 (m) | Specific
 Drawdown | Specific
 Capacity
 $\left(\mathrm{m}^{2} \mathrm{~d}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $0-180$ | 649 | 3.72 | | 174 |
| 2 | $180-360$ | 1045 | 5.76 | 0.0057 | 181 |
| 3 | $360-540$ | 1652 | 9.14 | 0.0055 | 181 |
| 4 | $540-720$ | 1932 | 10.61 | 0.0055 | 182 |

- Site MGQ 3T has almost the best yield drawdown characteristics of the test wells drilled in 1978/9 and similar to the best sites of the Balad Road wellield but only to the average of the Afgoi wellfield boreholes, as shown in Figures 4 to 6 . The presence of cemented beds and possibly the effectiveness of the well development may largely account for the range in specific capacity.
* Some difficulty was encountered in completing the required aquifer test at a rate of 60 $\mathrm{m} 3 / \mathrm{h}$ due to pump problems caused by a misaligned hole. Eventually three constant rate tests were carried out on MGQ 3T:

Date	Race $\mathrm{m} 3 / \mathrm{h}$	Duration mins	Drawdown \mathbf{m}
$19 / 279$	44	9135	5.76
$27 / 279$	44	1470	5.76
$7 / 12 / 99$	60	2490	9.10

The specific capacity after 2 days is about 160 m 2 d . The test data from MGQ 7 P gave the following estimates of the aquifer characteristics:

	Jacob	Boulton	
Transmissivity (m2d)	1380	840	
Storage coefficient (\%)	0.02	0.04	(early data)
		4.6	(late data)

MGQ 3T and 7P penctrate only the upper 30% of the aquifer and the screen length represents a partial completion of about 15%. Barometric pressure changes need to be taken into acount in the pumping test analysis.

* The Ryznar Stability Index (RSI) value for MGQ $3 T$ is 7.6. RSI values of 6 to 8 would produce only mild corrosion or encrustation; mild corrosion being indicated in this case. An analysis of a water sample taken during the pumping test at MGQ 3T in February 1979 (see Appendix 1) indicated that the total dissolved solids ($660 \mathrm{mg} /$), total hardness ($300 \mathrm{mg} /$), magnesium ($4.59 \mathrm{meq} /$) and iron content ($0.11 \mathrm{mg} \Lambda$) exceed the WHO highest desirable level,
although not sufficiently high for concern or to increase the corrosion potential significantly. The water temperature is about 34 C . The water from MGQ $3 T$ has an unusual stable isotope composition (Deuterium +10 . Oxygen $18+1$) compared to other samples from the region.

As a considerable amount of information will be produced during the construction of the new wellfield, it would be advisable to store this information on a data base system. The IH GRIPS groundwater data base system, which is IBM PC-based and used for both the Afgoi wellfield and the regional resources surveys, has also been adopted by the National Water Centre.

WELL DESIGN

3.1 GENERAL

A summary of the general designs adopted for the production and test boreholes drilled for the Mogadishu water supply is as follows:

	Slot size mm	Material	Casing/Screen Diam. mm	Screen Length m
Balad Road:				
Parsons	0.76 to 1.5 (s)	stainless	342/246	26 to 37
		and mild	and 273/168	
Hydrotechnic	0.5			6
MGQ 1 to 6 (test):	0.5 (s)	PVC	203/152	20
Afgoi wellifield:	0.38 (ca)	stainless	254/203	30
Proposed for 2B:	0.38 (ca)	-	254/203	30

Some sand ingress problems have occured with the design used for the Balad Road wells. The technical specifications for the new production borcholes at Garas Bintow are based on the successful design and construction of the Afgoi wellfield boreholes, which can be summarised as follows:
the boreholes were drilled by the direct circulation rigs method using a biodegradable drilling fluid with a calcium hypochlorite breaker.
a pilot hole of 244 mm was drilled and geophysically logged to identify any cemented beds and to choose the final screen position.
any overdrill was backfilled with sand and the hole reamed out to 444 mm to the top of the screen and to 381 mm from the top of the screen to the final depth.
sprung barrel centralisers were placed at 18 m intervals down the casing.
a graded, rounded, quartz pack mainly ranging from 0.3 to 2.0 mm grain size (see below) was placed around the screen to 10 m above the top of the screen. A crushed coral backfill was used to separate the pack from the upper sand backfill.
a 32 mm galvanised dipping pipe was installed with a welded elbow just above the casing-screen reducer.

32 COMMENTS ON WELL SPECIFICATIONS

The technical specifications for the proposed production wells of the Garas Bintow wellfield contain some modifications to the design used for the Afgoi boreholes. These are discussed below.

32.1 Construction

The depths will vary from 170 to 200 m which will place the screens at about -20 to -50 m elevation. The screen at MGQ 3T was placed at an elevation of about +10 to -10 m .

Details of the organic polymer drilling fluid and breaker to be used are unspecified and are to be approved. Sodium hypochlorite, which is specified for disenfecting the completed well, should be used as a breaker in preference to calcium hypochlorite to avoid the risk of forming insoluble calcium chloride precipitates.

A pilot hole will not be drilled at each site. The interpretation of the geophysical logs may be more difficult if run in the full diameter of the proposed hole. As the proportion of cemented beds can be significant, it would be worthwhile drilling and logging a pilot hole during the first part of the drilling programme at, say, three to five sites spaced along the wellfield to provide information on the likely variation in the general aquifer conditions across the area. These would then be reamed out to the specified final diameter.

Gamma and caliper logs are to be included with SP and single point resistivity. These will be undertaken , only in selected production wells (unspecified) and in the observation well rather than in every well. The caliper logs should help to identify cemented beds. As the range in specific capacity may be partly due to the variable occurence of cemented beds the geophysical logging of every borehole is advisable despite their close spacing.

The drilled diameter between the base of the top casing (at 6 m depth) and the top of the screen will be smaller than at Afgoi, only 381 mm compared to 445 mm . This will leave an annulus of only about 2.1 inches (54 mm) around the casing compared to 3.4 inches (85 mm) in the Afgoi wells. This smalter annulus could result in damage to the water level measuring pipe (nominal 1.5 inches diameter, but greater if coupled joints are used) during the installation of the casing besides increasing the risk of bridging of pack material during the
emplacement of the pack. If the diameter is increased to 445 mm as used for the Afgoi wells then the drilled diameter and the surface casing diameter of the upper 6 m would have to be increased accordingly.

The dipping pipe connection will be about 150 mm above the top of the screen (the drawings suggest that this will be attached to the reducer). It would be preferable to attach this to the casing, say, about 1 m to 5 m above the reducer. A T - or elbow joint is specified but this type of joint can be damaged easily during instalation (especially with the smaller annulus) allowing sand to enter the well. A narrow angle joint is advisable.

Crushed coral backfill, rather than sand, is to be placed from the top of the gravel pack to 6 m bgl. It will be important to ensure that none of the backfill material is able to migrate down into and through the pack during development or pumping. The backfill material below the sump is unspecified but should be inert, sterilised material. The top casing is to be installed only to a depth of 6 m . It may be better to seat this on a firmer foundation (eg first hard band) at a greater depth.

The contractor is required to use materials, methods etc that will reduce the effects of corrosion and incrustation and, if considered necessary, propose altemative materials for approval. The effects of corrosion will be reduced by the required use of stainless steel screen and the small slot size. PVC materials have proved difficult to store and handle.

The slot size used for the Afgoi boreholes and specified for Garas Bintow is based on a single, uncemented sample from exploration site MGQ 6T. Representative samples are often difficult to obtain with rotary drilling methods. Samples from the other test sites were also affected by cementation and considered less representative of the finer faction. Nonetheless, the grain size analysis from MGQ 3T shown in Figure 3 is similar to that from MGQ 6T (at least for the coarser faction).

The various gravel packs used in the Mogadishu production wells shown in Figure 3 have the following general characteristics:

	Uc	d30	dSo	d10	d 60	d30p/d30a	d50p/d50a
MGO 6P	3.0	0.6	0.19	0.06	0.2		
Afgoi:							
Proposed	1.8	0.6	0.19	0.4	0.68	4	3.7
PW 1B,2,5,6A	0.98	0.5	0.55	0.37	0.59	3.3	2.9
PW 3A,4B,7,8	1.43	0.9	0.95	0.7	1.0	6	5
(papack	aquiter	unifor	e(facient)				

Given the apparent similarity of the sample from MGQ $3 T$ (obtained from a depth of 140 m) to that from MGQ 6T on which the Afgoi borehole design was based, then, in the abscence of further information, a pack and slot size based on the Afgoi wells should be suitable for Garas Bintow. However, the gravel pack as given in the specification document is completely unsuitable for the specified slot size and would not allow a sand free condition (see Figure $3)$.

The small slot size specified would not normally be used with a gravel pack [borchole development can be difficult with a pack and a slot size of $<1.25 \mathrm{~mm}$). However, the fine grained nature of this aquifer precludes the development of a natural pack. In addition, because of the aquifer grading particular care should be taken to ensure that the pack completely surrounds the screen to produce a sand-free condition.

3.22
 Development

The development methods are to be proposed by the contractor. Development is specified as being complete when the water contains less than $2 \mathrm{mg} /$ of fines at a rate of $75 \mathrm{~m} 3 / \mathrm{h}$ [the time after starting the pump to which this specification applies has not been stated].

