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1 Abstract 
 

2 Inorganic carbon can be in short-supply in freshwater relative to that needed by freshwater 
 

3 plants for photosynthesis because of a large external transport limitation coupled with frequent 
 

4 depleted concentrations of CO2 and elevated concentrations of O2. Freshwater plants have 
 

5 evolved a host of avoidance, exploitation and amelioration strategies to cope with the low and 
 

6 variable supply of inorganic carbon in water. Avoidance strategies rely on the spatial variation 
 

7 in CO2 concentrations within and among lakes. Exploitation strategies involve anatomical and 
 

8 morphological features that take advantage of sources of CO2 outside of the water column such 
 

9 as the atmosphere or sediment. Amelioration strategies involve carbon concentrating 
 

10 mechanisms (CCM) based on uptake of bicarbonate, which is widespread, C4-fixation which is 
 

11 infrequent and Crassulacean Acid Metabolism (CAM) which is of intermediate frequency. 
 

12 CAM enables aquatic plants to take up inorganic carbon in the night. Furthermore, daytime 
 

13 inorganic carbon uptake is generally not inhibited and therefore CAM is considered to be a 
 

14 carbon conserving mechanism. CAM in aquatic plants is a plastic mechanism regulated by 
 

15 environmental variables and is generally down-regulated when inorganic carbon does not limit 
 

16 photosynthesis. CAM is regulated in the long term (acclimation during growth), but is also 
 

17 affected by environmental conditions in the short term (response on a daily basis). In aquatic 
 

18 plants CAM appears to be an ecologically important mechanism for increasing inorganic carbon 
 

19 uptake, since the in situ contribution from CAM to the C-budget generally is high (18-55%). 

 
20 
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1 Inorganic carbon availability in freshwater habitats 
 

2 In terrestrial environments, autotrophic plants have evolved mechanisms and strategies that 
 

3 allow them to obtain the resources necessary for photosynthesis and growth such as water, light, 
 

4 nutrients and CO2. Of these, atmospheric CO2 is most constant and so, coupled with the relatively 
 

5 high rate of diffusion of CO2 in the gas phase, it seldom limits productivity in natural systems, or 
 

6 directly-affects ecological distribution. Nevertheless, some terrestrial plants have evolved carbon 
 

7 concentrating mechanisms (CCMs), such as C4 carbon fixation and CAM, that may maximise 
 

8 carbon-uptake but also often solve problems caused by interaction with other environmental factors 
 

9 such as high temperature or shortage of water (e.g. Lüttge 2002; Keeley and Rundel 2003; Sage and 
 

10 Kubien 2003). 
 

11 In contrast, in freshwaters, water is readily available but the concentration of CO2 is highly 
 

12 variable and may range from close to 0 to more than 350 µmol L
-1 

(Bowes and Salvucci 1989; 
 

13 Madsen and Sand-Jensen 1991). Because of a high transport limitation caused by low diffusion 
 

14 coefficients of CO2 in water and substantial boundary layers, these concentrations are in the lower 
 

15 range of concentrations needed to saturate photosynthesis of freshwater macrophytes, where half- 
 

16 saturation concentrations often vary between 100 and 200 µmol L
-1 

(Maberly and Spence 1983; 
 

17 Bowes and Salvucci 1989; Madsen and Sand-Jensen 1991; Maberly and Madsen 1998). 
 

18 Furthermore, photosynthetic removal of CO2, which often generates very low CO2 concentrations 
 

19 (e.g. Maberly 1996) also generates high concentrations of oxygen, producing conditions that 
 

20 favours photorespiration via the oxygenase reaction of Rubisco. In situ measurements have 
 

21 demonstrated that photosynthesis and growth of freshwater plants can indeed be limited by 
 

22 inorganic carbon (Madsen and Maberly 1991; Vadstrup and Madsen 1995). 

 
23 

 

24 Responses to carbon-limitation in freshwaters 
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1 Freshwater plants have evolved anatomical, morphological, biochemical, physiological and 
 

2 ecological strategies to counter this restriction (Bowes 1987; Bowes and Salvucci 1989; Madsen 
 

3 and Sand-Jensen 1991; Raven 1995; Maberly and Madsen 2002; Raven et al. 2008). These 
 

4 strategies can be broadly classified as: ‘avoidance’, ‘exploitation’ and ‘amelioration’. 

 
5 

 

6 Avoidance strategies 
 

7 This is perhaps the simplest strategy and relies on the ability of the plants to avoid low-CO2 

 

8 habitats or niches. In the aquatic habitat avoidance of low-CO2 is possible due to the high within- 
 

9 and among-lake variation in concentration of CO2. For example, the freshwater moss Fontinalis 
 

10 antipyretica, which is restricted to the use of CO2 (obligate CO2-user), could survive in a lake with 
 

11 substantial summer CO2-depletion by exploiting the niche just above the sediment surface with 
 

12 elevated CO2 concentrations (Maberly 1985). Another example of plants avoiding low-CO2 is 
 

13 macrophytes from streams, which benefit from the continuous replacement of CO2-depleted water. 
 

