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Abstract. 

Carbon dioxide concentrating mechanisms (also known as inorganic carbon 

concentrating mechanisms; both abbreviated as CCMs) presumably evolved under 

conditions of low CO2 availability. However, the timing of their origin is unclear since 

there are no sound estimates from molecular clocks, and even if there were, there are 

no proxies for the functioning of CCMs. Accordingly, we cannot use previous 

episodes of high CO2 (e.g. the Palaeocene-Eocene Thermal Maximum) to indicate 

how organisms with CCMs responded. Present and predicted environmental change in 

terms of increased CO2 and temperature are leading to increased CO2 and HCO3
- 
and 

decreased CO3
2- 

and pH in surface seawater, as well as decreasing the depth of the 

upper mixed layer and increasing the degree of isolation of this layer with respect to 

nutrient flux from deeper waters.  The outcome of these forcing factors is to increase 

the availability of  inorganic carbon, photosynthetic active radiation (PAR) and 

ultraviolet B radiation (UVB) to aquatic photolithotrophs and to decrease the supply 

of the nutrients (combined) nitrogen and phosphorus and of any non-aeolian iron. The 

influence of these variations on CCM expression has been examined to varying 

degrees as acclimation by extant organisms. Increased PAR increases CCM 

expression in terms of CO2 affinity, while increased UVB has a range of effects in the 

organisms examined; little relevant information is available on increased temperature. 

Decreased combined nitrogen supply generally increases CO2 affinity, decreased iron 

availability increases CO2 affinity, and decreased phosphorus supply has varying 

effects on the organisms examined. There are few data sets showing interactions 

among the observed changes, and even less information on genetic (adaptation) 
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changes in response to the forcing factors. In freshwaters, changes in phytoplankton 

species composition may alter with environmental change with consequences for 

frequency of species with or without CCMs. The information available permits less 

predictive power as to the effect of the forcing factors on CCM expression than for 

their overall effects on growth. CCMs are currently not part of models as to how 

global environmental change has altered, and is likely to further alter, algal and 

aquatic plant primary productivity. 

Keywords CO2 concentrating mechanism – combined nitrogen – inorganic carbon – 

iron – mixing depth - photosynthetically active radiation – phosphorus – temperature 

– UVA-UVB 

 

Abbreviations 

CCM   CO2 concentrating mechanism 

DOC Dissolved organic carbon 

PAR   Photosynthetically active radiation (400-700 nm) 

Rubisco  Ribulose bisphosphate carboxylase-oxygenase 

UVA  Ultraviolet A radiation (320-400 nm) 

UVB  Ultraviolet B radiation (280-320 nm) 

 

Introduction 

Global and local environmental change is having significant effects on the habitat of 

algae and aquatic plants, most of which have CO2 concentrating mechanisms (also 

known as inorganic carbon concentrating mechanisms: both abbreviated as CCMs) 

(Giordano et al. 2005; Raven et al. 2005a; Raven 2010, 2011; Reinfelder 2011). 

Physical and chemical changes have occurred in the last 200 years that have, or may, 

affect photosynthetic organisms. Further changes are predicted to occur up to 2100. 

The aim of this paper is to provide a synopsis of what we know of how these forcing 

factors influence photosynthetic organisms, and the responses of these organisms 

through regulation and acclimation, using the current genome, or through adaptive 

genotype modification (Raven and Geider 2003). There is a brief consideration of the 

possibility of using the response of organisms with CCMs to previous high CO2 

episodes as indicators of what is likely to happen with increasing CO2 over the next 

several decades. 

The first publications demonstrating the accumulation of inorganic carbon in 

photosynthesising cells of a cyanobacterium and an alga were published in 1980 
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(Badger et al. 1980; Kaplan et al. 1980). Since then very significant progress has been 

made in relating CCMs to the range of kinetics of Rubisco (ribulose bisphosphate 

carboxylase-oxygenase) in cyanobacteria, algae and aquatic plants, to the species of 

inorganic carbon entering the cells, the roles of carbonic anhydrase and the possibility 

of C4-like photosynthetic metabolism in cyanobacteria, algae and aquatic plants 

(Giordano et al. 2005; Raven 2010, 2011; Renberg et al. 2010). The molecular genetic 

basis of CCMs in cyanobacteria is now relatively well understood, with some 

understanding of the genetic basis of eukaryotic CCMs (Raven 2010, 2011). 

To expand slightly on the topic of genomics and diversity of CCMs, Badger et al. 

(2002, 2003, 2006) and Price et al. (2008) (see also Palinska et al. 2002) consider the 

diversity of CCMs in cyanobacteria. They distinguish between the ancestral β-

cyanobacteria with β-carboxysomes containing Form IB Rubiscos and a range of high 

and low affinity inorganic C acquisition mechanisms, and the derived α-cyanobacteria 

with α-carbosyomes containing Form IA Rubiscos and a restricted range of inorganic 

C acquisition mechanisms. The β-cyanobacteria occur in a wide range of inland water 

and coastal habitats with variable inorganic C availability, while the α-cyanobacteria 

(Prochlococcus and many strains of Synechococcus) occur in oceanic environments 

with low nutrient availability and relatively constant inorganic C availability. The 

extent to which the α-cyanobacteria show (phenotypic) acclimation decreases with 

decreasing genome size, but there is a wide range of genotypes adapted to, for 

example, different depths in stratified areas of the ocean. The rather large areas of the 

ocean which, on satellite imaging of photosynthetic pigments, are dominated by 

cyanobacteria contribute about 24% of marine planktonic primary productivity (Uitz 

et al. 2010). 

Less is known at the genetic, and often the physiological, level of CCMs in 

eukaryotes. For marine phytoplankton there are complete genome sequences for two 

strains of diatom but still uncertainties about the CCM mechanism(s) used in the 

Bacillariophyceae (Raven 2010; Reinfelder 2011). Diatom-dominated upwelling areas 

with a high representation of microplankton account for about 32% of marine 

planktonic primary productivity (Uitz et al. 2010). Areas of the ocean with a high 

representation of prymnesiophytes in the nano- and larger picoplankton size range 

(Jardiller et a. 2009; Liu et al. 2009; Cuvelier et al.2010) contribute about 44% of 

marine primary productivity (Uitz et al. 2010).There are no published complete 

genome sequences for prymnesiophytes (see Cuvelier et al.2010) which, on the basis 

of present evidence, have CCMs with lower affinities and/or concentration ratios than 

do diatoms (Reinfelder 2011).  There are four completely sequenced genomes of 

picoplanktonic prasinophycean green algae, two species of Ostreococcus (Palenik et 

al. 2007) and two species of Micromonas (Worden et al. 2009). The genomic data 

have produced little clarification as to the mechanism of the CCM, characterised 

physiologically by Iglesias-Rodríguez et al. (1998). Despite dominance of some small 
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ocean areas by a prasinophycean (Micromonas pusilla: Not et al. 2004), the 

Prasinophyceae do not feature in the spectral types determined by Uitz et al. (2009). 

