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ABSTRACT

The persistence and climate noise properties of North Atlantic climate variability are of importance for

trend identification and assessing predictability on all time scales from several days to many decades. Here,

the authors analyze these properties by applying empirical mode decomposition to a time series of the latitude

of the North Atlantic eddy-driven jet stream. In previous studies, it has been argued that a slow decay of the

autocorrelation function at large lags suggests potential extended-range predictability during the winter

season. The authors show that the increased autocorrelation time scale does not necessarily lead to enhanced

intraseasonal predictive skill. They estimate the fraction of interannual variability that likely arises due to

climate noise as 43%–48% in winter and 70%–71% in summer. The analysis also indentifies a significant

poleward trend of the jet stream that cannot be explained as arising from climate noise. These findings have

important implications for the predictability of North Atlantic climate variability.

1. Introduction

The climate of the North Atlantic sector has a strong

impact on European weather and climate, particularly

through north–south shifts of the atmospheric eddy-

driven jet stream. The jet stream steers weather systems

across the North Atlantic, determining the storm climate

and influencing precipitation and temperature across

large areas of Europe. In this study, we use a measure of

the latitude of the jet stream as a proxy of North Atlantic

climate variability to examine its climate noise, extended-

range predictability, and trend characteristics. Previous

work in this area has focused on one aspect of jet stream

variability, the North Atlantic Oscillation (NAO), and on

whether its recent variations are significantly different

from the characteristics of simple stochastic processes.

For example, Wunsch (1999) showed that the winter NAO

can be well represented as a first-order Markov process,

although Stephenson et al. (2000) showed that a process

with long-range dependence provides a better fit.

One simple measure of persistence and predictability

is the autocorrelation function. In recent studies, it has

been pointed out that the NAO exhibits unusual per-

sistence, as evidenced by a ‘‘shoulder’’ of slow decay in

the autocorrelation function between 10 and 30 days

(e.g., Ambaum and Hoskins 2002; Rennert and Wallace

2009). However, Keeley et al. (2009) showed that this

shoulder feature is sensitive to the presence of interannual

variability, and as such it may not reflect enhanced pre-

dictability on intraseasonal time scales. The interannual

variability itself is a combination of externally forced var-

iations and variations arising from climate noise: that is,

from sampling variability associated with the averaging

of shorter time-scale intraannual fluctuations (Feldstein

2000, 2002; Franzke 2009; Keeley et al. 2009). The frac-

tion of interannual variability, which is externally forced

and hence potentially predictable, is of obvious interest

for seasonal and longer-range forecasting. Here, we inves-

tigate these issues by applying an empirical mode decom-

position (EMD) to an index of the jet stream latitude to

separate variability on different time scales and examine

their impact on extended-range predictability.

The relatively fast decorrelation of the NAO time

series within the first 10 days has, along with the climate

noise estimates, motivated a focus on synoptic time
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scales in the study of the NAO (e.g., Benedict et al. 2004).

However, this synoptic focus was challenged by Rennert

and Wallace (2009), who suggested that the fast decor-

relation results from the contamination of the daily NAO

index by intermediate (6–30 day) frequency variability

dominated by linear Rossby waves. This contamination

was envisaged to arise from the partial projection of the

wave patterns onto the spatial pattern of the NAO. The

approach taken here of diagnosing the jet latitude may be

less sensitive to the presence of wavelike variability than

methods based on the projection of spatial patterns.

2. North Atlantic climate variability index

The jet latitude index (JLI) is a measure of the vari-

ability in the position of the eddy-driven jet stream over

the North Atlantic region (Woollings et al. 2010). The JLI

covers the period 1 December 1957 through 28 February

2002 using data from the 40-yr European Centre for

Medium-Range Weather Forecasts (ECMWF) Re-

Analysis (ERA-40; Uppala et al. 2005). The JLI is derived

in the following way: 1) a mass-weighted average of the

daily mean zonal wind is taken over the vertical levels

925, 850, 775, and 700 hPa and over the Atlantic sector

08–608W. 2) Winds poleward of 758N and equatorward of

158N are neglected. 3) The resulting wind field is low-pass

filtered, only retaining periods greater than 10 days. 4)

The JLI is defined as the latitude at which the maximum

wind speed is found. 5) A smooth annual cycle is sub-

tracted from the resulting time series. See Woollings et al.