14 Finally, macrophytes from unproductive lakes do not experience the same severe CO2-depletion as 
 

15 plants from productive lakes and therefore macrophytes from these habitats are more likely to 
 

16 depend on CO2 taken up from the water column than species from productive lakes (Maberly and 
 

17 Madsen 2002). 

 
18 

 

19 Exploitation strategies 
 

20 Since some of the anatomical and morphological adaptations allow exploitation of alternative 
 

21 inorganic carbon sources besides CO2 from the water, they are referred to as ‘exploitation 
 

22 strategies’. These include 1/ floating or aerial leaves, which enable freshwater plants to make use of 
 

23 atmospheric CO2; 2/ aerenchyma or lacunae within roots, stems and leaves, which allow gas 
 

24 transport by diffusion or mass flow and – linked to 2 – 3/ uptake of CO2 from the interstitial water 
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1 in the sediment (sediment-CO2). Carbon uptake by floating or aerial leaves can make a major 
 

2 contribution to the carbon-balance of some freshwater plants (e.g. Prins and De Guia 1986, Nielsen 
 

3 and Borum 2008) and can also allow forced ventilation supplying oxygen and removing ethanol 
 

4 from the roots and hence promoting survival in anoxic sediments (Dacey 1980). The sediment-CO2 

 

5 is transported though the roots to the leaves in the lacunae system (Bowes 1987; Bowes and 
 

6 Salvucci 1989; Madsen and Sand-Jensen 1991; Madsen and Sand-Jensen 2006). Uptake of 
 

7 sediment-CO2 is only significant in the functional group of isoetids because of their large root- 
 

8 allocation, well-developed lacunae and short stature (Raven et al. 1988; Madsen et al. 2002). In 
 

9 addition to enabling the exploitation of sediment-CO2, the lacunae facilitate transport of O2, 
 

10 produced in the leaves, to the roots. 
 

11 Many submerged plants have evolved thin or dissected leaves – resulting in a large 
 

12 surface:volume ratio – and have chloroplasts positioned in the outermost cell layers of the leaf 
 

13 (Madsen and Sand-Jensen 1991) which may help to minimise transport limitation. Thin leaves may 
 

14 also match low areal-amounts of photosynthetic machinery to low areal-rates of inward carbon flux 
 

15 (Black et al. 1981). Although these anatomical and morphological adaptations may have evolved to 
 

16 reduce inorganic carbon limitation, their evolution could have been triggered by other 
 

17 environmental factors such as removal of water-shortage, response to shear-stress from water-flow 
 

18 and availability of nutrients or light. 

 
19 

 

20 Amelioration strategies 
 

21 Physiological or biochemical adaptations, as opposed to the anatomical and morphological 
 

22 adaptations, most likely evolved to ameliorate inorganic carbon limitation. They are generally 
 

23 referred to as carbon concentrating mechanisms (CCMs) because they increase the concentration of 
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1 inorganic carbon around the active site of Rubisco (Bowes and Salvucci 1989; Madsen and Sand-  

 

 

2 Jensen 1991; Maberly and Madsen 2002; Raven et al. 2008). 
 

3 CCMs are not ubiquitous in freshwater plants because their operation has both costs and benefits. 
 

4 The benefits may include increased carbon-uptake, reduced photorespiration, reduced 
 

5 photoinhibition and increased nutrient-use efficiency (Bowes and Salvucci 1989; Madsen and Sand- 
 

6 Jensen 1991; Raven et al. 2008). The photorespiration-cycle is an energy- and carbon-expensive 
 

7 mechanism, since one CO2 equivalent is lost, when two O2 equivalents are fixed by Rubisco. 
 

8 Photorespiration is enhanced by a high [O2]:[CO2] ratio near the active site of Rubisco and thus by 
 

9 CO2 depletion, high O2 concentrations and high temperature (Bowes 1991). By increasing the 
 

10 internal CO2 supply and thereby increasing the [CO2]:[O2] ratio internally, the operation of the 
 

11 CCM can reduce photorespiration. Due to the higher internal CO2 supply the CCM may also 
 

12 alleviate photoinhibition, since surplus energy may be dissipated via photosynthetic carbon 
 

13 assimilation (Osmond et al. 1993; White et al. 1996). Theoretically, the CCM, which increases the 
 

14 concentration of CO2 around Rubisco, may increase the nutrient-use efficiency because of higher 
 

15 efficiency of the carboxylase activity of Rubisco (Ehleringer and Monson 1993). Higher 
 

16 carboxylase efficiency could reduce the Rubisco needed for a given amount of carbon fixation and 
 

17 thereby result in higher nitrogen-use efficiency (NUE). However, bicarbonate use is not increased 
 

18 under nutrient-deficient conditions, but rather depends on a sufficient nutrient-supply (Baatrup- 
 

19 Pedersen 1996). Similarly, for Littorella uniflora the relation between CAM and photosynthetic 
 

20 NUE could not be verified experimentally, although CAM was still present at low nitrogen 
 

21 concentrations (Baatrup-Pedersen and Madsen 1999). 
 

22 On the flip side of the CCM-coin are the extra costs in terms of energy and nutrient demand 
 

23 needed to produce, maintain and run the CCM apparatus in addition to the basic costs of the C3- 
 

24 pathway into which it is an accessory (Madsen and Sand-Jensen 1991; Lüttge 2002; Madsen et al. 
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1 2002). Investment of nitrogen in various CCM enzymes or transport proteins may have a negative 

2 impact in a low-nutrient habitat. In low-light habitats or locations, the energetic cost of the CCM 

 

 

 

3 may be significant (Raven and Spicer 1996), since ATP and NADPH production limit 
 

4 photosynthesis at low light. However, in high-light habitats the energetic costs of the CCM are most 
 

5 likely irrelevant – or potentially affect plant performance positively by reducing photoinhibition. 
 