Of particular relevance to the effects of environmental change on CCMs is work on 

the influence of variations in the availability of inorganic carbon on the expression of 

CCMs, generally in terms of the affinity for inorganic carbon in photosynthesis and 

growth, noting that the experimental procedures need careful attention (Hurd et al. 

2009; Shi and Morel 2009; Riebesell et al. 2010). There are variations in the details of 

the responses, but the generalised finding is a decreased affinity for inorganic carbon 

from cells grown at higher inorganic carbon concentrations (Giordano et al. 2005; 

Vance and Spalding 2005; Falkowski and Raven 2007; Raven 2010, 2011; Reinfelder 

2011). For at least some eukaryotic algae at very high inorganic carbon concentrations 

there is an essentially complete loss of CCM expression and reliance on diffusive CO2 

transport from the bulk medium to Rubisco (Giordano et al. 2005; Falkowski and 

Raven 2007). The transition from CCM to diffusive CO2 entry cannot occur until the 

external inorganic carbon concentration is higher than a critical value that yields, via 

the CCM, a steady-state CO2 concentration around Rubisco which saturates 

photosynthesis (e.g. Figure 2 of Badger et al. 1980; Kaplan et al. 1980). At external 

inorganic carbon concentrations lower than the critical value diffusive inorganic 

carbon flux is outwards (Tchernov et al. 1997, 2003), constituting a leak requiring 

additional CCM functioning to maintain net inorganic carbon flux.  With increasing 

inorganic carbon concentrations above the critical value there is the possibility, not 

necessarily realised, for the CCM to be increasingly replaced by diffusive CO2 entry, 

with a corresponding saving in energy costs and, probably, in nitrogen and iron 

requirements (Raven and Johnston 1991; Giordano et al. 2005). The critical external 

concentration of inorganic carbon varies among organisms with, among other factors, 

the kinetic properties of Rubisco of an organism. Another factor, discussed in more 

detail below, is the extent to which the CCM is influenced by PAR 

(photosynthetically active radiation, 400-700 nm), UVA (ultraviolet A, 320-400 nm) 

UVB (ultraviolet B, 280 – 320 nm) and the availability of nitrogen, phosphorus and 

iron. 

The elevated atmospheric levels of CO2 and other greenhouse gases will lead to 

global warming, with direct influences on the ecophysiology of organisms and/or in 

their latitudinal or vertical distribution. However, as well as such direct effects of an 

increase in temperature, there will also be temperature-related effects causing a 

shallower upper mixed layer in the oceans (Behrenfeld et al. 2006; Doney 2006; 

Boyce et al. 2010; Steinacher et al. 2010) and in the seasonal epilimnion of lakes 

(DeStasio et al. 1996). This will cause increases in mean flux of PAR and UVB  and 

decreases in the supply of nutrients (including inorganic carbon) derived from 

mineralisation in the deep ocean or lake. In this paper, we shall also consider what has 

been established about the interactions among the environmental factors of 

temperature, PAR, UVB and nutrients (including inorganic carbon) and CCMs, 
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acknowledging that these factors have significance for algal growth in a broader 

context than just their influence on CCMs (Beardall and Giordano 2002; Litchman 

and Klausmeier 2008; Beardall et al. 2009b; Boyd et al. 2010a; Finkel et al. 2010; 

Steinacher et al. 2010). First, however, the paper assesses the possibility that previous 

high CO2 episodes might shed light on what is happening now and in the next several 

decades. 

Previous high CO2 and temperature episodes: evidence for effects on CCMs? 

It would be very helpful if previous high CO2 and temperature episodes gave evidence 

as to the influence of these factors on CCMs. However, there are several reasons why 

very little progress has been made with this possibility. One problem is that there is no 

consensus on when the polyphyletic CCMs evolved, although it is clear that the β-

cyanobacterial CCM preceded the α-cyanobacterial CCM (Raven 1997; Badger et al. 

2002; Giordano et al. 2005; Riding 2006; Raven et al. 2008; Riding 2009; Raven 

2010a). The general assumption is that CCMs evolved in response to low CO2 

availability, with the problem of how CCMs were maintained in intervening high CO2 

episodes (Raven 1997; Badger et al. 2002; Giordano et al. 2005; Raven et al. 2008; 

Raven 2010, 2011).  It might be expected that a CCM origin in low CO2, and 

maintenance in subsequent higher CO2, would be most likely in those organisms 

(cyanobacteria, peridinin-containing dinoflagellates) with maximum specific growth 

rates that would not be CO2-saturated when relying on diffusive CO2 entry from the 

low CO2 environment. The lack of CO2 saturation is mechanistically imposed by the 

high CO2-saturated specific reaction rate, low CO2 affinity and low CO2-O2 selectivity 

of their Rubiscos: see Tcherkez et al. (2006) for mechanistic constraints on the 

kinetics of Rubisco.  

By contrast, the origin of CCMs in low CO2 episodes and their retention in 

intervening higher CO2 episodes might be expected to have a lower likelihood in 

organisms with Rubiscos with higher CO2 affinity and higher CO2-O2 selectivity. 

These organisms are red algae and algae whose plastids arose from red alga 

endosymbionts with Form ID Rubisco, and to a lesser extent glaucocystophyte and 

chlorophyll b-containing algae with Form IB Rubisco and which have maximum 

specific growth rate saturated at lower concentrations of CO2.  

However, these considerations do not take into account temporal and spatial variation 

in the concentration of CO2 and more generally the fact that aquatic systems are not 

necessarily in gaseous equilibrium with the atmosphere. This is especially true in 

productive freshwaters where high photosynthetic demand can produce extremely low 

concentrations of CO2 in surface water during the summer (Maberly 1996), 

potentially producing an ecological niche for species with constitutive or facultative 

CCMs. The same can also be true in productive marine systems (Middelboe and 

Hansen 2007). 
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Molecular clock approaches are not useful, and there are no unequivocal molecular 

markers or fossils, e.g. the possible pyrenoids (a component of many eukaryotic 

CCMs: Badger et al. 1998) in a putative eukaryotic alga from the Neoproterozoic 

Bitter Springs formation (Oehler 1976, 1977), or in a desmid (Chlorophyta: 

Charophyceae) from the Devonian of New York State (Barschnagel 1966). While 

there is now a realisation that CCMs are among the confounding factors in using the 

δ
13

C of organic matter in marine sediments to estimate past atmospheric CO2 levels 

(Laws et al. 2002), these δ
13

C measurements are not of use in dating the time of origin 

of CCMs or their subsequent degree of expression. By contrast, there is anatomical, 

molecular clock and natural abundance stable isotope data for the timing of the 

polyphyletic origin of C4 photosynthesis in flowering plants on land (Cerling et al. 