(2010) for more details, where it is also shown that this

index describes jet stream variations that are associated

with both the NAO and the east Atlantic (EA) telecon-

nection pattern and therefore represents a good general

proxy of North Atlantic climate variability. In addition to

its generality, the JLI has an advantage over pattern-

based indices such as the NAO in that it can be trivially

calculated over all seasons with no complications arising

from the changing of patterns during the annual cycle.

3. Time scale and climate noise

The autocorrelation function of the JLI is displayed

as a black line in Figs. 1a,b for the winter and summer

seasons, respectively. The autocorrelation function de-

cays rather quickly in the first few days in both seasons.

Although in summer the autocorrelation function de-

cays to zero after about 10 days, in winter it stays at

significantly nonzero values for up to lag 30 days. The

plateau between lag 10 and lag 30 days of the related

NAO autocorrelation function is usually referred to as

the shoulder feature, and it was attributed to interannual

variability by Keeley et al. (2009). Here, we examine the

contributions of different time scales to this autocorrela-

tion function plateau and assess if it potentially enhances

predictability. For this purpose, we utilize advanced time-

series methods.

The EMD is a recently developed algorithm (Huang

et al. 1998; Huang and Wu 2008; Franzke 2009, 2010) to

decompose a univariate time series into a finite number

of components called intrinsic mode functions (IMFs),

x(t) 5 �
j51

M

c
j
(t) 1 R(t), (1)

where the jth IMF cj can be written in polar coordinates

cj(t) 5 rj(t) sin[uj(t)] where rj is the jth amplitude, uj is

FIG. 1. Autocorrelation functions of daily JLI for (a) winter and (b) summer seasons. Black solid line: unfiltered

JLI; green solid line: detrended (EMD trend) JLI; red solid line: intraseasonal (IMF 1–6) JLI; blue solid line: in-

traseasonal and interseasonal JLI (IMF 1–8); and cyan solid line: JLI with individual winter means subtracted.

Autocorrelation values outside the shaded area are statistically significant at the 5% level.
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the jth instantaneous frequency, and R the instan-

taneous mean. Both the amplitude and frequency are

time dependent and thus different from Fourier modes

where both rj and uj are time independent. An IMF is

defined by the following two properties (Huang et al.

1998): 1) each IMF cj has exactly one zero crossing be-

tween two consecutive local extrema and 2) the mean of

each IMF cj is zero. A detailed description of the algo-

rithm is given by Huang et al. (1998) and Franzke (2009).

Here, we use the same setup as in Franzke (2009, 2010).

The major advantage of EMD over standard wavelet

and Fourier analyses is that it is a data adaptive meth-

odology, whereas wavelet and Fourier analyses use a

priori defined basis functions. See Huang et al. (1998) for

an extensive discussion of the advantages of EMD over

wavelet and Fourier analysis. The ability and robustness

of EMD to extract nonlinear trends from noisy time

series has been demonstrated by Franzke (2010), though

it should be remembered that any definition of a trend

depends on the method used to identify it.

The JLI has been decomposed into IMFs and an in-

stantaneous mean, which we will interpret as a trend in

this study and will be called the EMD trend. Each IMF

mode has a mean period that is defined here as the av-

erage time between two local maxima. This analysis re-

veals that IMF modes 1–6 correspond to intraseasonal

variability and IMFs 9–12 correspond to interannual

variability (Fig. 2 and Table 1). This allows us to use

EMD as a nonlinear filter and utilize the IMFs to define

the following frequency bands: intraseasonal with mean

periods less than 90 days (sum of IMFs 1–6), interseasonal

with mean periods between 90 and 365 days (IMFs 7–8),

and interannual with mean periods larger than 365 days

(IMFs 9–12). The different filtered time series are un-

correlated and thus orthogonal. The intraseasonal, in-

terseasonal, and interannual bands explain 89.5%, 7.7%,

and 2.8% of the total variability, respectively.