6 The amelioration mechanisms include 1/ bicarbonate (HCO3
-
) uptake 2/ C4-fixation and 3/ 

 

7 Crassulacean Acid Metabolism (CAM). 

 
8 

 

9 HCO3
- 
uptake 

 

10 Uptake of bicarbonate from the bulk medium into the cell (HCO3
- 
use) appears favourable in 

 

11 most freshwaters since its concentration exceeds that of CO2 at pH values higher than ca. 6.4 
 

12 (Maberly and Spence 1983; Vestergaard and Sand-Jensen 2000; Madsen and Sand-Jensen 2006). 
 

13 However, the affinity for bicarbonate is lower than the CO2 affinity and thus CO2 is the preferred 
 

14 inorganic carbon source when concentrations of HCO3
- 
and CO2 are similar (Bowes and Salvucci 

 

15 1989; Maberly and Spence 1989; Prins and Elzenga 1989). Bicarbonate use is by far the most 
 

16 frequently observed physiological mechanism for increasing inorganic carbon uptake and has been 
 

17 reported in about 50% of the investigated submerged angiosperms (Maberly and Madsen 2002). 
 

18 Transport of bicarbonate into the cell can occur directly via a HCO3
-
H

+ 
symporter or indirectly via 

 

19 acidification of the boundary layer, thereby shifting the chemical equilibrium towards CO2, which 
 

20 thereafter can diffuse into the cell (Prins and Elzenga 1989). Bicarbonate users have a competitive 
 

21 advantage and are generally most abundant in alkaline habitats, where pH and the absolute 
 

22 concentration of bicarbonate often are high (Maberly and Spence 1983; Vestergaard and Sand- 
 

23 Jensen 2000). In addition to energy costs, species that are able to use bicarbonate have a lower 
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1 affinity for CO2 than species restricted to CO2 alone (obligate CO2-users) (Maberly and Madsen 

2 1998; Madsen and Maberly 2003), which may impose an ecological cost at some sites. 

 

 

 

3 
 

4 C4-metabolism 
 

5 In addition to bicarbonate use, two inorganic carbon uptake mechanisms exist in freshwater 
 

6 plants that are based on C4-metabolism. They depend on carbon fixation via the enzyme 
 

7 phosphoenol pyruvate carboxylase (PEPcase) either during the day (C4) or during the night (CAM), 
 

8 involving either a spatial (C4) or temporal (CAM) separation of inorganic carbon fixation through 
 

9 PEPcase and Rubisco (Bowes and Salvucci 1989; Ehleringer and Monson 1993; Keeley and Rundel 
 

10 2003). The light-dependent PEPcase fixation of inorganic carbon in freshwater plants is analogous 
 

11 to the terrestrial C4 photosynthetic pathway, but in contrast to terrestrial C4 – which is normally 
 

12 expressed constitutively – freshwater C4 is a plastic mechanism, induced under inorganic carbon 
 

13 limitation (Van et al. 1976; Salvucci and Bowes 1981; Reiskind et al. 1997). Furthermore, 
 

14 freshwater C4 plants do not have Kranz-anatomy like most terrestrial C4 plants. However, single- 
 

15 cell C4-metabolism has recently been observed in terrestrial plants and may be an overseen 
 

16 phenomenon in freshwater plants (Edwards et al. 2004). C4-metabolism appears to be relatively rare 
 

17 in freshwater plants, it has been observed in Hydrilla verticillata, Egeria densa (Bowes and 
 

18 Salvucci 1989; Madsen and Sand-Jensen 1991; Casati et al. 2000) and a number of freshwater 
 

19 grasses (Keeley 1998a, Ueno et al. 1988). 

 
20 

 

21 CAM 
 

22 CAM is primarily known from desert plants as an adaptation to enhance water conservation 
 

23 (Kluge and Ting 1978; Osmond 1978; Winter and Smith 1996; Cushman 2001; Dodd et al. 2002, 
 

24 Silvera et al. 2010). It enables CO2 to be taken up and fixed via night-time PEPcase activity and the 
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1 C4 product stored in the cell vacuole as malate, causing a decline in cell-sap acidity. During the day, 

2 malate is decarboxylated, resulting in de-acidifcation and the released CO2 is fixed by Rubisco and 

 

 

 

3 enters the Calvin cycle (Fig. 1; Groenhof et al. 1988; Winter and Smith 1996; Nimmo 2000). 
 

4 However, CAM is also present in some freshwater plants where it serves a different function. 
 

5 Unlike terrestrial CAM plants, where stomata are closed during the day, freshwater CAM plants 
 

6 have no stomata and CO2 can potentially be taken up 24 hours a day (Osmond 1978; Keeley 
 

7 1998b). In freshwater plants, the inorganic carbon source for PEPcase fixation (HCO3
-
) is derived 

 

8 from endogenous (respiratory CO2) or exogenous sources (CO2 from the bulk water or sediment- 
 

9 CO2). Use of HCO3
- 
as the inorganic carbon specimen being transported into the cell has not been 

 

10 observed in aquatic CAM plants (Maberly and Madsen 2002). In addition to minimising or 
 

11 preventing respiratory carbon loss (potentially a positive carbon gain) in the night, freshwater CAM 
 

12 plants are able to concentrate CO2 internally during the decarboxylation phase and thus CAM 
 

13 functions both as a carbon conserving mechanisms and a CCM (Keeley 1998b; Madsen et al. 2002). 
 