1989, 1998; Osborne and Beerling 2006).  

Chemical and Physical Forcing Factors associated with Global Environmental 

Change 

General considerations 

The chemical effects of additional (anthropogenic) CO2 on surface waters on Earth 

have been extensively investigated. The physicochemical background of CO2 

solubility in waters of different salinities and temperatures, and the thermodynamics 

and kinetics of the dissolved inorganic carbon system (CO2 + H2O ↔ H2CO3 ↔ 

HCO3
- 
+ H

+
 ↔ CO3

2- 
+ 2H

+
), is well known: the principals were established in the 

nineteenth century. Zeebe and Wolf-Gladrow (2001) give a clear account of the 

chemistry of the inorganic carbon system in seawater, and the outcome for 

anthropogenic CO2 inputs to the ocean and its biota is considered by Giordano et al. 

(2005), The Royal Society (2005), Rost et al. 2008, Doney et al. (2009a), Joint et al. 

(2010) and Reinfelder (2011). The input of CO2 to the ocean causes an increase in the 

concentration of dissolved CO2 and a parallel increase in the much lower equilibrium 

concentration of H2CO3 and H
+
. There is a smaller proportionate, but larger in 

absolute terms, increase in the concentration of HCO3
- 
and, by contrast, a decrease in 

the concentration of CO3
2-

. This perhaps counter-intuitive decrease in an inorganic 

carbon species as a result of added CO2 comes about because at seawater pH the effect 

of decreasing pH and shifting the chemical equilibrium away from CO3
2-

 is greater 

than the effect of increasing the overall concentration of inorganic carbon. While the 

physical chemistry of ocean acidification is well understood, there is debate about the 

methods that should be used to mimic the phenomenon experimentally (Hurd et al. 

2009; Schulz et al. 2009; Shi et al. 2009). Methods that involve shifting the 

CO2:HCO3
-
:CO3

2-
 equilibrium by adding mineral acids decrease the alkalinity of the 

medium and so should be avoided. 

Marine phytoplankton 

While the physical chemistry of these changes is very well understood, there are 

significant spatial and temporal variations in the extent of equilibration of CO2 



7 

 

between the atmosphere and surface seawater (Doney et al. 2009a, b). On a local scale 

where there are no major downwellings to and upwellings from the deep ocean, this is 

a function of the physical factors wind and mixing of the upper layer of the ocean, and 

of the balance of photosynthesis and respiration in the upper mixed layer. This can 

involve recycling of inorganic and organic carbon between photolithotrophs and 

chemo-organotrophs in “recycled production” (Raven and Falkowski 1999; Gruber et 

al. 2009; Riebesell et al. 2009). Distinct from this and superimposed on it is the global 

scale thermohaline circulation with the “solubility pump” and the “biological pump” 

(Raven and Falkowski 1999; Gruber et al. 2009; Riebesell et al. 2009). The “solubility 

pump” is based on downwelling, in the thermohaline circulation, of cool surface water 

in which CO2 is more soluble. The “biological pump” is based on photosynthetic CO2 

assimilation into phytoplankton followed by sinking of particulate organic matter out 

of the photic zone. Continued photosynthetic primary productivity for this “export 

production” requires inputs of carbon, nitrogen, phosphorus, iron and other inorganic 

resources in varying proportions from below the photic zone and input from the land 

in rivers and in aeolian deposition (Falkowski and Raven 2007). Removal of CO2 

from the upper mixed layer is long term (millennia and longer) for only a very small 

fraction of the sinking organic matter. The great majority of the sinking organic 

material is biologically mineralised in the dark parts of the ocean and the resulting 

CO2, NO3
-
, HPO4

2- 
etc. returns to the surface with deep mixing in winter at high 

latitudes and, especially, at systems such as the Humboldt and Benguelas upwellings. 

These upwellings have CO2 concentrations above the air-equilibrium value, especially 

as the cool deeper-ocean water warms at the surface at lower latitudes. 

Global warming, and with it the warming of the surface ocean, is influencing and will 

increasingly influence the physical, and consequently the chemical, oceanography of 

the upper few hundred metres of ocean (Doney 2006; Riebesell et al. 2009; Berger et 

al. 2010; Boyce et al. 2010). At low latitudes, in the absence of an upwelling, the 

greater temperature differential between the warm upper mixed layer and the cooler 

deeper waters decreases the extent of eddy diffusion of nutrients from the deeper 

phosphate- and combined nitrogen-rich waters to the surface nutrient-poor waters. 

The impact on the supply of phytoplankton-available iron of such decreased eddy 

diffusion is much less than for phosphate and combined nitrogen, since 

phytoplankton-available iron input to the ocean is mainly aeolian (discussed by 

Archer et al. 2000; Hutchins et al. 2002; Parekh et al. 2004; Boyd 2007; Boyd et al. 

2010b). The restriction on the nutrient flux from the deep ocean means even less new 

productivity and even less potential for continued export production from this already 

nutrient-limited ocean. The thermocline also shoals so that the upper mixed layer is 

less deep and, other things being equal, the mean flux of PAR, UVA and UVB 

incident on phytoplankton cells is higher. In nutrient-deprived conditions this could 

result in more photoinhibition sensu lato by PAR (and UVA), and cause more 

inhibition by UVB (or greater costs of avoiding this damage) (Beardall et al 2009a).  
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At higher latitudes with increasing seasonality of electromagnetic energy input to the 

surface ocean, the depth of the deep mixing in the winter is decreased as the surface 

ocean stays warmer. Nutrients from the deeper ocean are still supplied to the surface 

waters, but the mixing depth in the summer as well as in the winter is decreased so 

that the mean flux of PAR, UVA and UVB incident on the phytoplankton cells is 

higher. This means that, because of the earlier decrease in the mixing depth, there is 

the potential for an earlier initiation of the spring bloom of phytoplankton, and due to 

the higher mean PAR and continued availability of nutrients, higher productivity may 

occur throughout the summer, resulting in an overall increase in annual production 

(Doney 2006; Boyce et al. 2010).  