The EMD analysis also reveals a statistically signifi-

cant trend that is different from a linear least squares fit

(Fig. 2n). The EMD trend is steeper than the linear least

squares trend in the period 1957–87 and then levels off

after this. The trend is associated with a poleward shift of

the jet stream, which is consistent in sign with the pro-

jected jet stream changes in Intergovernmental Panel on

Climate Change (IPCC) scenario climate model pro-

jections (Yin 2005; Lorenz and DeWeaver 2007).

Most studies assume that climate variability can be

reasonably well represented by a first-order Markov

process in the form of a simple autoregressive process

of first-order [AR(1)] (e.g., Wilks 1995; Wunsch 1999;

Feldstein 2000; Masato et al. 2009). This process has a

memory depth of 1; that is, to predict the next value

one only needs to know the current value, and thus

knowledge of past values will not increase the predictive

skill. However, this can be a problematic choice, as re-

cently shown by Keeley et al. (2009), because it can

overestimate the autocorrelation time scale. A more flex-

ible approach is to use an autoregressive moving average

(ARMA) model (Jones 1980; Wilks 1995), which is given

by
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where xt indicates the state variable at time t; L denotes

the lag operator Lkxt 5 xt2k; and p and q are the orders

of the autoregressive and moving average parts, respec-

tively. Here, zt is standard Gaussian distributed white

noise and f and u are the autoregressive and moving

average coefficients. By setting p 5 1 and q 5 0, the

ARMA( p, q) model simplifies to the standard AR(1)

model. We utilize the ARMA process to get a rough

estimate of the memory depth of the JLI. We denote

as memory depth the order of the ARMA(p, q) model;

that is, the larger of p and q denotes the memory

depth. The optimal model order is estimated using

the algorithm of Broersen (2000). The unfiltered time

series has p 5 3 and q 5 2 for the winter [December–

February (DJF)], spring [March–May (MAM)] and sum-

mer [June–August (JJA)] seasons and p 5 2 and q 5 1 for

autumn [September–November (SON)]; thus, the mem-

ory depth is 3 for both the winter and summer seasons.

The orders reduce to p 5 2 and q 5 1 for the intraannual

filtered time series so that the memory depth is 2. This

suggests that daily climate indices are not necessarily first-

order Markov processes.

We now test the statistical significance of the individual

IMF modes by using the seasonally varying ARMA model

to model the intraseasonal JLI variability (Franzke 2009).

Here, we assume the null hypothesis that all IMFs are

indistinguishable from the seasonal ARMA model. The

coefficients of the ARMA model have been derived from

the intraseasonally filtered data because the aim is to

determine whether the variations on interannual time

scales are distinct from sampling variability of the in-

traannual variations: that is, distinct from climate noise

(Franzke 2009). Because the fraction of variance due to

climate noise is unknown, we performed two different

sets of ARMA simulations. The first set (ARMA1) has

the same variance as the sum of the IMF modes of the

JLI with intraseasonal periods (IMFs 1–6), whereas in

the second set, denoted as ARMA2, the variance of

ARMA1 has been rescaled to fit the variance of the JLI.

In ARMA2, we assume that all JLI variability is caused
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by short-term (intraseasonal) fluctuations. This test uses

a Mahalanobis metric (Mahalanobis 1936), which takes

into account both the mean period and the variance of

the respective IMFs. The results are displayed in Table 1

and reveal that IMF modes 1–3, 5–7, and 9–10 and the

instantaneous mean are significantly different from the

best-fit seasonally varying ARMA process at the 2.5%

level for ARMA1, whereas for ARMA2 only the first

three IMFs and the instantaneous mean are significantly

different at the 2.5% level. Although the intraseasonal

IMFs explain almost 90% of the JLI variance, rescaling

the ARMA1 model to have the JLI variance (ARMA2)

negates the statistical significance of the interannual

IMFs. This suggests that climate noise is potentially able

to explain most of the interannual variability. Further-

more, the IMF modes that are significant against both

FIG. 2. IMFs of EMD for the daily JLI. (n) The dashed line is the linear least squares fit of the JLI. The numbers in

parentheses are the explained variance and the mean period of the IMFs, respectively.
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ARMA models can be considered to be robust. The fact

that the EMD trend is statistically significant when

tested against both ARMA1 and ARMA2 suggests that

the EMD trend is very robust and cannot be explained

as arising from climate noise. Thus, the EMD trend is

likely to have arisen because of external forcing, such as

oceanic forcing, cryospheric forcing, or anthropogenic

warming.