14 Freshwater CAM has been observed in five freshwater genera, Isoetes, Littorella, Crassula, 
 

15 Sagittaria and Vallisneria (Keeley 1998b) and is thus present in isoetids and elodeids. 

 
16 

 

17 Habitats with CAM plants 
 

18 For CAM (and other CCMs) to be of ecological benefit, the plants with CAM must be growing 
 

19 in a habitat with limited inorganic carbon. One such low-carbon habitat is soft-water lakes, which 
 

20 are characterised by relatively low pH, very low total inorganic carbon concentration and 
 

21 bicarbonate concentrations that are too low to support bicarbonate-use. Here, plants with CAM are 
 

22 likely to have an ecological advantage, since inorganic carbon can be taken up throughout the day 
 

23 increasing carbon gain and thus enhancing the chance of survival. In agreement with this, several 
 

24 CAM species – including the isoetids Isoetes spp. and Littorella uniflora – belong to the plant 
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1 community typical of oligotrophic, soft-water lakes (Sand-Jensen and Søndergaard 1997; Keeley  

 

 

2 1996; Madsen et al. 2002). 
 

3 CAM may not only raise the competitive ability of the plants in soft-water lakes, but also in 
 

4 habitats with large fluctuations in the CO2 concentration. Large daily CO2 variations occur in low- 
 

5 and high alkaline lakes with a high productivity, thereby giving rise to low daytime and high night- 
 

6 time CO2 concentrations in the open water (Maberly 1996) and especially in weed beds (Van et al. 
 

7 1976). In these lakes with large CO2-fluctuations, plants with CAM are 1/ able to take up inorganic 
 

8 carbon in the night, where the CO2 concentration is higher and where competition for inorganic 
 

9 carbon with non-CAM species is eliminated and 2/ less dependent on external CO2 in the daytime – 
 

10 and thus CAM confers a competitive advantage upon these species relative to non-CAM species in 
 

11 these habitats. In accordance with this, isoetid-CAM species are often found in ‘seasonal-pools’, 
 

12 while CAM species such as the invasive Crassula helmsii can be found in high-alkaline, more 
 

13 eutrophic lakes (Keeley 1996, 1999; Dawson and Warman 1987). Thus, even in high-alkaline 
 

14 habitats with a relatively high inorganic carbon concentration during the daytime, CO2 may be 
 

15 limiting and thus make the possession of CAM favourable. However, the reason why high-alkaline 
 

16 lakes are not a typical CAM-plant habitat is likely to be caused by the direct competition with 
 

17 bicarbonate-users, which can take advantage of the high bicarbonate concentration and tend to be 
 

18 larger, faster-growing species. 

 
19 

 

20 CAM plasticity 
 

21 CAM is a plastic mechanism in freshwater plants which is consistent with its function as a 
 

22 carbon conserving and carbon concentrating mechanism: the regulation ensures that resource- 
 

23 allocation to energy- and nutrient-demanding uptake mechanisms is avoided when inorganic carbon 
 

24 does not limit photosynthesis (Bowes and Salvucci 1989; Maberly and Madsen 2002; Madsen et al. 
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1 2002). The regulation can involve long-term acclimation over weeks or months or short-term  

 

 

2 responses (during the 24 hour cycle) to external conditions and has been documented in isoetids and 
 

3 elodeids. 

 
4 

 

5 Long-term regulation of CAM 
 

6 Regulation of CAM is dependent on various environmental parameters e.g. light, CO2, 
 

7 temperature, nutrients and water level (Aulio 1985; Madsen 1987a; Robe and Griffiths 1990; 
 

8 Hostrup and Wiegleb 1991; Klavsen and Maberly 2009; 2010, Klavsen unpubl. data). However, the 
 

9 outcome of regulation of CAM is dependent on the interaction between these parameters (Table 1). 
 

10 Light and CO2 interact in the regulation of CAM, and for the invasive elodeid, C. helmsii, low 
 

11 light causes down-regulation, independent of the CO2 concentration (Klavsen and Maberly 2010) 
 

12 (Table 1). For the isoetid L. uniflora, down-regulation of the CAM apparatus has also been 
 

13 observed at low light, although in this species down-regulation depends on the CO2 availability 
 

14 during growth, with low CO2 grown plants not reducing CAM activity (Madsen 1987a; Klavsen 
 

15 unpubl. data) (Table 1). In a low light regime, and particularly at moderate or high CO2, CO2 

 

16 becomes saturating for photosynthesis which most likely triggers down-regulation of CAM. Down- 
 

17 regulation of CAM at low light is ecophysiologically favourable because it removes the energy cost 
 

18 associated with maintaining and running the CAM cycle (Raven and Spicer 1996). Maintenance of 
 

19 the CAM apparatus in a low light regime may also be too costly in terms of nutrients. When CAM 
 

20 is not needed to enhance inorganic carbon uptake, nutrients associated with CAM can be allocated 
 

21 to acquisition of more limiting resources such as investments in light harvesting. 
 