A further possible influence of environmental change on the depth of the upper mixed 

layer and the related changes in mean electromagnetic radiation flux and nutrient 

availability is a change in the frequency and intensity of storm events (Knutson et al. 

2009; Gnanadesikan et al. 2010). Major storms are known to temporarily increase 

primary productivity in warmer parts of the ocean (e.g. Landry et al. 2008; Chen et al. 

2009), estuaries (e.g. Wetz and Paerl 2008) and lakes (e.g. Robarts et al. 1998). There 

are also recent suggestions that ozone depletion has a role to play in regulation of the 

Southern Annular Mode and CO2 drawdown in the Southern Ocean (Lenton et al. 

2009), thus providing additional complexity to the interactions among the various 

physical and biological components of environmental change. 

Superimposed on these general effects on the availability of a range of nutrients as a 

result of changed ocean circulation is the possibility of changes in the availability of 

particular nutrients as a result of acidification. An example is iron, with very 

complicated chemistry in the surface ocean (e.g. Boyd et al. 2010b). However, while 

Shi et al. (2010) suggest that iron limitation of marine phytoplankton growth is likely 

to increase in some areas, Breitbarth et al. (2010) found increased Fe(II), the most 

generally accessible form of iron for photosynthetic organisms, in high-CO2 

mesocosms. 

Phytoplankton of Inland Waters 

In inland waters, similar biogeochemical cycles occur as described in the oceans but 

the influence of the terrestrial catchment is much greater with often substantial inputs, 

via inflowing streams, of phosphorus, nitrogen, silicon, iron and other elements. 

Inorganic carbon is supplied from weathering of rocks and input of CO2 derived from 

breakdown of organic carbon fixed in the catchment. The catchment can also supply 

large amounts of terrestrially-produced dissolved organic carbon (DOC), often with 

high short-wavelength absorbance, that can ameliorate harmful effects of UVB 

(Williamson et al. 1996) but also limit productivity by absorbing PAR (Karlsson et al. 

2009). Microbial and photochemical degradation of DOC within a lake is one of the 

causes of the generally elevated concentrations of CO2 in many lakes (Tranvik et al. 

2009). There is evidence for increasing concentrations of dissolved organic carbon in 
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northern-hemisphere temperate lakes as the impact of atmospheric acid deposition 

decreases (Monteith et al. 2007) which could lead to increased concentrations of CO2 

while changes in catchment productivity resulting from land management, 

atmospheric deposition of nutrients (primarily nitrogen) and climate change could 

have a range of effects. Overall, inland waters are frequently not in equilibrium with 

the atmosphere because rates of biological transformation can exceed physico-

chemical rates of air-water exchange and so the direct impact of rising atmospheric 

CO2 on freshwaters is likely to be smaller than on the ocean. 

 

Loads to inland waters of critical nutrients, such as phosphorus and nitrogen, have 

increased as a result of Man‟s activities (Conley et al. 2009). The increased nutrient 

availability is likely to exceed any reduced summer-supply resulting from reduced 

rates of eddy-diffusion and may shift species composition towards competitive 

species that tend to have effective CCMs. For example, it has been suggested that one 

reason for the competitive advantage of cyanobacteria during the summer in 

productive lakes lies in their effective CCM that allows them to outcompete other 

phytoplankton for inorganic carbon (Shapiro 1997). However, there are other 

possibilities for the dominance of cyanobacteria in inland waters: some of them are 

diazotrophs (Vitousek et al. 2002), and the high accumulation factor achieved by the 

CCM of cyanobacteria means that, even granted the low CO2 affinity and low CO2/O2 

selectivity of the Form 1B Rubisco of cyanobacteria, these organisms could have a 

higher nitrogen use efficiency than other phytoplankton organisms (Raven 1991a,b, 

Giordano et al. 2005). 

Marine benthos 

Benthic photosynthesis is influenced in the same ways as phytoplankton by the 

changes in inorganic carbon and direct temperature aspects of environmental change, 

and by the changes in the availability of combined nitrogen and of phosphate 

attendant on shoaling of the thermocline. Coastal eutrophication (Conley et al. 2009) 

may also favour competitive species, such as „green tide‟ Ulva sp. with effective 

CCMs, over other species. Since the organisms are attached to the substrate the 

shallower upper mixed layer does not directly influence the mean flux of PAR, UVA 

or UVB incident on organisms at a given depth. In the intertidal the higher 

atmospheric CO2 has the potential to influence directly emersed photosynthesis 

(Maberly and Madsen 1990) by the organisms that are not saturated by the current 

levels of CO2 (Johnston and Raven 1986; Surif and Raven 1990; Johnston et al. 1992; 

Beardall et al. 1998). 

Inland water benthos  

Similar considerations apply to inland water benthos as to inland water phytoplankton 

for the effects of inorganic carbon and direct effects of temperature, and for effects of 
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mixed layer depth on combined nitrogen and phosphorus supply. Inland water benthos  

resembles marine benthos as far as PAR, UVA and UVB flux is concerned. A 

distinction from marine benthos is the absence of tidal effects: any variations in water 

depths are over much longer time intervals, e.g. drawdown during seasonal or other 

drawdowns with no guarantee of rapid re-submergence. 

Terrestrial Algae and Hornworts 

All terrestrial cyanobacteria (free-living or lichenized) have CCMs, as do some 

terrestrial free-living and lichenized green algae, and hornworts (Palmqvist 1993; 

Palmqvist et al. 1994; Smith and Griffiths 1996; Palmqvist et al. 1997; Badger et al. 

1997; Meyer et al. 2008; Gadd and Raven 2010; Raven 2010a). Terrestrial 

cyanobacteria, algae and hornworts are desiccation tolerant and poikilohydric, 

contrasting with the great majority of terrestrial vascular plant sporophytes: this 

influences their response to changed CO2 and temperature regimes (Meyer et al. 2008; 

Gadd and Raven 2010; Raven and Andrews 2010). 

Responses of pholithotrophs with and without CCMs to environmental change 

General considerations 

Almost all of the available data on particular species concern the regulation or 

acclimation, rather than adaptation (Raven and Geider 2003), of photosynthesis and 

CCMs in response to the environmental conditions related to global change. 