The development of each production borehole will be a key factor in meeting the required yield-drawdown relationship, a sand-free condition, and to minimize the operating costs. Experience with the Afgoi borcholes suggests that difficulties can be expected in developing at least some of the wells (in some cases a week or more was required for full development at some of the Afgoi boreholes). The time that may be required to develop each well satisfactorily should not be underestimated.

Due to the fine nature of the pack and aquifer there will be some difficulty in getting the breaker in contact with the drilling fluid and mud-cake. This can be overcome by introducing breaker with the gravel pack and then jetting in additional breaker as required.

Normal procedure would require the installation of an air-lift to clean the well and carry out the preliminary development by operating the air lift in pumping mode followed, as cleaning progresses, by backwashing. Generally about 24 hours is required for this initial cleaning. Surging with the air lift should be avoided as there is a risk of air-entrainment in these fine grained deposits. It is not necessary to install an air lift capable of meeting the planned yield; this can be achieved more effectively by overpumping.

Experience suggests that the wells can be developed more effectively by a pump capable of producing 1.5 times the planned normal pumping rate and using pumping/backwashing cycles. The pump should not be fitted with a foot valve if backwashing is to be carried out (the recovery pumping test will need a foot valve). As this technique tends to concentrate development on the upper part of the screen, particularly if this part of the sequence is more permeable, an appropriately designed, high velocity jet (this can be made locally if required) was found to be reasonably effective for the development of the Afgoi boreholes in conjunction with the pumping provided a suitable water supply can be provided, such as pumping from an adjacent borehole.

Progress with development can be monitored by the procedure adopted for the Afgoi wellfield boreholes. This was as follows:
a) when it is considered that the initial development is reasonably complete the pumping rate should be increased to $90 \mathrm{~m} 3 / \mathrm{h}$ (1.5 times the required normal operating rate). The pump should then be operated at this rate in short on-off cycles of 5 minutes pumping and 5 minutes recovery for a set period.
b) pumping should then cease for, say, 15 minutes
:) the pump should then be operated at the same, pre-selected fixed rate for, say, 15 minutes and the drawdown (or pumping water level) measured after this period and a water sample collected for an estimate of the sand content
d) continue to repeat (a) to (c)
e) plot the measurements of (c) on arithmetic graph paper against real time. Provided the rate and duration in (c) are kept the same then the improvement in yield will show as a curve, with each successive period of development producing a smaller improvement in the yield-drawdown. It is then easier to establish whether further development would significantly improve the yield-drawdown characteristics.

The specifications require a check as to whether each well could produce $150 \mathrm{~m} 3 / \mathrm{h}$. Neither the development or step test will test this rate of abstraction and the water is unlikely to be sand free at this rate. A design check should be made in terms of aproach velocities or Reynold's number to ensure that the wells can actually sustain this high rate. The casing diameter would need to be about 12 to 14 inches for this pumping rate.

The step-drawdown (production) test will consist of 5 stages, each of 2 hours at rates of 40 to $75 \mathrm{~m} 3 / \mathrm{h}$. The constant rate (aquifer) test will be carried out for up to 10 days on production well number 11 situated in about the middle of the wellfield. An observation well will be drilled 30 m away from this borehole to provide drawdown data for information on the aquifer characteristics. The test rate will be selected by the Engineer. This will be followed by a recovery test of unspecified duration ("until levels stabilise").

The test specifications generally conform to normal practice and no particular improvements are suggested. The recovery period of measurements needs to be more clearly stated.

The test site is situated about 1.5 km from MGQ 3T. Since some estimates of transmissivity can be obtained from the first step of the production test at each site, it may be preferable to consider the aquifer test on a more easterly site. More reliable estimates of storativity can be obtained from water level data after abstraction from the wellfield begins.

Partial penetration and partial completion effects will need to be allowed for in the analysis of the test data. Barometric pressure fluctuations also need to be taken into account to interpret the late drawdown data from the observation well.

9. DRAWDOWN PREDICIIONS

4.1 GENERAL

The specified borehole spacing and layout of the Garas Bintow wellfield was selected from several different wellfield configurations examined in 1980 using a drawdown interference program based on the Theis equation.

The model predicted a total drawdown of 10.6 m in the central boreholes after 10 years, of which 8.7 m was due to interference effects. After adjusting for a 70% weil efficiency and $1 / 7$ partial penetration the total drawdown was predicted to be about 14.3 m . The conditions assumed for these predictions were as follows: two lines of 8 boreholes with the boreholes and lines spaced 300 m apart; a continuous pumping rate of $60 \mathrm{~m} 3 / \mathrm{h}$ ($1440 \mathrm{~m} 3 / \mathrm{d}$) per well for 10 years without recharge; and values of $1400 \mathrm{~m} 2 / \mathrm{d}$ for T and 2% for S derived from the areal and regional numerical models.

More reliable estimates of interference drawdowns, aquifer characteristics, and the response to large scale abstraction can be obtained by monitoring abstraction and water levels. However, this does not appear to have been undertaken for the Afgoi and Balad Road wellfields.

42 UPDATED DRAWDOWN PREDICIIONS

The same program used for the earlier studies has been applied to provide updated drawdown predictions for the specified wellfield configuration chosen from our earlier drawdown predictions.

Several alternative values of T and S were examined and compared to the observed drawdowns from the pumping test at MGQ 3 T and 7 P , which were 5.8 m at MGQ 3 T and 0.53 m at MGQ 7P ($\mathrm{Q}=1057 \mathrm{~m} 3 / \mathrm{d}, \quad:=6.3$ days). This produced the following estimates of drawdown at MGQ 3T, MGQ 7P (27 m from the production well) and at 300 m distance using the pumping test rate of $1057 \mathrm{~m} 3 / \mathrm{d}$ for 6.3 days and the planned rate of $1440 \mathrm{~m} 3 / \mathrm{d}$ continuously for 10 years:

	$\begin{gathered} T \\ \left(m^{2} d\right) \end{gathered}$		Drawdown (m)				
			$\underset{t=6.3 \mathrm{~d}}{\mathrm{MGO}}$	${\underset{t=10 y}{3 T}}^{\text {and }}$	$t=0.3 \mathrm{~d}$	$\pi_{t=10 y}$	$\underset{\substack{r=300 \mathrm{~m} \\ t=10 y}}{ }$
-	1400	0.02	1.11	2.03	0.43	1.11	0.72
ii	1100	0.02	1.39	2.56	0.53	1.39	0.89
iii	1775	0.0007	1.04	1.83	0.51	1.11	0.80

These drawdowns represent aquifer losses for a fully penetrating borehole with isotropic aquifer conditions. The T and S combinations of $1100 / 0.02$ and $1775 / 0.0007$ both produce similar drawdowns to the uncorrected drawdown at the observation well.

The observed drawdown at MGO 3T after 6.3 days at $1057 \mathrm{~m} 3 / \mathrm{d}$ was about 5.8 m compared to the drawdown of 1.0 to 1.4 m due to aquifer losses predicted with the above range of aquifer parameters. The difference of 4.8 to 4.4 m would be due to the combined effects of partial penetration, partial completion and well losses.

Whilst screened boreholes tend to have relatively low well efficiencies (70 to 80%), the step test results at MGQ 3T indicate an efficiency of 98%. This is similar to the Afgoi production boreholes which typically have well efficiencies of about 95% to 98%. The yield drawdown characteristics of this site are also equal to about the average of the Afgoi boreholes (Figure 6). With such a high efficiency well losses are not a significant component of the difference in drawdown predicted by the model and that observed.

The top of the screen at MGQ 3T is about 23 m below the water table. Using the Hantush correction for partial penetration only about 0.75 m of the observed drawdown would be due to partial penetration effects. Hence partial penetration only accounts for a small proportion of the total drawdown observed. Partial penetration increases the drawdown by only a few millimetres at MGQ 7 P for the duration of the test and by only a few centimetres for longer pumping times.

Partial completion has a more significant effect on the drawdown. For thick isotropic aquifers with intergranular flow there is a linear relationship between aquifer thickness and productiviy factor (Pf), a dimensionless term relating well yield expressed as specific capacity for different screened percentages of aquifer thickness. For the Garas Bintow wellfield boreholes, which will have 30 m of screen, the ratio of screen length to aquifer thickness is 0.2 (ie 20% partial completion) and $\mathrm{Pf}=2$ (based on Turcan, 1963). The specific capacity of a fully screened well with a 100% well efficiency would therefore be twice that of the planned
design under steady state conditions. Conversely, after allowing for partial penetration, the theoretical drawdown for a well fully screened throughout the aquifer thickness would only be 50% of a borchole with 30 m of screen.

The model predicted drawdown of about 1 m for the pumping test rate and duration should be doubled to include the effect of partial completion, although this still does not account for some 3 m of drawdown in the test well during the pumping test. This discrepancy is probably related to the model itself which predicts the drawdown due to aquifer loss at a unit distance from the pumped well rather than at the nominal radius.