The existence of a statistically significant trend raises

the question of whether the shoulder feature in the au-

tocorrelation function could be due to the trend. How-

ever, the autocorrelation function of the detrended JLI

(Fig. 1a, green line) shows a very similar behavior to the

autocorrelation function of the raw JLI; therefore, the

shoulder feature is not an artefact of the trend.

Now we assess whether certain frequency bands are

responsible for the shoulder feature. The autocorrelation

function of the sum of IMF 1–6 (intraseasonal modes)

shows a rapid decay to insignificant values at about lag

7 days (Fig. 1a, red line). The autocorrelation function of

the sum of IMF 1–8 (intraannual modes; Fig. 1a, blue

line) also has a weaker shoulder than the unfiltered JLI,

showing that all three frequency band contributions are

needed to explain the slow decay of the unfiltered JLI.

This suggests that although the interseasonal and inter-

annual variability only explain about 10% of the total

variance, they have a large impact on the decay of the

autocorrelation function at long lags. This is in good

agreement with the results of Keeley et al. (2009), who

subtracted individual seasonal means from the data before

calculating the autocorrelation function. For reference, we

applied the same procedure, and the result (Figs. 1a,b;

cyan line) is very close to the intraseasonal autocorrelation

function for both summer and winter and is even closer

to the combination of intraseasonal and interannual au-

tocorrelation function for the winter season (not shown).

The results are very similar for the summer season, with

the exception that the interannual frequency band makes

very little contribution to the autocorrelation function of

the unfiltered JLI.

Next we utilize seasonal ARMA models fitted to the

JLI (IMF 1–12; ARMA3) and to IMF 1–8 (intraannual

modes; ARMA4) to generate surrogate time series and

calculate autocorrelation functions to compare their

decay with the JLI. Figures 3a,b show that these ARMA

models provide an excellent fit to the autocorrelation

functions apart from for the unfiltered case in winter at

long lags. In this case, both ARMA models capture the

initial decay of the respective indices well until lag 9 days

but not afterward. We calculate significance levels for

the autocorrelation functions by using ensembles of

ARMA realizations with 1000 members for each of the

44 seasons. This allows us to empirically estimate the 2.5

and 97.5 percentiles from the ensemble. The ARMA

models can produce significant autocorrelation values up

to lag 20 days, which is less than the observed unfiltered

JLI but also much longer than the mean autocorrelation

function of the ARMA ensembles, which is computed as

the average over all autocorrelation functions of the en-

semble. This sampling uncertainty therefore suggests that

part of the shoulder feature could in fact stem from in-

traseasonal fluctuations.

We also calculated rough estimates for the fraction of

interannual variability, which likely arises because of

climate noise. The climate noise fraction is estimated

from an ensemble of 1000 members of the seasonal

ARMA1 and ARMA2 models as the ratio between the

respective ARMA interannual variability, which is cal-

culated from seasonal averages of the daily surrogate

data, and the variance of seasonal means of the JLI. By

doing so, we estimate that during winter about 43%–48%

and during summer about 70%–71% of interannual vari-

ability is due to climate noise. In both seasons the lower

value corresponds to the ARMA1 and the higher value to

the ARMA2 estimate.

4. Predictability

The slow decay of the autocorrelation function of the

unfiltered JLI suggests enhanced extended-range pre-

dictability. Here, we test whether this is indeed the case.