22 At light intensities saturating for photosynthesis and low CO2 availability, CAM is generally up- 
 

23 regulated (Madsen 1987a; Robe and Griffiths 1990; Klavsen and Maberly 2010). At saturating 
 

24 light, CAM is generally decreased with raised CO2 (Table 1). However, the CO2 concentration, at 
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1 which down-regulation is triggered, is very different in C. helmsii and L. uniflora. The reason for  

 

 

2 the differences in the absolute CO2 concentrations causing down-regulation are likely to be related 
 

3 to the CO2 concentration needed to saturate photosynthesis, which for isoetids is relatively high 
 

4 (half-saturation around 500-600 µmol L
-1 

CO2) (Madsen et al. 2002). For C. helmsii the half- 
 

5 saturation concentration of CO2 is lower and was estimated to be ca. 100 µmol L
-1 

from the data 
 

6 from Klavsen and Maberly (2010). Regarding L. uniflora contrary results on CAM regulation at 
 

7 high light have been found, since CAM down-regulation is not triggered by high CO2 per se 
 

8 (Madsen 1987a, Baatrup-Pedersen and Madsen 1999), thereby emphasising the interactive effect of 
 

9 environmental parameters on CAM. 
 

10 In agreement with light affecting the regulation of CAM, CAM varies with season and thus light 
 

11 intensity (Boston and Adams 1985; Klavsen and Maberly 2009). Indirectly, seasonal regulation 
 

12 indicates regulation of CAM by temperature in L. uniflora and C. helmsii. For L. uniflora regulation 
 

13 of CAM by temperature has been observed, since L. uniflora appears to optimize CAM at or close 
 

14 to ambient temperature (Klavsen unpubl. data). This implies that L. uniflora performed better at low 
 

15 than high temperature in the winter months (Q10 of 0.6-0.7). In the summer, CAM was stimulated 
 

16 by raised temperature and Q10 was 1.4-1.8 (Klavsen unpubl.). In contrast to terrestrial CAM plants, 
 

17 the seasonal variation in CAM cannot easily be determined by differences in δ13-C, since the δ13-C 
 

18 values in aquatic plants vary depending on factors such as inorganic carbon source and diffusion 
 

19 resistance (Keeley and Sandquist 1992). 
 

20 The seasonal regulation of CAM by light and temperature is in agreement with CAM acting as a 
 

21 CCM to enhance inorganic carbon uptake under environmental conditions with inorganic carbon 
 

22 depletion. In the summer – where CAM is highest (Fig. 3, Boston and Adams 1985; Klavsen and 
 

23 Maberly 2009) – high temperature and irradiance as well as long daylength enhance the 
 

24 photosynthetic rate and the overall daily photosynthesis and thus increase the inorganic carbon 
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1 demand and the need for CAM. The need for an up-regulated CCM is further accentuated by a 
 

2 potentially higher photorespiration because of higher temperature in summer. 
 

3 Regulation by nutrients appears to be of minor importance, although nutrient-depletion lowers 
 

4 CAM in L. uniflora grown at high light (Madsen 1987a; Robe and Griffiths 1994; Baatrup-Pedersen 
 

5 and Madsen 1999). This is consistent with the higher nutrient demand in the production and 
 

6 maintenance of the CAM apparatus, including CAM-related enzymes and tonoplast transporters. 
 

7 Theoretically, but not experimentally verified (Baatrup-Pedersen and Madsen 1999), a higher 
 

8 nitrogen use efficiency due to the operation of CAM may have balanced the extra nitrogen cost. 
 

9 Freshwater CAM plants growing in the near-shore area of the littoral zone or in seasonal pools 
 

10 can be exposed to air. In the water-land transition, CAM is often fully or partially down-regulated 
 

11 (Keeley et al. 1983; Keeley and Busch 1984; Aulio 1985; Keeley 1999; Robe and Griffiths 2000). 
 

12 This is explained by higher inorganic carbon availability caused by the 10
4 

times higher diffusion 
 

13 rate in air compared to water. Contemporary with CAM being down-regulated, L. uniflora also 
 

14 acclimates to the aerial life by traits such as low lacunal volume, high Rubisco activity and 
 

15 production of stomata, which enables the terrestrial life-form to make use of CO2 from the air and 
 

16 makes the plant less dependent on CO2 from the sediment and from CAM. However, contrary 
 

17 results on CAM regulation in the shift from water to land occur, since CAM is not always down- 
 

18 regulated in the land-form (Farmer and Spence 1985; Aulio 1986) and exposure to atmospheric CO2 

 

19 per se therefore does not trigger down-regulation. The factor triggering CAM regulation in the land- 
 

20 form may be water-vapour concentration, thereby down-regulating CAM, when the water-vapour 
 

21 concentration is low (Aulio 1986). However, since the land-form of L. uniflora can still rely on 
 

22 sediment CO2 and dark CO2 uptake via CAM (Nielsen et al. 1996), the CO2 concentration 
 

23 experienced by the plant may not differ from the CO2 experienced under water – and this may be 
 

24 the reason for the lack of CAM down-regulation. 
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1 

2 Short-term regulation of CAM 

 

 

 

3 Light and CO2 does not only affect the diel CAM cycle in the long term (after an acclimation 
 

4 period), but also in the short term and thus on a daily basis and this effect has been observed in both 
 

5 laboratory and field (Keeley et al. 1983; Keeley and Busch 1984; Boston and Adams 1985; Madsen 
 

6 1987a; Hostrup and Wiegleb 1991; Robe and Griffiths 1990; Rattray et al. 1992; Klavsen and 
 

7 Maberly 2010; Klavsen unpubl.). Generally, malate decarboxylation appears to be dependent on the 
 

8 demand for inorganic carbon relative to its supply rate during the day. Thus, it has been found that 
 

9 high CO2 availability and/or reduced light intensity, e.g. caused by an overcast sky, affect the 
 

10 amount of malate being decarboxylated, thereby resulting in lower decarboxylation rates – or 
 

11 complete inhibition of decarboxylation – and/or higher minimum acidity level at the end of the light 
 

12 period. Contrary, a high photosynthetic carbon-demand increases the decarboxylation rate and 
 

13 lowers the minimum acidity level obtained in the evening (Boston and Adams 1985; Madsen 
 

14 1987b; Robe and Griffiths 1990; Rattray et al. 1992; Klavsen and Maberly 2010). However, in C. 
 