The new production wells will have a screen length of 30 m compared to 20 m at MGQ 3 T and, assuming a depth of 170 m to the top of the screen, the aquifer penetration will be about 60 m compared to 23 m at MGQ 3 T . Development is likely to be more thorough at the new production wells than for MGQ 3T test well, although the well efficiency will decline to some extent with prolonged pumping. These factors will reduce head losses caused by partial penetration and partial completion effects and well losses such that somewhat smaller drawdowns can be expected in the new production boreholes compared to MGQ 3 T for the same pumping rate.

The step test on MGQ 3T indicates an initial specific capacity of about 180 m 2 d . The aquifer tests suggest that this declines to about 160 m 2 d at $60 \mathrm{~m} 3 / \mathrm{h}$ after 2 days, or about 9 m drawdown. At a pumping rate of $150 \mathrm{~m} 3 / \mathrm{h}$ the specific capacity could decline to about $70 \mathrm{~m} 2 / \mathrm{d}$, or a drawdown of 50 m . This is greater than the maximum available drawdown (base of the casing less pump length and safety margin).

The additional drawdown caused by interference effects and longer term pumping has been predicted using a T of 1400 m 2 d and an S of 2% based on the regional model. In the table below the first column gives the maximum drawdown which occurs in the central part of the wellfield whilst the second column includes an initial drawdown of 9.0 m at a rate of $60 \mathrm{~m} 3 / \mathrm{h}$. This should be more representative of the likely total drawdown as this would include partial penetration, partial completion and well losses which are not included in the model. Increased drawdown due to well deterioration and reduced aquifer thickness with longer term pumping are not included.

Run
Conditions
Drawdown (m)

Model	Adjusted
11.0	20
14.2	23

These drawdown predictions should be reviewed when more information becomes available from the wellfield construction and should only be considered as preliminary at this stage.

4.3 SHORT TERM ABSTRACTION

The available drawdown will be controlled by the maximum pump depth (base of the casing) in the short term and to maintain the pumping water level elevation above sea level to safeguard against saline intrusion in the long term. These drawdowns are about 50 m and 30 m , respectively.

By 1991 the the total water requirements will have increased to $29 \mathrm{Mm} 3 / \mathrm{y}$ compared to an existing availability of 12.4 Mm 3 from Afgoi and Balad Road welfields. Even if all three wellfields were operating at their design capacities there would still be a shortfall of 4.3 Mm3/y as Stage 3 wellfield would not be available as planned. If Garas Bintow is brought in at $8.4 \mathrm{Mm} 3 / \mathrm{y}$ this shortfall could be as much as $8.2 \mathrm{Mm} 3 / \mathrm{y}$.

Hence, the Garas Bintow wellfield may need to be operated at a high total abstraction rate during the first years of operation to meet shortfalls in supply. Model run (b) suggests that all 23 wells could be operated continuously for several years at $60 \mathrm{~m} 3 / \mathrm{h}$ per well without exceeding the above drawdown constraints. This would provide an additional supply of 3.6 Mm3/y, or a total wellfield output of $12.1 \mathrm{Mm} 3 / \mathrm{y}$. The total availability from all threc wellfields would then be $24.5 \mathrm{Mm} 3 / \mathrm{y}$ (Afgoi 10.3, Balad Road 2.1, Garas Bintow $12.1 \mathrm{Mm} 3 / \mathrm{y}$), increasing to $26.6 \mathrm{Mm} 3 / \mathrm{y}$ if the Afgoi wellfield can meet its design yield of $12.1 \mathrm{Mm} 3 / \mathrm{y}$.

The shortfall in 1991 would then be reduced to about $2.7 \mathrm{Mm} 3 / \mathrm{y}$ but this would increase each year by about 2 to $3 \mathrm{Mm} 3 / \mathrm{y}$ until additional supplies become available. The shortfall is an average of nearly $300 \mathrm{~m} 3 / \mathrm{h}$ which could perhaps be supplied from Afgoi and/or Garas Bintow by only a small increase in the average pumping rate of each borehole.

However, as the planned maximum daily output from Garas Bintow is $30240 \mathrm{~m} 3 / \mathrm{d}$ (11.0 $\mathrm{Mm} 3 / \mathrm{y}$), there may be engineering constraints which would not allow the whole wellfield to operate at $33120 \mathrm{~m} 3 / \mathrm{d}$ ($12.1 \mathrm{Mm} 3 / \mathrm{y}$, assuming 23 boreholes each operating continuously at 60 $\mathrm{m} 3 / \mathrm{h}$), which would increase the shortfall to about $3.5 \mathrm{Mm} 3 / \mathrm{y}$ in 1991 . At maximum rates the total availability may be limited to $78480 \mathrm{~m} 3 / \mathrm{d}$ (Afgoi 41760, Balad Road 6480, Garas Bintow $30240 \mathrm{~m} 3 / \mathrm{d}$) which would cause a shortfall of $20820 \mathrm{~m} 3 / \mathrm{d}$ or $865 \mathrm{~m} 3 / \mathrm{h}$ at peak demand.

The interference model cannot examine other more regional considerations concerning abstraction. It is recommended that in view of the water shortages in Mogadishu that the
water supply strategy is updated taking into account engineering and hydrogeological considerations. The regional models should be run to examine alternative, revised operating strategies to meet future demands.

Study Area

Grain Size Analysis

0.4 mm Slot Size (2A - 2B)

A. Gravel Pack specified for 2A Afgoi wellfield
8. Gravel Pack given in Garas Bintow wellfield
well specification document (Page 11)

Yiekd depression curves
Test Boreholes

FIGURE 4

Balad Road Wellfield

FIGURE 5

Yield. depression curves
Afgoi Welliteld

FIGURE 6

Annex A

Stable trotope distribution

- Alluvium

Alluvium/sand
O More than one sample

Appendix 1

HESi matér Level vú recurtitu

TIME（MINS）

（MINS）	URANIMWM（M）
． 5	o． 000
1.0	5．27u
1.5	3．dうo
2.0	3.700
2.5	3.700
3.0	3.700
3.5	3．100
4.0	1.700
4.5	3.000
3.0	1．lou
6.0	3.700
7.0	3.760
¢． 0	3． 100
7.0	3.160
10.0	3.100
15.0	3.000
<0.0	3.500
25.0	3.600
30.0	3．erto
35.0	3．とかっo
40.0	3．000
45.0	3.000
50.0	3.940
b5．0	3.940
$\bigcirc 0.0$	3．150
75.0	j．70l
90.0	3.360
1030	3.700
120.0	3.100
155．0	j．7nu
150.0	3．1ヵt：
165.0	3.700
180.0	1．720
180.5	4.370
181.0	5.020
131.5	5．000

1吅（M1Nこ）
$1 \mathrm{CL}(0)$
ij2．5
1：33． 1
1＊3．5 ذ．カ90

！カー．
10is．：$\quad 2.760$
引うか．）う．160
！r！－う．7ヵ0
！trici b．itu
！ey．！ว．！
iケu・リ 2•iou

？
21‥）こ．カうこ
¿̈う．：う．lou
でくい． う．lカu
くでる．j b．70u
こうう．シ 3．1ヵり
そうこ．\quad ל． 760
$2 \div 10.15 .150$
こうら．0 b．7うu
270．？$\quad 2.700$
2おう．． 5.760
3u．） 3.100
3！2．0 2．7．i．
3．3．1 \quad 2．70u
う．ラ．）$\quad=.1$（3

うクう．う そ．ひ70
jo1．0 $\%$－ $1+0$
351.5 4．140
jö．．）ч．く！U
$302.5 \quad 9.210$
303.9
4.210
\because I i．小．lr．．

： $1 \times 4(1-1, a>)$	
． 30.3 .5	3.210
3ヵ4．11	$\checkmark-\angle 1 U$
jb4．	Y． $2 \mathrm{i} u$
305.0	
300.0	$\rightarrow \cdot C 1 U$
307．U	Y－く1U
3006． 0	yeclu
30＇t．0	$\dot{\rightarrow} \cdot \ddot{C} \mid u$
370.0	\rightarrow－ 210
$3 /$－U	Y． 140
20 U．0	$y \cdot 14 U$
3ふち．U	4.140
	$\rightarrow .140$
$3 サ ゙ 5$	$\rightarrow .140$
$44 \cup .0$	$x \cdot 1 \rightarrow 0$
＋uら．U	\rightarrow 1． 1.0
410．U	7.210
$415-U$	\rightarrow－i i
42110	\because－140
$\therefore 35.0$	－．140
$4=0 . U$	Y．140
4 ¢S．U	13．14i）
4 －${ }_{\text {－}}$	$7 \cdot 14 \mathrm{U}$
$\rightarrow+$ ．	7 －140
51 L	ソ． 440
うくら．0	－1．140
b＋U．U	－．1＋ 1
$540 . b$	1－J．24
Su1．0	10．010
$3+1.5$	10.010