Regulation here means the changes to the functioning of the pre-existing proteome 

(changes in post-translational modification and in ligand concentration) over times of 

seconds to minutes of a change in conditions: there is not enough time for changes to 

the proteome, related to changes in transcription and translation. Acclimation is 

defined as changes in the use of the existing genome by changes in transcription and 

translation, and hence in the proteome and metabolome (Raven 2010, 2011; Renberg 

et al. 2010; Wienkoop et al. 2010), in response to changes in the environment; it 

occurs over time intervals of an hour and longer, and occurs in parallel with, and may 

modulate, regulation. Adaptation is taken to mean evolutionary changes to the 

genome in response to changed environmental conditions, with the possibility of more 

extreme changes to the proteome and metabolome than is the case for acclimation. 

Adaptation typically occurs over years or longer, and occurs in parallel with, and may 

modulate, regulation and acclimation. 

Work with organisms originating recently from a common ancestor (e.g. a recently 

established culture starting from a single cell) on changed environmental conditions 

for times of up to several months is at the level of regulation and acclimation. 

Culturing organisms under the experimental and control conditions over longer 

periods (months – years) is subject to unexpected changes in environmental 

conditions (e.g. equipment failures, interruption of electricity supply) and has rarely 

been undertaken. An admirable exception is the work of Collins and co-workers on 
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increased CO2 concentration for the growth of Chlamydomonas reinhardtii (Collins 

and Bell 2004, 2006; Collins et al. 2006a,b; Bell and Collins 2008; Collins 2010). 

Collins and Gardner (2009) have discussed analytical procedures for dealing with the 

different timescales over which different mechanisms of response to environmental 

change can operate. 

In field observations or manipulations of natural populations of a species or 

assemblages of species of photosynthetic organisms, there is the possibility of 

selection of genotypes of the species or of species within the assemblage. Examples 

are experimental mesocosms of plankton subjected to a range of experimental 

conditions, e.g. variations in CO2 (Riebesell 2004), transects involving parcels of 

surface seawater with naturally or experimentally different CO2 concentrations (e.g. 

Tortell et al. 2010) or the comparison of areas of benthos influenced over years or 

more by CO2 from a seafloor vent compared with a control area nearby (Hall-Spencer 

et al. 2008). In the cases where natural assemblages are allowed to react to the 

changed conditions, molecular genetic analysis of at least the dominant organisms are 

needed to distinguishing genetic adaptation from the selection of pre-existing 

genotypes. In these cases there are, of course, also regulatory and acclimatory 

responses to the changed conditions. 

We now consider the effects of environmental change on CCMs through the more 

direct effects of increased CO2 and temperature, and the more indirect effects on 

CCMs of a decreased thickness of the upper mixed layer. Decreases in the upper 

mixed layer thickness and in nutrient transfer from the deep ocean to the low-nutrient 

upper mixed layer means lower nitrogen and phosphorus (and iron) availability to 

primary producers in lotic habitats, and a greater mean incident PAR, UVA and UVB 

flux in planktonic lotic environments. Beardall and Giordano (2002) have previously 

discussed the role of environmental factors in modulating CCM activity in 

cyanobacteria and microalgae. Lest CCMs are accorded undue importance, it is 

necessary to bear in mind how significant the CCM effects are, relative to other 

aspects of environmental change, in altering the functioning of algae and aquatic 

plants. It is of interest that the current models of the effects of environmental change 

on marine primary productivity do not explicitly consider CCMs (Behrenfeld et al. 

2006; Doney 2006; Boyce et al. 2010; Henson et al. 2010; Steinacher et al. 2010). The 

conclusions from the following analysis are summarised in Table 1. 

Increased CO2 and corresponding changes in the dissolved inorganic carbon system 

and pH 

Data summarised by Giordano et al. (2005) and Raven et al. (2005a, b) (see also Ratti 

et al. 2007 and Egge et al. 2009) suggested that cyanobacteria (all with CCMs) and 

those microalgae with CCMs were almost all saturated for photosynthesis and growth 

with the inorganic carbon supply in present day air-equilibrated seawater or alkaline 

inland waters. For macroalgae and normally submerged vascular plants, inorganic 



12 

 

carbon saturation for growth in these conditions was rather less widespread. There are 

abundant data showing that the affinity of CCMs for inorganic carbon decreases with 

increasing inorganic carbon concentrations for growth with eventual, at least in some 

eukaryotes, loss of CCM expression of and reliance on diffusive fluxes of CO2 from 

the medium to Rubisco (Giordano et al. 2005, Raven 2010, 2011; Wu et al. 2010, 

Reinfelder 2011). 

Subsequent work with laboratory cultures has shown some instances of a lack of CO2 

saturation of CCM-expressing cyanobacteria and microalgae for specific growth rate 

(from cell counts) and, more generally, for organic carbon production (Fu et al. 2007, 

2008; Riebesell et al. 2007; Feng et al. 2008, 2009a,b; Hu and Gao 2008; Iglesias-

Rodriguez et al. 2008; Wu et al. 2008; Finkel et al. 2010; Kranz et al. 2010; Levitan et 

al. 2010). The miss-match between the effects on cell specific growth rate and on 

organic carbon production means that the cells have an increased cellular organic 

carbon quota and/or a greater production of extracellular organic carbon (see Raven et 

al. 2005b; Finkel et al. 2010). Increased CO2 concentrations could have influences on 

the cell size of phytoplankton organisms through a smaller restricting effect of 

diffusion boundary layer thickness which is in turn a function of cell size (Korb et al. 

1996, 1998, Finkel et al. 2010). However, there are other ecological and evolutionary 

constraints on cell size, e.g. acquisition of other nutrients, and the sinking rate of the 

organism (Raven and Waite 2004, Finkel et al. 2010). Finkel et al. (2005) relate the 

decreasing mean cell size of marine diatoms through the Cenozoic to the decreasing 

temperature rather than the decreasing CO2 concentration over the tens of millions of 

years. The sinking rate of diatoms can be altered by increased CO2 via stimulation of 

the dissolution of the silica frustules (Milligan et al. 2004), although the influence of 

this effect is relatively small when the mean lifetime of individual planktonic diatom 

cells is taken into account (Marbá et al. 2007).  

These laboratory cultures were grown at saturating levels of PAR with no UVB, and 

with saturating levels of nutrients other than the varied supply of inorganic carbon. As 

was mentioned above, and will be discussed in more detail below, limiting PAR and 

nutrients other than inorganic carbon, and the presence of UVB, alter the operation of 

the CCM and the dependence of photosynthesis and, where investigated, growth on 

inorganic carbon availability. Overall, the distinction between the inorganic C 

dependence of photosynthesis and growth for algae with CCMs and those relying on 

diffusive transport from the medium to Rubisco is less clear-cut than was previously 

believed (Raven 2010b).  