15 helmsii grown under low and high CO2, decarboxylation rates did not vary between CO2 treatments, 
 

16 but the decarboxylation period was longer and the minimum acidity level lower for low CO2 grown 
 

17 plants (Klavsen and Maberly 2010). In L. uniflora the rate of decarboxylation was generally high 
 

18 under low external CO2 concentration, but could be fully inhibited by high CO2 (Madsen 1987c). 
 

19 This indicates that CAM in L. uniflora operates under most natural CO2 conditions, although the 
 

20 long-term regulation of CAM, e.g. due to seasonal changes, will affect the actual CAM activity 
 

21 (Boston and Adams 1985; Klavsen and Maberly 2009) 
 

22 Light not only affects decarboxylation, but also affects photosynthesis and eventually the pool of 
 

23 starch being synthesised during the day. In the night, starch is broken down in glycolysis and serves 
 

24 as the precursor for phosphoenol pyruvate (PEP) – the acceptor-molecule for night-time fixation of 
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1 inorganic carbon via PEPcase (see Fig. 1) (Kluge and Ting 1978; Osmond 1978; Winter and Smith 

2 1996). Thus, the light intensity the previous day can potentially have implications for malate (and 

 

 

 

3 thereby acidity) accumulation in the night. This indirect effect of light on CAM has been observed 
 

4 in C. helmsii, where high concentration of CO2 only had significant effect on the acidity build up in 
 

5 the night after exposure to high daytime light intensity (Klavsen and Maberly 2010). It should be 
 

6 noted that in I. bolanderi the starch pool is not always sufficient to account for the malate build-up 
 

7 in the night (Keeley et al. 1983), indicating a role for another carbohydrate precursor-molecule or 
 

8 alternatively that starch production occurs from other carbohydrates simultaneously with starch 
 

9 breakdown. 

 
10 

 

11 Decarboxylation and O2:CO2 ratios 
 

12 The regulatory pattern of CAM indicates that CAM functions as a CCM in freshwater 
 

13 macrophytes. However, for CAM to act as an effective CCM, the photosynthetic rate should at least 
 

14 balance the rate of decarboxylation, since CO2 derived from CAM could otherwise be lost. In L. 
 

15 uniflora this was verified experimentally, since less than 2% of the CO2 resulting from daytime 
 

16 decarboxylation was lost (Smith et al. 1985; Madsen 1987b) and since the photosynthetic rate 
 

17 exceeds the decarboxylation rate in both L. uniflora and C. helmsii (Klavsen and Madsen 2008; 
 

18 Klavsen and Maberly 2009). In agreement with this, photosynthesis and CAM have been shown to 
 

19 be positively coupled in L. uniflora (Klavsen and Madsen 2008). 
 

20 For CAM to operate efficiently as a CCM, and thus for decarboxylation to influence the rate of 
 

21 photosynthesis positively, it would be anticipated that the O2 evolution relative to the external CO2 

 

22 uptake (and thus the O2:CO2 ratio) will be well above 1 during the decaboxylation phase. This was 
 

23 found for L. uniflora and I. lacustris (Madsen 1987b), where the O2:CO2 ratio was up to 3.5 during 
 

24 decarboxylation (Fig. 4). If the oxygen evolution does not increase considerable and thus give rise 
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1 to O2:CO2 ratio above 1 during decarboxylation this may be because either 1/ external CO2 is so 

2 high that decarboxylation is inhibited or 2/ the high internal CO2 obtained during decarboxylation 

 

 

 

3 inhibits external CO2 uptake. This implies that the CCM is working less efficiently and external 
 

4 CO2 will not be taken up 24 hours a day, thereby minimising C-gain. For C. helmsii no considerable 
 

5 change in oxygen evolution was observed during decarboxylation (Fig. 4). This may question the 
 

6 concept of CAM as a CCM in this species. However, since decarboxylation appears to be delayed in 
 

7 C. helmsii, maybe due to a circadian rhythm or daytime C4 activity, the plant may benefit from 
 

8 CAM, since decarboxylation occurs around midday, where the inorganic carbon demand is likely to 
 

9 be greatest (Klavsen and Maberly 2010). Furthermore, CAM may help conserve carbon, since 
 

10 respiratory CO2 can be re-captured in the night. 