यムlE Uricsi lo え li

（16r．（：－1＊S	Lentujumiv（4）
54く．U	10.510
j42．5	10.010
543.1	10.010
j43．j	10.610
54.0	10.610
74	10.010
54.30	10.010
5430	10.010
547.0	10.010
540.0	10.610
549．0	10.010
530.0	10.540
2ご． 0	1u．01u
560.0	10.61 l
らちう．0）	1u．510
「10．0	10.610
S1ち．0	10.010
ら心0．0	lu．010
¢くら・0	10.60
らとい。＂	16．07i
ミァว•i	10.040
かいい。い	10．0シ0
勺15．0	10.0 ¢
－」u．）	110.230
－4\％．1）	$10.0+0$
カのリ．リ	i 0.0 （\％）
－／د．1）	iü．ltu
ホとリ．1	1U．010
705.0	10.010
720.0	10.010


```
NUMPINO FATES (m**3/LHy) :
    lU5%.U rHuin U.llillvs IU >l3b.0 inim
```


TIME（MINS）	Uranationtiog（M）	ii．e（ialub）	Uramiount（M）
． 5	4.280	i ¢u．n	5.410
1.0	0.470	$150 \cdot 1)$	5.410
1.5	5．200	180．1）	5.410
2.0	5.130	$1+5.0$	5.410
2.5	5.130	210.0	3.410
3.0	3.200	223.0	5.410
3.5	3.200	240．0）	3.410
4.0	5.200	－55．0	5.410
4.5	3.200	c10．0	5.410
5.1	j．2uc	（3）．9	3.410
0.0	ว．200	？no．：）	5.480
1.0	j．2uv	－17．）	5.480
0.0	j．ciru	\％ 5 ¢，	5．4＊＊
Y．U	b．cou	343．：）	5.480
lu．u	ว．ėu	30．1．：	ว．4が
11．0	勺．2uv	315．1）	2.4830
12.0	5．cosj	340	5．480
13.10	z．cuv	－ロフ．リ	כ．4ヵ\％
14.0	勺．c！u	－くす． 0	5.4 Kl
15.0	ว．20u	－sj．：	5.550
16.0	5.200	－לu．al	3.550
17.0	s．cue	4ers．）	5．5bu
18.0	b．20u	－（）．：）	3．950
19.0	$5 .<00$	－\％－ 0	5.550
20.0	3.270	511.11	b．bso
25.0	3.270	5＜3．0	5.550
30.0	$3 .<70$	540.0	5.550
35.0	3.270	うこう．」	5.550
415.0	j．く̄u	E7u．：1	5.550
45.0	3．27u	O0j．1）	り．らうり
Su． 0	S．ju＊	nu：le．	ל．531
5．0	2．340	215．1）	う．ちうい
ou．u	3.340	－su．．	ว．วうッ
75.0	3.340	243．）	j．b5u
Y0．0	3.340	sou． 3	כ．530
105.0	3.340	575．）	3.530
120.0	3．34u	ら－3．）	3．550
135.0	j．340	105．）	2.550

hll fri uala

1＜U．U	う．うらU
135．0	S．
7 73．	5．550
7 7－${ }^{\text {\％}}$	j． 5 Su
100	5.020
7×5.4	5.020
¢́l U．J	3.020
dくら．U	3.620
$8 \rightarrow 1.0$	5.620
8らら． 0	3.550
810．0	j．690
805．0	$5.6{ }^{\circ} \mathrm{O}$
Yi！．U	j．020
$\rightarrow 1500$	3.620
－3U．1）	5.160
94う．0	5.020
Gou．ll	う．הくv
ら／v．0	3.020
サio．	5．35u
1uns．u	3.550
10ヶ4．し	j． 260
	う．）${ }^{\text {O }} 0$
1＊うせ．リ	＝．くらu
10 ロら・レ	j． 200
19ヵい。！	う．jiU
1 ひヵつ．し	2． 260
1110.0	j．550
－125．0	3.480
1140.0	ל．400
1155．リ	2．480
$11 \% 0.0$	5.480
1105.0	3.480
$12!000$	j．530
1く1う．0	5.550
$1<3110$	3.550
1くらう．0	5.550
1 ¢\％い。 0	j．5．5u
1く1ら．0	j．350
しくっり．0	2．650
1 Jiju．U	ว．c20
1うぐり，	¢－5．0
13う．ロ1	כ．

	JrianUUwid（：1）
13ゝ0．）	jobob
1360．0	5．6211
13 ¢U．0	5.620
13メ゙ว．！	5.020
1410.1	5.620
14 くら．0	5.620
1440.0	5.020
1455.0	5.620
1\％05．0	5.020
1515.0	5.020
1545.0	5.690
157＞．0	5.760
1́us．1）	5．760
1535.0	b．ts0
1505．0	3.160
1545.1	5.760
17टう．0	5.700
11 「5．0	5.760
1755.0	2.760
1515.0	5.760
1 ± 45.0	5.100
1ヵ゙フ．0）	5.150
リリリプ0	5．0．30
1－3う．1	3.030
1ヶワว•1	5.100
1ヵ9\％．1）	5．750
くuゼう．${ }^{\text {cus }}$	3.160
2055．0	5.160
くりかう．0	5.930
2115.0	5.030
2：45．0	5.750
2175.0	5.760
2205.0	5.760
2235.0	5.830
とてnb．u	S． 900
ここらう．J	5.900
くるくら． 1	5．13．30
こうちら．）	2．0．30
己̇（i）．i）	5．030
241500	5.030
2．45．0	3．030
24\％ 30	5.100

rIME゙（MIVS） 2505.0 2533.1 28צす．0 ごきら．0 2955．0 2405．0． 3015.0 3045.0 3075.0 3105.0 3135.0 3165.0 3195．0 3225.0 3255.0 3205.0 3315.0 3345.0 3375.0 3405.0 3435.0 3405.0 3495.0 $3525 . \mathrm{U}$ 3555.0 3545.0 3615.0 1645.0 3675.0 37 US． 0 3735.0 3765.0 3745.0 3825.0 3855.0 3ヶஷめ． 0 3915.0 3945.0 3375.0 $\rightarrow 005.0$ 4035.0 4065.0
（indaveniv）
5.830
$5 \cdot 406$
3.020
$5.62 i$
5.620
3.620

う． 626
5.620
5.550
5.700
5.760
5.700
5.620
3.750
5.760
5.700
3.760

S． 700
5.750

2．1ヵし
5．万20
う．\cup ？し
j．15u
う．1ヵに
j． 761
5．70́
5.150
5.150
3.760

う．16ら
5.0 し
5.700
5.160
5.700
j．15u
5． 20
3．894
う．วサレ
う．カッロ
5.690

う．カษ゙
う・ウソi

$\therefore(-10)$	umanduniv（m）
4ijobe	5.090
4125.11	5．0ら0
4155.0	5.040
41.53 .0	3.640
4215.0	5.690
4245.0	5.090
4 く．75．0	5.760
4305.0	5.760
4335.0	5.760
43 －${ }^{\text {4 }}$	5.760
4.355 .0	5.760
4425.0	5.7 00
4455.0	5.7 ¢0
$4 \pm$ ¢ら．0	2．7611
4 う15．0	5．150
	5．10u
4575.11	3.160
ムちリう． 0	S．16u
¢ちうう．0	3.760
$4{ }^{\text {¢ }}$－joし	5.150
$4=4500$	5．330
4125.0	5.0 .30
－14．）1）	5.1 ¢
4105.11	2.700
42150.1	3．150
$4-5.0$	3．100
$4+75.9$	5．100）
$4 \mathrm{FUS.0}$	S．150
473 ¢0	5．150
－＇ヵちう．0）	5．330
4 Эサう．11	5.030
5učち．0	5.030
こ．）55．0	5.750
3005．0	5.150
5115.1	j．53u
－ $1+3.1$	บ．03i
$\leq!75.1$	5．031）
ここいう．リ	ว．90）
ここれう．1）	5．90！
ミこのこ．	2.030
$\vdots 2>3011$	2．91）
う 3 ç． 0	ら，サ00

－LL．I TE Uん1～

Punirlivi，al

I：小it ur tcyl \quad צ 27 ；

1以E（MInS）	bratuidivi．（m）
U	ว．93u
う3ヵ5．0	5.700
5415.0	こ． 97%
34450	b．6．ju
5475．0	S．830
う5us．u	－． 160
5535．0	5．830
2－5．0	3.830
2545．0	5.830
うȯら．0	5.030
505s．0	
j6\％．j．	5．830
ら715．0	勺．830
3745．0	5． 760
571500	3.160
ว 005.0	5．030
つd35．0	3.400
	S．400
うロッグ0	勺．d30
勺らくう．0	5． 160
勺ษらち．0	S．900
フッロう．0	7．150
－utiou	S．760
－U＊＊．	\therefore－Itou
－3\％ 50	－． 100
のivく．0	5．8．30
0136.0	2．1bu
01050	2．7n0
0 － 1 ¢S 0	2.0 .30
－己̇J．	2.900
625 cos	2．9110
かぐठら0	5．430
03150	フ．8．3u
0345.0	5．430
03750	5．330
－405．0	勺．e．3v
a＋jo．J	ว・ナレ6
O40．${ }^{\text {O }}$	こ．ci3u
0＋ップ＂	j．n3U
－5くう．0	5.400
$055=0$	2．4u0
こ50う．	う．วUu