There is growing evidence that CO2 generation during intracellular calcification in 

coccolithophores is not stoichiometrically involved as component of a CCM, or is 

otherwise necessarily involved in supplying CO2 to Rubisco (Herfort et al. 2004; 

Trimborn et al. 2007; Leonardos and Geider 2009). This conclusion means that the 

variable nature of the reported effects of increased CO2 on coccolithophore 

calcification (see Zondervan 2007; Iglesias-Rodriguez  et al. 2008; Doney et al. 
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2009a; Muller et al. 2010) does not directly impact on CO2 supply to photosynthesis. 

It is certain that dissolution of coccolith calcite occurs when the medium is 

undersaturated with respect to calcite (Doney et al. 2009a), although the relatively 

short mean lifetime of coccolithophores must be remembered (Marbá et al. 

2007).Climate change may alter the balance of advantage for species with and without 

CCMs. A larger fraction of phytoplankton from inland waters than from marine 

habitats lack CCMs, with the expectation of a lower affinity for inorganic carbon in 

those species lacking CCMs (Raven et al. 2005a; Raven 2010. 2011). For example 

Chrysophytes, as a group, appear to lack CCMs (Maberly et al. 2009) and their 

greater abundance in freshwaters compared to the oceans may result from the 

frequently elevated concentrations of CO2 there. Future changes in chrysophyte 

distribution in freshwaters as a result of environmental change are uncertain and 

depend strongly on future concentrations of dissolved CO2. 

 

Temperature 

Temperature influences algal growth in many ways (Raven and Geider 1988; Finkel 

et al. 2010), but, on present evidence, it is difficult to tease out specific effects on 

CCMs (Raven et al. 2002a,b; Finkel et al. 2010). It is clear that CCMs occur in the 

polar algae tested, all of which are closely related to algae from warmer habitats that 

have CCMs (Mitchell and Beardall 1996; Beardall and Roberts 1999; see also Tortell 

et al. 2008a,b), despite arguments that the necessity for CCMs might be less in very 

cold habitats, at least in eukaryotic algae if not cyanobacteria (Raven and Geider 

1988; Raven et al.2002a,b; Finkel et al. 2010). Attempts to use the natural abundance 

of stable isotopes of carbon to determine if there is a latitudinal/temperature gradient 

of the frequency of algae lacking CCMs in the algal flora have been equivocal (Raven 

2002a,b).  

Turning from these adaptation and biogeographical considerations, the literature is, as 

far as we can tell, silent on the effects of temperature acclimation on the properties of 

CCMs.  However, there are data on the effects of temperature on the growth rate of 

cyanobacteria (Fu et al. 2007) and eukaryotic algae (Feng et al. 2008; Fu et al. 2008) 

at two concentrations of CO2: there are clear interactions between temperature and 

CO2. The excellent start made by David Hutchins and collaborators needs extension 

in terms of the phylogenetic range of organisms investigated and the range of 

conditions examined. There are also data on CO2-temperature interactions for natural 

phytoplankton assemblages (North Atlantic spring bloom) in the ocean (Feng et al. 

2009a). For aquatic organisms lacking CCMs, Maberly (1985) did pioneering work 

on the interaction of PAR, CO2 and temperature in photosynthesis of the freshwater 

moss Fontinalis antipyretica that reinforced the idea that the strength of CO2-

limitation is determined by the level of other environmental factors that control 

photosynthesis. 
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All species of cyanobacteria studied so far possess a CCM. Their ecological 

dominance depends on a number of ecological factors and they are a very obvious 

symptom of „eutrophication‟ caused by anthropogenic nutrient loading. Elevated 

temperatures resulting from climate change have been documented and continued 

increases forecast with confidence in the future. Since cyanobacteria generally require 

warm water for growth (Paerl & Huisman 2008) they, and the CCM syndrome, may 

become more widespread with climate warming.  

Photosynthetically Active Radiation 

Since the pioneering work of Beardall on the cyanobacterium Anabaena (Beardall 

1991) there have been several investigations of the effect of the flux density of PAR 

on CCMs, generally as indicated by the half-saturation concentration of inorganic 

carbon (Giordano et al. 2005; Raven et al. 2005b, 2008; Young and Beardall 2005; 

Feng et al. 2009a,b; Fu and Han 2010; Kranz et al. 2010; Levitan et al. 2010). The 

results of these experiments are that CCM expression is decreased by low PAR for 

photosynthesis of otherwise unacclimated organisms. Similar, but less detailed, data 

are available for growth of laboratory cultures of cyanobacteria (Fu et al. 2007) and 

eukaryotic algae (Feng et al. 2008, Fu et al. 2008) and for the Ross Sea phytoplankton 

(Feng et al. 2009b). For aquatic plants in inland waters low-light can down-regulate 

Crassulacean Acid Metabolism in Crassula helmsii (Klavsen and Maberly 2010) and 

Littorella uniflora (Madsen 1987) although in the latter species low-light does not 

cause down-regulation if concentrations of CO2 are low (Madsen 1987). There are 

good mechanistic reasons for the down-regulation of CCMs at low photon flux 

densities for growth (Raven 1990, 1991a,b; Raven and Johnston 1991; Raven et al. 

2000, 2002a,b; Fu and Han 2010). The mechanistic reason for down-regulation of 

CCMs at low PAR is that the energy input to the energized inorganic C influx is lower 

in low irradiances, while the leakage of CO2 from the intracellular pool is unaltered, 

with the reasonable assumption of a constant conductance of the leakage pathway 

(Raven et al. 2000, 2002a,b). This also helps to explain the greater representation of 

algae relying on diffusive CO2 entry rather than CCMs in the subtidal than the 

intertidal of the marine benthos (Maberly 1990). For C4 terrestrial flowering plants 

there is also evidence of increased CO2 leakage for plants grown at low PAR 

(Henderson et al. 1992; Tazoe et al. 2008; Pengelty et al. 2010), and there are 

relatively few low light-adapted C4 plants (Winter et al. 1982). Fu et al. (2007, 2008) 

and Feng et al. (2008) also studied the three-way interactions among CO2, PAR and 

temperature.  