For this purpose, we perform predictability experiments

by utilizing the ARMA1 model. We carry out leave-one-

out hindcast experiments; that is, for predicting the win-

ter of 2000 we use all winter seasons but 2000 to fit the

ARMA1 parameters and then perform predictability

TABLE 1. Mean periods of JLI and corresponding seasonal ARMA(p, q) process in days. The mean period is defined as the mean

distance between two consecutive maxima. IMF modes significant at the 2.5% level are highlighted by an X in rows 3 and 4. For rows

3 and 4, ARMA processes with variance equal to the corresponding intraseasonal (for ARMA1) and total (for ARMA2) variance have

been used.

IMF 1 2 3 4 5 6 7 8 9 10 11 12 Residual

Mean period JLI 4 8 15 25 45 81 146 277 553 1373 3212 8029 16 059

Mean period ARMA 3 6 12 24 45 86 170 337 675 1367 2772 5868 9078

Significant ARMA1 X X X X X X X X X

Significant ARMA2 X X X X
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experiments for the winter of 2000. We now perform two

sets of hindcast experiments: 1) where we hindcast the

intraannual JLI using the ARMA1 model and 2) where

we assume perfect predictability of the interannual vari-

ability (e.g., IMF 9–12) but use the same ARMA1 model

as for set 1. To compare both sets of hindcast experiments

we use the skill score SS 5 1 2 (MSE1/MSE2) (Wilks

1995), where MSEi denotes the mean square error be-

tween hindcast experiment i and the unfiltered JLI av-

eraged over all winter seasons and all starting days of the

hindcasts. The skill score is calculated for predictions of

particular days but also for 10-day averages out to a lead

time of 30 days. We do ensemble hindcasts with the

ARMA model with 100 ensemble members with differ-

ent noise realizations and then use the ensemble mean for

the hindcast skill. Both sets of hindcast experiments have

about the same mean square error; thus, the skill score is

close to zero (not shown). Using both interseasonal and

intraannual IMFs (IMF 7–12) for set 2 of the hindcast

experiments gives very similar results. This suggests that

the shoulder feature of the autocorrelation function does

not imply enhanced predictability on intraseasonal time

scales when the underlying process generating the intra-

seasonal variability is represented by an ARMA model.

Using the ARMA4 model gives qualitatively very similar

results.

5. Concluding discussion

Our main results are as follows:

d The ‘‘shoulder’’ feature in the autocorrelation function

does not lead to enhanced intraseasonal predictability in

hindcast experiments with a seasonal ARMA model,

even if the time scales that lead to the shoulder are as-

sumed to be perfectly predictable.
d The JLI exhibits a significant poleward trend over the

ERA-40 period that does not arise from climate noise.
d About 97% of JLI variability is in the intraannual range.
d In winter and summer, 43%–48% and 70%–71% of

JLI interannual variability, respectively, is likely due

to climate noise.

These results have important implications for the

predictability of North Atlantic weather and climate

on several time scales. With respect to prediction on

seasonal and longer time scales, we estimate that the

potentially predictable, externally forced variability

comprises about 52%–57% of the total interannual

variance in winter and 29%–30% in summer. In win-

ter, this estimate is slightly lower than that of about

70% suggested by Keeley et al. (2009). In summer,

however, our estimate is higher, which may reflect the

influence of the Atlantic multidecadal oscillation on the

summer NAO on interdecadal time scales (Folland et al.

2009).

Although a large fraction of interannual variability is

potentially predictable, its effective predictability ap-

pears to be low because much of the jet stream vari-

ability occurs on intraannual time scales. With respect to

extended-range weather forecasting, the jet stream lo-

cation is not predictable on horizons longer than a week.

Note, however, that the autocorrelation function pro-

vides an average measure of predictability, which may

be higher at some times (e.g., during blocking; Masato

et al. 2009) and of course lower at other times.

FIG. 3. Autocorrelation functions for (a) winter and (b) summer season. Black solid line: unfiltered JLI; red solid

line: ensemble-mean ARMA3 of unfiltered JLI; black dashed line: intraannual JLI; and red dashed line: ensemble

mean ARMA4 of intraannual JLI. The thin blue lines indicate the 2.5% and 97.5% percentiles of ensembles of 1000

ARMA3 simulations fitted to the JLI (the percentiles for the ARMA4 ensembles are very similar). Autocorrelation

values outside the shaded area are statistically significant at the 5% level.
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