（1ヵt（ \because lids）	
hoib．l	ว．セ3u
ロカムらい	5.9100
ロホ75．0	5.400
6／0ヶ．1）	3．900
07.35 .0	5.900
¢765．0）	2.900
$07.75 .1)$	5.900
6ャてら．1）	5.900
－®うう．1	5.400
๑カ85． 1	5.900
ロy1う． 3	5.760
6445.0	5.760
Gら75．：	5.760
10ソう．！	5.700
7.13000	5.830
7065.11	5.751
7095	5.760
712 ¢．）	3.761
715\％ 0	5.760
71 ¢宀．）	2.031
7215.1	5.030
1245．1	3.030
121う．）	2．030
7 \％ぃつ． 1	3.030
1353．11	3.700
7 7e\％．）	3.700
$73 \cdot 7 \cdot 11$	5.100
74 くう．U	5.160
74.55 .11	5.100
74．5．J	5.760
75i5．！	ל．8．31）
154%－	5．y0u
757う．！	5.100
$7 っ 05.0$	5.760
7ヶちう．0	2.760
7ヶヵら．い	9．1615
$76 \rightarrow$－	－． 230
71 ¢5．：	j．is 30
775．5．1！	3.030
71 ¢\％．1）	$\therefore 760$
7ヵij．J	2.160
734う．ひ	5.760

TLME（MINS）	
7815.0	5．100
7905.0	5.430
7935.0	5.830
7905.0	j．t3u
1995．0	う．900
8025.0.	5.830
8055.0	5.406
8085.0	5.760
8115.0	5.700
d145．0	3.100
8175.0	う．70ن
8205.0	j．d30
0235.0	5.830
8265．0	3．けú
0295.0	5.900
8325．0	5.906
0	5．830
－35ら．1）	5．50u
0415.0	5．yuw
8445.0	5.400
8475.0	－．830
ど50ら．0	5．906

```
~UMF゙ING KAlËS (.H** ミ/UNY):
    105O.U FKUM U.U mINS TO J47U.U MAMD
```

KESI＊ATEK LEVEL VUI RECUKOEZO

IIME（MINS）	URANUUWT（M）	rlmé（MINS）	LRANUUNIN（M）
． 5	7.490	1 50.1$)$	5.090
1.4	0.040	105．1）	5.690
1.5	5.620	180.11	5.090
2.0	3.620	$1 \geqslant 5.0$	5.090
2.5	3.620	210.0	5.090
3.11	3.620	225.0	5.090
3．5	5.020	240.0	5.690
4.0	5.620	255．0	5.760
4.5	3.090	270．0	5.760
S．1）	5.690	205.0	5.690
c．0	5.673	300.0	5.690
$i .0$	2.670	3150	3.090
ஷ．0	5．76U	$330.1)$	5.020
＇tu	－150	3450	5.090
1U．0	5．iso	$350 \cdot 11$	5.090
11.0	5.690	375．！	3.0911
！く．U	S．tia）	390．！	$5.0 Y 0$
13.0	ら．5．）	405.1	כ．0．0
1＋．i）	$\therefore .100$	420.0	$5.0 \div 0$
15.0	3.100	43501	う．ロメU
10.0	3.760	4 うU．0	5.100
17.0	5．7tu	46% ．）	5．1ヵu
13.0	2． 100	480.0	5.100
19.0	5.100	4 4．00	5.100
20.0	5.760	510．0	5.751
25.0	3.090	525．9	5.760
319.0	5.690	540.0	5.760
35.1	5.690	らלら．l1	5.160
40.0	5．590	ら7U．0	5.750
45.0	$5.0 y 0$	5ob．u	3.150
5．）． 0	$\therefore .690$	nu0．0	5．150
勺5．0	2.090	515.0	5.760
c：\％ 0	5．6ヶ0	63V．！）	3.150
S．U	5．090	64.010	5．7nu
＊0．0	3.690	50il． 0	5.100
105.0	5.090	－13．0	5.760
120.0	5.690	AY0．0	5.700
135.0	5.890	705．1）	5.760

（CONTIfUEEO）
－j：5\％rrouvalic Sruuy
－L！int Jaリム

	．Cusvelm	＝ここら1－	Mifrteo NE゙LL
	－J～rimu Af	\therefore－it URij rer	24442455
		．．．iE ur rest	27275
PIME（MINS）	Urisudumivas）		
720.0	b．d30	「！と（n	UKAWDUwH（M）
735.0	5.100	1110	5.750
750.0	5.700	112．5．0	3.150
705.0	3.100	1140.0 1155.17	5.760
780.0	5.700	1155.1 1170.9	5.760
795.0	5.160	1170.9 1185.0	5.030 5.160
810.0 8.25 .0	3.700	110500 1200.0	5.160 5.760
825.0	3.700	1215.0	5.760 5.830
840.0 855.0	5.160	1230.0	3.830 5.760
870.0	5.760 5.700	$1245 \cdot 0$	5.760
885.0	5.700	120000	5.760
900.0	5.760	12750	5.760
915.0	5.760	1290.0	5.160
930.0	5.760	130501	5.700
945．1	5.760	$1320 \cdot 11$	5.760
960.0	5.700	$!335 \cdot 1$	5.760
975．1）	5.100	1350.0	5.760
490.0	b．lou	1355	3.160
1005.0	b．7nu	$i 30 \mathrm{c}$	3.7011
1020.0	S．c3i	！34＝ 1	う．c 30
1035.0	b．cju	－41し．）	j． 300
1050.0	－．c30	14ジこ．）	5.900
10ヶ5．0	¢．7ti	：44）．J	5.200
1000.0	2．70U	－4ジ	5.750
iUYS．0	S．lou	：4 6 し	3.100

TIME（MlisS）
URANDU．N以（M）
3.800
h． 100
ヶ．1リU
H.
B．．hou
7.900
3.200
is． 600
3.000

8．hou
3.100
8.700
0.700
3.100
©． 700
n． 700
0.700
：1．7：10
5.700
a．lico
0.700
－． 0.00
8.800
0.800

ส่．त川0
$\mathrm{H.COU}$
ब．cuo
55.0

ส． 800
－．800
15.0
－1）． 0
10う．0
120．0
13500
1 ju．0
10j．0
180.0

1وら．U
210.0

त． 000
3.800

ง．ないつ
8.800

ब．तo
ふ．犬UO
3.900
3.400
3.900

TME（：AlNS）
225．0 2411.0 255．0 270.0 205.11 300.0 315.0 330.0 34500 300．1） 375.0 391）．： 405.0 420.0 435.0 4bil． 0 40 b． 0
4ちひ．？
49 う． 1 510.0 525．1）
54 U． 0 S5S． 0 510.0 585.0 600.0 615.0 630.0 643.0 605．1） 675．1）
6ッロ．0
アリブロ
72.09 .000
$735.0 \quad 9.000$
7らリ.0 צ.000
765.0
780.0
9.000

URAWUUWIV（M）
8.900
8.900
8.900
8.400
8.400
8.900
8.400
8.400
d． 900
$\rightarrow .700$
8.900
©．900
8.900
8.900

B．50）
i3． 900
3.900

ケ． 100
7.000
9.000
9.000
9.000

Y． 000
9.000
9.000
9.000
9.400
9.000
9.000
9.000
9.000
9.000
9.000
9.000 4.000

צ． 000
9.000
4.000
ill fre lata
Curbli... न-ic i=jr FUMréu rell
（19E（FINS）

（1NS）	4 nc
7.95 .0	ษ．ưu
810.0	Y．J00
8 85．0	子．juv
640．0	9．000
855.0	Y．U00
870.0	Y．000
885．0	9.000
900．0	Y．U00
915.0	4.000
930.0	3．0Uú
945.0	\rightarrow－リi）
960.0	$\rightarrow .500$
975.0	T．UUU
970.0	－リいい
i0us．u	Y．U0U
1020.0	\rightarrow－usu
10.35 .0	\rightarrow O00
10bi．0	－U．0
1065	Э．1100
i0su．u	t．u．ju
13ヲら．U	¢．0．0
1110．0	－．）い0
1125.1	；－1） 0
1140.0	；－iJu
115b．U	צ．uUu
$1170 . \mathrm{U}$	ヶ．ju0
11850.0	－．0）0
1200.0	$\square 0000$
1215.0	－． 010
1230.0	H．ưu
1245.0	Y．Jou
1260.0	G．buc
1275.0	9.000
1270.0	4.000
13 リら．0	ツ．100
1320.0	と．i）
1335.0	\％．l0u
1351．01	Y．9．）
130.0	－．100
130u．0	$\rightarrow .100$

－－it رf 「ËSi 71274

UMAWUUNiv（ H ）
13テラ．0 Y．1じ
141 U．1 $\quad \rightarrow .100$
$1425.0 \quad$ Y． 100
$1.40 .0 \quad 4.000$
1410．＇y． 100
1juu．l Y．U00
l5うu．）9．000
$1560.1 \quad 9.100$
$1590.9 \quad \rightarrow .100$
$1520.0 \quad 9.000$
1551．0 G．100
1ヶぶ．0 צ．1J0
1！！0．9 Y．1U0
17410：！ヨ．100
177う．0 $\quad \rightarrow .100$
1おり！．）\quad－ 100
1コ30．0 צ．i0
1ヵロリ．川 Y．lui
1ヵヶU．？y．lon
i天2u．i サ．10u
1 －らi．＂\quad－．100
licju．）$\dot{-101}$