An increased incident mean flux of PAR with a less-deep mixed layer might increase 

the chances of photoinhibition, with probable implications for the size spectrum of 

phytoplankton (Key et al. 2010) and hence for the function of CCMs and also for 

inorganic carbon transport in organisms lacking CCMs (Beardall et al. 2009b; Finkel 

et al. 2010). Wu et al. (2010) found that Phaeodactylum tricornutum grown at high 

(101.3 Pa) CO2 was more sensitive to photoinhibition, and had less non-photochenical 
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quenching, in high PAR than did cells grown in present day (39.3 Pa) CO2: if this is a 

general phenomenon it will have significant implications as the upper mixed layer 

shoals in a warmer higher CO2 world. Wu et al. (2010) also found that growth at the 

higher CO2 concentration resulted in a 34% increase in the rate of dark respiration, 

which the authors relate to an increased rate of biosynthesis under the higher CO2 

conditions (although the growth rate only increased, significantly, by 5.2%) and/or an 

increased requirement for metabolic energy with a decreased external pH. Collins and 

Bell (2004) found increased respiration in some of the genotypes of Chlamydomonas 

reinhardtii that had evolved in a 1000-generation exposure to high CO2. Poorter et al. 

(1992) analysed the literature on respiration rates of organs of C3 and C4 terrestrial 

flowering plants. On a leaf area basis both C3 and C4 plants showed a significant 

increase in respiration in increased CO2, while on a leaf dry weight basis both groups 

showed a decrease in respiration rate in high CO2, although only the C4 data set 

showed a significant difference.  The dry weight data are presumably closer to the 

algal data: if so, they show the opposite effect of increased CO2 on flowering plants 

with CCMs and on algae with CCMs. 

Nitrogen 

Growth of eukaryotic microalgae under nitrogen-limiting conditions increases the 

inorganic carbon affinity of CCMs when the nitrogen source is NO3
-
, although in 

Nannochoropsis sp. there was a decreased inorganic carbon affinity in moving from 

the second-lowest to the lowest NO3
- 
concentration used, but a decreased inorganic 

carbon affinity in the single case in which NH4
+ 

was the nitrogen source (Giordano et 

al. 2005; Raven et al. 2005b, 2008; Young and Beardall 2005; Hu and Zhou 2010). 

There was a decrease in inorganic carbon affinity with decreasing  nitrogen supply 

with NH4
+ 

as nitrogen source in Chlamydomonas reinhardtii (Giordano et al. 2003), 

resembling the results with the lowest NO3
- 
concentrations used for Nannochloropsis 

(Hu and Zhou 2010).  The increased CCM expression under NO3
-
-nitrogen limitation 

accords with mechanistic considerations and with comparisons of C3 (CO2 diffusion) 

and C4 (a C4-cycle based CCM) flowering plants on land (Raven 1990, 1991a,b; 

Raven and Johnston 1991; Giordano et al. 2005). When nitrogen is not limiting, its 

chemical form exerts a rather obvious effect, in the green alga Dunaliella salina, on 

the affinity of photosynthesis for inorganic carbon, which was appreciably higher in 

the presence of NH4
+
 than of NO3

-
 (Giordano and Bowes 1997; Giordano 2001). The 

decrease in nitrification rates in the ocean as a consequence of ocean acidification 

(Beman et al. 2010) will decrease the nitrate concentration relative to that of 

ammonium and organic nitrogen in seawater, with possible influences on the effect of 

combined nitrogen of CCMs in the future as well as in past high-CO2 episodes.   

Phosphorus 

The three data sets available yield contrasting conclusions. Using Chlorella, 

Kozłowska-Szerernol et al. (2004) found an increased affinity for inorganic carbon 
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under phosphorus limitation while Beardall et al. (2005) found a decreased affinity in 

a different strain of Chlorella and different experimental conditions. Hu and Zhou 

(2010) found an increasing inorganic carbon affinity with increasing phosphorus 

limitation in Nannochloropsis. Increasing affinity for inorganic carbon in two of the 

three P-deficient algae seems at odds with the known decreased efficiency of energy 

transformation, at least for respiration where there is a lower ATP per glucose 

oxidised in P-deficient green algae (Theodorou and Plaxton 1993), although less is 

known of  what happens under photosynthetic conditions (Weng et al. 2008).  

Some algae may have C4-like photosynthesis as (part of) their CCMs, and it is of 

interest that three C4 grasses, one each from the three biochemical subtypes, have a 

high photosynthetic phosphorus use efficiency in units of mol CO2 fixed per second 

per mol leaf phosphorus (Ghannoum and Conroy 2007; Ghannoum et al. 2008). There 

is no clear mechanistic reason for a higher or lower phosphorus requirement of 

organisms with CCMs compared to those with diffusive CO2 entry. We know of no 

information on the affinity for inorganic carbon as a function of phosphorus supply, or 

of photosynthetic phosphorus use efficiency, for algae lacking CCMs. 

Iron 

The only data available for laboratory cultures of algae are those of Young and 

Beardall (2005), showing that iron deficiency (such as might happen with decreased 

mixed layer depth) increased CCM expression, consistent with mechanistic 

predictions (Raven 1990, 1991a,b; Raven and Johnston 1991). The role, if any, of 

CCMs in iron-light co-limitation of marine primary productivity (Galbraith et al. 

2010) has not yet been investigated. 

UVB 

Following the pioneering work of Beardall et al. (2002) there have been a number of 

studies with a variety of algae on the effects of UVB on CCMs, with a range of results 

(Song and Qiu 2007; Sobrino et al. 2008, 2009; Beardall et al. 2009a,c; Gao et al. 

2009; Xu and Gao 2009). There seem to be no data on how UVB influences inorganic 

C affinity of algae with diffusive CO2 entry. However, Sobrino et al. (2008) 

hypothesized that such down-regulation of Rubisco and CA under elevated CO2 might 

be responsible for the increase in UVR sensitivity observed under elevated CO2 

conditions. Increased UVB with decreased mixed-layer depth would exacerbate the 

UVB effects, particularly when taken with enhanced nutrient limitation under these 

conditions, and both nitrogen and phosphorus limitations have been shown to increase 

the UVB sensitivity of algal photosynthesis (see Beardall et al. 2009a, and references 

within). In contrast, almost nothing is known about the interactive impacts of UVR 

and Fe-limitation on CCMs and CO2 fixation. Van de Poll et al. (2005) indicated that 

iron-limited cultures of the Antarctic marine diatom Chaetoceros brevis were less 

sensitive to high levels of PAR and UVR than were iron-replete cultures, an effect 

possibly due to elevated superoxide dismutase and ascorbate peroxidase (scavengers 
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of reactive oxygen species) in iron-limited cells (Van de Poll et al. 2009). It may be of 

interest here that induction of CCMs in Chlamydomonas (Im et al. 2003) and 

Cyanophora (Burey et al. 2005) is paralleled by increased expression of genes related 

to removal of reactive oxygen species. However, these works do not deal with UV: 

the laboratory culture conditions had no UV radiation. 

