

Kinetics of As reduction for analysis using hydride-generation

D J Lapworth & C J Milne

Groundwater Systems & Water Quality Programme

Maclean Building Crowmarsh Gifford Wallingford OX10 8BB Tel 01491 838800

Why Use HG-OES

- Detection Limit of HG-OES is comparable with MS
- Elements that form Hydrides: As, Se, Hg, Sb, Bi

Example of As:

Drinking water quality limit (WHO) for As reduced from 50 μ g/L to 10 μ g/L

OES	HG-OES	MS	
53 ^a	0.5	0.5	

Units are in μ g/L, 3σ instrumental DL, ^a USEPA

Basics of As hydride generation

- As III, As V and Organic arsenic species are all hydride forming depending on conditions used
- For total As analysis all As species are reduced to +III oxidation state using KI and then reacted with NaBH4 to produce a hydride

(KI)

1) As III / As \vee mixture \rightarrow As III

(NaBH4) 2) As $^{III} \rightarrow AsH_x \rightarrow Plasma$

The Chemifold

As Reduction Conditions

Method	KI and Asc	HCI	Rection time	Complete
	(%)	(%)	(hours)	(?)
1) PE	0.2 KI	0.5	0.25	?
	0.2 Asc			
2) PSA	1.0 KI	30	0.5	Yes
	0.2 Asc			
3) BGS-KW	0.3 KI	10	2.0	Yes
	0.033 Asc			100000
4) Other	5.0 KI	2.0	12.0	?
5) Kinetics	0.2 KI	10	?	?
	0.2 Asc			

Reduction kinetics in dilute HCI matrix

Reduction kinetics in strong HCI matrix

Acidity: effect on signal intensity

$25\mu g/L$ As III

Optimal Conditions for reduction kinetics

- 10% HCI
 - 1) Fast enough reduction kinetics to carry out on the same day as analysis
 - 2) Optimal signal intensity
 - 3) More economic on HCI use
- Chemifold allows low sample volume, important for some applications e.g. porewater analysis

Cross plot for real samples

Selectivity for As III

- Difference method employed by labs for calculation of As species
- Acetic acid and citric acid buffers have been reportedly used for the selective reduction of As III by NaBH4 (assuming that only fully protonated species form hydrides), however As V can still be reduced to As III by NaBH4.

slow fast

- 3) As $^{\vee} \rightarrow$ As $^{III} \rightarrow$ AsH_x
- Selectivity using acetic acid was investigated at pH ~6

Selectivity for As III: acetate buffer

Even using a buffer reduction was still not fully selective

Final Remarks

- Good method for total As
 - As V reduction by KI is highly dependent on acidity
 - As hydride formation is dependent on acidity and is not selective for As III, therefore calculating As V by difference is not an option
- HG-OES gives a DL for total As comparable with that of MS, ~ 0.5µg/L, with good reproducibility at concentrations close to the detection limit
- Recently started looking at IC-AFS for speciation (does have the limitation of being single element method)
- Speciation could be done using IC-HG-OES if time-resolved integration was possible in the Winlab software

British Geological Survey

NATURAL ENVIRONMENT RESEARCH COUNCIL

Questions