$\dot{c}: 6 . j=3 .: 01$
く．j（U．）\quad ४．1130
Ėill．1＇s．100
213．j．j \quad y．10n
こ！うリ．0 な．100
2！ $90.0 \quad \exists .100$
222\％．）Y． 100
2250．0－．100
č230．！－ 9.100
2310.0

くうッU．う
9.100
9.100
2370.0 अ． 100

2ヶUU．1 Y．100
こ．3．3．．）－．100
2んカッ．）9．1in
こう．うしう 4． 100

ALL irte UAノA

IIAE（MINS）	UHAN（UUN心（M）	1．\sim ご（～1NS）	WRA＊UUwiv（：M）
045.0	$.404$	1くのU．0	－ 399
661.11	． 411	1275.0	． 347
675.0	． 414	$1290.1)$	－399
690.0.	.415	1305 －1）	－400
705.0	． 410	1320.1	.400
720.0	． 414	1335 0	.394
735.0	.420	1350.0	． 400
750.0	.422	1355.0	． .402
765.0	． 425	13 esu．0	． .404
780.0	． 427	1395.0	－ 40 （i）
795.0	． 420	1410.1	． 404
d10．u	－ 420	$14.2 .501)$	． 409
B2ら．0	． 437	1440.11	．409
84% 0	－44ic	1 4 5－U	． 4119
85.50	－4．33	14から・1）	－4 34
870.1	－433	ij45．11	.425
985.0	． 44%	15\％ち．0	． 427
YU0．0	－ 4.4	$15!300$.424
广1 ¢． 0	－+5 C	1のざご）	.441
930.0	－4jl	1ヶサプU	．449
945.0	－ 45 く	17．2	．451
401：U	－ $45<$	17 －5．11	． 453
975.0	． 431	11：30．1）	．451
990.0	－ $45<$	1－5：1）	． 43
1005.0	． 45	1 ¢•5．1	． 453
1020.0	－ 45	1 \＆／5．1）	－4 4
1035.0	－440	19.3000	．453
1050.0	－ 440	1 4 35．1）	． 451
1055.0	－$+4 \dot{C}$	17：5．1	． 45
1060.0	－ 430	1 ¢чフ．1）	．45C
1095．0	． 434	¢）	． 454
1110.0	． 432	2i55．i）	． 454
1125.0	－ 420	c）$>$ b． 1	.451
1140.0	－ 427		40
115 －U	－41\％	$\bar{c} 1 \rightarrow \dot{\sim}$	\rightarrow－ 4
1170.0	.410	$\ddot{c} \ddagger 7$ ¢． 1	－ 4 －
11 ¢5．0	－+17	＜2， 2 •i	－い－ら 7
1200.0	． 414	2？ 25.0	46
1215.0	． 414	čuう．1	＋hy
12.30 .0	－ 4117	$22 \times 5 \cdot 1)$	4 cos
1245.0	－4いう	く323．1	－4 40

all ritt vala

11：ME（M1AD） 23．5．0 2305．0 2415.0

こ44う．0
2417．0
2545．0
くら55．0
256S．0
こらみう． 0
26̈3． 0
20．25．0
टOत்． 0
2715.0

2745．U
$\therefore 17500$
ぐきいう．U
でらう．U
2d®S．1）
2oy＇j．U ．45y
こんてう。U
己ナ．5．U
ぐック。U
3びに． 0
Ju4．．．U
suly．u
31050
$\leq 135.0 \quad .489$
310 ． $0 \quad \rightarrow 90$
$11 \Varangle 5.0 \quad$－4 91
322ら．＂
3255.0
3235.0
$3315.0 \quad .4 \dot{3}$
334.00442

337 ．$\quad .416$
3ムじ。0 ．477
$343.00 \cdot 473$
お4ロッ．リ
34ソ5．0
3こ2ら．U－418
うごら5．U－41』
.470
IRAMUUNA：（A）
．457
－
． 479
－4 47
.496
.490
.445
．401
.462
． 4 5is
.446
.430
.430
.429
$.42 n$
．421
.430
－4． 51
.472
.+12
.413
.477
－4 4
.4911
.492
－4．43
－पत力
.478
.477
$14<79$
IIME（IINS）UKANDONN（M）
3．55．）－4BU
3．15．0 $\quad .489$
$.3445 .0 \quad .493$
367 ．0． 0.502
$3705.0 \quad . \quad 02$
$3735 . J \quad .505$
37カ5．1－512
3745．0－ 513
3みでロ－ 113
$3355.0 \quad .513$
330 － 0 （ 14
$2 \rightarrow 15 \cdot 1 \quad . b 14$
$3.745 .7 \quad .505$
3けノ゙ら・リ ．477
419 ．． 0 ．492
4： 15.0 ．4 05

$4: 145.0 \quad .474$
4125.10 .409
$4155 . i j \quad .465$
$41.15 \cdot 1 \quad 403$
$4715 \cdot 11 \quad .464$
424500.454
$4 \grave{c} 75.1 \quad .450$
4315.1 •4つ8
$43350 \quad$－474
$4303.0 \quad .426$
$4395.0 \quad .4037$
$4425.0 \quad .492$
$4455.0 \quad .499$
$4485.0 \quad .503$
$4515.1 \quad .504$
$454500 \quad$ ・つi） 4
4575.1 ．514
$400500 \quad$－bl4
4 ヶ35．0 ．514
4 かOこ．0 •blj
4カソら．0－らけ3
4725.0 －bu゙
$4745.0 \quad .500$
4785.0 ．4．48

－＂E JF i上さr 14 2 7 ；

IIME（MINS）

4815.0	UnamuUnit（M）
4845.0	－S01
4875.0	． 434
4905.0	－bou
4935.0	． 503
4965.0	． 506
4995.0	．Suy
5025.0	． 508
SuSs．0	.510
5085.0	－ 16
5115.0	．525
5145.0	． 514
5175.0	． 536
5205.0	． 534
5235.0	． 544
ל265．0	－ 549
5295.0	－ 344
ら32ら．J	． 540
5355．0	． $34 i$
538.50	． 534
$541 \mathrm{b.0}$	． 524
5445.0	－ 224
5475.0	． 514
SSus．0	．511
5535.0	．${ }^{\text {U }}$
5505.0	． 501
5595.0	.494
5625.0	． 491
5655．0	． 491
5035.0	． 490
5115.0	． 490
5745.0	． 497
5775.0	． 501
5dus．0	．502
5835.0	－ 201
5865	．503
589ら．0	－513
5925．0	． 514
ちサらら．U	．515
5485．0	． 514
suls．0	－519

$1!v=(1!i v 3)$
－J． $5 \cdot 1$
C07b．0
6113.0
0135.0
016.0 .0

61ヵว．0
6225.0

URAwIUNAV（M）
－$\supset 15$
－ 2 Cl
． 521
． 519
.519
.520
.522
6255．0 ．516
$6285.0 \quad .516$
0315.0 ．SUS
$0.345 .0 \quad .513$
5315．0 ．． 114
54．5．0 ． 511
6．3う．0 ．5i3
6．05．1）． 1.520
ウ495．1－b27
こう23．1－ 34
ううら5．i）．S4き

－－15．0 •勺ム；
たのムう．0 ・うらて
＂oly．1 •方4
27115．ヶ ・つ54

67ケラ． 0 ．ら4ら
6 23．0 ． 044

5心35．0 •534
0ら15．？．ら27
$0345.0 \quad .522$
$5 \div 75.0$ ． 520
$7305 . J$ ・ラ14
7．， 35 ．．）・う し え
ノioj．J－つ！！
7ヶツう．！・う！

7：うう．0 ・ら1え
7ij5．）．j！
1215．1－． 24
7ごヶう．0 ．5くら

（inte（Sims）	UKA．ruc．vid（il）
i¢ij．U	－う21
730．a	－52\％
13.3 －	.533
73 ¢ヶ．0	．534
73×5.0	． 541
14 ころ．0	－ 244
745 S	． 544
14ヵל00000	． 540
7ちic．u	.540
\％ 1	． 547
1515．0	． 544
7ヵリ5．0	． 534
1035.11	． 542
1065．0	． 520
10．0．0	． 524
17ぐう．	． 530
117500	． 520
	－j2y
\％ 15.0	－ذ20
7345．1）	． 532
	－ 53
／¢（1）	． 520
7935．0	． 530
$79 \rightarrow$－ 0	． 54
	． 554
$70<50$	． 556
NuSbu	－ 557
3035.0	．Sól
0115.0	． 562
S145．0	． 559
3175.0	． 562
－205．0	． 556

ひヵらどんVビ！4！	Mu．．15	Trio ricr．	34442゙5n
Hunimimge	MU．：		34442455
	ひ」でも゙	UF「ビこ1	1 צ ${ }^{\text {¢ }}$

.555
のそロラ・U－ذ57
dンY゙ら．0 •553
3．12ら．1）$\quad 544$
3355．0 ． 543
$0 . j 62.0 \quad .553$
$3.15 .0 \quad .532$
$8=45 \cdot n \quad-534$
シャレ15．：． 533
日とひら．！－524
H535．0 ． 519
3555．0 ．522
3ジう． 1 ． 524