UVA  

UVA can energize algal photosynthesis (McLeod and Kanwisher 1962; Halldall 1964, 

1967; Mengelt and Prézelin 2005; Gao et al. 2007; Xu and Gao 2010), but can also 

inhibit growth (Callieri et al. 2001; Gao et a. 2007). The action spectrum for induction 

of HCO3
- utilization in the green freshwater planktonic microalga Monoraphidium 

braunii shows peaks in the blue and UVA regions of the spectrum, as well as an 

environmentally irrelevant peak in the UVC (Giráldez et al.1998); the relevance of 

this to CCM operation with a smaller mixed layer depth and hence increased mean 

incident blue and UVA requires further investigation. 

Implications for CCM expression in past and future higher CO2 and warmer worlds 

The information discussed in this section shows that the upper layer of natural water 

bodies will experience an increased concentration of CO2 (apart perhaps from 

productive inland waters) and temperature, and a decreased mixed layer depth with a 

corresponding increase in the mean PAR, UVA and UVB incident on phytoplankton 

and a decreased supply of nutrients such as nitrogen, phosphorus and iron for all 

photosynthetic organisms. These changes in the environment mean that the changed 

CCM expression, involving decreased inorganic carbon affinity, as a result of 

increased CO2, will be at least partly offset by the effects of the other environmental 

changes on CCM expression. There would also be an increase in the critical 

concentration of external inorganic carbon above which, for a particular organism, the 

CCM could be partly replaced by diffusive CO2 entry to an extent which parallels 

further increases in external inorganic carbon.   

In addition to the implications for the extent of CCM expression in the future there is 

also the possibility that the indirect effects of warming on CCM expression have 

influenced CCMs in the past. If, as seems very likely, the polyphyletic CCMs evolved 

in a low CO2 environment prior to that experienced over the past few tens of millions 

of years (Raven 1997; Badger et al. 2002; Giordano et al. 2005; Riding 2006; Raven 

et al. 2008; Riding 2009; Raven 2010, 2011), the indirect environmental effects on 

CCM expression could have aided retention of CCMs through higher CO2 and warmer 

episodes subsequent to the origin of the CCMs. Such effects of the warming and 

hence shoaling of the upper mixed layer, and the consequent changes in the supply of 

nutrients, PAR, UVA and UVB, would be particularly significant in organisms with 

Rubiscos having relatively high CO2 affinities and CO2/O2 selectivities with the 

consequent possibility of a low critical external inorganic carbon concentration above 
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which diffusive CO2 entry could partly replace CCMs. The retention of CCMs would 

be expected to be less dependent on interactions with the indirect effects of warming 

in organisms such as cyanobacteria and peridinin-containing dinoflagellates with 

Rubiscos having lower CO2 affinities and CO2/O2 selectivities, and hence higher 

critical external inorganic carbon concentration above which diffusive CO2 entry 

could partly replace CCMs. The correlations described here do not necessarily denote 

evolutionary driving forces related to the retention of CCMs, and such retention might 

constitute emergent properties. Indeed, it must be emphasised that these suggestions 

assume no relevant genetic changes since a given CCM evolved until the present 

when the experimental correlations were observed, and that this will also be the case 

for the expression and function of this CCM in the future. This obvious lack in the 

data available for forecasting (and hindcasting) clearly needs addressing (see e.g. 

Collins and Gardner 2009). 

Conclusions 

Global environmental change has had, and will increasingly have, effects on CCMs 

through the more direct effects of increase CO2 and temperature in all habitats for 

algae and aquatic plants. There will also be more indirect effects on CCMs in some 

environments: for lotic habitats a decreased thickness of the upper mixed means a 

lower combined nitrogen and phosphorus (and iron) availability to primary producers, 

and a greater mean incident PAR, UVA and UVB flux for planktonic lotic 

environments. In terrestrial habitats the direct influences of global environmental 

change on CCMs in algae and hornworts are increases in CO2 and temperature. It is 

also important to remember that effects on CCMs are only one component of the 

response of photosynthetic organisms to environmental change. Current models of the 

effects of environmental change on marine primary productivity since the start of the 

industrial revolution, and that are likely to occur by 2100, do not explicitly consider 

CCMs (Bopp et al. 2004, 2005; Behrenfeld et al. 2006; Doney 2006; Richardson 

2008; Boyce et al. 2010; Steinacher et al. 2010). It seems unlikely that incorporating 

CCMs into the models will alter the conclusions in the way that CCMs are now 

known to be among the confounding factors in using the δ
13

C of organic matter in 

marine sediments to estimate past atmospheric CO2 levels (Laws et al. 2002). 
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Table 1Effects on CCMs of environmental factors, and the direction of change of these 

environmental factors in algal and aquatic plant habitats with global environmental change. Further 

details and references are given in the text. 

Factor Global change induced modification of algal and 

aquatic plant environments 

 

Effects on CCMs 

CO2 Increase in CO2 in  

essentially all environments, although less 

predictable effect in freshwaters which can be out of 

equilibrium with the atmosphere 

Decreased inorganic carbon 

affinity with growth at  

high CO2; can be a switch 

to diffusive CO2 entry 

in some eukaryotes 

Temperature Increase in temperature in  

all environments 

 

No clear data 

PAR Increase in PAR in lotic  

planktonic environments 

Decreased inorganic carbon 

affinity with growth at 

low PAR 

 

Nitrogen 

 

Decrease in combined 

nitrogen in upper mixed  

layer of lotic 

environments 

 

Generally increased  

inorganic carbon affinity 

with growth at low NO3
- 

One example each of 

decreased carbon affinity with 

growth at lowest NO3
- 
 

concentration tested, and with 

growth over entire NH4
+ 

range 

tested. 

 

Phosphorus 

 

Decrease in phosphate 

in upper mixed  

layer of lotic 

environments 

 

Two examples of increased 

inorganic carbon affinity, one 

example of decreased 

inorganic carbon affinity, with  

growth  at low phosphate  

 

Iron 

 

Probable decrease in iron in  

upper mixed layer of   

lotic environments 

 

 

One example of increased 

inorganic carbon affinity with  

growth at low iron 

UVA Increase in UVA in lotic  

planktonic environments, but decrease in sites with 

increased concentration of DOC 

 

No data 

UVB Increase in UVB in lotic  

planktonic environments, but decrease in sites with 

Variable responses of CCMs 

with increased UVB flux for 
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increased concentration of DOC growth. 

 

 

 

 