 
11 

 

12 CAM in relation to C-gain 
 

13 For CAM to be of ecological significance as a carbon conserving mechanism, CAM must first of 
 

14 all be present in the field. Although the in situ CAM activity is dependent on long term (e.g. season) 
 

15 and short term regulation (e.g. day-to-day changes in, for example, irradiance),  significant in situ 
 

16 CAM activities have been found in several aquatic CAM species (Fig. 3) (Keeley et al. 1983; 
 

17 Boston & Adams 1985; Rattray et al. 1992; Klavsen and Maberly 2009). In addition to CAM being 
 

18 present under natural conditions, CAM must contribute considerably to the carbon gain to act as a 
 

19 carbon conserving mechanism. For L. uniflora, CAM undoubtedly contributes in a net positive 
 

20 carbon gain, since decarboxylation does not inhibit the external inorganic carbon uptake (resulting 
 

21 in large O2:CO2 ratios (Fig. 4)). Due to the plasticity of CAM, the influence of night-time CO2 

 

22 uptake on daily CO2 uptake in photosynthesis can vary significantly depending on the 
 

23 environmental conditions. Thus, the contribution from CO2 derived from CAM to daily 
 

24 photosynthesis varies from 0 to 95%. The latter estimate of the contribution from CAM was found 
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for L. uniflora and I. lacustris at an external CO2 concentration of 30 µmol L
-1

. At higher external 1  

 

 

2 CO2 concentrations the night-time CO2 uptake via CAM in relation to daily photosynthetic carbon 
 

3 uptake was reduced to 34-38% (Madsen 1987b) due to higher uptake of external CO2 and 
 

4 potentially partial inhibition of decarboxylation. In L. uniflora grown at low light, the contribution 
 

5 from CAM-derived CO2 to photosynthesis was high (62%), but lower than in plants grown at high 
 

6 light (81%) (Robe and Griffiths 1990). Also in I. howellii ca. 30-50% of daily CO2 uptake in 
 

7 photosynthesis was estimated to derive from night-time uptake through CAM (Keeley and Busch 
 

8 1984). Another estimate of the contribution from CAM to the carbon budget was made on L. 
 

9 uniflora, in which 40-55% of the annual carbon gain derived from CAM (Boston and Adams 1985, 
 

10 1986). 
 

11 For the elodeid C. helmsii, however, no oxygen peak is observed during decaboxylation (Fig. 4)) 
 

12 and thus the benefit from CAM is in principle lost. However, CAM may still be favourable to the 
 

13 C-gain of the plant, if the external CO2 concentration is low. In C. helmsii the in situ contribution 
 

14 from CAM to daily photosynthesis varied from 18 to 42%, depending on depth of growth and time 
 

15 of year (Klavsen and Maberly 2009). Most likely these estimates are valid as contributions from 
 

16 CAM to the daily carbon balance, since almost all respiratory CO2 in the night was refixed via 
 

17 CAM  and since roots make up a very small part of the total plant biomass in this species. Thus, in 
 

18 natural populations of freshwater CAM species, CAM appears to be of high ecophysiological 
 

19 significance for the carbon balance. These estimates are in agreement with estimates for terrestrial 
 

20 facultative CAM plants, in which 10 to nearly 100% of the carbon fixation in daily photosynthesis 
 

21 derive from CAM (Winter and Holtum 2002; Lüttge 2004). 

 
22 

 

23 Night time CO2 uptake 
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1 CAM potentially enables the plants to take up inorganic carbon 24 hours a day, although this is 
 

2 probably not realised in all species (Keeley 1998b; Madsen et al. 2002; Klavsen and Maberly 2010). 
 

3 Even though external CO2 is not taken up at night, CAM can still be considered a carbon conserving 
 

4 mechanism, since re-capture of respiratory endogenous produced CO2 through the operation of 
 

5 CAM can reduce or eliminate C-loss in the night and thereby influence C-gain positively (Keeley 
 

6 and Busch 1984; Madsen 1987c; Robe and Griffiths 1990; Madsen et al. 2002). The contribution of 
 

7 re-captured respiratory CO2, otherwise lost to the surroundings, to the total CO2 uptake via CAM is 
 

8 dependent on the external CO2 concentration, but often makes up a substantial part of the night-time 
 

9 inorganic carbon fixation. For L. uniflora between 30 and 99% of night-time CO2 uptake via CAM 
 

10 derives from CO2 produced in respiration (Richardson et al. 1984; Smith et al. 1985; Madsen 
 

11 1987b,c; Boston et al. 1987; Robe and Griffiths 1990) and for I. howellii values of 50-66% have 
 

12 been found (Keeley and Busch 1984). Since respiratory CO2 under natural conditions rarely makes 
 

13 up the total night-time CO2 uptake, this implies that CO2 uptake though CAM is at least partly 
 

14 dependent on the external CO2 availability, which potentially can lead to inorganic carbon 
 

15 limitation at night (Klavsen and Maberly 2010). However, the length of the night period – although 
 

16 not realised under field conditions – can compensate for low external CO2 availability (Keeley and 
 

17 Bowes 1982; Madsen et al. 2002). Thus, plants relying on CO2 primarily derived from endogenous 
 

18 sources can reach the same maximum CAM activity as plants incubated in a high CO2 medium. 
 

19 Respiratory CO2 can potentially make up the entire night-time carbon uptake through CAM under 
 

20 low external CO2 in both C. helmsii and L. uniflora, since the rate of respiration can exceed the rate 
 

21 of CO2 uptake through CAM (assuming a constant CO2 uptake in CAM, a constant respiratory rate 
 

22 and a respiratory quotient of 1) (Boston et al. 1987; Klavsen and Maberly 2010). 