$\begin{array}{ll}8055.0 & -b 32 \\ \text { A．95．0 }\end{array}$
A戶今ה． 0 － 344
$\because 115.3 \quad .540$
d？4う．！－ 1 b4
y7／i．9）•כ34
Hruz．1.$j 24$
견30．7 ． 524
3〒0フ・J ． 334

1525．0 •ל5～
aンうう．．－．557
－3 サロラ・0－55\％
ソリlう．0 ． 554
Gi4 $0.1 \quad .554$
$\rightarrow: 75.0 \quad .520$
$9105.0 \quad .532$
¢ $135.0 \quad .526$


```
HUMPING KAIES (M* J/DAY):
    1056.0 FRUM U.UMINS TO 147 U.U MI.iS
```

REST WATER.LEVEL NÚ mECOKiGEL

TIME(MINS)	URAWIUUN(M)	i: Yc (:11NS)	URAWI)UAT(M)
- 2	.027	90.0	. 286
- 3	. 120	1טら.1	. 247
. 7	. 221	120.1	. 289
1.0	. 274	135.1)	. 289
$1 \cdot 3$	- 267	$150.1)$. 290
1.7	. 251	165.)	-
2.0	. 244	100.:	. 290
2.5	. 244	155.0	- 230
3.0	- 240	210.19	- CHi
3.5	- 249	225.1)	. СНе
4.4	. 251	240.)	. 237
4.5	- 252	255.1)	- 24
S.0	. 255	210.'	.2yc
6.0	- 258	285.!	. 285
7.1)	- cou	300.01	. 247
d. 0	. 262	315 -	- ${ }^{\circ}$
9.0	. 265	3310.3	. 244
10.0	. 260	345.11	. 245
11.0	. 267	301.!	. 276
12.0	- 268	375.0)	. 20
13.0	. 200	340.0	. 295
14.0	- 269	405.0	. 300
15.0	. 270	420.11	. 304
10.0	. 270	435.0	. 308
17.0	. 271	450.0	.312
18.0	. 271	405.7	. 315
19.0	. 271	480.0	. 117
20.0	. 272	445.1	. 321
25.0	- 272	310.0	. 321
$30.1)$. 275	525.1	. 327
35.0	. 217	54.10	. 32 c
40.0	. 278	555.1)	. 321
45.0	.279	570.)	. 324
50.0	. 2ev	らy".0	. 321
55.0	- 2 ¢l	OUJ.0	. 320
50.0	. 281	o13.0	. 330
75.0	- 283	030.0	. 33 c

flME（M1HS）	Uriamumin（M）
64j．u	． 340
60v．0	． 342
6／5．0	． 340
カソ0．U	－ 347
	． 348
720.0	． 354
735.0	． 354
7－0．0	． 354
705.0	.303
780.0	． 364
$7 \dot{7}$	． 303
dlu．0	． 367
3i2S．0	． 357
840.0	． 371
8ゝら．0	－371
d70．0	． 372
ส3s．0	． 304
9u＊．u	． 371
ら15．U	． 370
－311．010	－ $\sin y$
タ4 \％U	． 371
Sou．u	－ 3 n ¢
975．U	－$j 11$
Fuv．u	． 310
1005.0	． 315
$1020 \cdot 0$.373
1050.0	． 372
$1050 . \mathrm{J}$	． 311

$$
\text { נNT ur lcst 2l } 274
$$

ilint（：1I＋NS）URANUUNN（M）
1i）OU．0 ．370
1 iti．n ． 375
1.1 ソj．U ． 376
$1110.0 \quad .378$
$1125.11 \quad .377$
$114 \mathrm{~J} .0 \quad$ ． 384
$1155.0 \quad .382$
$1170.1 \quad .333$
$1185.0 \quad .331$
12けט．0 ．330
$1215.11 \quad .387$
123 O • 1380
$124.11 \quad .394$
lenu．：．j． 3
1き1う．1－394
12せリ．1－\＆ 04
$1.3 .30 .17 \quad .405$

13 ・リコ・リ 405
13 วั̈．＇$\quad+13$
$1300.0 \quad .414$
1 juj．0 $\quad \rightarrow 14$
1アル．）$\quad .+17$
$1+10.0$ ．4 $1 t$
$14 \dot{\text { ci }} 10$ ．417
1.41 .0 ． 416
$1435 \cdot 9 \quad .410$
1ム7」！！ 416


```
PUMPING HATES (iN**3/0:OY) :
```


rest water．level mut recurveio

I I AE（MINS）	DRAWLIMW（id）	Itac（mi：H）	UKANUUNI：（1）
． 5	． 144	210.0	.443
1.0	.218	2 C 5.0	． 447
1.5	． 214	240.0	．499
2.0	． 237	255．0	． 505
2.5	． 302	210.0	． 506
3.0	－ 337	く－5．0	． 51 j
3.5	． 347	3119	－ 516
4.0	． 360	315.9	． 523
4.5	． 370	330.0	－ 325
5.0	． 307	34．j．）	． 524
6.0	－コッロ	100．1）	． 3.35
7.0	－ 4110	27ヶ．0	－ $54 \bar{c}$
－ 0	－4じ	3＞0．i）	－ 3 －
4.0	． 414	$4!5$	． 34 －
10.0	.410	4くひ．）	－フラ」
12.0	． 421	－35．！	－シラニ
14.0	． 425	－こU．．1	－$ํ$ ロ
10.0	． 42	\rightarrow セう．0	－ b
18.0	． 430	－¢i．い	－ 71
2い．0	－ 434	－＊－${ }^{\text {a }}$	－${ }^{\text {¢ }}$
25.0	． $43 n$	510.0	－ 57
30.0	． 43 y	う2う．1）	． 5 S4
35.0	.443	う4J．0	－うnt
40.0	． 445	ジう． 0	－ 5 ¢¢
45.0	． 447	37）．0	－ذ४
50.0	． 440	亏rij．1）	． 544
55．0	$\rightarrow 4$.	かiJ．J	－240
60.0	－4 \rightarrow d	2150．1	－ラッ1
75．U	－$\rightarrow 0$	23．）：	－0．） i
ら0．U	． 405	7－j．1）	－0リシ
1US．0	$\rightarrow 10$	クうリ・リ	－ロリヒ
120.0	－ 7	$\div 15.1$	－ 0 ： 6
135．0	． 470	うi！．）	－0！）
150．0	.480	105．0	－oús
105.0	．405	7ぐい	－ロir
180.0	－4i7	13．3	． 211
195.0	\％	7うひ．）	－0iv

\because al lot unia

－re ut resi

「1洋（141はら）
7ロラッロ

180.0

7ヶら．U
H1い． 0
8くら．U
840.0

B5S．0
370．i）
Bos．u
Yoし．い
415.0

צju．U
445.0
iju．0 ．010
475．1）．621
390．0－n23
$1305.0 \quad .024$
$1020.0 \quad .620$
$\begin{array}{ll}103.0 & .027 \\ 1051.0 & .037\end{array}$
1005．0－． 34
lumb．u－t．33
10.250

11111．1
112ヶ．U
1146.0
1155.0
1170.0
1105.0
1200.0

1215．1）
1230.0
1245.0

しくない。し
しく〉゙．リ
$1 \check{y y y}$
i jis． 0
1320．0 1.33 5． 11 －474
ljbu．0－014
130b．0 •edu

Tive（ i （1．05）	UNAAUUWE（M）
1．juc．0	． 671
13yら．0	．075
1－1）．1）	． 075
1：25．1）	． 070
144．1．1）	.070
$14 / \cup .0$.070
1500．）	． 669
1530．1）	． 06
150u．0	． 664
1こヶレ・0	．063
1ヵくu．0	． 061
1ヶうJ．）	． 055
1ヶヶひ．）	．6tu
171．0）	．0カ3
174．0．）	． 665
171：0．1	．67i
1－ivei）	．07：
1：3：5． 3	－ 234
15ruen	． 0 －\％
！ことじ号	．057
1ヶくり．）	． 704
1ッシリーい	． $10 \times$
1，－¢ 1．1	． 714
C11j．j	.713
くらいい	.714
2．j）．．＇	． 115
2！1300	． 719
ぐ1）．0	． 11 b
ぐ：๑Ј．ひ	.721
く140．0	$\therefore 113$
ここてす。0	.119
	． 717
ざッチーリ	． 711
2．j！ 0.0	.716
くこしJ．！	． 111
$\overline{\text { cijon }}$	． 710
	． 30 c
$\ddot{c}+3) \cdot 0$	． 705
く．ヶ．J．i）	． 701
ぐ・¢」．i）	－659

LITHOLOGICAL AND PENETRATION RATE LOGS

WELL NO. MGQ3T
GRID REF. 54442455

WATER LEVEL RECORDS

This section lists all available depth to water data for each borehole in the area. liater level measurements were taken routinely two or three times a month for the network of 29 boreholes shown in Figure A.4. The measurements were taken using electric contact water dippers to an accuracy of $\pm 0.002 \mathrm{~m}$.

A selection of borehole hydrographs are interleaved within the data and demonstrate three trends.

1. Those for boreholes MOQ $1 \mathrm{P}, 2 \mathrm{P}, 5 \mathrm{P}$ and 8 P show very little long term water level changes and are typical of the majority inland and coastal observation boreholes.
2. Boreholes $12 \mathrm{H}, \mathrm{B} 14 \mathrm{P} 2$ and 15 H No. 4 exhibit the declining water levels encountered in the Balcad Road wellfield observation boreholes. The hydrograph for B14P2 shows rising water levels from August to October 1979 because the adjacent pumped well was not in production.
3. The hydrogranhs for boreholes 1,14, MGQ3P and 12 P show changes in response to river stage in boreholes close to the Shabeelle.

In addition to long term hater level changes daily water level fluctuations were also monitored. Water level readings were taken at 15 minute intervals for periods between 8 and 24 hours at 18 boreholes. These included all observation boreholes drilled during the investigation plus numbers 14 BP and 55 . The readings were taken in conjunction with barometric pressure determined with either a baroneter or aneroid altimeter. With these data it was established that hater levels fall with increasing atmospheric pressure with the exception of MGQ1CP. The daily pattern of change for each borehole is similar although the scale of movement ranges between 20 to 60 millimetres. A typical example of a 24 hour water level fluctuation cicle is shown in Figure A. 5 for MOQ 6P(A). This pattern is repeated daily as is shown by the monthly chart recordings in Figure A. 6.

Figure 4.4

VERTICAL SCALE
1 with $=1$ am

1CP

MOGADISHU RESOURCE STUDY

DEPTH TO WATER SUMMARY

all tre uaia

SITE PAME MUN3T

UATE
7 DEC 78
3 JAN 79
9
26 JAN 79
3 MAR 79
18 APR 79

UGTE

2 לiviv 78
26 Nuv 76
7 にもく 7 8
16 DEC 78 く」 OECC TO

3 JAN 19
S JAIN 75
27 SHN 7S
31 JAIV 14
S Fís 7y
7 feid ly
IS FEH 74
19 MAH 74
17 MAK 79 26 MAR 79

3 $\triangle F K 74$

UEPIH TU NATEK
（METKES）
$107.3<5$
107.320
107.370
107.343
107.322
107.328
unit．

CO Aम诗 79
Y MAY 19
24 JUN 74
3 JUL 79
10 JUL 79
10 JUL 19

DETITHTU WATER
（METKES）
107.342
107.353
107.341
107.335

107．33d
107.346

$$
\begin{aligned}
& \text { Derir Tu mATEA } \\
& \text { (rIETKESI) }
\end{aligned}
$$

$$
u
$$

UERTM TU WACEK （METHE゙S）
107.584
107.599
107.611
107.611

107．547
107.601

1U7．570
107.603
107.595
147.580
107.560
107.511
107.569

107．50b
107.509

1 ט7．561

Mogadishu Water Supply

CHEMISTRY SUMMARY

| GIRID REF | 54412508 | 54442455 | 54442455 | 54462413 | 5446243 | 55022437 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| WEIL, NUMBER | 61 | MGQ3T | MGQ3I | 62 | 62 | MGQ8P |
| DATE | 23 FEB 79 | 28 NOV 78 | 24 FEB 79 | 9 OCT 78 | 3 MAY 79 | 12 DEC 78 |

BASIN
AQUIFER
SOURCE

TOTAL SOLIDS	520.*	650.	660.*	620.*	975.*	970.
ELEC. COND.	550.	780.	940.	900.	1340.	1180.
pH	8.40	8.5	7.70	7.80	7.80	$8.7{ }^{\circ}$
HARDNESS: TOT	210.	400. ${ }^{\text {- }}$	300.*	100.	450.*	440.*
CO3	85.	160.	40.		145.	180.
Alkalinity as CACO 3	125.	240.	260.	120.	306.	260.
FREE CO 2			10.00	3.	8.	
CATIONS Ca	1.37	3.90*	1.41	5.21*	$6.21 *$	5.11^{\bullet}
(meq/l) Mg	2.83	4.10	4.59*	2.79	2.79	3.69
Na	3.38	2.54	3.56	2.17	6.74	6.76
K	. 13	. 15	. 44	33	. 11	. 15
ANIONS HCO3	2.50	4.80	5.20	2.40	6.10	5.20
(meq/ 2) SO4	4.00	3.91	2.08	3.71	3.44	$5.71{ }^{*}$
Cl	1.13	1.92	2.70	4.39	$6.20{ }^{\circ}$	4.80
NO3	. 08	. 06	. 2		. 11	
MINORS Fc	.12*	.26*	.11*	$1.76{ }^{\circ}$. 03	. 07
(mg/l) Zn	. 03	. 07	. 13	. 12	. 25	. 08
Cu	<. 03	<. 03	< . 03	.94**	<. 03	<. 03
Pb	< . 03	.12**	< . 03	$\times .03$	<. 03	$<.03$
Mn	< . $03 .$.	.23*	< . 03	.08*	<. 03	<. 03
DOMESTIC CIASS	2	3	2	3	2	2
AGRICULIURAL CLASS	COSI	C3S1	C3S1	C3S1	C 3 Sl	C3S1

[^2]
MUUUISM，tesu．jnce sfuur
 Cu＇sünilaliy Suqmaser

\therefore LL 1 ne viria

GRIU retif
SIIE

1くらい・か
110．1．．
1：1．．1．：

1く3い・•
UEPIH
(MEIRES)
107.30
110.00
115.00
120.00
125.00
130.00
135.00
140.00

CUNDUCTIVITY (MICRU-MHOS)
1020.0
1020.0
1020.0
1020.0
1020.0
1020.0
1010.0
1000.0

DEPTH (METHES)
141.00
142.00
143.00
144.00
145.00
146.00
148.00

CUNUUCTIVITY (MICRO-MHOS)
1000.0
1000.0
1000.0
1020.0
1000.0
1000.0
1000.0

GRIO REF. 54442450 SITE NAME MUは7ア 3 JUL 79

UEPTH	CONDUCTIVITY
(METRES)	(MICHO-MHOS)
107.60	91.0
109.00	910.0
110.00	910.0
115.00	910.0
120.00	900.0
125.00	900.0
130.00	910.0
134.00	910.0

OEPYH	CUNOUCTIVITY
(METRES)	(MICRO-MHOS)
135.00	910.0
136.00	910.0
137.00	910.0
138.00	910.0
139.00	910.0
140.00	910.0
142.00	910.0
144.00	920.0

$\begin{aligned} & \text { DEPIM } \\ & \text { (METRES) } \end{aligned}$	TEMrEAATUKE じEGREES
107.20	31.2
110.00	32.i
115.00°	32.1
120.00	32.2
125.00	32.4
130.00	$3 \overline{2} .6$
135.00	32.7
140.00	32.8

DEPTM	TEMFEKATUHE
(NETRES)	(DEGREES C)
141.00	32.9
142.00	33.0
143.00	33.0
144.00	33.1
145.00	33.1
146.00	33.1
148.00	33.1

ALL TME Ũata
GRIL تE:. S4442450 SITE NAME ia607P 3 JUL 79

UEPTH (METRES)
107.60
109.00
110.00
115.00
120.00
125.00
130.00
134.00

TEMHERATURE
(LLGHEES C)
$31 \cdot 3$
31.7
31.8
31.9
32.0
32.1
32.2
32.3

UEPTH
(METRES)
135.00
136.00
137.00
138.00
$139.00 \quad 32.7$
140.00
142.00
144.00
32.8

TEMPERATURE (DEGREES C)
32.4 32.4
32.4 $32 \cdot 3$
32.8
32.8

WELI. MOQ $3 T^{\circ}$
DEFYII OF SAMDIS 140 m WEIGIT OF SAMPIE 1000 g

B.S.Sicve Size	$\begin{aligned} & \text { Opening } \\ & \text { in mms } \end{aligned}$	$\frac{\frac{\text { Weight }}{}}{\frac{\text { Retained }}{\text { Grammes }}}$: Retained	Cumilative \& Retained
No 14	1.3	2	0.20	0.20
No 25	0. 59	4	0.40	0.60
No 36	0.41	18	1.80	2.40
No 52	0.18	68	6.80	9.20
No 72	0.11	225	22.50	31.7
No 100	0.106	266	26.60	58.3
No 200	0.073	164	16.40	74.7
Passing 200		253	25.30	100

WELI. NOQ iP
DEPTI OF SARPIE 138-144 m WEIGTT OF SAMPLE 500 g

$\frac{1}{8}$ in	3.1	4	0.80	0.80
No 7	2.3	2	0.40	1.20
No 14	1.3	2	0.40	1.60
No 25	0.59	15	3.00	4.60
No 36	0.41	37	7.40	12.0
No 52	0.18	52	10.40	22.4
No 72	0.11	91	18.20	40.6
No 100	0.106	110	22.00	62.6
No 200	0.073	59	11.80	74.4
Passing 200		128	25.6	100

[^0]: * Stage rating curves for the River Shebelli at Afgoi (station 14) and Balad (station 13), together with monthly flows at Afgoi from Jan 1963 to Apr 1990 and from Balad from Jan 1963 to Dec 1979.

[^1]: - A step-drawdown (production) test was carried out on 15 February 1979 at MGQ 3T at rates of $27,43,69$, and $80 \mathrm{~m} 3 / \mathrm{h}$:

[^2]: - concentration exceeds w.h.o. highest desirable level. concentration exceeds w.h.o. highest permissible level.