 
23 

 

24 Conclusions 



19 

 

 

 

1 CAM is found in aquatic plants belonging to both the functional group of isoetids and elodeids. In 
 

2 both types of CAM plants, CAM is regulated in relation to environmental cues – in agreement with 
 

3 CAM functioning as a CCM in aquatic plants. For both isoetid CAM-species (Isoetes sp. and L. 
 

4 uniflora) and the elodeid C. helmsii, CAM appears to be of high ecological importance, since 
 

5 inorganic carbon uptake via CAM contributes significantly to the carbon budget. For C. helmsii – 
 

6 but not the isoetid CAM-plants – external inorganic carbon uptake seems to be inhibited by 
 

7 decarboxylation, which will lower the significance of CAM. However, CAM may still help 
 

8 conserve carbon, since respiratory CO2 loss can be eliminated by re-fixation through PEPcase in the 
 

9 night. Furthermore, for C. helmsii, CAM may be beneficial when the external concentration of CO2 

 

10 in the water is low. 
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1 Table 1. Regulation of CAM in aquatic CAM plants. Means of available data are presented. ‘-‘ 
 

2 indicates ‘not determined’. Plants have been growing and acclimated to conditions of CO2 and light 
 

3 according to the ones given in the table. Actual CAM was measured as the diurnal change in acidity 
 

4 under growth conditions. Potential CAM was determined as the maximum diurnal acidity change: 
 

5 in the daytime plants were placed in low CO2 (ca. atmospheric equilibrium) and high light (thereby 
 

6 increasing decarboxylation) and in the night plants were incubated in a medium with high CO2 

 

7 (>500 mmol m
-3

) (thereby increasing night-time CO2 uptake via CAM). 

 
Species Free CO2 

 

(µmol L
-1

) 

Light 
 

(µmol m
-2 

s
-2

) 

Temp. 

 
(°C) 

Actual CAM 
 

(µeq g
-1 

FW) 

Potential CAM 
 

(µeq g
-1 

FW) 

Ref. 

 
L. uniflora 60 40 15 35 65 4 

 

60 200 15 50 125 4 
 

100 450 15 66 87 1 
 

100 200 15 60 - 3 
 

100 1000 15 52 - 3 
 

130 300
a 

18-28 50 55 2 

 

300 200 15 50 - 3 
 

300 1000 15 46 - 3 
 

500 40 15 15 60 4 
 

500 200 15 90 130 4 
 

900 300
a 

18-28 140 180 2 
 

1000 1000 15 46 - 3 
 

1500 43 15 -4 30 1 
 

1500 450 15 70 79 1 
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5500 450 15 -2 36 1 
 

50/1000
b 

50 19-20 35 - 5 
 

50/1000
b 

300 19-20 112 - 5 
 

80/600
c 

350 18-19 110 - 6 
 

20/1000
c 

50 18-19 60 - 6 

 

C. helmsii 3 200 20 14 70 4 
 

20 40 15 - 83 4 
 

20 150 15 - 109 4 
 

22 30 20 15 23 7 
 

22 150 20 30 44 7 
 

22 23 20 -2 12 8 
 

22 230 20 35 60 8 
 

230 23 20 2 8 8 
 

230 230 20 18 30 8 
 

290 40 15 - 19 4 
 

290 150 15 - 12 4 
 

1 Ref 1: Madsen (1987), Ref 2: Baatrup-Pedersen and Madsen 1999, Ref 3: Boston and Adams 1987, 
 

2 Ref 4: Klavsen unpubl. Data, Ref 5: Robe and Griffith 1990, Ref 6: Robe and Griffith 1994, Ref 7: 
 

3 Klavsen and Maberly 2009, Ref 8: Klavsen and Maberly 2010. 
 

4 
a
estimate based on an irradiance of 10-16 mol photons m

-2 
day

-1
 

 

5 
b
plants were grown in natural sediments. The free CO2 concentrations of the water and interstitial 

 

6 water were 50 and 1000 µmol L
-1 

respectively. 
 

7 
c
plants were grown in natural sediments. The free CO2 concentrations of the water and interstitial 

 

8 water were either 20 or 80 and 600 and 1000 µmol L
-1 

respectively. 
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1 Figure captions  

 

 

2 Fig. 1. The Crassulacean Acid Metabolism (CAM) cycle. Dark CO2 fixation occurs through the 
 

3 enzyme, PEPcase, and the sources of inorganic carbon are either of endogenous origin (respiration) 
 

4 or of exogenous origin (water or sediment-CO2). The grey area represents reactions occurring in the 
 

5 dark, while the white area contain daytime reactions. The round circle symbolises the cell vacuole. 
 

6 Modified from Winter and Smith (1996). 

 
7 

 

8 Fig. 2. In situ CAM activity measured in the isoetids Isoetes lacustris, I. bolanderi, I. kirkii and 
 

9 Littorella uniflora and in the elodeid Crassula helmsii. Data are modified from Keeley et al. (1983), 
 

10 Boston and Adams (1985), Rattray et al. 1992 and Klavsen and Maberly (2009). 

 
11 

 

12 Fig. 3. Rates of inorganic carbon uptake and oxygen evolution in the isoetids Littorella uniflora 
 

13 (left panel) and Isoetes lacustris (middle panel) and oxygen evolution in the elodeid Crassula 
 

14 helmsii (right panel). Crassula helmsii was grown and photosynthesis measured at low CO2 (22 
 

15 mmol m
-3

), but decarboxylation did not start until after 2 hours after light onset. High CAM activity 
 

16 results in high O2:CO2 ratios (L. uniflora and I. lacustris), if external inorganic carbon uptake is not 
 

17 inhibited by decarboxylation. Data modified from Madsen (1987a) and Klavsen 
 

18 and Maberly (2010). 
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